Epidemiology of atrial fibrillation

Running title: Epidemiology of AF

Hanis Zulkifly, MPharm

Gregory Yoke Hong Lip, MD

Deirdre Anne Lane, PhD

aInstitute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom

bAalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

Corresponding Author: Dr Deirdre A Lane

Tel: +44 121-507-5080 Email address: deirdrelane@nhs.net

Mailing address: University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Dudley Road, Birmingham, B18 7QH, United Kingdom.

Word count: 1527

Disclosures:

HHZ: Received funding from Malaysian Ministry of Education and Universiti Teknologi MARA for her PhD but not directly for the work under consideration.

GYHL: Consultant for Bayer/Janssen, BMS/Pfizer, Biotronik, Medtronic, Boehringer Ingelheim, Microlife and Daiichi-Sankyo. Speaker for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, Microlife, Roche and Daiichi-Sankyo. No fees are received personally.

DAL: Received investigator-initiated educational grants from Bristol Myers Squibb and Boehringer Ingelheim, and has been a speaker and consultant for Boehringer Ingelheim, Bayer, and Bristol Myers Squibb/Pfizer.
Abstract

Background: The most common type of arrhythmia in the United States and in the European countries is atrial fibrillation (AF). The prevalence of AF is increasing worldwide with advances in technology, better prediction methods and increased awareness among healthcare physicians and patients. Methods: This article summarises the literature on the epidemiology of AF worldwide according to continents, age and ethnicity/race, and also includes the prevalence of AF in stroke patients. Results: In Australia, Europe and the USA, the current estimated prevalence of AF is about between 1-4%, with lower prevalence evident in Asia (0.49%-1.9%). AF prevalence is highest among Whites. In Western Europe, Australia and North America 70% of people with AF are aged >65 years whereas the average age of AF patients in other geographical regions is often lower. Conclusions: Although the prevalence of AF worldwide is increasing steadily, large variation can be seen between studies and countries. Further epidemiological studies should be undertaken globally, especially in Asian and African countries so that a better and more accurate picture of the incidence and prevalence of AF can be captured, to enable stroke prevention strategies to be appropriately implemented to prevent or reduce the risk of stroke, the most severe consequence of AF.

Keywords: atrial fibrillation, epidemiology, prevalence, worldwide, continents, ethnicity, age, stroke
Introduction

Atrial fibrillation (AF), the most common form of arrhythmia with clinical significance is a major global health burden worldwide. In the United States (US) and European countries, one in every four middle-aged adults will develop AF. Most importantly, AF is associated with a five-fold greater risk of stroke, increased risk of death and development of heart failure, and a greater risk of hospital admission, with 10-40% of AF patients hospitalised annually. Additionally, irrespective of other cardiovascular-related conditions, AF patients have poorer quality of life and unfortunately, despite anticoagulation for stroke prevention, they can still develop vascular dementia and a decline in cognitive function.

According to the Global Burden of AF, worldwide, the projected number of people with AF in 2010 was 33.5 million, consisting of 20.9 million males (UI, 19.5-22.2 million) and 12.6 million females (UI, 12.0-13.7 million), with higher incidence and prevalence rates in developed countries (Table 1). Mortality associated with AF globally is higher in females, primarily driven by higher mortality among females in developing countries. (Figure 1). This article summarises the literature on the epidemiology of AF worldwide according to continents, age and ethnicity/race, and also includes the prevalence of AF in stroke patients.

Methods

A literature search was performed on PubMed using the following keywords alone or in combination: ‘atrial’, ‘fibrillation’, ‘incidence’, ‘prevalence’, ‘stroke’, ‘worldwide’, ‘epidemiology’, ‘Asian’, ‘race’, ‘ethnicity’. The bibliography from Rahman et al1 was checked and additional studies on the prevalence of AF worldwide were included. The studies were collated according to the year of publication and country, and summarised in Tables 2 and 3.
Worldwide prevalence of AF by continents

In Europe, AF currently affects eight million people and is expected to rise drastically, 2.3-fold by 2060.4,5 In the United Kingdom projections from the Clinical Practice Research Database suggest that AF will affect between 1.3 and 1.8 million people by 2060.6 In the United States, about 3-5 million people are currently affected by AF and by 2050 this figure is expected to be greater than 8 million people.7 In Australia, Europe and the USA, the current estimated prevalence of AF is about between 1-4%.1,4 Table 2 and Figure 2 illustrates the prevalence of AF in nine countries, stratified by continents worldwide. Australia has the highest prevalence of AF i.e., 5.4% followed by Africa 4.6%, although the prevalence was lower (0.7%) in another African study by Shavadiva et al8, followed by Iceland (2.4%) and lowest in Asian countries (0.49%-1.9%).

A recent review9 on AF epidemiology of 58 studies from five Asian (China, Japan, South Korea, India, Malaysia) and eight Middle Eastern countries (Turkey, Bahrain, Qatar, Kuwait, Saudi Arabia, Oman, United Arab Emirates and Yemen)9 reported the annual incidence of AF to be 5.38 per 1000 person-years mainly from Chinese, Japanese and Korean studies (10 studies in total)10-19 conducted from 1991-2012, with study populations ranging from 148514 to 471,446.12 Prevalence of AF varies between hospital-based and community-based studies; being higher in the latter (0.37%-3.56% vs 2.8%-15.8%).9

Differences in the incidence and prevalence rates between studies is likely dependent on the time the study was conducted, the design (nationwide studies, medical insurance databases etc., retrospective, prospective, cross-sectional) and the study population (age of patients, urban compared to remote areas as their risk factors may vary, for example the prevalence of rheumatic heart disease is higher in rural populations in India)20 which in turn affects the quality of data obtained.4
Ethnicity, age and prevalence of AF

The prevalence of AF across different ethnic groups differs, although most of the studies investigating these differences have been conducted in the United States. For the purpose of this review, ethnicity is classified as White, (European, American) Afro-Caribbean, (Blacks, Black British, African-American) East Asian, (Chinese, Japanese, Malaysian and other Asians) South Asian (Indian, Pakistani, Bangladeshi), Hispanics (Hispanic or Latino), and others, as reported in individual studies.21, 22

Table 3 shows the prevalence of AF by race and ethnicity according to 11 studies,23-33 conducted in the United States and one multicentre study conducted in North America, Europe and Asia. In all studies, the prevalence of AF was highest among the Whites compared to Afro-Caribbeans, East Asians and Hispanics, ranging from 42%32 to 2.5%31 among the Whites, and 21%31 to 1.7%30 among Afro-Caribbeans. Only three studies23, 25, 33 reported AF prevalence among East Asians which ranged from 3.9%25 to 10.1%,23 while only one study reported AF prevalence among Hispanics (3.9%).25 A meta-analysis of 10 studies examining the prevalence of AF among African-Americans in the United States compared to Whites, concluded that being African-American was associated with a ‘protective effect’ from AF (OR 0.51, 95% CI 0.44-0.59, p<0.001). Despite the lower prevalence of AF, African-Americans in the US have twice the risk of first ever stroke compared to Whites.34

In addition to ethnic differences, age distribution of AF diagnosis may also differ between regions. More than 70% of AF patients in Western Europe, Australia and North America were aged >65 years.1 A different pattern in the average age of AF diagnosis is evident from other regions whereby AF patients are younger, for example; the mean age of AF patients was 57±16 years in the Gulf-SAFE registry from Arabic population,35 41±13 years in an Ethiopian study,36 <65 years in 43% of the South Korean population detected with AF1 and <50 years in 38% of patients from one South-African hospital.37 Results from the
RE-LY AF registry which enrolled AF patients from the 164 emergency departments worldwide to evaluate the differences in the presentation and management of AF, also shows some regional variation in terms of age at AF diagnosis; patients from America and Europe countries were on average 10-12 years older than those from Africa, India and the Middle East.38

Incidence and prevalence of AF in stroke patients

AF increases the risk of stroke approximately 5 times compared to those without AF.2 An Italian study has shown39 the presence of AF in 24.6\% of patients (mean age 78.8±13.3 years) with ischemic stroke in a population based study, where AF is more frequent in women and patients 80 years or older. In this study, AF was an independent predictor of 30-day and 1-year mortality in Cox regression analysis.39

Another prospective study in Germany reported an overall prevalence of AF slightly higher than the Italian study, i.e., 28.6\% in 692 patients with ischemic stroke or transient ischemic attack, with prevalence increasing with age.30 Hanchate et al reported a similar prevalence of AF in the USA in 2013 (i.e., 23\% in acute ischaemic stroke patients from eight states),41 in two European studies (24.6 and 28.6\% respectively)20, 42 and an Australian study (25\%; study population 26,960).43 However, the prevalence of AF was reportedly lower in some Asian countries, approximately 10\% in China,44 5.8-6\% in India,45, 46 but higher in Japan (32\%).47

Sposato et al conducted a meta-analysis of 50 studies in 201548 to estimate the proportion of newly diagnosed AF patients experiencing stroke or TIA after undergoing four sequential phases of cardiac monitoring; phase 1: ECG at admission, phase 2: continuous inpatient ECG, phase 3: Holter monitoring and phase 4: mobile cardiac outpatient telemetry. In this study, they reported an overall presence of AF in 23.7\% (95\% CI 17.2-31.0) of their
post-stroke patients and an estimated prevalence of AF in post-stroke patients with either known or newly diagnosed AF of about 39.0%, higher than previously reported studies.48

Conclusion

The prevalence of AF worldwide is increasing steadily although large variation can be seen between studies and countries. A larger proportion of ischemic stroke patients are also found to have AF either during admission or upon investigation post-discharge that becomes a major concern as AF related to stroke has poorer outcomes and prognosis.2, 4 This increase in the prevalence of AF may be explained by the fact that better prediction methods have been used to detect AF1, 2, 49 and also greater awareness among physicians and other healthcare providers who are able to detect patients with AF during routine check-ups, flu injections and also during hospital admissions.

More epidemiological studies should perhaps be undertaken globally, especially in Asian and African countries, in urban and rural areas, so that a more accurate picture of the incidence and prevalence of AF can be captured, thereby allowing appropriate implementation of stroke prevention strategies to reduce stroke risk and burden.
Authors contributions:
All authors contributed to the data interpretation, drafting the article and critical revision.

Acknowledgements:
None

Funding:
HHZ: Received funding from Malaysian Ministry of Education and Universiti Teknologi MARA for her PhD but not directly for the work under consideration.
References

30. Upshaw CB. Reduced prevalence of atrial fibrillation in black patients compared with white patients attending an urban hospital: an electrocardiographic study. *J Natl Med Assoc* 2002; **94**: 204-208.

Table 1: Incidence and prevalence of AF and AF-associated mortality rate with 95% uncertainty intervals (UI) (per 100,000) for males and females (data extracted from Chugh 2014)

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>2010</th>
<th>1990</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Incidence of AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globally, all ages</td>
<td>60.7 (49.2-78.5)</td>
<td>77.5 (65.2-95.4)</td>
<td>43.8 (35.9-55.0)</td>
<td>59.5 (49.9-74.9)</td>
</tr>
<tr>
<td>Developed Countries</td>
<td>78.4 (67.5-91.9)</td>
<td>123.4 (107.6-141.5)</td>
<td>52.8 (45.0-62.9)</td>
<td>90.4 (77.8-104.5)</td>
</tr>
<tr>
<td>Developing Countries</td>
<td>50.0 (33.8-76.8)</td>
<td>53.8 (38.7-79.8)</td>
<td>36.0 (24.5-54.7)</td>
<td>40.0 (27.2-62.6)</td>
</tr>
<tr>
<td>Prevalence of AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globally, all ages</td>
<td>569.5 (532.8-612.7)</td>
<td>596.2 (558.4-636.7)</td>
<td>359.9 (334.7-392.6)</td>
<td>373.1 (347.9-402.2)</td>
</tr>
<tr>
<td>Developed Countries</td>
<td>608.2 (547.0-693.5)</td>
<td>660.9 (597.1-738.2)</td>
<td>362.5 (329.3-422.3)</td>
<td>387.7 (343.8-450.0)</td>
</tr>
<tr>
<td>Developing Countries</td>
<td>546.6 (503.0-599.6)</td>
<td>656.7 (522.9-617.6)</td>
<td>358.2 (329.8-393.0)</td>
<td>366.1 (337.4-400.8)</td>
</tr>
<tr>
<td>Mortality rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globally, all ages</td>
<td>0.8 (0.5-1.1)</td>
<td>1.6 (1.0-2.4)</td>
<td>0.9 (0.7-1.2)</td>
<td>1.7 (1.4-2.2)</td>
</tr>
<tr>
<td>Developed Countries</td>
<td>1.3 (0.9-1.9)</td>
<td>2.7 (1.9-4.3)</td>
<td>1.1 (1.0-1.3)</td>
<td>2.4 (2.0-3.0)</td>
</tr>
<tr>
<td>Developing Countries</td>
<td>0.4 (0.2-0.8)</td>
<td>0.7 (0.4-1.3)</td>
<td>0.7 (0.4-1.4)</td>
<td>1.0 (0.6-1.7)</td>
</tr>
</tbody>
</table>

AF= atrial fibrillation
Table 2: Worldwide prevalence of AF by continent

<table>
<thead>
<tr>
<th>Country</th>
<th>Study</th>
<th>Years data obtained</th>
<th>Study design</th>
<th>Sample size</th>
<th>Study population</th>
<th>Data source</th>
<th>Age (SD) [Men, women (%)]</th>
<th>Prevalence (%) total, (men and women)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>Sliwa et al 2010</td>
<td>2006-2008 Prospective</td>
<td>5328 cardiac cases</td>
<td>Hospital-based, single centre, urban population</td>
<td>59 (18) [39, 61% AF]</td>
<td>4.6 (†)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>Shavadia et al 2013</td>
<td>2008-2010 Retrospective</td>
<td>44, 144</td>
<td>One hospital admission in Nairobi</td>
<td>≥18 [56, 44% AF]</td>
<td>0.7 (†)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>Lim et al 2016</td>
<td>2007-2014 Prospective</td>
<td>10,805</td>
<td>18 urban, 22 rural communities across Malaysia</td>
<td>52.6 (11.6)</td>
<td>0.49 (†)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>Yap et al 2008</td>
<td>† Prospective</td>
<td>1,839</td>
<td>Community-based study</td>
<td>≥55</td>
<td>1.4 (†)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>Phrommintikul et al 2016</td>
<td>† Prospective</td>
<td>1,277</td>
<td>Cross section of Maerim District, Chiang Mai</td>
<td>≥65 [45.8, 54.2% AF]</td>
<td>1.9 (†)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Ball et al 2015</td>
<td>June 2014</td>
<td>6,140,651</td>
<td>7 international epidemiology study</td>
<td>≥55 years</td>
<td>5.35 (5.97, 4.79)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Authors</td>
<td>Year</td>
<td>Study Period</td>
<td>Methodology</td>
<td>Sample Size</td>
<td>Age Range</td>
<td>Incidence (95% CI)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Sturn et al</td>
<td>2002</td>
<td>2000</td>
<td>Prospective</td>
<td>14,194</td>
<td>≥30</td>
<td>4.0 (6.0, 4.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lane et al</td>
<td>2017</td>
<td>1998-2010</td>
<td>Retrospective</td>
<td>57,818</td>
<td>≥18 years</td>
<td>1.26 (1.33, 1.18) per 1000 p-yrs [age-adjusted incidence]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>Stefansdottir et al</td>
<td>2011</td>
<td>1987 -31 December</td>
<td>Retrospective</td>
<td>4905-AF cases</td>
<td>20–99 years</td>
<td>2.4-age and sex standardised</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td>Marcolino et al</td>
<td>2015</td>
<td>Jan-December 2011</td>
<td>Retrospective</td>
<td>262 685</td>
<td>50.3 (19.3) [40.4, 59.6]</td>
<td>1.8 (2.4, 1.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Not reported
<table>
<thead>
<tr>
<th>Country/State</th>
<th>Study</th>
<th>a) Study design</th>
<th>b) Follow up</th>
<th>c) Sample size</th>
<th>Mean age study population (SD)</th>
<th>Prevalence of AF (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>North America, Europe, Asia</td>
<td>Lau et al 2013</td>
<td>Prospective</td>
<td>2.5 years</td>
<td>2580</td>
<td>Europeans: 76.2 (6.6)</td>
<td>18</td>
<td>8.3</td>
<td>10.1</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Black African: 75.2 (6.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chinese: 76.2 (6.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Japanese: 78.4 (7.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>African American: 33.0% ≥70</td>
<td>29</td>
<td>19</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>European American: 35.4% ≥70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lahiri et al 2011</td>
<td>Retrospective</td>
<td>N/A</td>
<td>1001</td>
<td>African American: 33.0% ≥70</td>
<td>29</td>
<td>19</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Shen et al 2010</td>
<td>Cross-sectional</td>
<td>15 years</td>
<td>2,483,199</td>
<td>White: 70 (64-77)</td>
<td>8</td>
<td>3.8</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Marcus et al 2010</td>
<td>Combination of CHS and ARIC study</td>
<td>–</td>
<td>19, 784</td>
<td>Black: 68 (64-74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asian: 67 (63-73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic: 67 (61-71)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CHS African American: 73 (6)</td>
<td>23</td>
<td>15</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whites: 73 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ARIC African Americans: 53 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whites: 54 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location, USA</td>
<td>Authors et al Year</td>
<td>Study Design</td>
<td>Patient Years</td>
<td>White Death Rate</td>
<td>Black Death Rate</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Maryland, Minnesota, Mississippi, N. Carolina | Alonso et al 2009 27 | a) Prospective
b) 228,976 person-years
c) 15,407 | Whites: 54.4 (5.7)
African Americans: 53.6 (5.8) | 7.9 | 4.8 | N/A | N/A |
| Ohio, USA | Smith et al 2006 28 | a) Prospective
b) -
c) 9671 | - | 24 | 17 | N/A | N/A |
| California, USA | Ruo et al 2004 29 | a) Retrospective and prospective
b) -
c) 1373 | 73 overall | 38 | 20 | N/A | N/A |
| Georgia, USA | Upshaw et al 2002 30 | a) Retrospective
b) -
c) 2123 | 14% age 70-79 | 7.8 | 2.5 | N/A | N/A |
| California, USA | Go et al 2001 31 | a) Cross sectional
b) N/A
c) 17,974 | 71.2 (12.2) whole cohort | 2.5 | 1.7 | N/A | N/A |
| Michigan, USA | Afzal et al 1999 32 | a) Prospective
b) 6 months
c) 163 | Blacks: 63.8 (13.7)
Whites: 70.8 (13.1) | 42 | 21 | N/A | N/A |

Pt-yrs = patient years; *Asian Americans; N/A = not applicable
Figure legends

Figure 1: AF associated mortality stratified by sex and region (developed and developing countries)

Figure 2: Prevalence of AF by continents