CC chemokine receptor 2 promotes recruitment of myeloid cells associated with insulin resistance in non-alcoholic fatty liver disease

Parker, Richard; Weston, Christopher J; Miao, Zhenhua; Corbett, Christopher; Armstrong, Matthew; Ertl, Linda; Ebsworth, Karen; Walters, Matthew; Baumart, Trageen; Newland, Dale; McMahon, Jeff; Zhang, Penglie; Singh, Rajinder; Campbell, James; Newsome, Philip N; Charo, Israel; Schall, Thomas; Adams, David H

DOI: 10.1152/ajpgi.00213.2017

License: None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 15/03/2018
https://doi.org/10.1152/ajpgi.00213.2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 28. Sep. 2023
CC Chemokine Receptor 2 Promotes Recruitment of Myeloid Cells Associated with Insulin Resistance in Non-Alcoholic Fatty Liver Disease

Richard Parker¹, Christopher Weston¹, Zhenhua Miao², Christopher Corbett¹, Matthew Armstrong¹, Linda Ertl², Karen Ebsworth², Matthew Walters², Trageen Baumart², Dale Newland³, Jeff McMahon³, Penglie Zhang², Rajinder Singh², James Campbell², Philip Newsome¹, Israel Charo³, Thomas Schall², David H Adams¹

¹. NIHR Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom
². ChemoCentryx Inc, Mountain View, California USA
³. Royal Wolverhampton Hospitals NHS Foundation Trust, Wolverhampton UK

Running head: CCR2 in NAFLD

Corresponding author:
Dr Richard Parker
richardparker@nhs.net
NIHR Centre for Liver Research
5th Floor IBR
University of Birmingham
Birmingham
B15 2TT
United Kingdom
Telephone (44) (0) 7971118036
Fax (44) (0) 121 415 8701
List of abbreviations

ALT  Alanine aminotransferase
ANOVA  Analysis of variance
AST  Aspartate aminotransferase
CCL2  CC chemokine ligand 2
CCR2  CC chemokine receptor 2
ELISA  Enzyme linked immunosorbent assay
FACS  Flow assisted cytometry
HFD  High fat diet
NAFLD  Non-alcoholic Fatty Liver Disease
NAS  NAFLD activity score
NASH  Non-alcoholic steatohepatitis
PBS  Phosphate buffered saline
RNA  Ribonucleic acid
rt-PCR  Real time polymerase chain reaction
SEM  Standard error of mean

Financial Support: RP received support from a Clinical Research Training Fellowship from the Medical Research Council grant number G1100448, and a Sheila Sherlock Travelling Fellowship in Hepatology awarded by the Royal College of Physicians, London. ChemoCentryx Inc designed and developed the small molecule inhibitor of chemokine-C-receptor 2, CCX872, which is a proprietary compound.

Author contributions:
RP designed and performed experiments and analysis, wrote the draft manuscript
CW designed experiments, analysed data and reviewed the draft manuscript
CC collected human samples, performed experiments and reviewed the draft manuscript
MA collected samples and reviewed the draft manuscript
LE, KE, TB assisted with animal experiments
ZM, DN, JM, PZ, RS medicinal chemistry
MW, JC, PN, IC, TS and DA designed experiments, analysed data and reviewed the draft manuscript.
All authors reviewed the final manuscript and approved its submission

Conflicts of interest
RP: no conflict of interest
CW: no conflict of interest
CC: no conflict of interest
MA: no conflict of interest
LE: employee of ChemoCentryx Inc.
KE: employee of ChemoCentryx Inc.
TB: employee of ChemoCentryx Inc.
ZM: employee of ChemoCentryx Inc.
DN: employee of ChemoCentryx Inc.
JM: employee of ChemoCentryx Inc.
PZ: employee of ChemoCentryx Inc.
RS: employee of ChemoCentryx Inc.
MW: no conflicts of interest
JC: employee of ChemoCentryx Inc.
PN: no conflicts of interest
IC: employee of ChemoCentryx Inc.
TS: employee of ChemoCentryx Inc.
DA: no conflicts of interest
Abstract

Non-alcoholic fatty liver disease (NAFLD) is a common disease, closely associated with obesity and insulin resistance. We investigated the presence of a subset of myeloid cells associated with metabolic disturbance in the liver of patients with NAFLD and a murine model of obesity-induced liver disease. Gene and protein expression in liver and serum was investigated with rt-PCR or ELISA and correlated to clinical disease. Liver-infiltrating immune cells were isolated from normal or diseased human liver for flow cytometric analysis. In animal experiments, mice were fed a high-fat diet (60% of calories from fat) for 16 weeks, or high-fat diet with 30% fructose for 32 weeks to induce steatohepatitis and fibrosis. A small molecule inhibitor of CCR2, CCX872, was administered to some mice. A subset of CD11c⁺CD206⁺ immune cells were enriched in human liver tissue, and greater infiltration was observed in NAFLD. The presence of CD11c⁺CD206⁺ myeloid cells correlated with systemic insulin resistance. CD11c⁺CD206⁺ cells expressed high levels of CCR2, and liver CCL2 expression was increased in NASH and correlated with disease activity. In mice, CCR2 inhibition reduced infiltration of liver CD11b⁺CD11c⁺F4/80⁺ monocytes, which are functional homologs of human CD11c⁺CD206⁺ cells, and improved liver injury and glycaemic control. A role for CCR2/CCL2 in human NAFLD has long been postulated. These data confirm a role for this chemokine/receptor axis, through mediating adipose and hepatic infiltration of myeloid cells. Inhibition of CCR2 improved hepatic inflammation and fibrosis in murine models of NAFLD. These data confirm the rationale for targeting CCR2 to treat NAFLD.
New and noteworthy

These data show for the first time that CD11c\(^+\)CD206\(^+\) myeloid cells, previously associated with human adipose tissue inflammation, infiltrate into liver tissue in non-alcoholic fatty liver disease. These cells express CCR2. Inhibition of CCR2 in mice inhibits hepatic inflammation caused by a murine homolog of these myeloid cells and improves experimental liver disease.

Keywords:

1. Non-alcoholic fatty liver disease
2. Immunology
3. Obesity
4. Insulin resistance
5. Immunology
CC Chemokine Receptor 2 Promotes Recruitment of Myeloid Cells Associated with Insulin Resistance in Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of liver pathology from hepatic steatosis (non-alcoholic fatty liver, NAFL) through the more severe non-alcoholic steatohepatitis (NASH) to cirrhosis (31). NAFLD is present in up to one-third of individuals (6) and is associated with the metabolic syndrome, particularly obesity (31) and insulin resistance (3). NAFLD is becoming the commonest indication for liver transplantation in the USA (32) reflecting both the prevalence of the disease and the present lack of effective therapies for advanced disease (25).

There is increasing interest in the role of the innate immune system in obesity and the metabolic syndrome. Myeloid cells infiltrate adipose and liver tissue in patients with NAFLD and secrete cytokines and adipokines that contribute to insulin resistance and inflammation. In particular, CD11c+CD206+ monocytes in human adipose tissue are associated with adipocyte necrosis, inflammation and insulin resistance (30). In mice, a functionally similar subset defined by CD11b+CD11c+F4/80+ contribute to adipose inflammation and systemic insulin resistance in mice (22, 26). CCR2 mediates obesity-associated macrophage infiltration of adipose and hepatic tissue (19, 29). Mouse experiments have demonstrated that obesity increases hepatic expression of CCL2 (13, 14, 23, 29) and CD11b+CD11c+F4/80+ express CCR2 (26). Inhibition of the CCR2/CCL2 axis reduces disease activity in mice (21, 27, 33)(4, 8). The CCR2/CCL2 axis in human NAFLD is less well defined, although increased circulating levels of CCL2 are observed (12, 14). We investigated the inflammatory infiltrate in human NAFLD and murine models of obesity-
induced liver disease to determine whether functionally important subsets of CCR2 inflammatory cells are involved in the metabolic dysfunction that characterises NAFLD.

**Materials and methods**

**Human tissue**

Human tissue and blood was collected from patients with liver disease or healthy controls at University Hospitals Birmingham NHS Foundation Trust with full informed consent and research ethics committee approval (REC reference 06/Q2708/11). Liver tissue was obtained from patients undergoing hepatic resection for benign or malignant disease, or liver transplantation for chronic liver disease. In the case of hepatic resection, liver tissue distal to resected lesions was used for analysis. No patient had undergone chemotherapy in the two weeks prior to surgery. Liver tissue was placed in formalin or snap frozen prior to subsequent analysis. Characteristics of these groups and of patients undergoing resection or transplantation as a source of liver tissue are detailed in table 1. Serum from patients with NAFLD was obtained from 2 cohorts of patients taking part in the LEAN and NOBLES studies. LEAN is a randomised controlled trial of liraglutide in patients with NAFLD (2). The serum samples used were taken before randomisation. NOBLES is an observational study of biomarkers in patients with liver disease. Finally, a group of healthy volunteers without liver disease donated blood for analysis and served as a control group in ELISA experiments. This group were drawn from laboratory colleagues and gave consent for their samples to be used for research.

**Enzyme Linked Immunosorbent Assays (ELISA)**

Analysis of human serum was performed using commercially available ELISA kits. Serum CCL2 concentration was measured using R&D Systems Quantikine kits (Minneapolis, Minnesota USA, catalogue number PDCP00), performed according to the manufacturer’s instructions. Recombinant human chemokines were used as a positive control (Peprotech,
Samples were diluted in sample buffer 1:4 and run in duplicate. A standard curve was generated from known concentrations of recombinant chemokine and experimental values interpolated from this curve.

**Polymerase Chain Reaction**

RNA was isolated by homogenizing liver tissue in Trizol (Life Technologies, California, USA). Chloroform was added and samples centrifuged at top speed in a microfuge for 15 minutes. The upper aqueous layer was removed, isopropanol was added and samples centrifuged at 12,000 rpm for 15 minutes. The resulting RNA pellet was washed in 70% ethanol and re-suspended in nuclease free water. Purity and concentration of total RNA was determined spectrophotometrically. cDNA was prepared from RNA using Taqman reagents (Life Technologies, California, USA) according to the manufacturer’s instructions. Briefly, 2 μL of RNA was combined with random hexamers, reverse transcriptase, RNase inhibitor, magnesium chloride and a buffer solution. This mixture was heated to 25°C for 10 minutes, 37°C for 30 minutes, 95°C for 5 minutes and then cooled to 4°C. Probe/primer mixes for genes of interest and appropriate controls were obtained from Taqman (Life Technologies, California, USA) and made up with Taqman reagents. A 96 well plate was used for reactions, with wells containing cDNA, primer/probe mix (CCL2 primer/probe mix catalogue number Hs00234140_m1, 18S mix catalogue number Hs03003631_g1) and Taqman mastermix. Three replicates were used for both the gene of interest and housekeeping gene. 18S has been shown to have lowest level of variability across stages of alcoholic liver disease (ALD) suggesting it is reliable as a housekeeping gene in steatohepatitis (5). PCR experiments were performed using a Roche Lightcycler 480 machine. A single quantification measurement was taken during each cycle.
Isolation of leukocytes

Isolation of leukocytes from human liver or blood

Mononuclear cells were isolated from blood or liver. Liver was washed with phosphate buffered saline (PBS) to remove blood and digested non-enzymatically using GentleMACS (Miltenyi). The resulting homogenate was passed through a sterile 70 micron mesh. The homogenate was then washed in PBS until a clear supernatant was achieved. Liver homogenate or whole blood was layered over a density gradient (Lymphoprep, CedarLane Labs, Canada) to isolate mononuclear cells, which were aspirated from the interface and washed in PBS three times before further analysis.

Isolation of leukocytes from murine liver tissue

Mice were sacrificed by CO$_2$ inhalation and cervical dislocation. Blood samples were taken by left ventricular puncture. PBS was gently infused into the left ventricle to flush end organs of blood before harvesting. The liver were removed, immediately divided and placed into RPMI, formalin or snap frozen in liquid nitrogen. To isolate leukocytes, a segment of liver was coarsely chopped with scissors before mechanical dissociated by gently passing homogenate through a 75-micron sieve. The resulting homogenate was washed in PBS until a clear supernatant was achieved. For analysis of mouse liver, whole homogenate was incubated with fluorescently-tagged antibodies as described below, and CD45 used to identify leukocytes.

Flow Cytometry analysis of leukocytes

Isolated cells were suspended in 100μL at 1x10$^6$ cells/ml in MACS buffer (PBS containing 2% FCS and 1mM EDTA) and incubated with antibodies. After incubation for 20 minutes at room temperature, cells were washed and re-suspended in PBS and analysed by flow cytometry using a Beckman Coulter Cyan. Cells stained with single colours were analysed for compensation and appropriate isotype controls were used to define the negative populations.
Animal experiments

Mouse experiments were performed at ChemoCentryx Inc, California, USA. C57/Bl6 mice were purchased from Charles River, USA, and were housed in the research locations for at least three days before investigations were started. Animals were housed according to local and national standards. Animal housing was maintained at 23°C with twelve hour light/dark cycles. Male C57/Black 6 (C57/Bl6) mice bred in controlled clean conditions were used for all experiments, aged 6-8 week at the start of experiments.

Two animal models were used: high fat diet (HFD) to induce steatohepatitis, or HFD in combination with 30% fructose in drinking water to induce steatohepatitis with fibrosis. The HFD provided 60% of calories from fat (by overall weight, this is provided 31% by lard and 3% by soybean oil). HFD and control diet were obtained from Teklad, USA. HFD was administered for 16 weeks; HFD+fructose was administered for 32 weeks. In each case, a control group of littermates were fed control diet (10% of calories from fat) with normal drinking water for the duration of the experiment. At the end of experiments mice were sacrificed by CO₂ inhalation.

Chemokine receptor antagonism

A small molecule inhibitor of CCR2 (CCX872) manufactured by ChemoCentryx Inc, Mountain View, USA. CCX872 was dissolved in 1% hydroxypropyl methylcellulose (HPMC) and administered to mice by subcutaneous injection at a dose of 30mg/kg daily. An equivalent volume of 1% HPMC was given in control experiments. A maximum volume of 350μL was used.

Triglyceride content of murine liver tissue

Triglyceride content of murine liver tissue was assessed using a commercially available colorimetric assay kit (Cayman Chemical Company, Ann Arbor MI USA) according to the manufacturer’s instructions. In short, 400mg of liver tissue was suspended in 2ml of assay diluent and homogenised. 10μl of homogenate was added to wells of a 96 well plate, each sample was assayed in triplicate. Triglycerides were enzymatically hydrolysed to free fatty
acids and glycerol using the supplied enzyme mixture. After 15 minutes incubation colour change was measured with a plate reader (Synergy HT, BioTek, Vermont, USA) by measuring absorbance at 540nm. A standard curve was generated by assaying known concentrations of triglyceride and the triglyceride concentration of samples interpolated from this curve and expressed as milligram per gram of liver tissue.

Fibrosis content of liver tissue

Entire lobes of mouse livers were immersed in formalin immediately after harvesting and subsequently embedded in paraffin. Sections of 10 μm thickness were stained with Sirius red (Sigma Aldrich, Missouri, USA) to detect collagen deposition. Briefly, sections were dewaxed and stained with haematoxylin before being stained with Sirius red for 1 hour. Sections were then dehydrated and mounted. Fibrosis was quantified by calculating percentage area of collagen deposition using Image-J software (National Institutes of Health, USA; version 1.48). Two Sirius red-stained slides per animal were taken at different depth, with 18 images taken randomly per slide for a total of 36 images per animal for collagen quantification. All pathologic evaluations were made by a pathologist on a random and blinded basis.

Glycaemic control

Glucose metabolism in mice was assessed with insulin and glucose challenge experiments. Insulin challenge was performed by administering 0.75U/kg of insulin (Sigma Aldrich, USA) to non-fasted mice via intra-peritoneal injection. Plasma glucose was measured with an AccuCheck gluometer (Roche, Basel, Switzerland) using a drop of blood from a tail vein. Plasma glucose was measured at baseline and 15, 30, 60, 90 and 120 minutes following administration of insulin. Mice were fasted overnight before glucose tolerance tests. Glucose (Sigma Aldrich, USA) was administered at 2g/kg of glucose (as 45% glucose solution), given by gastric lavage. Plasma glucose was measured at baseline and 15, 30, 60, 90 and 120 minutes after administration of glucose using an AccuCheck gluometer and drops of blood from tail vein.
Statistical Analysis

Data are expressed as mean and SEM for normally expressed data, and median and interquartile range (IQR) for skewed data. Normality was assessed with the Kolmogorov-Smirnov test. Normally distributed data were compared between groups with student’s t-test, and the Mann-Whitney test used for skewed data. Variance across multiple groups, for example over a range of concentrations was analysed with one-way analysis of variance (ANOVA). Survival analysis was analysed by Kaplan-Meier curves with p values assessed with log-rank test. Median time to death in animals that died was also calculated. All authors had access to the study data and reviewed and approved the final manuscript. Data were analysed using Prism version 5 (California, USA).

Results

CD14+CD11c+CD206+ monocytes are enriched in NAFLD liver tissue

Immune cells that express CD14+CD11c+CD206+ have been detected in human adipose tissue and associated with insulin resistance (30). We examined the presence of these cells in human blood and liver. Liver tissue from patients with NAFLD (n=8), other liver disease (ALD n=4, PSC n=3, PBC n=2, cryptogenic cirrhosis n=1, haemochromatosis n=1) or without liver disease (n=5) was analysed. Very few CD14+CD11c+CD206+ were observed in peripheral blood, whereas these cells were enriched in liver tissue (figure 1). The frequency of intrahepatic CD11c+CD206+ monocytes, as a percentage of CD45+CD14+ cells, differed significantly between types of liver disease (Kruskal-Wallis p=0.023) with highest frequency of cells seen in NAFLD (figure 1E). Mean fluorescence intensity (MFI) of CD11c and CD206 showed a tendency to be greater in NAFLD, although this did not reach statistical significant (Kruskal-Wallis p=0.056) (figure 1F). No differences in expression of CD11c and CD206 were seen between non-cirrhotic and cirrhotic liver tissue (data not shown).
CD14+CD11c+CD206+ monocytes are associated with insulin resistance and express CCR2 in NAFLD.

A correlation between the proportion of intrahepatic CD14+CD11c+CD206+ monocytes and glycosylated haemoglobin (HbA1c) was observed in liver infiltrating monocytes isolated from patients with chronic liver disease ($r^2 = 0.499, p=0.0005$) (figure 2A). No significant correlation was observed with age, BMI or ALT (table 2). In both blood and liver, CCR2 expression was largely restricted to CD14+ monocytes particularly the classical CD14++CD16- subset (figure 2B). The overall frequency of CCR2+ cells in blood or liver tissue did not vary significantly by aetiology of liver disease (one-way ANOVA $p=0.236$). However, CCR2+ expression on CD14+CD11c+CD206+ monocytes was higher in NAFLD compared to normal liver tissue or non-NAFLD liver disease in terms of the percentage of CD14+CD11c+CD206+ cells that expressed CCR2 (figure 3A) and the MFI of CCR2 (figure 3B).

CCL2 is upregulated in NAFLD.

CCL2 gene expression in liver tissue was analysed by quantitative real-time PCR using 18S as a housekeeping gene. CCL2 gene expression was significantly upregulated in liver tissue from patients with NAFLD undergoing transplantation (Mann Whitney test $p=0.009$) (figure 4A). The concentration of CCL2 was measured by ELISA in serum of individuals with biopsy-proven NAFLD ($n=20$) or healthy volunteers ($n=10$). Serum CCL2 concentration was significantly higher in patients with NAFLD compared to healthy volunteers (median 305.1 pg/ml (IQR 211.8 – 385.7) vs. 224.7 (105.2 – 255.4), Mann-Whitney test $p=0.021$) (figure 4B). NAFLD was assessed histologically by independent pathologists using the NAFLD activity score (NAS) proposed by Kleiner and Brunt (15). Serum CCL2 concentration was higher in individuals with more severe histological inflammation (assessed with the NAFLD activity score (NAS) (15))(one way ANOVA $p=0.025$) but levels did not correlate with fibrosis stage (one way ANOVA $p=0.347$) (figure 4C, D). When individual components of the NAS were considered, serum CCL2 concentration was
associated with higher lobular inflammation score (one-way ANOVA p=0.043) but not with steatosis or hepatocyte ballooning, consistent with the known role of CCL2 as a monocyte chemo-attractant.

**Inhibition of CCR2 reduces accumulation of F4/80^+CD11c^+ monocytes in murine steatohepatitis**

CD11b^+ CD11c^+F4/80^+ monocytes are found in adipose tissue in experimentally induced obesity in mice, and are functionally similar to CD11c^+CD206^+ monocytes in humans. To investigate the effect of CCR2 inhibition in obesity-induced steatohepatitis, twenty-six male C57/B16 mice were given HFD with 60% of calories from fat for 16 weeks. After eight weeks of HFD, the mice were divided into two groups: thirteen were treated daily with CCX872 (30mg/kg/day, administered by subcutaneous injection) and 13 received an equivalent volume of vehicle (1% HPMC). A further 8 littermates were given control diet for the duration of the experiment.

Steatosis, assessed by measuring triglyceride content of liver tissue, was markedly increased after 16 weeks of HFD. Mice treated with CCX872 had significantly less triglyceride accumulation in comparison with vehicle treated mice (169.6mg/g ±21.20 vs. 284.2 ±31.9, student's t-test p=0.007) with levels reduced to those seen in animals receiving a control diet (**figure 5A**). Serum ALT was significantly lower in CCX872-treated mice (mean ALT 252.5IU/ml ±56.02 vs. 532.8 ±98.07, student's t-test p=0.028) (**figure 5B**). The reduction in hepatic steatosis was confirmed histologically (**figure 5C**) but histological features of inflammation and fibrosis did not differ between groups (**figure 5D, E**).

Flow cytometric analysis of isolated liver-infiltrating immune cells revealed an increase in CD11b^+F4/80^low cells in all HFD fed mice. No differences were seen between groups with regard to intrahepatic frequencies of CD11b^+F4/80^hi Kupffer cells or overall CD11b^+F4/80^low infiltrating monocytes (**figure 6A, B**). However, fewer CCR2 expressing monocytes were seen in CCX872 treated mice (**figure 7A**) and CCR2 inhibition reduced liver infiltration with Ly6ch^+ monocytes (**figure 7B**). HFD feeding resulted in higher intrahepatic and adipose
tissue frequencies of CD11b+ CD11c+ F4/80+ cells, an immune cell population functionally similar to CD11c+CD206+ cells in humans which are implicated in the development of obesity mediated insulin resistance (19). The frequency of CD11b+CD11c+ F4/80+ cells in both adipose and liver tissue was significantly reduced after treatment with CCX872 (figure 6C, D).

Inhibition of CCR2 reduces scarring in murine steatohepatitis and fibrosis

Only mild hepatic fibrosis was seen after 16 weeks of HFD (figure 7E). As fibrosis is an important prognostic marker in human NAFLD (1, 9) we sought to assess the effects of CCR2 antagonism on the development of fibrosis. Fructose intake is associated with more severe fibrosis in human NAFLD (24) and has been shown to cause fibrosis in animal models of NAFLD (7, 16). We used HFD and fructose to induce fibrosis and assess the effect of CCR2 antagonism. Twenty-two mice were given HFD and 30% fructose for 32 weeks. CCX872 or vehicle was administered daily for the final eight weeks of the experiment, each to 11 mice. A further four littermates were given control diet for the duration of the experiment.

Consistent with initial experiments, after 32 weeks lower ALT concentrations were observed in CCX872-treated animals (median 67.0 IU/L vs. 251.5IU/L, p<0.006 by Mann Whitney test) although interestingly, lower than seen after a shorter period of HFD diet alone. Hepatic fibrosis, assessed by area of scarring on histology, was significantly reduced in the livers of mice receiving CCX872 (mean area 0.83 % (SD 0.22) vs. 2.01 (1.5), p=0.01 by student’s t-test) (figure 8).

CCR2 antagonism improves glucose metabolism in mice given HFD

At the start of the treatment period (after eight weeks of HFD), response to a glucose load was similar between CCX872 and vehicle treated mice (figure 9A, C). However, after 8 weeks of treatment there was a significant improvement in response of CCX872 mice compared to vehicle treated mice (AUC 48545 mg/dl/min vs. 31795 mg/dl/min, student’s t-
test p<0.001) (figure 9B, C). Insulin challenge was performed by administering a standard
dose of 0.75 units/g of insulin by intra-peritoneal injection to non-fasted mice. At the start of
the treatment period changes in plasma glucose concentration in response to insulin were
similar in both groups of mice fed HFD (figure 9D, F). After a further 8 weeks of HFD and
treatment with CCX872 or vehicle, there was a significant difference between groups (AUC
21719 mg/dl/min vs. 16553 mg/dl/min, student’s t-test p<0.001) (figure 9D,F).

Discussion
Non-alcoholic fatty liver disease is a common condition closely related to obesity and the
metabolic syndrome. Progressive disease is typified by hepatic inflammation in the form of
steatohepatitis and fibrosis (11). We report here that a subset of monocytes that express
both CD11c and CD206 are enriched in the liver of patients with NAFLD and their
presence is associated with insulin resistance. A similar subset has been reported previously
in human adipose tissue but not in liver tissue (30). We show that intrahepatic
CD11c⁺CD206⁺ monocytes express CCR2, and its principal ligand, CCL2, is over-expressed
in NAFLD liver tissue suggesting that the CCR2/CCL2 axis may promote trafficking of
CD11c⁺CD206⁺ monocytes to the liver in NAFLD which would suggest targeting CCR2
therapeutically may be of benefit in NAFLD.

To test this hypothesis we investigated the role of CCR2 in trafficking of pro-inflammatory
myeloid cells in a mouse model of non-alcoholic fatty liver disease where high fat diet feeding
causes insulin resistance, steatohepatitis and hepatic fibrosis. When a small molecule
inhibitor of CCR2 was administered to mice the numbers of liver and adipose tissue
infiltrating CD11b⁺CD11c⁺F4/80⁺ cells was reduced, accompanied by improvements in liver
histology and glycaemic control.
The transition from simple steatosis to NASH is associated with hepatic inflammation and the development of insulin resistance even in the absence of overt diabetes mellitus. The present study suggests that a specific subset of liver tissue infiltrating monocytes provide the link between hepatic inflammation and insulin resistance. Wentworth et al. reported that the presence of pro-inflammatory CD11c+CD206+ monocytes in subcutaneous and omental adipose tissue of obese individuals (30) was associated with insulin resistance. This was mediated in part through the inhibition of the action of insulin on adipocytes. We now report the same subset of monocytes in the livers of patients with NASH. In contrast to Wentworth we detected high levels of CCR2 on CD11c+CD206+ cells in the liver. A comparable subset of monocytes in mice is defined by F4/80 and CD11c expression. These cells express CCR2 and use it to infiltrate adipose tissue (19). Our data confirm and extend these observations by showing that pharmacological inhibition of CCR2 reduces not only adipose tissue infiltration but also hepatic infiltration by this subset. A crucial role for these cells in disease pathogenesis was suggested by our finding of a strong correlation between the frequency of CD11c+CD206+ cells in the liver and clinical measurement of insulin resistance. Thus local hepatic insulin resistance may be mediated in part through inflammation caused by this monocyte subset recruited to the liver in response to increased CCL2 expression. Thus, the improvement in glucose metabolism observed in mice is likely to be multi-factorial. Improved adipose tissue inflammation will improve insulin resistance at this site, while reduced hepatic inflammation is also likely to improve hepatic glucose metabolism.

There have been several studies that examine the CCR2/CCL2 axis in the murine models of liver disease. Inhibition of CCR2/CCL2 either through genetic manipulation (23, 29) or pharmaceutical targeting (4, 17, 21, 27, 33) leads to improvements in steatosis, inflammation or fibrosis with variation dependent on the model employed. Many of these pre-clinical pharmaceutical studies have relied on transgenic mice (28, 33) used
non-physiological methods such as administration of carbon tetrachloride (4) or
streptozotocin (17), or deficient diets (4, 21) and as such are of limited translational value.

Our data presented here deliberately used diets that mimic high-fat and/or high-
carbohydrate diets which are a feature of human liver disease. This is a particular contrast to
the study by Lefebvre et al (17) who induced NASH in part by using streptotozin to kill
pancreatic islet cells.

Increased CCL2 expression in human NAFLD has been described previously by Haukeland
et al. (12) who reported higher levels of circulating CCL2 in NAFLD and in progressive
disease. Our data confirm this finding and by correlating CCL2 blood levels with histological
features seen on liver biopsies taken at the same time show that CCL2 expression
correlates with hepatic inflammation but not fibrosis. We also show increased liver-specific
expression of CCL2 in patients with NAFLD although this data has limitations through the
number of samples used for analysis of liver-specific CCL2 expression, and the necessary
reliance of samples from patients with advanced disease to analyse liver inflammation. CCL2
is the major chemokine ligand for the receptor CCR2 which mediates myeloid cell trafficking
into tissues. Intrahepatic monocytes as a group express low levels of CCR2 but this is not
the case for CD11c+CD206+ monocytes which maintain high levels of CCR2 suggesting that
CCL2/CCR2 interactions may be more important for the recruitment and positioning of
these cells in liver tissue. Based on these findings we hypothesised that inhibiting CCR2
would reduce transmigration of monocytes into adipose and liver tissue. This was confirmed
in mice where inhibition of CCR2 using a small molecule CCR2 inhibitor reduced
accumulation of the corresponding murine subset of monocytes associated with reduced
steatohepatitis and improved metabolic parameters. Several studies have reported on the
use of a variety of pharmaceutical inhibitors of CCR2 in murine fatty liver disease,
administered in a variety of routes and in a variety of disease models (21, 27, 33). The
human data presented here confirm that CCR2 antagonism may be of benefit in
NAFLD and indeed a phase II trial of a joint CCR2/CCR5 inhibitor, cencriviroc, reported in 2016 showing benefit on hepatic fibrosis (10). The recently published results of the dual CCR2/CCR5 inhibitor, cencriviroc, in clinical NAFLD show some changes in inflammatory activity and encouraging improvements in fibrosis compared to placebo treatment. The most obvious difference between CCX872 and cencriviroc is the additional effect on CCR5 which may bring additional benefits in the setting of liver disease. Interestingly when cenicriviroc was compared to CCX872 in the methinone-choline deficient diet model of steatohepatitis, greater improvement in ALT and fibrosis was observed with CCX872 (20), although the MCD is not noted for causing a great deal of fibrosis and also lacks relevance to human NAFLD. CCR2 antagonists have been used in clinical trials in a variety of diseases where their use seems safe. Treatment of NAFLD would likely require administration over at least months and possibly years, and as such long-term safety is important. One important aspect of long-term use is the impact of CCR2 inhibition on carcinogenesis. Any effects are difficult to predict at present as animal models yield conflicting data (18), and CCR2 inhibition is being trialled for use in for example pancreatic cancer.

In conclusion, we suggest that a particular subset of monocytes is associated with progressive disease non-alcoholic fatty liver disease and that infiltration of liver by this subset is driven at least in part by CCL2/CCR2 signalling. Inhibition of this axis in NAFLD may be a rational means of improving hepatic and adipose tissue inflammation to prevent progressive liver disease.

References
9. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2014

20. Miao, Z. et al. Reduction of Liver Fibrosis by CCR2 antagonist CCX872 in Murine Models of NASH. Hepatology 2016;S1


22. Nguyen, M. T. A., Favelyukis, S., and Nguyen..., A. K. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent …. Journal of Biological … 2007


32. Wong, R. J., Cheung, R., and Ahmed, A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the US. Hepatology 2014;59(6):2188-2195.

Table 1: characteristics of cohorts used for human studies

<table>
<thead>
<tr>
<th></th>
<th>Age (Years)</th>
<th>BMI (Kg/m²)</th>
<th>ALT (IU/L)</th>
<th>Diabetes prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOBLES</td>
<td>55.1</td>
<td>33.9</td>
<td>56.1</td>
<td>58%</td>
</tr>
<tr>
<td>LEAN</td>
<td>51.0</td>
<td>36.0</td>
<td>71.5</td>
<td>33%</td>
</tr>
<tr>
<td>Liver tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASH cirrhosis</td>
<td>56.9</td>
<td>32.7</td>
<td>37.5</td>
<td>88%</td>
</tr>
<tr>
<td>non-NASH cirrhosis</td>
<td>55.3</td>
<td>29.3</td>
<td>34.1</td>
<td>14%</td>
</tr>
<tr>
<td>Normal</td>
<td>57.5</td>
<td>27.3</td>
<td>20.0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 2: correlation of frequency of intrahepatic CD11c⁺CD206⁺ monocytes with clinical parameters

<table>
<thead>
<tr>
<th></th>
<th>Correlation with intrahepatic CD11c⁺CD206⁺ monocytes (as % of CD14⁺) (r²)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c</td>
<td>0.50</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>ALT</td>
<td>0.02</td>
<td>0.551</td>
</tr>
<tr>
<td>BMI</td>
<td>0.04</td>
<td>0.388</td>
</tr>
<tr>
<td>Age</td>
<td>0.16</td>
<td>0.084</td>
</tr>
</tbody>
</table>
**Figure legends**

**Figure 1:** CD11c⁺CD206⁺ monocytes are enriched in liver tissue. **A, B** gating strategy to identify CD45⁺CD14⁺ monocytes. Representative samples of (C) peripheral blood and (D) liver infiltrating monocytes from the same individual (E). Liver tissue from patients with NAFLD (n=8) showed a greater proportion of CD11c⁺CD206⁺ monocytes as a proportion of CD45⁺CD14⁺ monocytes, compared to other chronic liver disease (ALD n=4, PSC =3, PBC n=2, haemochromotosis n=1, cryptogenic cirrhosis n=1) or normal liver (n=5) (*p<0.05 by Kruskal-Wallis). (F) Mean fluorescence intensity of CD11c⁺CD206⁺ cells by liver disease (Kruskal-Wallis p=0.056).

**Figure 2:** Monocytes were isolated from liver tissue from patients with or without NAFLD and analysed by flow cytometry. **A** The frequency of CD11c⁺CD206⁺ monocytes in liver tissue correlated with insulin resistance, measured by HbA1c. n=24, r² = 0.499. **B** CCR2 percentage expression was greater on CD14++CD16⁻ monocytes with a non-significant reduction of CCR2 expression on all intra-hepatic monocytes.

**Figure 3:** Monocytes were isolated from liver tissue and analysed by flow cytometry. CCR2 expression was higher on CD11c⁺CD206⁺ monocytes isolated from NAFLD liver tissue (n=8) compared to non-NAFLD cirrhosis (n=11) or normal liver tissue (n=5) with regard to **A** percentage of CCR2⁺cells (normal, median 39.4% IQR 40.1, non-NAFLD cirrhosis 59.7% IQR 24.9, NAFLD 80.1% IQR 24.7) and **B** mean fluorescent intensity (normal 171 IQR 163.7, non-NAFLD cirrhosis 200.6 IQR 80.1, NAFLD 3299 IQR 144.4). Data shown as median and IQR, n=23 in each case. *p<0.05 by Mann-Whitney test.
Figure 4: **A** RNA was isolated from liver tissue and CCL2 gene expression analysed by semi-quantitative PCR. CCL2 gene expression was significantly increased in liver tissue from patients with NASH (n=6) compared to normal liver tissue (n=6) (Mann Whitney test p<0.01). **B** Serum concentration of CCL2 measured by ELISA was higher in NAFLD (n=20) compared to healthy volunteers (n=10) (Mann Whitney test p<0.05). **C** serum concentration of CCL2 increased with increasing disease activity as measured by the NAS score (one way ANOVA p<0.05). **D** no relation was seen with fibrosis stage (one way ANOVA p>0.05).

Figure 5: Improvements in steatohepatitis with inhibition of CCR2. Thirteen animals in each group were given HFD with daily administration of vehicle or CCX872, and a further 8 animals were given a control diet for 16 weeks. Triglyceride content was measured with a colorimetric assay. CCR2 inhibition reduced triglyceride accumulation (*p<0.05, **p<0.01 by students t-test). **B** CCR2 inhibition reduced serum ALT (*p<0.05 by student's t-test). Histological assessment of liver disease confirmed reduced steatosis, as assessed by area of staining, panel **C**, but no differences in **D** histological inflammation or **E** histological fibrosis.

Figure 6: Myeloid cells from liver and adipose tissue from mice given a high fat diet were analysed by flow cytometry. Treatment with a small molecule inhibitor of CCR2 did not affect proportions of **A** intrahepatic Cd11b+F4/80hi Kupffer cells or **B** overall infiltrating CD11b+F4/80low monocytes (Mann-Whitney test to compare vehicle and CCX872 groups, *p>0.05). **C** CCR2 antagonism reduced infiltration of CD11c+F4/80+ cells into **C** liver tissue (Mann-Whitney test to compare vehicle and CCX872 groups, *p<0.05) and **D** adipose tissue (Mann-Whitney test to compare vehicle and CCX872 groups, t-test p<0.05). Data are shown as boxes to denote IQR with line at median and whiskers showing maximum and minimum values.
Figure 7: Myeloid cells from liver and adipose tissue from mice given a high fat diet were analysed by flow cytometry. Treatment with a small molecule inhibitor of CCR2 reduced hepatic infiltration with CCR2⁺ CD11b⁺ F4/80lo monocytes (student’s t-test $p<0.05$) and B infiltration of liver tissue by pro-inflammatory Ly6c$^{hi}$ cells (**$p<0.05$ by student’s t-test)

Figure 8: 22 C57/Bl6 mice were fed HFD with 30% fructose in drinking water, or control diet without fructose, for 32 weeks. CCR2 antagonism with a small molecule inhibitor, CCX872, reduced fibrosis compared to vehicle control. Representative pictures of liver sections from A control and B CCX872-treated animals. C Fibrosis as assessed by percentage collagen area by Sirius red staining of liver sections. Data are shown as mean and SEM **$p<0.05$ by student’s t-test

Figure 9: CCR2 antagonism improved glycaemic control in mice on a HFD with CCR2. Glycaemic control was assessed at the beginning and end of the treatment period with glucose tolerance tests and insulin challenges. Mice in each group were showed similar responses at the start of the treatment period (A, D). At the time of sacrifice mice treated with CCX872 showed significantly improved response to glucose and insulin (B, E). When assessed by measuring area under the curve statistically significant changes were seen (C, F). ***$p<0.001$ by student’s t-test.
A. Frequency of CD11c^+CD206^+ by HbA1c

B. CCR2 expression - %

- Blood
- Liver

<table>
<thead>
<tr>
<th>CD14^+CD16^-</th>
<th>CD14^+CD16^+</th>
<th>CD14^-CD16^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>
**A**-

HFD: Liver triglyceride content

- **Control diet**
- **Vehicle**
- **CCX872**

**B**-

Alanine aminotransferase

- **Control diet**
- **Vehicle**
- **CCX872**

**C**-

Histology: steatosis by area

- **Vehicle**
- **CCX872**

**D**-

Lobular inflammation

- **Vehicle**
- **CCX872**

**E**-

Fibrosis by area

- **Vehicle**
- **CCX872**
**A** Intrahepatic resident Kupffer Cells

- % of CD45^+ over Control, Vehicle, CCX872

**B** Intrahepatic infiltrating monocytes

- % of CD45^+ over Control, Vehicle, CCX872

**C** Intrahepatic CD11c^+F4/80^+

- % of CD45^+ over Control, Vehicle, CCX872

**D** Adipose tissue CD11c^+F4/80^+

- % of CD45^+ over Control, Vehicle, CCX872

* indicates significant difference.
A. CCR2$^+$ infiltrating CD11b$^+$F4/80$^{lo}$ monocytes

B. Intrahepatic Ly6c$^{hi}$ monocytes

Control diet  Vehicle  CCX872

% of CD11b$^+$F4/80$^{lo}$  

Control  Vehicle  CCX872

% of CD11b$^+$F4/80$^{dim}$

*  **  **
A. Start of treatment glucose challenge

- Control diet
- Vehicle
- CCX872

B. End of treatment glucose challenge

- Control
- Vehicle
- CCX872

C. Glucose challenge pre- and post-treatment

- Vehicle
- CCX872

D. Start of treatment insulin challenge

- Control diet
- Vehicle
- CCX872

E. End of treatment insulin challenge

- Control
- Vehicle
- CCX872

F. Insulin challenge pre- and post-treatment

- Vehicle
- CCX872

*** ns