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Abstract—This paper researches on a cyber-physical energy-

saving control framework for a plug-in hybrid aircraft-towing 

tractor, in which, an online optimization methodology named the 

Online Swarm Intelligent Programming (OSIP) is proposed. The 

new methodology obtains real-time optimal control signals from 

the V2X network and the widely-used Charge Depleting/Charge 

Sustaining (CD/CS) strategy is upgraded to a more adaptive and 

intelligent level. The energy-flow of the hybrid aircraft-towing 

tractor with connectivity is firstly analysed and modelled for 

OSIP. The optimal control problem is then formulated as an online 

integer optimization and the OSIP algorithm based on Chaos-

enhanced Accelerated Swarm Optimization (CAPSO) is developed 

to minimize the powertrain power loss in real-time. Finally, the 

advantages of the new energy management system are 

demonstrated and evaluated by hardware-in-the-loop testing. The 

results show that up to 17% fuel and 13% total energy loss can be 

saved via the proposed cyber-physical control. 

 
Index Terms—Cyber Physical Control, Plug-in Hybrid Tractor, 

Real-time Integer Optimization, Chaos-enhanced Accelerated 

Particle Swarm Optimization, Hardware-In-the-Loop Test. 

 

I. INTRODUCTION 

OWADAYS, the increasingly stringent emission and fuel 

consumption regulations are forcing the motor industry to 

move to vehicle hybridization. Advanced hybrid vehicle system 

requires increasing number of components working 

cooperatively to optimize the vehicle performance [1]–[7]. 

Consequently, powerful and reliable supervisor controllers are 

needed to ensure all the hybrid components are really working 

properly. The energy management controller is one of the vital 

supervisor controllers in the hybrid electric vehicle, which 

supervises and controls the sub-system controllers, such as 

engine controller, motor controller, battery management 

system, etc. 

For real-time energy management of plug-in HEVs, the 

“Charge-Depleting/Charge-Sustaining (CD/CS)” strategy is the 

most representative method [8], [9], which switches the hybrid 

system working mode between CD and CS based on the 

predefined rules. In the CD mode, the alternative power unit 

(APU) does not generate any power for battery package (BP) 

charging; in the CS mode, the APU generates the power to 

maintain the BP’s SoC within a proper range. Although the 

CD/CS strategy has been implemented to mass-produced HEV 

products, its limitation is still obvious because that it is not a 

kind of optimal control method and cannot be adapted to all 

possible scenarios. 

Recently, cyber-physical control emerges as a new concept 

of adaptive real-time control, which works on a distributed, 

networked and intelligent system that fuses computational 

processes (cyber) with the physical world [10]. With the help of 

vehicle-to-vehicle (V2V) and vehicle-to-infantry (V2I) 

communication, sufficient data is available for environment 

perception and accurate predictive modelling [11]. Furthermore, 

the Internet of vehicle (IoV) also makes it possible to perform 

intelligent algorithms in the cloud and controls the vehicles via 

cyber-physical framework [12]. Therefore, the IoV concept 

inspires the idea of upgrading the existing rule-based energy 

management system into an adapted and intelligent system for 

the connected special-utility vehicles including aircraft-towing 

tractors. 

As a preparation of cyber-physical control for connected 

HEVs, model predictive control (MPC) framework is a 

competitive candidate and many researches on MPC for non-

cyber-physical platforms can be found in literatures [13]–[17]. 

The MPC obtains the optimal control trajectory that maximizes 

the system performance in the prediction horizon subjected to 

constrains [18]. An appropriate solver should be chosen in order 

to solve the optimization problems at each time interval in the 

MPC. Generally, MPCs are solved by gradient-based Newton’s 

methods. For example, the nonlinear MPC is solved by 

sequential quadratic programming (SQP) [11]; the mixed-

integer optimization problems in hybrid MPC is solved by the 

hybrid toolbox in MATLAB[19]; MATLAB command 

‘quadprog’ [1], ‘CVXGEN’ [20] and ‘qpOASES’ [21] are for 

quadratic programming (QP) of linear constrained MPCs. 

However, only linear MPCs have been realized the feature of 

real-time implementation, running nonlinear MPC for HEV 

energy management in real-time controllers has yet to be 

demonstrated [14]. 

Particle swarm optimization (PSO) algorithm is a potential 

candidate for real-time NMPC solving [22], since it works with 

fewer tuning parameters and less computational effort. PSO 

also has the capability of dealing with integer variables and it 

has been successfully applied in hybrid electric vehicle offline 

optimization [23]–[26]. Furthermore, the PSO’s convergence 

speed and the capability of finding the real global optima can 

be further optimized by upgrading the standard PSO into 

Chaos-enhanced Accelerated Particle Swarm Optimization 

(CAPSO) algorithm [27]. The work of the authors has proved 
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that CAPSO outperforms the standard PSO in solving offline 

integer nonlinear optimizations [28].  

To develop a powerful and implementable real-time control 

strategy for the optimal control of connected HEVs, this paper 

proposes an Online Swarm Intelligent Programming (OSIP) 

methodology based on CAPSO algorithm. The new 

methodology obtains real-time optimal control signals from the 

V2X network and the widely-used CD/CS strategy is upgraded 

to a more adaptive and intelligent level. The work is carried out 

as follows: (1) a cyber-physical framework for hybrid aircraft 

towing tractor energy management is developed and the energy 

flow of the system is modelled for real-time OSIP. (2) The real-

time energy management is formulated as an online nonlinear 

integer optimization and the CAPSO algorithm for OSIP is 

developed to solve the nonlinear integer optimization. (3) The 

energy management by OSIP is implemented into a real-time 

controller, and the advantages of the proposed method are 

further demonstrated with hardware-in-the-loop (HIL) test. 

The rest of this paper is structured as follows: section II 

introduces the cyber-physical framework and the vehicle 

system models for real-time control purpose. In Section III, the 

local control strategy and online swarm intelligent 

programming are provided in detail. Section IV presents the 

experimental set-up for real-time implementation, validation 

and evaluation. The performance of the proposed energy 

management system is evaluated by convergence analysis, 

computational afford analysis, hardware-in-the-loop test and 

the robustness & repeatability in section V. Section VI 

summarises the conclusions. 

II. SYSTEM CONFIGURATION AND MODELLING 

The traffic in the airport is a complex and interconnected 

system, which includes aircrafts, towing tractors and ground 

support vehicles. The V2X network (with vehicles, aircrafts and 

infrastructures connected) carries out predictive modelling and 

control optimisation of the system using advanced algorithms 

based on collected data and powerful cloud computing 

facilities. This will save energy by organizing the traffic and 

individual vehicle operation. Aircraft towing is one of the most 

typical individual vehicle operation scenario. Fig. 1.  shows the 

aircraft towing scenario studied in this paper, which consists of 

the aircraft towing tractor, the aircraft, the airport control, and 

V2V & V2I communications. The control 1) receives the tractor 

and aircraft’s real-time state signal via V2I network; 2) operates 

programming of optimal future control command for energy 

saving in the cloud; 3) sends the command signal back to the 

vehicle controller via V2I network. This framework with 

advanced intelligent algorithms enables the real-time optimal 

control of energy flow for energy saving which was previously 

limited by the performance of local vehicle controller.  

The main components of the hybrid tractor include a 245-kW 

traction motor, an 86.2kW alternative power unit, and a battery 

package with 8200 NCR-18650 series lithium-ion cells in Fig. 

2. The main states of the tractor and aircraft considered within 

the framework are vehicle and aircraft speed, aircraft mass, 

tractor power requirement and battery pack’s SoC. The 

command signal downloaded from the server controller is 

modified power command of the alternative power unit. 

 Hybrid Electric Vehicle Power-flow 

The power-flow of the vehicle system obeys: 

𝑃𝑙𝑖𝑛𝑘(𝑡) = 𝑃𝑎𝑝𝑢(𝑡) + 𝑃𝑏𝑝_𝑑(𝑡) − 𝑃𝑐(𝑡) (1) 

where 𝑃𝑎𝑝𝑢(𝑡)  is the output power provided by the APU, 

𝑃𝑏𝑝_𝑑(𝑡) is the discharge power of the BP, 𝑃𝑐(𝑡) is the BP’s 

charge power, and 𝑃𝑙𝑖𝑛𝑘(𝑡) is the power of the DC-link, and 

obeys: 

𝑃𝑙𝑖𝑛𝑘(𝑡) = 𝑃𝑡𝑚(𝑡) + 𝑃𝑙𝑜𝑠𝑠,𝑡𝑚(𝑡) (2) 

where 𝑃𝑙𝑜𝑠𝑠,𝑡𝑚(𝑡) is the power loss in the traction motor, and 

𝑃𝑡𝑚(𝑡)  is the power for driving the vehicle. The main 

parameters for vehicle dynamic calculation are listed in Table 

I. 

 Real-time Component Efficiency Modelling 

To predict the powertrain performance online, the main 

powertrain components are modelled in real-time by numerical 

method using the original testing data from the OEMs. The 

model is verified by comparing the modelling results compared 

with the original testing data in Fig. 3. The details in the 

components modelling are described as follows: 

TABLE I 
VEHICLE PROFILE 

SPECIFICATION VALUE 

Vehicle mass 16 tonnes 

Front area 6.8 𝑚2 

Drag coefficient 0.8 

Friction coefficient 0.02 
Fixed gear ratio 25 

 

 
Fig. 1.   Aircraft towing scenario with V2V/V2I communication 

 
Fig. 2.   System configuration and power-flow 
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1) Traction motor 

The selected traction motor is a heavy duty electric motor 

(type: LSM280A HV-2700) provided by TM4 electrodynamic 

system Ltd. The motor specification is listed in Table II. As a 

low speed vehicle, it is not cost-efficient to use a regenerative 

braking system. Therefore, the traction motor is only working 

in traction mode. The traction motor’s real-time efficiency is 

described by: 

𝜂𝑡𝑚(𝑡) =
𝑃𝑡𝑚(𝑇𝑡𝑚(𝑡),𝑛𝑡𝑚(𝑡))

𝑃𝑡𝑚(𝑇𝑡𝑚(𝑡),𝑛𝑡𝑚(𝑡))+𝑃𝑙𝑜𝑠𝑠,𝑡𝑚(𝑇𝑡𝑚(𝑡),𝑛𝑡𝑚(𝑡))
  (3) 

where the power for traction 𝑃𝑡𝑚is a function of traction torque 

𝑇𝑡𝑚 and rotational speed 𝑛𝑡𝑚. The motor power loss 𝑃𝑙𝑜𝑠𝑠,𝑡𝑚is 

also a function of motor torque 𝑇𝑡𝑚 and motor speed 𝑛𝑡𝑚 and 

𝑃𝑙𝑜𝑠𝑠,𝑡𝑚in this paper is formed as a quadratic function [2] using 

the data provided by the motor supplier. 

2) Alternative power unit 

An 86.2 kW alternative power unit (APU) produced by JCB 

is selected. The APU is powered by a 4.4L diesel engine, and 

generates electric power with a 3-phase AC generator. Main 

technical parameters of the selected APU are listed in Table III. 

The APU’s real-time efficiency is: 

𝜂𝑓2𝑒(𝑡) =
𝑃𝑎𝑝𝑢(𝑡)

𝑃𝑓𝑢𝑒𝑙(𝑃𝑎𝑝𝑢(𝑡))
 (4) 

where, 𝑃𝑎𝑝𝑢 is the real-time APU output power to the DC-link 

controlled by the energy management system. The real-time 

equivalent fuel consumption power is also mapped as a 

quadratic function of 𝑃𝑎𝑝𝑢  [2], and main parameters of function 

𝑃𝑓𝑢𝑒𝑙 are calibrated by calculating the real-time 𝑃𝑓𝑢𝑒𝑙(𝑡) with 

the measured real-time fuel consumption rate 𝑣�̇�(𝑡) in L/h, the 

density of the fuel 𝜌𝑓, and the heat value of the fuel 𝐻𝑓. 

3) Battery package 

The battery pack (BP) is made up with the battery cell type 

NCR-18650 series provided by Panasonic Automotive & 

Industrial System Ltd. The voltage of battery cells ranges from 

2.5 V to 4.2 V, and the nominal battery voltage is 3.7V. The 

battery cell’s rated capacity is 2450mAh. The battery pack is 

made up of 8200 battery cells. For the control-oriented battery 

model, a simple resistive circuit is chosen[29]. The BP’s real-

time efficiency model is modelled as: 

𝜂𝑏𝑝(𝑡) =
𝑁𝑢𝑚𝑏𝑐∙𝑉𝑜𝑐(𝑆𝑜𝐶)∙Ibc(𝑡)−𝑁𝑢𝑚𝑏𝑐∙𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶)∙𝐼𝑏𝑐(𝑡)

2

𝑁𝑢𝑚𝑏𝑐∙𝑉𝑜𝑐(𝑆𝑜𝐶)∙Ibc(𝑡)
 (5) 

where 𝑁𝑢𝑚𝑏𝑐  is the total number of battery cells in the BP; 

𝑉𝑜𝑐is the open circuit voltage of a single battery cell; 𝑅𝑙𝑜𝑠𝑠is the 

internal resistance in the equivalent battery circuit; 𝐼𝑏𝑐  is the 

battery cell current. The open circuit voltage 𝑉𝑜𝑐  and the 

battery’s internal resistance 𝑅𝑙𝑜𝑠𝑠  are modelled as SoC 

dependent exponential functions using the original data from 

the battery OEM. The model for the open circuit voltage 𝑉𝑜𝑐  

and the battery internal resistance 𝑅𝑙𝑜𝑠𝑠 are [30]: 

{

𝑉𝑜𝑐(𝑆𝑜𝐶) = 𝑐4 ∙ 𝑒
𝑐5∙𝑆𝑜𝐶 + 𝑐3 ∙ 𝑆𝑜𝐶

3 + 𝑐2 ∙ 𝑆𝑜𝐶
2 + 𝑐1 ∙ 𝑆𝑜𝐶 + 𝑐0

𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶，𝐼𝑏𝑐) =
𝑆𝑜𝐶

𝑐6(𝐼𝑏𝑐)+𝑐7(𝐼𝑏𝑐)∙𝑆𝑜𝐶

 (6) 

where, 𝑐𝑖  (𝑖 = 0,1, … 7) are the model parameters, in which, 

𝑐1 to 𝑐4  are constant, and 𝑐6  and 𝑐7  are 𝐼𝑏𝑝  dependent 

polynomial functions. All the model parameters are determined 

by curve fitting using the test data.  

 V2I and V2V communication 

With the proposed cyber-physical system, tractors will be 

connected with the remote serve in the airport control via the 

road side units (RSUs) near the tractors’ working area. The 

remote serve will enable the real-time optimization based on 

cloud computing via advanced online programming algorithms, 

Through the V2I communication, the online swarm-intelligent 

programming will be available working on the remote serve 

located in the airport control and will send the optimal control 

command to the local vehicle controller. Subsequently, the 

V2V communication between the tractor and aircraft will 

enable the basic control function of the tractor controller.  

 
(a)  

 
(b) 

 
(c)  

Fig. 3.   Validated control-orientated model with data of the powertrain components: (a) electric motor efficiency, (b) alternative power unit efficiency, (c) 
battery cell OCV 

TABLE III 

ALTERNATIVE POWER UNIT SPECIFICATION 

SPECIFICATION VALUE 

Max. primer power 86.20 kW 

Fuel type diesel 

Max. operation speed 3375 rpm 

50% load fuel rate 13.00L/h 

75% load fuel rate 18.60L/h 
100% load fuel rate 24.10L/h 

Fuel tank capacity 285L 

 

TABLE II 
TRACTION MOTOR SPECIFICATION 

SPECIFICATION VALUE 

Nominal power 245 kW 

Nominal torque 2200 Nm 

Max. operation speed 3375 rpm 

Inverter CO300HV 

Peak efficiency 95% 
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III. REAL-TIME OPTIMAL ENERGY-FLOW CONTROL 

The real-time optimal control system includes the local 

energy-flow control and the cloud-based Online Swam 

Intelligent Programming (OSIP) in Fig.4. The local control 

performs on the on-boarded vehicle controller and the OSIP 

operates on the connected server. As the energy management 

system mainly considers the energy split and management, one 

second is chosen according to [15] as the sampling time, which 

is approved to be able to track the system dynamics while 

reserving enough time slot for algorithm computing. The 

mechanism of local energy-flow control and OSIP is as follows: 

 Local Energy-flow Control 

In the local vehicle controller, the widely-used CD/CS 

strategy [10,11,14] is applied for the energy flow control. The 

CD/CS strategy defines the APU control input 𝑢𝑎𝑝𝑢𝑐  as a 

precise exponential function of the BP’s SoC [31]. The control 

input of the APU𝑢𝑎𝑝𝑢_𝑙 has a resolution of 0.05, therefore the 

CD/CS strategy is modified as: 

𝑢𝑎𝑝𝑢_𝑙(𝑆𝑜𝐶) =

{
 
 

 
 

𝑟𝑜𝑢𝑛𝑑(

0 𝑆𝑜𝐶 ∈ (0.8,1]

20 ∙ 𝑒
(−
(𝑆𝑜𝐶−0.2)2

2𝜎2
)
)/20 𝑆𝑜𝐶 ∈ [0.2,0.8]

1 𝑆𝑜𝐶 ∈ [0,0.2)

 

(7) 

where 𝑆𝑜𝐶 is BP’s state of charge, σ = 0.1 is the time constant. 

 Online Swarm Intelligent Programming 

The proposed OSIP is an online real-time optimization 

performing on the cyber-physical system, which upgrades the 

local CD/CS strategy into an advanced adaptive control with 

intelligent algorithm. The OSIP firstly formulates the energy 

management as an integer nonlinear optimization problem 

based on vehicle performance prediction using the data from 

V2I communication. Then, the integer nonlinear optimization 

is solved in real-time via a specially designed Chaos-enhanced 

Accelerated Particle Swarm Optimization (CAPSO) algorithm. 

The optimization result is sent back to local controller via I2V 

communication. The OSIP is developed as follows: 

1) Objectives and constrains 

To minimize the energy loss over each predictive horizon, 

the objective function for optimal control at 𝑘 th (𝑘 = 0,1,2,3…) 

time interval is represented by: 

𝐽𝑘 = ∑ 𝑥𝑎𝑝𝑢(𝑡) ∙ ∆𝑡
𝑘+𝑝−1
𝑡=𝑘 + ∑ 𝑥𝑏𝑎𝑡𝑡(𝑡) ∙ ∆𝑡

𝑘+𝑝−1
𝑡=𝑘  (8) 

where 𝑝  is the size of predictive horizon; 𝐽  is the objective 

function depending on the cloud computed APU’s command 

modification signal 𝑢𝑎𝑝𝑢_𝑐(𝑡); The state variable of the APU 

𝑥𝑎𝑝𝑢(𝑡) and BP 𝑥𝑏𝑝(𝑡)  are their power loss rate at each 

sampling time instant: 

{

𝑥𝑎𝑝𝑢(𝑡) = 𝑢𝑎𝑝𝑢(𝑡) ∙ 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥 ∙ (1 − 𝜂𝑓2𝑒(∙))

𝑥𝑏𝑎𝑡𝑡(𝑡) = (
1

2
(𝑉𝑜𝑐(𝑆𝑜𝐶) − √𝑉𝑜𝑐(𝑆𝑜𝐶)

2 −
4𝑅𝑙𝑜𝑠𝑠(∙)𝑢𝑏𝑎𝑡𝑡(𝑡)∙𝑃𝑏𝑝_𝑚𝑎𝑥

𝑁𝑢𝑚𝑏𝑐
))2 ∙

𝑁𝑢𝑚𝑏𝑐

𝑅𝑙𝑜𝑠𝑠(∙)

 (9) 

where 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥  and 𝑃𝑏𝑝_𝑚𝑎𝑥  are the APU’s maximum power 

generation and battery pack’s maximum power generation 

respectively; 𝑁𝑢𝑚𝑏𝑐 is the number of battery cells in the BP; 

𝜂𝑓2𝑒  is the APU’s fuel to electric efficiency, calculated by 

equation (5); 𝑅𝑙𝑜𝑠𝑠  is the battery cell’s internal resistance 

calculated by equation (8); 𝑢𝑎𝑝𝑢 is the final control command 

summed with the local APU command 𝑢𝑎𝑝𝑢_𝑙  and the cloud 

computed command modification 𝑢𝑎𝑝𝑢_𝑐 . The battery control 

command 𝑢𝑏𝑎𝑡𝑡 is calculated by: 

𝑢𝑏𝑎𝑡𝑡(𝑡) =
(𝑃𝑟(𝑡)−𝑢𝑎𝑝𝑢(𝑡)∙𝑃𝑎𝑝𝑢_𝑚𝑎𝑥)

𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥
. (10) 

where 𝑃𝑟(𝑡) is the predicted vehicle power requirement which 

will be discussed in the following section. The APU’s control 

output has a resolution of 0.05, therefore, the APU’s control 

output 𝑢𝑎𝑝𝑢 should be constrained as: 

{
0 ≤ 𝑢𝑎𝑝𝑢(𝑡) ≤ 1

 𝑢𝑎𝑝𝑢(𝑡) = 0.05 ∙ 𝑔𝑎𝑖𝑛(𝑡) (𝑔𝑎𝑖𝑛(𝑡) 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
  (11) 

To ensure the battery package is performing in proper 

condition and protect the BP from over charge or over 

discharge, the battery’s state of charge should obey[8]: 

0.2 ≤ 𝑆𝑜𝐶(𝑡) ≤ 0.8 (12) 

The optimal energy-flow control problem at time interval k 

can be mathematically formulated in equation (13). 

2) Future power demand prediction 

To simplify the modelling of future power demand, the driver 

torque demand is assumed to be exponentially varying over the 

predictive horizon based on empirical formula [14], [18], [32]; 

min
𝑢𝑎𝑝𝑢_𝑐

𝐽𝑘  = ∑ 𝑥𝑎𝑝𝑢(𝑡) ∙ ∆𝑡
𝑘+𝑝−1
𝑡=𝑘 + ∑ 𝑥𝑏𝑎𝑡𝑡(𝑡) ∙ ∆𝑡

𝑘+𝑝−1
𝑡=𝑘

𝑠. 𝑡.

{
 
 
 
 
 

 
 
 
 
 

𝑥𝑎𝑝𝑢(𝑡) = 𝑢𝑎𝑝𝑢(𝑡) ∙ 𝑃𝑎𝑝𝑢_𝑚𝑎𝑥 ∙ (1 − 𝜂𝑓2𝑒(∙))

𝑥𝑏𝑎𝑡𝑡(𝑡) = (
1

2
(

𝑉𝑜𝑐(𝑆𝑜𝐶) −

√𝑉𝑜𝑐(𝑆𝑜𝐶)
2 −

4𝑅𝑙𝑜𝑠𝑠(∙)𝑢𝑏𝑎𝑡𝑡(𝑡)∙𝑃𝑏𝑝_𝑚𝑎𝑥

𝑁𝑢𝑚𝑏𝑐

))2 ∙
𝑁𝑢𝑚𝑏𝑐

𝑅𝑙𝑜𝑠𝑠(∙)

𝑢𝑏𝑎𝑡𝑡(𝑡) ∙=
(𝑃𝑟(𝑡)−𝑢𝑎𝑝𝑢(𝑡)∙𝑃𝑎𝑝𝑢_𝑚𝑎𝑥)

𝑃𝑏𝑎𝑡𝑡_𝑚𝑎𝑥

𝑢𝑎𝑝𝑢(𝑡) = 𝑢𝑎𝑝𝑢_𝑐(𝑡) + 𝑢𝑎𝑝𝑢_𝑙(𝑡)

0 ≤ 𝑢𝑎𝑝𝑢_𝑐(𝑡) + 𝑢𝑎𝑝𝑢_𝑙(𝑡) ≤ 1

𝑢𝑎𝑝𝑢_𝑐(𝑡) = 0.05 ∙ 𝑔𝑎𝑖𝑛(𝑡) (𝑔𝑎𝑖𝑛(𝑡) 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)

0.2 ≤ 𝑆𝑜𝐶 ≤ 0.8
      (13) 

 
Fig. 4.   Real-time optimal energy flow control based on online swarm 

intelligent programming 
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therefore, the motor torque demand 𝑇𝑡𝑚  is predicted as an 

exponential function over the prediction horizon as in: 

𝑇𝑡𝑚(𝑘 + 𝑖 − 1|𝑘) = 𝑇𝑡𝑚(𝑘 + 𝑖 − 2|𝑘) ∙ 𝑒
(−

𝑖𝜏𝑠
𝜏𝑑
)
(𝑖 = 1, 2…𝑝)

 (14) 

where, 𝑇𝑡𝑚(𝑘 − 1|𝑘)  is the known motor torque value 

measured at the end of the last time interval, 𝑇𝑡𝑚(𝑘|𝑘), 𝑇𝑡𝑚(𝑘 +
1|𝑘),… 𝑇𝑡𝑚(𝑘 + 𝑝 − 1|𝑘) are the predicted motor torque over 

the prediction horizon 𝑝 , 𝜏𝑠 = 1𝑠  is the sample time and 𝜏𝑑 

determines the decay rate. As the airplane mass is much larger 

than the vehicle mass, the torque decay rate varies dramatically 

when pushing back different aircrafts, therefore, 𝜏𝑑 is redefined 

as a function of airplane mass in kilogram as: 

𝜏𝑑 = 𝜏0 ∙ 𝑚𝑎𝑠𝑠𝑝𝑙𝑎𝑛𝑒 (15) 

where, 𝜏0 = 2.36 × 10
−3 is the unit decay rate which is tuned 

with the real driving cycle corresponding to the airplane mass 

𝑚𝑎𝑠𝑠𝑝𝑙𝑎𝑛𝑒 . When the torque requirement is available from 

equation (14) and (15), it is easy to predict the future power 

demand by using vehicle dynamics formulas in [16], [33]. 

3) Algorithm for online programming 

 Fig. 5. shows the core algorithm for OSIP in a single time 

instant. The algorithm is developed based on CAPSO, which 

has three main procedures, namely, initialization, main 

iteration, and optimal position retrieving. The details and 

principle of the CAPSO algorithm working procedure are 

discussed in the author’s previous work in [27]. To solve the 

optimization problem in equation (13) online, the algorithm is 

customised and modified in the following aspects:  

a) The definition of particle position: 

At initialization procedure, the position of particles is defined 

as: 

𝑝𝛿, = 𝑈𝑎𝑝𝑢𝑡 𝛿 ∈ [1,max _𝑖𝑡𝑒𝑟], 휀 ∈ [1, 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑛𝑢𝑚]  

(16) 

where 𝑈𝑎𝑝𝑢_𝑙 = [𝑢𝑎𝑝𝑢_𝑙(𝑘|𝑘), 𝑢𝑎𝑝𝑢_𝑙(𝑘 + 1|𝑘), … , 𝑢𝑎𝑝𝑢_𝑙(𝑘 +

𝑝 − 1|𝑘)] is the could computed APU command modification 

vector over the predictive horizon 𝑝; 𝛿 is the index for number 

of iterations; 휀  is the index for each particle. To obtain 

sufficient adequate accuracy with the least computing effort, the 

value of maximum iteration max _𝑖𝑡𝑒𝑟 is 30 and the number of 

particles 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑛𝑢𝑚  is 15 as [22]. The feasibility of the 

settings will be observed in section V-A. 

b) Random number generation with specific resolution: 

In main interaction procedure, the key step is move the 

particles to the new position, and the random number with 

resolution is required for moving particles. The random number 

generation with a resolution of 0.05 is modified from the 

standard Linear Congruential Generator (LCG): 

{
𝑅𝜖 = (𝑎 ∙ 𝑅𝜖−1 + 𝑐) 𝑚𝑜𝑑 𝑀

𝑟𝑛𝑑(𝑘 + 𝜖 − 1) = 𝑟𝑜𝑢𝑛𝑑(20 ∙
𝑅𝜖

𝑀
)/20

 (17) 

where multiplier  𝑎  , additive constant  𝑐 , and modulus 𝑀  are 

integers. Equation (17) defines a series of random number with 

the initial seed  𝑅0 . The vector {𝑟𝑛𝑑𝑖,𝜖 (𝜖 = 1,2, …𝑝)}  is a 

random number sequence from 0 to 1, with resolution of 0.05. 

To maximise the pseudo-random number performance, the 

parameters of the LCG are [22]: 𝑅0 =9, 𝑎 = 27, 𝑐 = 0, and 

𝑀 = 220. 

c) Particle position updates: 

In main interaction procedure, the position of particles 

updates as: 

𝑝𝛿+1, = 𝑟𝑒𝑠 ∙ 𝑟𝑜𝑢𝑛𝑑{(1 − 𝛽) ∙
𝑝𝛿,
𝑟𝑒𝑠

+ 𝛽 ∙
𝑔𝛿,∗
𝑟𝑒𝑠

 

+𝛾𝛿 ∙ ζ ∙ [rand(0,1) − 0.5]} (18) 

where, 𝑝𝛿+1,  is the updated position, 𝑝𝛿,  is the particle’s 

position of the present iteration, 𝑔𝛿,∗ is the best position of the 

present iteration, 𝛿 is the iteration generation, 휀 is the particle’s 

individual index,  𝑟𝑒𝑠  = 0.05 is the variable resolution, γ =
0.85 is the convergence parameters of CAPSO, ζ = 80 is the 

search area factor, and 𝛽  is the attraction parameters of 

CAPSO. The previous study of the authors suggested that the 

CAPSO with logistic chaotic map is the best for integer 

optimization [28]. The attraction parameters 𝛽  is mapped in 

logistic map as: 

𝛽𝛿+1 = 𝛼 ∙ 𝛽𝛿 ∙ (1 − 𝛽𝛿) (19) 

where, the initial value of 𝛽1 = 0.7 and 𝛼 = 4 are used for the 

logistic chaotic map[28].  

d) Final outputs: 

When convergence has been achieved, the algorithm ends the 

main iteration and outputs the best position at the end iteration 

𝑔max _𝑖𝑡𝑒𝑟,∗ as the global optimal solution. Then the first element 

of the control sequence 𝑢(𝑘) = (𝑢𝑎𝑝𝑢_𝑐(𝑘|𝑘))  is the final 

output of the OSIP controller. 

 
Fig.10   Real-time performance in PBDC-I when initial battery 

SoC=80% 

 
Fig. 5.   Flow-chat of  CAPSO algorithm for OSIP in a single time instant. 



 6 

IV. TESTING AND VALIDATION SET-UP 

 Driving Cycles 

 The push back speed and load of the aircraft-towing tractor 

vary in real practice but currently there is no standard driving 

cycle for aircraft-towing tractor performance evaluation. In this 

work, four types of Push Back Driving Cycles (PBDCs) are 

proposed, based on the statistical data collected at London 

Heathrow airport [27]. A PBDC is made up from four typical 

modes, namely, heavy pushback, medium pushback, light 

pushback and solo run. Each mode includes the profile of 

vehicle speed and the push-back load (airplane mass). Table IV 

provides the profile of different modes. Four different PBDCs 

are made by arranging these modes in different combination, 

Fig.6 provides the cycle pattern of PBDC-I and the cycle 

profiles of PBDC-I to PBDC-IV are summarized in Table V. 

 Hardware-In-the-Loop Test Set-up 

The hardware in the loop test is used for testing the cyber-

physical system’s real-time performances. This paper uses the 

industrial level real-time testing facilities provided by ETAS 

Group [34]. The configuration of the HIL testing system and 

bench configuration are shown in Fig.7 and Fig.8 respectively. 

The cloud computing and V2I communication are performed in 

ETAS ES910, whose core components are a 1.5GHz processor 

with 4GB RAM and 1Gbps Ethernet communication. The 

control strategy and algorithm are programmed in host PC-1 

and flashed to ES910 by ETAS INTECRIO. The DESK-

LABCAR performs as the hybrid aircraft towing tractor with 

local controller and it communicates with the V2I interface 

(ES910) via CAN bus. The vehicle and local controller are 

modelled and complied in host PC-2 and downloaded to the 

DESK-LABCAR by ETAS Experiment Environment (EE) via 

Ethernet protocol. The vehicle performances are supervised by 

ETAS EE in host PC-2. The real-time models for the HIL test 

are developed using Simulink as in the authors’ previous work 

[28], [35], and the models are verified by the test data from a 

prototype vehicle provided by the industrial partners [36]. 

V. RESULTS AND DISCUSSION 

 Optimization performance 

TABLE VI shows that CAPSO algorithm for OSIP is able to 

find the global optimal solution identical to that obtained by 

MATLAB genetic algorithm (GA) toolbox but in a much faster 

process. The optimization process in four random selected time 

instants (500s, 1800s, 5050s and 6800s) is repeated using the 

two methods (i.e. CAPSO and GA) respectively for 20 times, 

and the optimal cost in the 20 trials is considered as the ‘global 

optima’. Although the average cost function value is slightly 

lower with GA (<4%), the average computing time using GA 

for each time instant is more than 20s, whereas it is only less 

than 1s using CAPSO. Therefore, the advantage of CAPSO is 

TABLE IV 

TABLE V 

PUSH-BACK DRIVING CYCLE PROFILE 

CYCLE NAME CYCLE MODE ARRANGEMENT 
CYCLE 

LENGTH 

PBDC-I 6 L&S+3 H&S+3 M&S+6 L&S+3 H&S+6L&S+6 M&S 155s 
PBDC-II 6 L&S+ 6 L&S+ 6 L&S+ 6 L&S+ 6 L&S 133s 

PBDC-III 3 M&S+ 3 M&S+ 3 M&S+ 3 M&S 45s 

PBDC-IV 2H&S+2 H&S+ 2 H&S+ 2 H&S+ 2 H&S+ 2 H&S 35s 

 

TABLE IV 

CYCLE MODE PROFILE 

SPECIFICATION 
MAX. 

SPEED 

AIRPLANE 

MASS 

ACC. 

TIME 

MODE 

LENGTH 

Heavy (H) 8 km/h 200t 43s 155s 

Medium (M) 10 km/h 120t 16s 133s 
Light (L) 22 km/h 60t 17s 45s 

Solo run (S) 30 km/h 0t 7s 35s 

 

 
Fig. 7.   Hardware-in-the-loop testing system 

 
Fig. 8.   Hardware-in-the-loop test bench 

TABLE VI 

OPTIMIZATION PERFORMANCE IN SINGLE TIME INSTANT 

TIME 

INSTANT 
METHOD 

OPTIMAL 

COST 

AVERAGE 

COST 

AVE. 

TIME 

500s 
GA 180678.53 194348.41 23.36s 
CAPSO 180678.53 200038.25 0.72s 

1800s 
GA 4787.43 5245.43 25.10s 

CAPSO 4787.43 5377.13 0.81s 

5050s 
GA 236331.20 244481.97 24.58s 

CAPSO 236331.20 252185.55 0.76s 

6800s 
GA 1653523.00 1662715.87 26.20s 

CAPSO 1653523.00 1687830.51 0.83s 

 

 
Fig. 6.   The speed and plane mass profile of BPDC-I 

Fig. 7.    
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outstanding because this fast response is extremely important 

for real time control. 

 Computational effort 

The computational cost is a natural concern for real-time 

implementation and the prediction horizon size is the most 

concerned factor which affects the computational cost [11]. The 

computational cost of the proposed method with respective size 

of predictive horizon 𝑝 is hereby investigated. The optimization 

problem is solved by the ETAS ES910 real-time controller. The 

average computational cost per time step including the data 

communication is shown in Fig.9. It indicates that while the 

augmented prediction horizon size 𝑝  leads to increased 

computational load, prediction horizon size 𝑝 being less than 

36s can make the controller implementable in real-time, as the 

computing time is less than the sampling time of 1 second. The 

macro performance of the proposed method will be discussed 

in the following sections.  

 Vehicle system performance in real-time 

The real-time performance of the connected system is 

evaluated and compared with the system using local control 

only. Different battery initially SoC values of 80% and 20% are 

investigated respectively in Fig.10 and Fig.11. The proposed 

control method can maintain the HEV’s components working 

within the proper range in real-time. Fig.10 shows the HIL test 

result in PBDC-I assuming the battery is initially in full charge. 

In this condition, the connected system can save more energy 

than the one with local control only. Fig. 11 shows the HIL test 

result in PBDC-I assuming the battery initial SoC is low due to 

some unknown error. The connected system can work properly 

and also outperform the one without OISP. 

 Robustness and repeatability 

The working condition varies among different scenarios; 

therefore, the test of robustness and repeatability is needed. The 

HEV systems in four PBDCs with different initial BP SoC 

values (80%, 50% and 20%) are evaluated, and the test results 

are given in Table VII. The results indicate that in all the 

scenarios under investigation, the proposed method 

outperforms the method with local control only in energy 

saving. The proposed method can reduce up to 17.17% fuel 

consumption and 13.06% of total energy loss. The highest fuel 

consumption reducing rate and highest energy saving rate are 

obtained over PBDC-III with the initial SoC of 80%. 

VI. CONCLUSION 

An online swam intelligent programming (OSIP) method for 

energy management of a connected plug-in hybrid aircraft-

towing tractor has been studied. The vehicle performance with 

the proposed OSIP is evaluated by optimization performance 

analysis, computational effort analysis, HIL test, and robustness 

& repeatability test. The conclusions drawn from the 

investigation are as follows: 

1. The proposed OSIP based on CAPSO algorithm has the 

capacity of finding global optima with much faster 

computing speed comparing with GA. 

2. The OSIP can optimize the vehicle performance in real-

 
Fig. 9   Average computation time per step in PBDC-I 

 
Fig.11   Real-time performance in PBDC-I when initial battery 

SoC=20% 

 
Fig.10   Real-time performance in PBDC-I when initial battery 

SoC=80% 
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time with a maximum prediction horizon size of 35s, and 

the optimal control signal can be obtained and sent to 

relevant controllers within 1 second. 

3. The vehicle with OSIP outperforms the system without it 

in energy saving at all initial battery SoC level, and it has 

more potential in fuel saving when initial battery SoC is 

high. 

4. The proposed energy management method is robust and 

reliable for energy saving in all pushback driving cycles, 

and up to 17% fuel and 13% total energy loss can be saved 

via the proposed cyber-physical control. 

In future work, the proposed algorithm will be implemented 

in a real connected hybrid aircraft-towing tractor for further 

verification in road test. The proposed online swarm intelligent 

optimization method will be integrated with an artificial neural 

network and reinforcement learning for more advanced control 

scenario including the platoon and fleet control. 
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