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Potassium detection is critical in monitoring imbalances in electrolytes and physiological status. 

The development of rapid and robust potassium sensors is desirable in clinical chemistry and point-

of-care applications. In this study, composite supramolecular hydrogels were investigated: 

polyethylene glycol methacrylate and acrylamide copolymer (P(PEGMA-co-AM)) were 

functionalized with 18-crown-6 ether by employing surface initiated polymerization. Real-time 

potassium ion monitoring was realized by combining these compounds with quartz crystal 

microbalance (QCM). The device demonstrated a rapid response time of ~30 s and a concentration 

detection range from 0.5 to 7.0 mM. These hydrogels also exhibited high reusability and K
+
 ion 

selectivity relative to other cations in biofluids such as Na
+
, NH4

+
, Mg

2+
, and Ca

2+
. These results 

provide a new approach for sensing alkali metal ions using P(PEGMA-co-AM) hydrogels. 

Keywords: potassium detection, supramolecular hydrogels, QCM sensor  
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1. Introduction 

Potassium plays an important role in most biological processes including nerve transmission, 

maintenance of muscular strength, enzyme activation, and blood pressure regulation.
[1],[2]

 Normal 

extracellular potassium concentration is maintained within a relatively stable range from 3.5 to 5.5 

mM.
[3]

 However, physiological disorders and diseases may lead to an abnormal potassium ion 

concentration, which can be fatal.
[4]

 For example, in the event of natural disasters (i.e. earthquakes 

and mine-stope collapses), injured individuals may suffer from crush syndrome as a result of 

prolonged limb compression.
[5]

 Hyperkalemia, the most common complication of crush syndrome, 

is the major cause of mortality in patients.
[6]

 Indeed, a high potassium concentration in the blood 

can lead to cardiotoxicity and fatal arrhythmias.
[7]

 Hence, rapid detection of high potassium 

concentration in the blood is essential for treating wounded victims. Potassium monitoring is also of 

great interest in point-of-care diagnosis and is routinely used in the hospital intensive care unit 

(ICU), where high potassium concentrations (> 7.0 mM) in serum can lead to cardiac arrest and 

even death.
[8],[9],[10]

 It is even an important parameter in predicting the occurrence of infarcts.
[8]

 

Rapid and real-time continuous measurement of one’s potassium ion concentration is crucial when 

monitoring a physiological potassium concentration range. 

Crown ether is a cavity-containing supramolecule with -CH2-CH2-O as the repeating unit.
[11]

 It 

is extensively used in electrochemical ion detection due to its high selectivity and affinity toward 

alkali metal ions.
[12]

 Previous studies on crown ether derivatives have mainly been focused on 

developing electrochemical and optical approaches for detecting potassium ions. Schüwer et al. 

used surface-initiated atom transfer radical polymerization to create crown-ether functionalized 

polymer brushes based on QCM-D to detect potassium ions.
[13]

 The response time in these studies 

was ~1 h and the total frequency shift was 10 Hz mM
-1

 at the 3
rd

 harmonic resonance frequency. 

Jarolímová et al. developed a nanosphere matrix functionalized 18-crown-6 ether in an optode form 

for potassium sensing with a 0.1-10.0 μM decection range
[14]

 Yu et al. synthesized a linear 
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copolymer, poly (N-isopropylacrylamide-co-benzo-15-crown-5-acrylamide), as an indicator to 

observe potassium ions by optical transmittance.
[15]

 This method was aimed at producing a portable 

diagnostic device. However, the response time, sensitivity, detection range, and reusability all 

hinder the sensor’s performance. Therefore, studies on rapid, real-time, and reusable detection of 

physiological potassium ion concentrations are highly desirable.  

Hydrogels can be functionalized with chelating agents to specifically respond to external 

stimuli.
[16]

 Moreover, supramolecular hydrogels can effectively enhance the sensitivity and 

selectivity for specific environmental conditions and target ions.
[12c, 17]

 For example, 18-crown-6 

ether is a suitable recognition unit for potassium ions.
[18]

 The outstanding mechanical properties of 

polyacrylamide and polyethylene glycol methacrylates can also effectively block biological 

macromolecules.
[19],[20]

 Bearing these factors in mind, we synthesized copolymer hydrogels through 

surface-initiated polymerization using three different monomers: acrylamide, polyethylene glycol 

methacrylate (PEGMA), and (2)-allyloxymethyl 18-crown-6-ether. This method allows the 

hydrogel to covalently bond to the crystal plate, which can effectively improve the electrode life.
[21]

 

By adjusting the monomer ratio, the detection range can cover the physiological K
+
 ion 

concentration. The thickness of the hydrogel film was 165 nm, which could simultaneously  reduce 

the response time and meet the detection requirements. The QCM sensor was highly sensitive, rapid, 

stable, and able to detect the sub-nanometer mass changes in the biosensors.
[22]

 With the 

development of QCM technology in the liquid phase, QCM sensors are increasingly being used for 

the detection of biological fluids.
[23]

 In addition, we use hydrogel as the detection material, and the 

hydrogel has a certain viscoelasticity. The best feature of QCM is that it provides interesting ways 

to characterize the mass and viscoelastic properties of complex thin biopolymeric films.
[24]

 The 

QCM sensor was also selected to realize real-time analyte detection.
[25]

 Hence, we measured the 

hydrogel performance using a quartz crystal microbalance, and these novel supramolecular 

hydrogels displayed a rapid and sensitive response to K
+
 ions. The hydrogel films  maintained their 
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reversibility in aqueous conditions. They also exhibited higher selectivity to K
+
 ions than other 

metal ions such as Na
+
, NH4

+
, Mg

2+
, and Ca

2+
. 

2. Synthesis and Characterization  

The 18-crown-6 ether functionalized hydrogel films were immobolized onto a quartz crystal by 

surface-initiated polymerization (Figure 1a-d). The quartz crystal was first cleaned and surface-

hydroxylated (Figure 1a).
[26]

 Afterward, the crystal was modified with (3-aminopropyl) 

triethoxysilane (APS) to graft active amino groups (-NH2)
 [27]

 (Figure 1b), followed by an amino-

maleic anhydride ring-opening reaction.
[28]

 The latter reaction was undertaken so that the surface of 

the quartz crystal was grafted with polymerizable carbon-carbon double bonds (C=C) (Figure 1c). 

Finally, the prepolymer solution was coated on the modified quartz crystal surface and spin-coated 

to form a homogeneous liquid layer. The 18-crown-6 ether functionalized composite 

supramolecular hydrogels were synthesized using UV-initiated free-radical polymerization (Figure 

1d). 

A schematic of the hydrogel structure is shown in Figure 1e with polyacrylamide and 

polyethylene glycol methacrylate as the main chain and 18-crown-6-ether as the pendant group, 

formed by the copolymerization of acrylamide, polyethylene glycol methacrylate, and (2)-

allyloxymethyl 18-crown-6-ether. Figure 1f shows the K
+
 ion-recognition processes for the 

hydrogel films. This reaction was reversible in aqueous conditions
[13, 29]

. The combination of K
+
  

with the 18-crown-6 ether is a 1:1
[30]

 ratio, where K
+
 forms a coordinate bond with the oxygen atom 

on the 18-crown-6 ether. 

 

3. Results and Discussion 

AFM, SEM, and Differential Scanning Calorimetry (DSC) were used to investigate the 

homogeneity, mechanical properties, and morphology of the hydrogel film. The AFM results 

showed that the thickness of the hydrogel was roughly 165 nm (Figure 2a). This nanoscale 

hydrogel thin film shortened the response time. We can control the film thickness via the rotation 
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speed of spin coating; the results are shown in Figure S1. From the experimental results, we can see 

that the thickness of the hydrogel film reduced linearly as the rotational speed increasd. According 

to various performance requirements, we can adjust the speed to achieve the optimised thickness of 

the hydrogel film. The hydrogel surface morphology was measured by AFM. The hydrogel surface 

was homogeneous (peak-valley roughness ~±21 nm) and displayed several irregular holes 100-250 

nm in diameter (Figure 2b). The glass transition temperature (Tg) was also measured by DSC to 

investigate the polymer’s mechanical properties. Tg (64.87 C) was higher than the temperature 

range of the human body (Figure 2c). In this manner, the hydrogel can maintain its characteristic 

properties within the normal temperature range of the human body.The cross-sectional morphology 

of the freeze-dried hydrogels was examined by SEM, which indicated a porous structure (Figure 2d). 

These images suggest a large surface area for the hydrogel, which can effectively increase reaction 

rate kinetics between K
+
 ions and the 18-crown-6 ether complexation in the hydrogel.  

Fourier transform infrared spectroscopy (FTIR), contact angle measurements, and AFM 

imaging were conducted on the hydrogel films grown on quartz crystals. The FTIR spectra are 

shown in Figure 3a. After being treated with piranha solution, the crystal surface exhibited a peak 

at ~3630 cm
-1 

(Figure 3a-i). This absorption peak can be attributed to –OH bond stretching. In 

Figure 3a-ii, the quartz crystal was modified with (3-aminopropyl) triethoxysilane (APS), and the 

absorption peak at ~1680 cm
-1 

corresponds with -NH2.
 
In the fingerprint region, C-N bond 

stretching is located at ~1262 cm
-1 

and Si-O-C bond stretching at ~968 cm
-1

. In Figure 3a-iii, the 

quartz crystal treated by amino-maleic anhydride displayed a peak at ~1650 cm
-1

,
 
which is due to 

C=C bond stretching, a strong absorption peak at ~1100 cm
-1

, and a low intensity band at ~1726 

cm
−1

. In Figure 3a-iv, the coated hydrogel exhibited C-O-C and C=O stretching, respectively. The 

results of the FTIR measurements indicate that the target substances of each step were successfully 

grafted onto the quartz crystal surface. 

The hydrophilicity of the quartz crystal surface was also studied in different steps using contact 

angle measurements. The shapes of the water drops on the surface of the untreated quartz crystal 
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displayed a contact angle of 81.3° (Figure 3b). Correspondingly, the water contact angle of the 

quartz crystals decreased by ~10° with each step of the experiment. This trend accounts for a 

decrease in the water contact angle from 81.3° to 54.2°, demonstrating that the surface 

hydrophilicity of the quartz crystal increased in each step of the experiment. This was also 

supported by AFM measurements (Figure 3c), which revealed that the untreated quartz crystal’s 

surface roughness was less than ~2 nm (Figure 3c-i). After the quartz crystal was treated with 

piranha solution, the surface roughness increased to ~5 nm (Figure 3c-ii). A depression in the 

surface was observed due to etching of the piranha solution on the gold electrode. The quartz crystal 

roughness increased to ~20 nm after being treated with (3-aminopropyl) triethoxysilane (APS) 

(Figure 3c-iii). Finally, after treatment with maleic anhydride, the surface roughness increased to 

~25 nm (Figure 3c-iv).  

The sensitivity, reusability, and selectivity of the 18-crown-6 ether functionalized hydrogel films 

was investigated based on a QCM sensor to identify K
+
 ions (Figure 4). The stability of the QCM 

sensor was first tested. The QCM sensor revealed high stability with several frequency shifts over 

200 min in a potassium chloride aqueous solution (3 mM) (Figure 4a). These frequency shifts were 

no greater than 2.7 Hz. We also extended the test time to 48 h, the results shown in Figure S1. We 

can found that the QCM sensor frequency shift was 4.36 Hz within 48 h (the fundamental frequency 

of this QCM system is 5*10
6
 Hz, only 0.87 ppm of the fundamental frequency). This demonstrates 

the excellent long-term stability of our QCM sensor.  

 

The reaction of the 18-crown-6-ether functionalized hydrogels films was measured in response to 

K
+
 ions. Figure 4b shows the QCM sensor in response to changes in the K

+
 ion concentration. With 

an increase in potassium chloride (KCl) concentration, the frequency gradually decreased. The 

detection range was from 0.5 to 7.0 mM, which covered the physiological K
+
 concentration. When 

the K
+
 concentration increased to 7.0 mM, the total frequency shifted by 100 Hz. We tried to 

identify the lowest concentration of potassium ion solution that can be detected by our system and 
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the results are shown in Figure 2R. We can see that when the solution concentration is 0.3 mM, the 

18-crown-6 ether functionalized hydrogel films begins to respond with a frequency shift of 3.0 Hz. 

Therefore, our QCM sensor has a detection limit of 0.3 mM. 

Figure 4c reveals that the response time of each 1.0 mM K
+
 ion increment examined was rapid 

(~30 s), comparable with previously reported data
[13]

. we performed a experiment to study the effect 

of hydrogel films with different thicknesses on response time. We tested the response time of 18-

crown-6 ether functionalized hydrogel films with different thicknesses to 4 mM KCl solution. The 

film thicknesses were 56 nm, 95 nm, 127 nm, and 165 nm, respectively. The results are shown in 

Figure S4. From our experimental results, the thickness of the hydrogel has no conspicuous effect 

on the response time within a certain range. The cause of this result may be determined by the 

properties and structure of the hydrogel. Firstly, hydrogel is a network of hydrophilic polymer 

chains interwoven, which can dramatically response to environmental stimuli.
[31]

 Secondly, due to 

the Figure 2(b) and (d) in manuscript, we found that the structure of the hydrogel was porous; the 

pore size was within 100-250 nm. This indicated that the surface area of the hydrogel film was 

relatively large, which could effectively increase diffusion rate when the K+ ion-containing aqueous 

solution was introduced to the hydrogel. These characteristics of the hydrogel result in the response 

time not related to the film thickness within a certain range. 

The frequency difference exhibited a linear relationship with the K
+
 ion concentration (Figure 4d). 

In order to quantify the relationship between membrane thickness (T) and the response frequency 

shift (∆F), we did a experiment as shown in Figure S5. It seems that the response frequency shifts of 

the hydrogel films in 4 mM KCl solution is increased as the film thickness raised from 56 nm to 

165 nm. This is because the thicker the hydrogel film is, the more potassium ions can be combined 

with 18-crown-6 ether, which then leading to higher sensitivities 

 

The reproducibility of the K
+
 ion-selective electrode was also measured. Figure 4c shows the 

test results of three samples, in which the linear range varied from 0.5 to 7.0 mM. The coefficient of 
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variation was below 7%, well within the acceptable range. This data indicates that the potassium 

ion-selective electrode results are reproducible. The results of the reversibility test of the 18-crown-

6-ether functionalized hydrogel film coated QCM chip are shown in Figure 4e. The hydrogel films 

maintained their reversibility by alternately introducing deionized water and KCl (3.0 mM) 

solutions in 10 cycles.  

The selectivity of the 18-crown-6 ether functionalized hydrogel films toward K
+
 ions was 

14~50 times higher compared with other metal ions (Mg
2+

, Ca
2+

, Na
+
, NH4

+
) (Figure 4f). At a 

concentration of 6 mM, the other cations did not cause significant frequency shifts. This suggests 

that the hydrogel films are selective to K
+
 ions. 

 

4. Conclusions We have successfully synthesized a K
+
 ion-selective P(PEGMA-co-AM) hydrogel 

functionalized with 18-crown-6-ether based on a QCM sensor using surface-initiated 

polymerization. The hydrogels exhibited rapid response and high selectivity to K
+
 ions when 

compared with other cations, such as Na
+
, NH4

+
, Mg

2+
, and Ca

2+
. The detection range for K

+
 

sensing varied from 0.5 to 7.0 mM, covering the physiological concentration range. More 

importantly, the hydrogel revealed potential reusability. To the best of our knowledge, this 

investigation is the first demonstration of 18-crown-6-ether functionalized P(PEGMA-co-MA) 

hydrogels to detect K
+
 ions in aqueous solution. Furthermore, by choosing different chelating 

agents, this hydrogel network could be used in the preparation of a wide range of other host-guest 

detection systems for quantitatively sensing biomarkers in clinical samples. 

 

Experimental section 

Materials. Acetone, ethanol, hydrogen peroxide 30%, sulfuric acid, dimethyl formamide, Dimethyl 

sulfoxide. All reagents were purchased from Beijing Chemical Works. (3-aminopropyl) 

triethoxysilane (Alfa Aesar), maleic anhydride (Sinopharm Chemical Reagent Co., Ltd), N, N'- 

methylene-bis-acrylamide was used as the crosslinking agent for the hydrogel synthesis, 2,2-

javascript:void(0);
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Dimethoxy-2phenylacetophenone (Tokyo Chemical Industry), 2-(allyloxymethyl) 18-crown-6-ether 

as the detection units, Polyethylene glycol methacrylate (PEGMA Mn=500) (Sigma Aldrich) and 

acrylamide (Xilong Scientific Co., Ltd.) were used as the skeleton structure, and PEGMA as the 

effect of blocking the biological macromolecules. The purity of all the chemicals was greater than 

98%, unless stated otherwise. 

Characterization. The hybrid hydrogels were characterized by atomic force microscopy using 

Neaspec s-SNOM. The cross-sectional morphology was measureed by scanning electron 

microscopy (Hitachi S-4800), and the samples were freeze-dried and brittle fractured in liquid 

nitrogen before testing to obtain a smooth section. DSC curves were obtained using a DSC8500, 

where the heating rate was set to 10C/min. FTIR microscopy measurements: infrared transmission 

measurements were performed using an FTIR microscopy (Thermo Fisher Nicolet iN10). A 

background spectrum was generated for each measurement. An untreated quartz crystal was used to 

extract the background signal. Each measurement was repeated three times to confirm the 

transmitted spectrum. The water contact angle was measured using a KRUSS DSA100, in which 

each sample was tested three times to determine the average. Quartz crystal microbalance 

measurements were carried out using an SRS-QCM200 (fundamental frequency of 5 MHz), where 

the injection volume of potassium chloride was 600 μL, and the pump flow rate was set to 2 

mL/min.  

Fabrication of K
+
 ion-selective electrode. Before plating the polymer film, the quartz crystals were 

sonicated for 30 min in ethanol, acetone and piranha solution (98% H2SO4:30% H2O2 = 7: 3) and 

dried under nitrogen to eliminate organic substances and surface hydroxylation.  

The quartz crystals were incubated for 12 h in a 30 mL mixed solution in which the APS and 

ethanol volume ratio was 1: 200 to graft active amino groups (-NH2). Following that, the quartz 

crystals were rapidly dried under nitrogen to prevent the APS from hydrolyzing in the air. They 

were then placed in a 30 mL DMF solution containing 2 % maleic anhydride for 24 h and dried 

under nitrogen to graft the double bond.  

javascript:void(0);
javascript:void(0);
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Finally, 30 μL of prepolymer solution droplets were placed on the quartz crystal with a spin 

coater at a spinning speed of 4000 rpm so that the prepolymer solution could form a uniform 

coating on the quartz crystal. The hybrid hydrogels (P (PEGMA-AM)) functionalized with 18-

crown-6-ether were synthesized by UV-initiated polymerization. The quartz crystal was then placed 

into the UV Cryo Chamber at 365 nm  for 30 min. 

Preparation of prepolymer solution. N, N'- methylene-bis-acrylamide (5.02 mg), 2,2-Dimethoxy-

2phenylacetophenone (2.5 mg), acrylamide (20 mg), 2- (allyloxymethyl) 18-crown-6-ether (15 mg) 

and PEGMA (10 mg) were dissolved in dimethyl sulfoxide (100 μL). The solution was stirred under 

24 °C for 12 h. 

Quantification of Metal Ions. The QCM was first stabilized in deionized water, and then tested in 

deionized water without potassium ions.  The frequency was recorded as F0. Different 

concentrations of potassium ion solutions were recorded as F1 and F1-F0 with their corresponding 

frequency shifts.  
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Figure 1. Procedure for the synthesis of cown-ether functionalized hydrogel films grown on quartz 

crystals, and the structures and K
+
 ion-recognition propreties of the hybrid hydrogels. (a) The quartz 

crystal was cleaned and surface-hydroxylated. (b) The quartz crystal was modified with (3-
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aminopropyl) triethoxysilane (APS). (c) The quartz crystal was grafted with a polymerizable 

carbon-carbon double bond (C=C). (d) The quartz crystal coated by 18-crown-6 ether 

functionalized composite supramolecular hydrogels. (e) Structures of the hybrid hydrogels and (f) 

K
+
 ion-recognition property. 
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Figure 2. The homogeneity, mechanical properties, and morphology of the hydrogel film. (a) 

Thickness of the hydrogel thin film. (b) AFM image of the hydrogel surface morphology. (c) DSC 

curves of the hydrogels. (d) SEM image of the hydrogel’s cross-section morphology.  
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Figure 3. FTIR, contact angle measurements, and AFM images of the quartz crystal surface at 

different pretreatment steps. (a) FTIR of the quartz crystal surface under different pretreatment steps: 

the quartz crystal (i) surface-hydroxylated; (ii) modified with (3-aminopropyl) triethoxysilane 

(APS); (iii) modified with amino-maleic anhydride; and (iv) coated with 18-crown-6 ether 

functionalized composite supramolecular hydrogels. (b) Images of water droplets on the quartz 

crystals under visible light irradiation: the quartz crystal (i) without any treatment; (ii) surface-

hydroxylated; (iii) modified with (3-aminopropyl) triethoxysilane (APS); and (iv) modified with 

amino-maleic anhydride. (c) AFM images of the quartz crystal surface under different pretreatment 

steps: the quartz crystal (i) surface-hydroxylated; (ii) modified with (3-aminopropyl) triethoxysilane 

(APS); (iii) modified with amino-maleic anhydride; and (iv) coated by 18-crown-6 ether 

functionalized composite supramolecular hydrogels. 
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Figure 4. The sensitivity, reusability, and selectivity of 18-crown-6 ether functionalized hydrogels 

films based on a QCM sensor to identify K
+
 ions. (a) Frequency shift over 200 min in 3 mM KCl 

solution. (b) The 18-crown-6-ether functionalized hydrogel film coated on a QCM chip in response 

to various KCl concentrations. (c) Enlarged image of the red area (b). (d) Fitted curve depicting the 

change in frequency shift and the logarithm of KCl concentration. (e) Reversibility of the 18-crown-

6 ether functionalized hydrogel films coated on a QCM chip. (f) Comparison of the resonance 

frequency shift of the 18-crown-6 ether functionalized hydrogel films to 6.0 mM solutions of 

different monovalent and divalent metal ion solutions. 


