Accepted Manuscript

Quantifying Time in Atrial Fibrillation and the Need for Anticoagulation

Kazuo Miyazawa, Daniele Pastori, Gregory Y.H. Lip

PII: S0033-0620(17)30164-0
Reference: YPCAD 852

To appear in:

Received date: 11 December 2017
Accepted date: 11 December 2017

Please cite this article as: Kazuo Miyazawa, Daniele Pastori, Gregory Y.H. Lip, Quantifying Time in Atrial Fibrillation and the Need for Anticoagulation. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Ypcad(2017), https://doi.org/10.1016/j.pcad.2017.12.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Quantifying Time in Atrial Fibrillation and the Need for Anticoagulation

Kazuo Miyazawa¹, Daniele Pastori¹, ², Gregory Y.H. Lip¹, ³

¹ Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
² Department of Internal Medicine and Medical Specialties, I Clinica Medica, Atherothrombosis Centre, Sapienza University of Rome, Italy
³ Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark

Address for correspondence to:
Gregory Y.H. Lip
University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, England UK
Phone: +44 121 5075080
Fax: +44 121 507 5503
E-mail: g.y.h.lip@bham.ac.uk
ABSTRACT

Atrial fibrillation (AF) is one of the major cardiovascular diseases, and the number of patients with AF is predicted to increase markedly in the coming years. Despite recent advance in management of patients with AF, AF remains one of the main causes of stroke or systemic embolism. Application of simple stroke risk-stratification schemes, such as the CHA$_2$DS$_2$-VASc score has been introduced to identify patients who mostly benefit from oral anticoagulants (OACs) for stroke prevention. Current medical devices allow the detection of short and asymptomatic episodes of AF, termed atrial high rate episodes (AHREs), which are also associated with an increased risk of thromboembolism. Early diagnosis of AF has clinical importance for a timely initiation of OAC, while strokes often occur without AHRE detected within 30 days before the event. Consequently, it is unclear whether any AHRE imply the same therapeutic requirements as clinical AF. The exact estimation of AF burden and correct risk stratification in patients with asymptomatic AF and AHRE remains a challenge in clinical practice.

Keywords
Atrial fibrillation burden; Diagnosis; Clinical outcomes; Anticoagulation

Alphabetical List of Abbreviations:
AF = atrial fibrillation; AHRE = atrial high rate episode; CI = confidence interval; CIED = cardiac implantable electronic device; CRT = cardiac resynchronization therapy; ECG = electrocardiogram; HF = heart failure; HR = hazard ratio; ICD = implantable cardioverter-defibrillator; ILR = implantable loop recorder; NOAC = non-vitamin K antagonist oral anticoagulant; NSR = normal sinus rhythm; OAC = oral anticoagulant; VKA = vitamin K antagonist
Introduction

Atrial fibrillation (AF) is globally the most common cardiac arrhythmia, with a prevalence of 2.5 to 3.2% of the population. Although the management of patients with AF has been increasing in the last decade, AF remains a major cause of stroke, heart failure (HF), sudden death, unplanned hospital admissions and leads to an impaired quality of life. Thus, AF is associated with a 5-fold greater risk of ischemic stroke or systemic embolism compared with normal sinus rhythm.

AF-related stroke is particularly more likely to be fatal or severely disabling. Thus, stroke prevention is the cornerstone of the management of patients with AF.

Risk factors of stroke in patients with AF have been widely described and oral anticoagulation (OAC) is well established as effective stroke prevention. The Vitamin K antagonists (VKAs, e.g. warfarin) are still used in many countries as first choice OAC. Treatment with warfarin can reduce the risk of stroke by 60%-70%. More recently, the non-vitamin K antagonist oral anticoagulants (NOACs) have been approved and introduced in the market. The NOACs demonstrate relative efficacy, safety and convenience in comparison to warfarin in 4 phase-3 large randomized controlled trials, particularly with a significantly lower risk of intracranial haemorrhage, which is the most feared complication of OAC. Indeed, NOACs provide more convenient therapeutic options compared to warfarin and are increasingly adopted in clinical practice.

Patients with AF may have a variety of symptoms with different levels of severity of palpitations, dyspnea, chest discomfort, and syncope. Among patients with AF, the prevalence of those having no or few symptoms related to AF, termed silent or asymptomatic AF, was reported to be up to 40% in one previous study. Even in the same patient, AF sometimes presents with symptoms, whereas some others may be asymptomatic.

In clinical practice, AF is known to progress from short, infrequent and self-limiting episodes to longer and more sustained episodes. Current accepted definition of AF include 1) ‘Paroxysmal AF’ that spontaneously terminates in most cases within 48
hours, and lasts for up to 7 days; 2) ‘Persistent AF’ that is not self-terminating, and is sustained longer than 7 days, including episodes that are terminated by cardioversion, either with drugs or by direct current cardioversion or ablation after 7 days or more; 3) ‘Permanent AF,’ previously referred to as ‘chronic AF,’ is sustained longer than 1 year, and implicates a shared decision between physician and patient to adopt a rate control strategy with no further attempt to restore sinus rhythm. AF proceeds from paroxysmal into persistent, and eventually into permanent AF, with an annual rate reaching 15% at 1 year. Some studies have suggested that permanent AF may be associated with a higher risk of stroke and mortality compared to paroxysmal AF, but there is no general agreement on this aspect. Patients with silent or asymptomatic AF rarely undertake some medical examinations in clinical practice, and they are noticed incidentally through a wide variety of methods including routine physical examination, pre-operative assessments or population surveys. Some patients are sometimes first diagnosed with AF after presentation with severe complications such as ischemic stroke and HF. In >15% of patients presenting with cryptogenic stroke, underlying silent paroxysmal AF may be present.

Current medical devices using the latest technology can provide useful information to detect AF early and initiate medical intervention. However, silent or asymptomatic AF has not been sufficiently evaluated for its clinical impact. Therefore, the accurate evaluation of AF in ‘at risk’ populations should be explored. Early recognition of AF allows the clinicians to initiate the treatments for AF, leading to not only suppression of AF progression, but also prevention from AF-related complications.

The purpose of this review is to provide an overview of 1) methods to detect the presence of silent or asymptomatic AF, 2) rates of ischemic stroke and 3) anticoagulation strategies in patients with AF.

Detection of Silent or Asymptomatic AF

Surface 12-lead electrocardiography (ECG) and 24-hour Holter ECG are golden standard tools recommended for the diagnosis of AF. However, silent or asymptomatic AF is unlikely to be detected by these ‘brief’ temporal ECG recordings. As a result, it is likely that AF would remain undiagnosed and undertreated with conventional methods.
Therefore, longer continuous ECG monitoring is needed for detection of silent or asymptomatic AF. The latest medical devices using novel technology have enabled us to monitor cardiac rhythm for long-term and to detect AF that was not diagnosed in routine clinical practice. Furthermore, recent studies indicate that quantifying the duration or burden of AF would lead to a basis for therapeutic indication for silent AF.21

Cardiac implantable electronic devices (CIED) including pacemaker, and implantable cardioverter-defibrillator (ICD), and cardiac resynchronization therapy (CRT) have been introduced for the management of symptomatic bradycardias and pauses, life-threatening tachyarrhythmias, and heart failure with reduced ejection fraction. In addition to their main functions, these devices are also capable of automatic long-term recording and storing of episodes of spontaneous atrial high rate episodes (AHREs).

CIEDs with an atrial lead allow continuous monitoring of atrial rhythm and can record AHREs with the programmable detection criteria, which can be manually adjusted. Although mechanical problems such as lead-related noise, far-field oversensing, and some false positive recordings due to other tachyarrhythmias,22,23 more recent CIEDs have well-programmed technologies, which can discriminate whether the high rate episodes are likely to be attributable to AF or not.

For the detection of AHRE, previous studies adopted as cut-off settings for the atrial tachycardia, a rate between 170 and 225 bpm, with the duration of the episode of more than 20 seconds (Table 1).24-32 In these studies, the AHREs were detected in a variable range from 20% to 70% of patients with CIEDs (Table 1). In the Italian AT500 registry, which included 725 patients with pacemaker indication for bradycardia and a history of atrial tachyarrhythmias, the AHREs lasting more than 5 minutes were found in 73.8% of the patients over a median 22-month follow-up.26 On the other hand, the ASSERT study, which included 2580 patients with CIEDs and no history of AF, demonstrated that the AHREs lasting more than 6 minutes were found in 34.7% of the patients over a mean follow-up of 2.5 years.29

These different reported incidences of AHREs may be dependent on the underlying heart diseases and the period of follow-up. However, these results suggested that
there is a considerable number of patients with CIEDs who are incidentally diagnosed with AF.

The implantable loop recorder (ILR), which is a subcutaneous, single-lead, ECG monitoring device, is used for AF detection in patients who have recurrent unexplained episodes of palpitation or syncope, and/or a history of cryptogenic stroke. This device usually recognizes AF by detecting the irregularity of successive R-R intervals. In particular, AF that is first diagnosed after cryptogenic stroke occurs is most often asymptomatic and paroxysmal, and is unlikely to be detected by strategies based on symptom-driven monitoring or short-term recordings.

The ILR has been validated for more comprehensive arrhythmia monitoring in patients with cryptogenic stroke (Table 2). In the CRYSTAL-AF study, AF was more commonly detected in patients with ILR compared to those with conventional strategies (hazard ratio (HR), 7.3; 95% confidence interval (CI), 2.6 to 20.8; P<0.001). These studies indicate that ILR is beneficial for detection of silent or asymptomatic AF, but ILR devices are not always available and indications for ILR implantation require further standardization. On the other hand, the external ambulatory continuous ECG monitoring, such as a wearable non-adhesive dry-electrode belt and a wearable-patch has been introduced for AF detection in general population (Table 2). Although the monitoring duration of these devices are shorter (2 to 4 weeks) compared to the implantable devices, these devices are less invasive and convenient than the implantable devices, and the feasibility for the detection of AF in general population has been verified in previous studies (Table 2).

Furthermore, novel technologies have been developed and applied for the screening of AF. The new screening devices using blood pressure monitors and smartphone can detect AF based on pulse irregularity and specific algorithms with high sensitivity and specificity (Table 3). Patients can routinely and readily operate at home, whereas the utility for AF detection strongly depends on patients’ compliance. In the future, the acceptability, and cost-effectiveness of these methods must be explored in clinical practice.
Stroke in Patients with Silent or Asymptomatic AF

Adverse stroke outcomes in relation to silent or asymptomatic AF have been reported in previous studies. In a community-based study, which enrolled 4,618 patients who were newly diagnosed with AF, 25% had no symptoms and were 3 times more likely to have had an ischemic stroke preceding their AF diagnosis. Another study demonstrated that 33.8% out of 467 patients had asymptomatic AF at the time of the first AF diagnosis, and asymptomatic AF was associated with an increased risk for cardiovascular (HR, 3.12; 95% CI, 1.50 - 6.45) and all-cause mortality (HR, 2.96; 95% CI, 1.89 - 4.64) compared to those with typical AF symptoms even after adjustment for CHA$_2$DS$_2$-VASc score and age.\(^4^8\)

Previous studies regarding AHRE detected in patients with CIEDs have suggested that AHRE is associated with an increased stroke rate (Table 4). In the ASSERT study, for example, the presence of AHRE was associated with an increased risk of ischemic stroke or systemic embolism (HR 2.49; 95% CI 1.28 - 4.85; P = 0.007). However, the risk of stroke seems to be lower in patients with AHREs than those with clinically ECG-detected AF and similar CHADS$_2$ or CHA$_2$DS$_2$-VASc scores and probably depends on the fact that patients with CIEDs often have already been on medical treatment or support before AF-related complications occurred, thus reducing the incidence of thromboembolism.

Moreover, the threshold time used to define AHREs was different in previous studies, providing variable rates of ischemic stroke. In the TRENDS study, which included 2486 patients with \geq1 stroke risk factor, adjusted HRs were 0.98 (95% CI, 0.34- 2.82; P = 0.97) in patients with AHREs $<$5.5 hours, and 2.20 (95% CI, 0.96- 5.05; P = 0.06) with AHREs \geq5.5 hours, compared to those without AHREs.\(^2^7\) On the other hand, the recent subanalysis of the ASSERT study, suggested that adjusted HRs were 0.75 (95% CI, 0.29- 1.96; P = 0.56) in patients with AHREs >6 minutes to 6 hours, 1.32 (95% CI, 0.40- 4.37; P = 0.65) with AHREs >6 to 24 hours, and 3.24 (95% CI, 1.51 – 6.95; P = 0.003) AHREs >24 hours, compared to those without AHREs.\(^4^9\) Therefore, the threshold to define AHRE remains uncertain, and randomized control trials are needed for quantifying duration time of AHRE that is associated with an increased thromboembolic risk.
Anticoagulation for Silent AF

Anticoagulant therapy has been an established treatment for reducing stroke, systemic embolism, and all-cause mortality in patients with AF.50 However, inadequate therapeutic anticoagulation preceding stroke is prevalent in patients with AF even in specialized clinics for anticoagulation, where at least one third of patients had suboptimal anticoagulation control.51 Frequently patients without symptoms, especially those in normal sinus rhythm (NSR), may stop anticoagulation over time52; this is relevant as the cessation of OAC is independently associated with an increased risk of stroke, adverse cardiovascular events and mortality.53, 54 However, this issue seems to be partially overcome by the increasing use of NOACs55

In a previous study, among patients admitted with acute ischemic stroke who had a history of AF, 83.6% of 94,474 patients were not receiving therapeutic anticoagulation; 13.5% had subtherapeutic warfarin anticoagulation (INR <2) at stroke, 39.9% were receiving antiplatelet therapy only, and 30.3% were receiving no anticoagulant therapy. Moreover, patients with therapeutic anticoagulation had lower odds of moderate or severe stroke (NIHSS score 16) than those without therapeutic anticoagulation.56 In a cohort study of 5,555 patients without symptoms who were diagnosed with AF incidentally in general practice, the adjusted stroke and mortality rates at 1.5 years in patients receiving anticoagulant therapy were lower than in those receiving no anticoagulant therapy (1.3% vs. 3.9%, 4.2% vs. 7.2%, respectively).57 One recent multicentre study including 59 patients with a history of non-permanent AF and ILRs indicated that intermittent NOAC administration based on the presence of AF lasting more than 24 hours is feasible.58

Although these results suggest that anticoagulant therapy may be beneficial in patients with silent AF as well as clinically ECG-detected AF, a randomized control trial demonstrated that anticoagulant therapy based on remote rhythm monitoring in patients with CIEDs did not show the improvement of thromboembolism compared to usual office-based follow-up (HR 1.06; 95% CI 0.75 - 1.51; P = 0.732).32 Investigators of this study showed that the main limitation of this strategy is the poor compliance with OAC in patients with remote rhythm monitoring follow-up. In addition, it remains unclear whether AHREs detected in patients with CIEDs imply the same therapeutic
requirements as clinically ECG-detected AF.

Future Prospective
Continuous long-term ECG monitoring and the new modalities of non-invasive ECG recording seem to be effective for the detection of silent or asymptomatic AF, however, there is still room for improvement on the utility, adherence, and cost-effectiveness for screening of silent AF in general population. Randomized control trials with larger sample size must be conducted to test the associations between ECG-detected silent AF and adverse outcomes.

The major studies regarding silent or asymptomatic AF performed thus far are not comparable as they included inhomogeneous populations, such as patients with and without a history of prior AF at baseline. Furthermore, there was a lack of characterization/definition of clinical endpoints such as for ischemic stroke, i.e. cardioembolic, atherothrombotic, or lacunar infarction. Therefore, the association between newly detected silent AF and clinical outcomes should be further investigated.

Although CIEDs-detected AHRE was shown to be significantly associated with an increased risk of thromboembolic events, the temporal relationship between AHREs and thromboembolic events remains uncertain. In previous studies, the majority of patients with AHRE detected by implantable devices, who experienced an ischemic stroke or systemic embolism, did not have any AT/AF or subclinical AF in the 30 days prior to the event, questioning the causal relationship between AHRE and thromboembolism. Patients with AHREs may have transient blood stasis due to low flow in left atrial appendage and changes in atrial endothelium, leading to increased risk of thromboembolism. Consequently, the criteria of AHREs requiring medical intervention and the stratified stroke risk factors in patients with CIEDs must be fully explored.

What trials will inform clinical practice? The ARTESiA (Apixaban for the Reduction of Thrombo-Embolism in Patients With Device-Detected Sub-Clinical Atrial Fibrillation; NCT01938248) and NOAH (Non-vitamin K Antagonist Oral Anticoagulants in Patients With Atrial High Rate Episodes; NCT02618577) trials are ongoing studies on the benefit
of NOAC in patients with CIEDs, and will provide useful information on quantifying duration time of AHREs.

Conclusions

Silent or asymptomatic AF is still an under-recognized disease in the general population and is detectable in 25-35% of patients presenting with ischemic stroke. The use of diagnostic devices lead to a more accurate and early detection of AF, allowing a prompt initiation of OAC before the occurrence of severe and disabling events. CIEDs-detected AHREs were shown to be associated with an increased risk of stroke and frequently precede clinically overt AF. AHREs may represent an additional risk factor for stroke in patients with paroxysmal AF and sinus rhythm. Thus, these patients could benefit from an early initiation of OAC when AHREs are identified. However, there is still uncertainty and evidence gap in the management of patients with silent AF and AHREs, such as the number and/or length of AHREs to be considered as clinically relevant to start OAC. Appropriate management algorithms to estimate AF burden in the general population and to stratify the risk of thromboembolism should be further developed.

Conflict of Interest

There are no financial disclosures and acknowledgments directly related to this manuscript.
References

34. Cotter PE, Martin PJ, Ring L, Warburton EA, Belham M, Pugh PJ. Incidence of atrial fibrillation detected by implantable loop recorders in unexplained stroke.

57. Martinez C, Katholing A, Freedman SB. Adverse prognosis of incidentally

Table 1. Summary of the definition and incidence of AHRE in patients with CIEDs.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Atrial detection rate</th>
<th>Detection time</th>
<th>Incidence of AHRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Gillis AM, et al</td>
<td>>180 bpm</td>
<td>>1 minutes</td>
<td>157/231 (68%)</td>
</tr>
<tr>
<td>2003</td>
<td>MOST</td>
<td>>220 bpm</td>
<td>>5 minutes</td>
<td>156/312 (50%)</td>
</tr>
<tr>
<td>2005</td>
<td>Italian AT500 Registry</td>
<td>>170 bpm</td>
<td>n/a</td>
<td>524/725 (73.8%)</td>
</tr>
<tr>
<td>2009</td>
<td>TRENDS</td>
<td>>175 bpm</td>
<td>>20 seconds</td>
<td>1389/2486 (55.9%)</td>
</tr>
<tr>
<td>2012</td>
<td>Shanmugam N, et al</td>
<td>>180 bpm</td>
<td>>14 minutes</td>
<td>223/560 (39.8%)</td>
</tr>
<tr>
<td>2012</td>
<td>ASSERT</td>
<td>>190 bpm</td>
<td>>6 minutes</td>
<td>895/2580 (34.7%)</td>
</tr>
<tr>
<td>2014</td>
<td>Gonzalez M, et al</td>
<td>>178 bpm</td>
<td>>5 minutes</td>
<td>39/224 (17.4%)</td>
</tr>
<tr>
<td>2015</td>
<td>Benezet-Mazuecos J, et al</td>
<td>>225 bpm</td>
<td>>5 minutes</td>
<td>28/109 (25.7%)</td>
</tr>
<tr>
<td>2015</td>
<td>IMPACT</td>
<td>>200 bpm</td>
<td>n/a</td>
<td>945/2718 (34.8%)</td>
</tr>
</tbody>
</table>

AHRE, atrial high rate episode; MOST, Mode Selection Trial; TRENDS, The Relationship Between Daily Atrial Tachyarrhythmia Burden From Implantable Device Diagnostics and Stroke; ASSERT, Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial; IMPACT, Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices.
Table 2. Summary of the implantable and external devices for the detection of AF.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Detection time</th>
<th>Follow-up period</th>
<th>Incidence of AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Cotter PE, et al</td>
<td>2 minutes</td>
<td>229 days (mean)</td>
<td>13/51 (25.5 %)</td>
</tr>
<tr>
<td>2013</td>
<td>Ritter MA, et al</td>
<td>2 minutes</td>
<td>382 days (median)</td>
<td>10/60 (16.7 %)</td>
</tr>
<tr>
<td>2013</td>
<td>Etgen T, et al</td>
<td>6 minutes</td>
<td>1 year</td>
<td>6/22 (27.3 %)</td>
</tr>
<tr>
<td>2014</td>
<td>SURPRISE</td>
<td>2 minutes</td>
<td>569 days (mean)</td>
<td>14/85 (16.1 %)</td>
</tr>
<tr>
<td>2014</td>
<td>CRYSTAL-AF</td>
<td>30 seconds</td>
<td>>6 months</td>
<td>29/221 (12.4 %, 12 months)</td>
</tr>
<tr>
<td>2016</td>
<td>Poli S, et al</td>
<td>2 minutes</td>
<td>>6 months</td>
<td>25/75 (33.3 %, 12 months)</td>
</tr>
</tbody>
</table>

Implantable ECG monitoring

External ECG monitoring

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Detection time</th>
<th>Follow-up period</th>
<th>Incidence of AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>EMBRACE</td>
<td>30 seconds</td>
<td>30 days</td>
<td>45/280 (16.1%)</td>
</tr>
<tr>
<td>2015</td>
<td>STUDY-AF</td>
<td>30 seconds</td>
<td>14 days</td>
<td>4/75 (5.3%)</td>
</tr>
</tbody>
</table>

SURPRISE, Stroke Prior to Diagnosis of Atrial Fibrillation using Longterm Observation with Implantable Cardiac Monitoring Apparatus Reveal; CRYSTAL-AF, Cryptogenic Stroke and Underlying Atrial Fibrillation; EMBRACE, Atrial Fibrillation in Patients with Cryptogenic Stroke; STUDY-AF, The Screening Study for Undiagnosed Atrial Fibrillation.
Table 3. Summary of the new devices for AF screening.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Device</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Doliwa PS, et al</td>
<td>Handheld single-lead ECG</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>2009</td>
<td>Samol A, et al</td>
<td>Handheld single-lead ECG</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2013</td>
<td>Wiesel J et al</td>
<td>Blood pressure monitor</td>
<td>97</td>
<td>90</td>
</tr>
<tr>
<td>2014</td>
<td>Kearly K, et al</td>
<td>Blood pressure monitor</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>2011</td>
<td>Lewis M, et al</td>
<td>Plethysmograph</td>
<td>100</td>
<td>92</td>
</tr>
<tr>
<td>2016</td>
<td>McManus DD, et al</td>
<td>Plethysmograph</td>
<td>97</td>
<td>94</td>
</tr>
</tbody>
</table>
Table 4. Summary of thromboembolic rate in patients with CIEDs.

<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Follow-up period</th>
<th>Cut-off burden of AHREs</th>
<th>Annualized TE rate (95% CI)</th>
<th>Hazard ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>MOST</td>
<td>27 months</td>
<td><5min</td>
<td>0.58%</td>
<td>6.7 (P=0.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>5min</td>
<td>2.22%</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Italian AT500 Registry</td>
<td>22 months</td>
<td><5min</td>
<td>0.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>5min</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>24 h</td>
<td>1.8%</td>
<td>3.1 (1.1-10.5; P=0.04)</td>
</tr>
<tr>
<td>2009</td>
<td>TRENDS</td>
<td>1.4 years</td>
<td>None</td>
<td>1.1% (0.8-1.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><5.5 h</td>
<td>1.1% (0.4-2.8)</td>
<td>0.98 (0.34-2.82; P=0.97)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>5.5 h</td>
<td>2.4% (1.2-4.5)</td>
<td>2.2 (0.96-5.05; P=0.06)</td>
</tr>
<tr>
<td>2012</td>
<td>Shanmugam N, et al</td>
<td>370 days</td>
<td><14 min</td>
<td>2% (overall)</td>
<td>4.3 (0.73-26.2; P=0.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>14min-3.8h</td>
<td>2%</td>
<td>9.4 (1.8-47.0; P=0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>3.8 h</td>
<td>2.4% (1.2-4.5)</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>ASSERT</td>
<td>2.5 years</td>
<td><6 min</td>
<td>0.69%</td>
<td>2.49 (1.28-4.89; P=0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>6 min</td>
<td>1.69%</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>Van Gelder IC, et al</td>
<td>2.5 years</td>
<td><6min</td>
<td></td>
<td>0.75 (0.29-1.96; P=0.56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>6 min-6 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>6 h-24 h</td>
<td>1.32 (0.40-4.37; P=0.65)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>24 h</td>
<td>3.24 (1.51-6.95; P<0.01)</td>
<td></td>
</tr>
</tbody>
</table>
Conflict of interest: None.