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Highlights 

 Mechanistic and semi-data driven methods were used to model a partially-aerated 

ASFF. 

 Among mechanistic models, Stover-Kincannon could fairly predict COD removal. 

 Evolutionary computing EPR developed an accurate explicit model for COD removal. 

 EPR model showed a promising alternative to model biofilm bioreactor systems. 

 

Abstract  

A novel semi-mechanistic data-driven technique based on an evolutionary polynomial 

regression (EPR) was developed along with a kinetic analysis to evaluate the 

performance of an external loop upflow partially-aerated fixed-film bioreactor 

(UP/ASFF). Modelling of experimental data was carried out under different organic 

loading rates (OLR), solid retention time (SRT), and food to microorganisms’ ratio 

(F/M ratio). The results showed that the EPR model was the best approach for the 

performance evaluation of the UP/ASFF system with R2 of 0.93 and normalized MSE 

of 0.02 although the Stover-Kincannon’s model showed also a promising predication 

with high accuracy and R2 of 0.92. 

 

Keywords: Process analysis; Kinetics modelling; Evolutionary polynomial regression; 

upflow partially-aerated fixed-film bioreactor. 

 

Nomenclatures: 

Abbreviation Description Abbrevi

ation 

Description 

V Reactor volume (L) Se Effluent COD concentrations (mg/L) 

Q Inflow rate (L/d) Ks Half saturation concentration (mg/L) 
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K2 Grau second-order kinetic constant 

(1/d) 

K1 First-order kinetic constant (1/d) 

Kd Microbial death rate constant (1/d) K

B 

Saturation value constant (kg/(m3.d)) 

X Biomass concentration at the reactor 

(mgVSS/L) 

µ Specific growth rate (1/d) 

Xe Effluent biomass concentration 

(mgVSS/L) 

β Kinetic parameter for the Contois model 

(mgCOD/(mgVSS)) 

Xi Influent biomass concentration 

(mgVSS/L) 

S

R

T 

Solid retention time (d) 

Y Yield coefficient (mgVSS/mgCOD) Si Influent COD concentrations (mg/L) 

S COD concentrations in the 

bioreactor (mg/L) 

H

R

T 

Hydraulic retention time (d) 

Umax Maximum utilization rate constant 

(kg/(m3.d)) 

µ

ma

x 

Maximum specific growth rate (1/d) 

F/M Food to microorganism ratio 

(kgCOD/(kgVS.d)) 

E COD removal efficiency (%) 

qs,max Contois maximum specific substrate 

utilization rate 

C

D 

Coefficient of Determination 

1. Introduction 

Over the last couple of decades, more consideration has been given to the potential 

methodology for wastewater treatment [1,2,3,4,5,6]. These processes are efficient, in 

particular, for in industrial water and wastewaters treatment [7,8,9,10,11,12]. While 

there are several non-selective physiochemical methodologies in terms of contaminants 

removal with such features [13,14,15,16,17], application of efficient microbial 

community for waste management can be considered as a robust alternative 

[18,19,20,21]. Biological processes are recommended to treat municipal wastewater due 

to their potentials for simultaneous removals of inorganic nitrogen and carbon, as well 

as energy and cost savings. Modern biological wastewater treatment plants usually 

consist of interconnected units such as aerobic, anoxic, anaerobic, and physicochemical 

processes to achieve higher performance efficiencies. Upflow partially-aerated fixed-

film bioreactor (UP/ASFF) system, which provides both aerated and non-aerated zones 
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inside a single bioreactor, can simultaneously remove nutrients and carbonaceous 

matters of municipal wastewaters. Although performance evaluation of the UP/ASFF 

bioreactor system for municipal wastewater treatment has been carried out by some 

researchers [22,23,24], its performance modelling and analysis have not been reported 

yet.  

Generally, finding a solution for governing equations that comprise the reaction, mass 

transfer, bioreactor hydrodynamics, biofilm dynamics, and shear stress [22] is a major 

challenge for studying the performance of biofilm bioreactors. Particularly, where the 

bioreactor comprises of two semi-anaerobic and aerobic zones (diverse in microbial 

types and the associated performance) without physical separation. Therefore, 

modelling this system can be a useful approach to attain several outcomes such as 

interpreting the performance of the system, analyzing its behavior, and estimating the 

responses under various conditions [25].  

Almost application of modelling in various fields of wastewater treatment in different 

scales has been progressed [1,5,9,10,26,27]. A knowledge-based model aims at 

describing the performance of a process via certain fundamental laws (i.e. continuity 

equations) and expressing mechanistic relationships between dependent and 

independent variables [26]. Moreover, several experiments will be required to 

determine the influence of environmental factors, such as hydraulic loading, substrate 

loading, toxic substances, and temperature [23]. Kinetic analysis is one of the best 

known means of describing the behaviors of biological wastewater treatment systems 

[28] which simplifies the assessment of pollutant degradation rate. Furthermore, the 

determined kinetic parameters can be used for the design, operation and optimization of 

bioreactors such as UP/ASFF [29]. In this context, some models such as first-order, 
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second-order, Stover-Kincannon, Monod, and Contois are used competently to describe 

dominant processes [30,31,32,33]. 

On the other hand, data-based modelling techniques can be expensive due to the 

requirement of a large amounts of data from the process for building and validation of 

the model. Empirical models do not require a priori knowledge on the mechanistic of 

system. Between the empirical modelling and mechanistic modelling, there is a hybrid 

modelling in which some physical insights are available, but several parameters will be 

remained for determining the observed data [34]. Hybrid modelling leads to better 

models of the process, which are more transparent or physically interpretable and have 

better generalization properties than empirical models [35]. Evolutionary Polynomial 

Regression (EPR) is a hybrid modelling approach integrating machine learning based 

algorithms with symbolic regression  and has proven to be a robust, promising approach 

to simulate complex physical, and chemical phenomena [36,37]. The design and 

operation of complex plants is a challenging issue that could be easily tackled by the 

EPR modelling approach.  

In our pervious study, the performance of the UP/ASFF bioreactor system without 

physical separation was assessed in terms of energy and cost savings prospects as well 

as the removal efficiencies of nitrogen and carbon from synthetic and real municipal 

wastewaters [23].  

The main aim of this study was to introduce a promising alternative modelling 

technique for the conventional kinetic analysis in the area of biofilm process. Up to 

now, most modelling approaches of biofilm processes have been developed based on 

the kinetic perspective, which is a conventional strategy, and in some cases, these 

approaches suffer from several drawbacks including representing a low coefficient of 

determination between predicted values and the experimental data. To address this 
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drawback and develop a more comprehensive insight into the physical phenomenon of 

biofilm process, the EPR approach was used. Accordingly, at first step, all the current 

kinetic models were thoroughly evaluated. The associated drawbacks and inefficiencies 

of each kinetic model were determined. Then to overcome the identified problems, the 

EPR modelling approach was introduced as a grey box modelling strategy. 

2. Materials and methods 

2.1. Experimental set-up and operation 

The UP/ASFF bioreactor was a cylindrical Plexiglas with 5 mm thickness and inside 

diameter of 11 cm. The effective working volume of the bioreactor was 7.6 L. In order 

to provide a support for biomass attachment and growth, the bioreactor was filled with 

polypropylene media with an estimated available surface area of 320 m2.m-3 (porosity 

of 0.89).  

Semi-anaerobic (non-aerated) and aerobic (aerated) parts within the bioreactor were 

formed by introducing air to the middle point of the column which has been filled by 

polypropylene media. To provide an upflow wastewater current, first, influent 

wastewater was introduced into the bottom of the bioreactor (semi-anaerobic zone), and 

then it passed through an aerobic zone, while the zones were connected by a 15 mm 

diameter recycle loop. Three ports were embedded along the bioreactor for sampling 

purposes. In addition, a perforated plate was installed at the top of the packed media to 

keep them submerged in the bioreactor. To initiate the experiment, the bioreactor was 

filled with 1 L seeding sludge at an average room temperature (25±3 0C). 

2.2. Analytical methods and wastewater 

Synthetic wastewater was prepared by adding sodium acetate, ammonium chloride, and 

potassium dihydrogen phosphate as carbon, nitrogen, and phosphor source into the tap 

ACCEPTED M
ANUSCRIP

T



 

36 

 

water, as described by Borghei et al. [38] . The influent COD concentrations varied 

from 200 to 1200 mg.L-1. All the chemicals used in the experiments were analytical 

grade. 

Samples of effluent were centrifuged before the analysis. Soluble COD at the influent 

and effluent samples were determined by closed reflux colorimetric method [39]. The 

total suspended solids (TSS) and volatile suspended solids (VSS) of samples were 

measured by weighting after drying and burning at 103–105 ◦C, and 550 ◦C, 

respectively [39]. The dissolved oxygen (DO) concentration was measured with a DO 

meter (Cyberscan DO 300, Eutech Instruments Pte Ltd). Temperature and pH were 

measured with the same electrode (HANNA instrument HI 8314). 

3. Model development 

Mathematical models can be introduced in many forms, from simple realistic 

correlations to sophisticated and computationally intensive processes. In the present 

study, mechanistic approaches were developed based on first-order, second-order, 

modified Stover-Kincannon, Monod, and Contois models. Besides mechanistic models, 

a semi-mechanistic approach (EPR) was used to develop mathematical structures, 

which derived through conceptualization of physical phenomena or through 

simplification of differential equations describing the phenomena under consideration. 

An analysis of variance test was performed to determine the statistical significant 

differences between the experimental data and the predicted values by models. 

Furthermore, some criteria such as F-test, P-value, normalized MSE, and R2 were 

considered for this purpose. 
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3.1. Mechanistic modelling 

3.1.1. First-order kinetic model 

A mass balance equation for the COD removal in the bioreactor is given by Eq. (1), 

where Q, V, Si, Se, and K1 are inflow rate, bioreactor volume, influent COD, effluent 

COD, and first-order kinetic constant, respectively. Under a steady state condition, the 

COD accumulation (-dS/dt) is negligible, and Eq. (1) can be reduced to the Eq. (2), 

where HRT is hydraulic retention time (V/Q). First-order reaction kinetics show the 

plotting of eliminated OLR versus effluent concentration, which gives straight line for 

determining K1 (first-order substrate removal rate constant). 

i 1 e- ( ) - ( ) -edS dt QS V QS V K S  (1) 

i e 1 e- / HRTS S K S  (2) 

3.1.2. Grau second-order kinetic model 

Studies demonstrated that the second-order model was more applicable than first-order 

in biofilm reactor [33,38]. In addition, the Grau second-order model was appropriate for 

predicting nitrogen removal [40]. The general equation for the Grau second-order 

kinetic model can be expressed as Eq. (3) [41]. If Eq. (3) was integrated and then 

linearized, Eq. (4) will be obtained. Knowing that organic matter removal efficiency is 

equal ((Si-Se)/Si) and expressed as E, Eq. (4) can be rewritten in the form of Eq. (5).  

2

2 e i- / ( / )dS dt K X S S  
(3) 

i i i 2.HRT/ - HRT /eS S S S XK   (4) 

HRT/ = HRT+E n m  
(5) 
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where m equals to Si/(K2X), and n in Eq. (5) is close to one. K2 is the rate constant of 

Grau second-order substrate removal (1/d) and X is the biomass concentration in the 

bioreactor (gVSS/L). The kinetic constant values, m and n can be obtained from the Eq. 

(5) by plotting a graph of HRT/E versus HRT. 

3.1.3. Modified Stover–Kincannon model 

Kincannon and Stover developed a mathematical model based on a relationship 

between the specific substrate utilization rate and total organic loading [42]. For the 

first time, this model was used for rotating biological contactor, which shows that it was 

appropriate for kinetic analysis of a complicated anaerobic and aerobic processes [42]. 

The widespread application of this model is due to its simplicity and the modelling 

ignoring parameters, such as substrate diffusion and hydraulic dynamics, which may be 

important to the bioreactor performance [43]. The following Eqs. (6-8) describe the 

modified Stover–Kincannon model. dS/dt is the substrate removal rate (kg /(m3.d)) and 

is defined as Eq. (7). Accordingly, by considering Eq. (6) and (7), Eq. (8) can be 

obtained and illustrated as follows: 

max i B i/ = ( / )/ +( / )dS dt U Q S V K Q S V    (6) 

i e/ = / ( ( - ))dS dt Q V S S  (7) 

i e B max i max/ ( - )=( . / . )+1/V Q S S K V U Q S U   (8) 

3.1.4. Monod and Contois models 

Monod kinetics model is used extensively to study biomass growth/decay rate and 

expressed as Eqs. (9-10). The ratio of the total biomass in the bioreactor to the wasted 
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biomass per given time represent solid resistant time (SRT) and it can be calculated 

from Eq. (11). It should be noted that SRT is calculated based on the VSS and the 

attached biomass on support. In spite of a fair similarity of Contois and Monod models 

in terms of the type of equation, the Monod relation only depends on concentration of 

the substrate [44]. In addition, the Contois growth model is able to describe the aerobic 

degradation of wastewater treatment. 

i e d/ = / - / + -dX dt QX V QX V X XK  (9) 

i e- / = / - / /dS dt QS V QS V X Y  (10) 

eSRT= /XV QX  (11) 

max e s e= . / +S K S   (12) 

max e e= . / +S X S    (13) 

Monod and Contois models in accordance with Eqs. (12) and (13) can express the 

relationship between µ and Se. Under a steady state condition, while the concentration 

of biomass in the influent flow is considered zero, the following equations can be 

obtained by substituting and rearranging Eqs. (11-13) into Eqs. (9-10). Then plotting 

((Si-Se)/HRT.X) versus (1/SRT) in Eq. (16), the values for coefficients Y and Kd will be 

determined. 

d=(1/SRT)+K  (14) 

max e s e d. / ( + )=(1/SRT)+S K S K  (15) 

i e d( - ) / (HRT. )=(1/ ).(1/ SRT)+(1/ ).S S X Y Y K  (16) 

also, the values of µmax and Ks can be determined by plotting Eq. (17), which is derived 

from Eq. (15): 

d s max e maxSRT/1+(SRT. )=( / ).(1/ )+1/K K S   (17) 
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by substituting Eq. (13) instead of the Monod equation into Eq. (9), Eq. (19) can be 

derived from rearranging Eq. (18). 

max e e d. / ( + )=(1/SRT)+S X S K   (18) 

d max e maxSRT/(1+SRT. )=( . ) / ( . )+ (1/ )K X S    (19) 

According to Eq. (19), if the quotient (SRT)/ (1+SRT.Kd) was plotted against the 

quotient X/Se, µmax could be calculated by intercept determination of the straight line, 

and subsequently β can be obtained from the slope determination. 

3.2. Hybrid modelling 

Evolutionary polynomial regression is a hybrid data-driven method for creating pseudo-

polynomial models based on evolutionary computing [35]. In general, EPR follows a 

two-stage procedure for constructing symbolic models [34,36,45]. At first, a 

mathematical structure of models is developed by exploiting a special coding of 

expressions, which permits the use of a heuristic search by using a multi-objective 

genetic algorithm named OPTIMOGA [46]. Then, it performs a numerical regression to 

find the parameters of the model (i.e. coefficients of pseudo-polynomial terms) [36]. A 

general EPR expression may be given as Eq. (20). 

 
p

j 0

j=1

= , ( ) +G a x f x a  (20) 

where G is the model output; aj is a constant value;  is a function constructed by the 

process; x is the matrix of input variables; f is a function selectable by the user and p is 

the maximum length (number of terms) of the polynomial expression (bias a0 

excluded). 
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Based on the general symbolic expressions in Eq. (20), the EPR involves several classes 

of mathematical expressions which may include functions definable by the user (see 

[36,47]). 

In this study, the EPR model class in Eq. (21) was selected, since it resulted into both 

lower mean square error (MSE) and easily interpretable mathematical expressions.  

p
(j,1) (j,k)

0 j 1 k

j=1

= + . (( ) .....( ) )ES ESG a a f x x  (21) 

where ES is the matrix of exponents (coded as integers in the OPTIMOGA) and aj 

parameter is estimated by using classical numerical regression methods like Least 

Squares or even Nonnegative Least Squares methods. It is worth to observe that ES may 

have values within a user-defined set of exponents including zero. The latter value 

permits deselecting one or more variables in some terms of the final expressions, 

resulting in parsimonious (less complex) mathematical expressions. 

The Coefficient of Determination (CD), calculated as Eq. (22), is the criteria 

implemented to estimate the accuracy of the model. GExp and GPred are the actual (i.e. 

measured) target values and the output values of EPR models, respectively, and N is the 

number of training samples. Another setting of EPR for the present analysis is presented 

in Table 1. Suitable values for the range of exponents was achieved by trial and error 

[34]. 80% of all pattern data was considered to train process and the other 20% of the 

data was used in a test stage (i.e. as data was unseen during model development). 

2 2

Pred Exp Exp ExpCD=1- ( - ) / ( -avg( ))
N N

G G G G   (22) 

The EPR models are also evaluated in terms of their complexity (i.e. number of selected 

variables and/or number of terms) and only the models, which are the best 

compromising solutions among such objectives, are considered. 
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The analysis reported here has been performed using the EPR-MOGA-XL tool, version 

1.0. EPR-MOGA-XL can be run as a function in MS-Excel as it is a smart add-in.    

4. Results and discussion 

The characteristics of the influent and effluent throughout the experiment in the 

UP/ASFF are shown in Table 2. Independent factors, influent COD, OLR, and HRT 

have been altered randomly. 

4.1. Process analysis and effect of Food to Microorganism ratio (F/M) 

F/M ratio is one of the most important biological parameters and a significant variation 

in this factor can cause serious problems in the process performance [48]. In general, 

the biological COD removal efficiency decreases by either working at the shorter HRT 

or higher F/M ratios due to the associated requiring time for COD consumption by 

microorganisms. Fig. 1 shows the average of the COD removal efficiency for each run 

along with various F/M ratios. COD removal efficiency and F/M ratio were in the range 

of 68- 95% and 0.50- 0.86 1/d, respectively. A sudden increase of OLR under 

maximum F/M ratio condition in run 8 resulted in high concentration of attached 

biomass and consequently clogging phenomenon through the column. As a result, COD 

removal performance was declined to 68%. This can be happened because of the 

problem in oxygen delivery deficiency at higher OLRs. Organic loading shock caused 

bulking phenomenon at the beginning of run 8, however, the performance of the system 

recovered rapidly. The color of the biomass was different at various OLRs and zones, in 

the bioreactor; the light yellow color biomass was predominant in the aerobic zone 

while dark brown color of the biomass in semi-anaerobic zone was in progress. 
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4.2. First-order kinetic model 

At the steady state condition, the first-order COD removal relation was applied for 

biofilm reactor performance prediction. The value of K1 was obtained from the slope of 

the line by plotting (Si-Se)/HRT versus Se in Eq. (2). Fig. 2A shows the slope (K1) and 

coefficient of determination of plot are 8.08 (1/d) and 0.45, respectively. The low value 

of R2, clearly indicated that first-order kinetics cannot be proper for the prediction of 

effluent COD.  

4.3. Grau second-order kinetic model 

In order to determine the second-order kinetic coefficients (m, n and K2) Eq. (5) was 

plotted in Fig. 2B. The values of m and n were calculated from the intercept and slope 

of the straight line on the graph. The constant values of m and n were found to be 0.03 

and 1.03, respectively for synthetic municipal wastewater with a high coefficient of 

determination (R2=0.99). The second-order removal rate constant (K2) calculated from 

m = Si/ (K2X) equation was found to be 10.2 (1/d), which depends on microorganism 

and influent COD concentration. The formulas to predict effluent COD concentrations 

were given in Eqs. (23-24) obtained by rearranging the Eq. (5) and substituting the 

values of m and n from Fig. 2B. 

e i= (1-(HRT/( + .HRT)))S S m n  (23) 

e i= (1-HRT/(0.03+(1.03.HRT)))S S  (24) 

4.4. Modified Stover–Kincannon model 

The results of the modified Stover-Kincannon model were shown in Fig. 2C. Under a 

steady state condition, the modified Stover-Kincannon model was applied to calculate 

COD degradation kinetics of the UP/ASFF system. Plotting V/(Q(Si-Se)) versus V/(QSi), 

ACCEPTED M
ANUSCRIP

T



 

44 

 

KB/Umax and 1/Umax are the slope and intercept point, respectively. Accordingly, Umax 

and KB constants were found to be 6.42 kg/(m3.d) and 7.35 kg/(m3.d), respectively. This 

indicates that maximum allowable COD removal rate in the biofilm bioreactor was 

calculated 6.42 kg/(m3.d) while its actual value was obtained 3.25 kg/(m3.d) (51% of the 

calculated Umax). The coefficient of determination of 0.99 was confirmed the 

applicability of the modified Stover-Kincannon model for COD removal prediction in 

the UP/ASFF system. After obtaining modified Stover-Kincannon models’ constants, 

the effluent COD concentrations could be predicted by Eq. (25). Likewise, based on the 

modified Stover-Kincannon, COD removal efficiency can be predicated by Eq. (26).  

e i i i= -7.35 / 6.42+( . / )S S S Q S V  (25) 

i=7.35/6.42+( /HRT)E S  (26) 

4.5.  Monod and Contois models 

In order to determine the kinetic coefficients of Monod model (Y, Kd, Ks, µmax) from 

Eqs. (16-17), the VSS was measured for each run. The values of Y and Kd were 

determined by plotting (Si-Se)/HRT.X versus 1/SRT in Eq. (16), as demonstrated in Fig. 

3A. The values for Kd and Y were found to be 0.30 (1/d) and 0.69 gVSS/(gCOD), 

respectively with the coefficient of determination of 0.85. By plotting 1/Se versus 

SRT/(1+ SRT.Kd), the values of the maximum specific growth rate (µmax) and half-

velocity constant (Ks) for the Monod model could be obtained from Fig. 3B as 0.41 

(1/d) and 3.57 (mg/L), respectively. Likewise, the similar procedure was employed for 

determination of Contois model kinetic constants. 

s,max max= /q Y  (27) 

e =(1+0.30SRT)/(0.03SRT-0.28)S  (28) 
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e = .(1+0.30SRT)/(82SRT-703)S X  (29) 

The relationship between the SRT/(1+ SRT.Kd) and X/Se was plotted in Fig. 3C and the 

values for β and µmax were found to be 0.0014 (mgCOD/mgVSS) and 0.42 (1/d), 

respectively. Based on Eq. (27)  the maximum specific substrate utilization rate (qs,max) 

in this model could be achieved by dividing µmax to Y as 0.60 gCOD/(gVSS.d) [49]. 

After defining the parameters of the model, effluent COD concentration is predictable 

by Eqs. (28-29). It is worth mentioning that the main disadvantage of Monod and 

Contois models is the limited prediction domain. For instance, in this work, the 

outcome results for the SRT under 10 days were not reliable to predict the performances 

of the process. 

4.6. Hybrid modelling 

To develop a model that accurately predicts the COD removal percentage, several 

attempts were made to simulate the process using the EPR-MOGA-XL software. The 

outcome of the EPR procedure is presented in Eqs. (30-34). 

=85.63E  CDtrain =0.0 CDtest =0.0 (30) 

0.5=66.8/OLR +38.75E  CDtrain =90.8 CDtest =89.4 (31) 

0.5

in=(0.002859 / OLR)+(64.463/OLR )+39.588E S  CDtrain =91.0 CDtest =89.9 (32) 

0.5 0.25 0.5 0.5 1.5

in in=(53.884/OLR )+(3.245 / OLR )+(8488OLR / )

+35.481

E S S
 

CDtrain =91.8 CDtest =90.4 (33) 

1.5 1.5 0.5 0.5

in

0.25 0.5 0.5 1.5

in in

=(26.7/ OLR )+(53.7/OLR )

+(3.25 / OLR )+(8458OLR / )+35.54

E t S

S S
 

CDtrain =91.8 CDtest =89.8 (34) 

The models are sorted based on CD of training and level of complexity (i.e. number of 

terms and number of inputs in this case). EPR represents a set of multidimensional 

strategies for the selection of models, based on a comprehensive analysis of complexity 
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and prediction accuracy of the models. EPR can work either in single or multi-objective 

configurations. In single-objective EPR, an objective function is used to control the 

prediction accuracy of the models without permitting excessive complexities to enter 

the models. In the case of multi-objective strategy two or three objective functions are 

represented in which one of them will control the prediction accuracy of the models, 

while at least one objective function controls the complexity of the models. The multi-

objective strategy returns a trade-off surface (or line) of complexity versus prediction 

accuracy which permits the user to compare models' expressions with each other, and 

then choose an appropriate model for the particular phenomenon. In this research, the 

EPR-MOGA-XL was used to develop the COD removal model. The first meaningful 

equation generated by EPR (i.e. Eq. 31) has a relatively high value of coefficient of 

determination for both training and testing (i.e. CDtrain=90.8 and CDtest =89.4) and low 

complexity of mathematical structure. This equation contains only one of the input 

parameters (i.e. OLR) which implies the predominant effect of OLR on the removal 

efficiency. The inverse relationship between the OLR and E refers to the ratio of OLR 

to DO. At the constant HRT and DO, increasing the influent COD provides an 

inhibitory medium for microorganism activity, and then, disturbs the biofilm 

performance. This inverse relationship is explained through a limitation in oxygen mass 

transfer rate at the aerobic unit of bioreactor. To achieve higher removal efficiency and 

the effluent with lower effluent COD, the DO concentration must be maintained at the 

optimum level, particularly, where both semi-anaerobic and aerobic zones are 

connected without physical separation. In order to maintain oxygen consumption 

through microbial film, oxygen has to cross the biofilm-liquid interface and transfer 

through the biofilm. Since this mechanism of transferring is generally achieved by 

diffusion, a concentration gradient within biofilm is expected. Therefore, for various 
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DO values of bulk liquid, the penetration depth of oxygen is different [50]. Moreover, 

the overall amount of biomass attached to the carrier material increased as the OLR 

increases which results in channelization phenomenon in the bioreactor. Furthermore, 

because of the high influent load and high sludge production during the operating 

period, physical clogging of the system occurs leading to poor COD removal. 

Backwashing is the remedy of this insufficiency; however, it reduces the amount of 

active biomass in the bioreactor, which could potentially result in unstable bioreactor 

performance and increasing shear stress in the bioreactor. Addition of another term in 

Eq. (32) shows a non-significant enhancement of CD, although it shows the direct 

effect of influent COD on removal efficiency. Such a direct relationship is confirmed 

for the remaining models, although the increase of relevant complexity is not justified 

by an increase of model accuracy.  

With regard to the proposed models by EPR, no meaningful effect of t (time) on the 

effluent COD confirms the validity of the assumption (dS/dt =0) applied for the 

mechanistic approach. In addition, under a steady state condition, overall biofilm 

thickness and active biomass concentrations will reach a constant value; however, the 

biofilm attachment and detachment on support media occur dynamically. 

Fluctuation of the COD removal percentage throughout the experiment is based on 

variations in two main factors of the influent COD and HRT, which is depicted in Fig. 

4A. As shown in Fig. 4A (regarding Table. 2 for more understanding of the 

experimental strategy) a little more efficiency of the bioreactor performance at run 7 

rather than run 4 at similar OLR of 2 kg/(m3.d), could be related to their variations in 

HRT. The higher liquid velocity in the bioreactor provides an improvement in the mass 

transfer rate, and consequently, the faster COD removal rate. However, high flow 

velocity means a high shear stress at the biofilm surface, which generates a greater 
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detachment rate. Among the proposed models by EPR, Eq. (31) with minimum number 

of terms and input variables was selected to illustrate Fig. 4B. In Fig. 4B experimental 

and predicted COD removals were compared satisfactorily with R2 of 0.91 according to 

Eq. (31). 

4.7. Evaluation of models  

Table 3 summarizes the part of the substrate removal kinetic constants with the 

corresponding OLR that have been compared with the results obtained from other 

researches [51,52,53,54], however, the rest of the kinetic constants are illustrated in 

Table 4. The calculated microbial death rate constant (0.30 1/d) was higher than the 

value obtained by Pirsaheb et al that used phthalic acid (0.11 1/d) and dimethyl 

phthalate (0.06 1/d) as substrates [55]. Furthermore, the lower ratio of Ks to the influent 

COD points toward the high affinity of microorganism to the substrate. The 

juxtaposition of the kinetic constants for Contois, first-order (K1), and second-order (K2) 

revealed that maximum substrate utilization rate (qs,max) for Contois model was lower 

than other values. Generally, the differences among the kinetic constants can be 

essentially attributed to the type of substrate, reactor configurations, range of applied 

OLR, and differences in other operating conditions such as temperature.  

With respect to the statistical analysis and other calculated criteria for models shown in 

Table 5, it seems that the hybrid approach had a considerable robustness in the 

modelling performance. While from mechanistic approaches, modified Stover–

Kincannon kinetic was recognized more appropriate for COD removal prediction than 

the rest of the models. 

To test the validity and capability of the models, results obtained from the experimental 

data for effluent COD were compared with the predicted values. Apart from low R2 
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value, the serious problem of Monod equation is related to its inability to predict all 

ranges of influent, in particular in some experimental runs, which were done at SRT 

under 9 days. As applied OLR of 4.8 is out of range, Monod equation is not proper for 

prediction in this case. There is a similar problem for Contois model as these two 

equations (Eqs. (28 and 29)) have the same form of relation in denominator. However, a 

coefficient of X can act as a balancer in Contois prediction process so that 8 out of 9 

experimental runs were used in this study. Although the Contois model shows 

acceptable coefficient of determination for prediction of effluent COD, it was not the 

same as the modified Stover-Kincannon. In addition to an unsatisfactory correlation 

among the outputs in first-order model, the high value of normalized MSE apparently 

showed that there should be a meaningful difference between predicted and 

experimental values. Among the models, second-order predictor was the sole model 

that the statistical F-test analysis showed the unequal variances between experimental 

values and calculated data through the Eq. (24). Whereas, from the statistical analysis 

among the mechanistic models, modified Stover-Kincannon showed a high degree of 

reliability in terms of the lowest normalized MSE (0.02) and the highest R2 (0.92).  

On the other hand, the semi-mechanistic technique does not bear enumerated 

disadvantages associated with mechanistic models, and also, statistically, it was more 

accurate. Considering a process in a steady state condition is the main specification of 

modified Stover-Kincannon, as there is no such assumption in EPR, and this is the main 

superiority of EPR over mechanistic models. As shown in Table 5, the EPR model 

shows a very good value of the R2 and other statistical values. Despite the flexibility of 

this approach, it represents a group of explicit expressions with different accuracy and 

the degree of complexity of mathematical structures. Therefore, it could be a rewarding 

approach where a prediction of a complex process like multiphase biofilm reactor is 
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desirable. Moreover, EPR approach with providing insights into the process (in what 

way the model’s inputs affect outputs) showed that it could be the best option for the 

prediction of UP/ASFF performance, even though mechanistic approaches such as 

modified Stover-Kincannon are also desirable. 

5. Conclusion 

Sustainability at higher OLR, effluent with high quality, and less waste production are 

some of the advantages of the UP/ASFF system over other biofilm bioreactors 

comprising single compartment of anaerobic or aerobic. Two paths of mechanistic and 

hybrid approaches were investigated to model the performance of UP/ASFF systems. 

The mechanistic path was conducted by kinetics study, including Monod, Contois, Grau 

second-order, modified Stover-Kincannon, and first-order. In addition, a novel state of 

the art modelling technique based on evolutionary computing EPR was employed to 

develop an accurate explicit model. This new methodology is based on both numerical 

and symbolic regressions. Model validation and statistical analysis confirmed that the 

output data predicted by EPR had the most adjacency to the experimental results with a 

coefficient of determination of 0.93, and the lowest normalized MSE of 0.02. The 

present study demonstrates that the EPR model has some potentials to be used for the 

design of full-scale UP/ASFFs to treat municipal wastewater. 
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List of figures: 

 

Fig. 1. F/M ratios and COD removal efficiencies for runs carried out in experiments.  

Fig. 2. First-order (A), Second-order (B), and the Modified Stover–Kincannon kinetic 

model plots (C).  

along  for Monod kinetic constants B)( SKand  ,maxµ(A),  dK, Y . Determination of3Fig. 

  .(C) for Contois kinetic constants βand  maxµ with 

Fig. 4. Measured and calculated COD removal throughout the experiments (A) and 

comparisons based on Equation (31) (B).  
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Fig. 2 
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Fig. 3 
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Fig. 4 

ACCEPTED M
ANUSCRIP

T



 

61 

 

List of Tables: 

Table 1. Setting of parameters for EPR. 
EPR type Regression type Function Range of exponents Numerical Regression 

Case 2 Static No function [-3:0.5: 3] Non-negative Least Squares 

 

Table 2. Average experimental data obtained under steady-state conditions. 

Run 

Influent 

COD (mg/L) 

HRT(d) 

OLR 

(kg/(m3.d)) 

Effluent 

COD (mg/L) 

OLR removal 

(kg/(m3.d)) 

pH 

1 300 0.25 1.2 15 1.14 7.3 

2 400 0.25 1.6 28 1.49 7.41 

3 700 0.25 2.8 159 1.72 7.54 

4 500 0.25 2 70 1.93 7.6 

5 600 0.25 2.4 117 2.16 7.66 

6 1200 0.79 1.5 73 1.43 7.64 

7 200 0.08 2.4 33 2.01 7.48 

8 400 0.08 4.8 129 3.27 7.85 

9 550 0.3 1.8 36 1.66 8 
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Table 3. Comparison of Modified Stover–Kincannon and Second order kinetic 

parameters for various studies.

wastewater Type OLR Modified Stover–Kincannon Second order Reference 

Umax KB K2 m n 

Municipal 0.8-2 57.5 62.6 8.24 0.005 1.11 [36] 

Synthetic 
5.4-12 6.5 9.2 - 0.02 1.4 [37] 

Synthetic 
1.7-2.9 15.2 14.8 - - - 

[38] 

Domestic 1.3-5.9 0.74 0.93 0.26 0.22 1.09 [39] 

Synthetic 1.2-4.8 6.42 7.35 10.2 0.03 1.03 This study 
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Table 3. Summarized kinetic parameters for Monod, Contois and first-order models. 

Kinetic models Kinetic parameters Values 

Monod 

µmax 0.41 

Kd 0.30 

Y 0.68 

KS 3.58 

Contois 

β 1.41 

qs,max 0.60 

µmax 0.42 

First-order K1 8.079 
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Table 5. Comparison of both hybrid and mechanistic models’ performance based on statistical analysis. 

Models Types of model P-value F-test 
F-

Critical 

Degree of 

freedom 

Normalized 

MSE 
R2 

First order Mechanistic 0.88 1.12 3.44 8 1.00 0.59 

Second order Mechanistic 0.03 5.53 3.44 8 0.11 0.41 

Modified Stover 

Kincannon 
Mechanistic 0.80 1.20 3.44 8 0.02 0.92 

Monod Mechanistic 0.30 0.44 0.26 7 0.18 0.72 

Contois Mechanistic 0.27 0.42 0.26 7 0.17 0.78 

EPR 
Semi-

Mechanistic 
0.84 1.16 3.44 8 0.02 0.93 

 

 

 

ACCEPTED M
ANUSCRIP

T


