

University of Birmingham

The Geometry of Computation-Graph Abstraction
Muroya, Koko; Cheung, Steven W. T.; Ghica, Dan

DOI:
10.1145/3209108.3209127

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Muroya, K, Cheung, SWT & Ghica, D 2018, The Geometry of Computation-Graph Abstraction. in Proceedings of
LICS ’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. Thirty-Third Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), Oxford, United Kingdom, 9/07/18.
https://doi.org/10.1145/3209108.3209127

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Sep. 2020

https://doi.org/10.1145/3209108.3209127
https://doi.org/10.1145/3209108.3209127
https://research.birmingham.ac.uk/portal/en/publications/the-geometry-of-computationgraph-abstraction(aee7f647-dab7-4dfd-b8c9-87d79dca904d).html

�e Geometry of Computation-Graph Abstraction
Koko Muroya

University of Birmingham, UK
Steven W. T. Cheung

University of Birmingham, UK
Dan R. Ghica

University of Birmingham, UK

Abstract
�e popular library TensorFlow (TF) has familiarised the main-
stream of machine-learning community with programming lan-
guage concepts such as data-�ow computing and automatic dif-
ferentiation. Additionally, it has introduced some genuinely new
syntactic and semantic programming concepts. In this paper we
study one such new concept, the ability to extract and manipulate
the state of a computation graph. �is feature allows the convenient
speci�cation of parameterised models by freeing the programmer
of the bureaucracy of parameter management, while still permi�ing
the use of generic, model-independent, search and optimisation
algorithms. We study this new language feature, which we call
‘graph abstraction’ in the context of the call-by-value lambda calcu-
lus, using the recently developed Dynamic Geometry of Interaction
formalism. We give a simple type system guaranteeing the safety
of graph abstraction, and we also show the safety of critical lan-
guage properties such as garbage collection and the beta law. �e
semantic model suggests that the feature could be implemented in
a general-purpose functional language reasonably e�ciently.

CCS Concepts •�eory of computation→ Semantics and rea-
soning; •So�ware and its engineering→ Formal language def-
initions;

Keywords Geometry of Interaction, semantics of programming
languages, TensorFlow
ACM Reference format:
Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica. 2018. �e Geometry
of Computation-Graph Abstraction. In Proceedings of LICS ’18: 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, Oxford, United Kingdom,
July 9–12, 2018 (LICS ’18), 24 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 TF as a programming language
TensorFlow (TF) is a popular and successful framework for ma-
chine learning, based on a data-�ow model of computation [1].
It is programmable via an API, available in several mainstream
languages, which is presented as a shallowly embedded domain-
speci�c language (DSL). As a programming language, TF has several
interesting features. First of all, it is a data-�ow language, in which
the nodes are mathematical operations (including matrix opera-
tions), state manipulation, control �ow operations, and various
low-level management operations. �e programmer uses the host
language, which can be Python, Java, Haskell etc., to construct a
language term (‘computation graph’). �e graphs are computation-
ally inert until they are activated in a ‘session’, in which they can
perform or be subjected to certain operations. Two such operations
are essential, execution and training. �e execution is the usual
modus operandi of a data-�ow graph, mapping inputs to outputs.
Training is the wholesale update of the stateful elements of a com-
putation graph so that a programmer-provided error measure (‘loss

LICS ’18, Oxford, United Kingdom
2018. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

function’) is minimised. �e optimisation algorithm computing the
new state of the computation graph is also user provided, but it
may use automatic di�erentiation.

Many ingredients of TF are not new, in particular data-�ow [8]
and automatic di�erentiation [12]. However, the language quietly
introduced a striking new semantic idea, in order to support the
training mode of operation of a computation graph, the wholesale
update of the stateful elements of a data-�ow graph. To enable
this operation, the state elements of the graph can be collected
into a single vector (‘tensor’). �ese parameters are then optimised
by a generic algorithm, such as gradient descent, relative to the
data-�ow graph itself and some loss function.

We are dissecting TF’s variable update into two simpler opera-
tions. �e �rst one, which is the focus of this paper, is turning a
stateful computation graph into a function, parameterised by its
former state. We call this ‘graph abstraction’ (abs). �e second
step is the actual update, which in the case of TF is imperative. In
this paper we will consider a functional update, realised simply by
applying the abstracted graph to the optimised parameters.

For the sake of simplicity and generality, we study graph ab-
straction in the context of a pure higher-order functional language
for transparent data-�ow computation. In this language ‘sessions’
are not required because computation graphs are intrinsic in the
semantics of the language. A term will be evaluated as a conven-
tional computation or will result in the construction of a data-�ow
graph, depending on its constituent elements. Consequently, any
term of the language can participate in the formation of data-�ow
graphs, including lambda abstractions and open terms.

�e blending of data-�ow into a functional language is an idea
with roots in functional reactive programming [19], although our
semantic model is more akin to self-adjusting computation [2]. �e
new feature is the ability to collect certain elements of the graph
(‘variables’ in TF lingo, ‘cells’ in our terminology) into a single
data-structure, in order to update it as a whole. �e way this is
handled in our language is by deprecating a data-�ow graph into a
lambda expression with the collected cell vector as its argument.

x = t f . p l a c e h o l d e r (” f l o a t ”)
a = t f . V a r i a b l e (1)
b = t f . V a r i a b l e (0)
C o n s t r u c t c ompu t a t i on graph f o r l i n e a r model
model = t f . add (t f . m u l t i p l y (x , a) , b)
with t f . S e s s i o n () as s :

s . run (i n i t)
T r a i n t h e model
s . run (o p t i m i s e r , data , model , l o s s f u n c t i o n)
Compute y u s i n g t h e upda t ed model
y = s . run (a) ∗ 7 + s . run (b)

Figure 1. Linear regression in TF

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

We call our calculus ‘idealised tensor �ow’ (ITF). Let us see
how a basic example is handled in TF vs. ITF. For readability, we
use a simpli�ed form of the Python bindings of TF. �e program
is a parameterised linear regression model, optimised then used
by applying it to some value (7), as in Fig. 1. �e corresponding
program in ITF is given below:

let a = {1}
let b = {0}
let model x = a × x + b

let (model ′,p) = absmodel

let p′ = optimiser data p model ′ loss f unction

let model ′′ =model ′ p′

let y =model ′′ 7

or, more concisely
let (model ′,p) = abs (λx .{1} × x + {0})
let y =model ′ (optimiser data p model ′ loss f unction) 7

In both TF and ITF a data-�ow network corresponding to the
expression a × x + b is created, where a and b are variables (cells
respectively, indicated by {−}). New values of a and b are computed
by an optimiser parameterised by the model, training data, and
a loss function. As it is apparent, in TF the computation graph
is constructed explicitly by using constructors such as tf.add and
tf.multiply instead of the host language operators (+,×). In contrast,
in ITF a term is turned into a graph whenever cells are involved.
Another key di�erence is that in TF the variables are updated
in place by the optimiser, whereas in ITF the let (f ,p) = abs t
construct ‘abstracts’ a data-�ow graph t into a regular function f ,
while collecting the default values of its cells in a vector p.

2 ITF
Let F be a (�xed) set and A be a set of names (or atoms). Let
(F,+,−,×,/) be a �eld and {(Va ,+a ,×a ,•a)}a∈A anA-indexed fam-
ily of vector spaces over F. �e typesT of the languages are de�ned
by the grammar T ::= F | Va | T → T . We refer to the �eld type
F and vector types Va as ground types. Besides the standard alge-
braic operations contributed by the �eld and the vector spaces, we
provide a family of fold operations folda , which are always over
the bases of the vector space indexed by a:

0,1,p : F (�eld constants)
+,−,×,/ : F→ F→ F (operations of the �eld F)

+a : Va → Va → Va (vector addition)
×a : F→ Va → Va (scalar multiplication)
•a : Va → Va → F, (dot product)

folda : (Va → Va → Va) → Va → Va (fold)

All vector operations are indexed by a name a ∈ A, and symbols +
and × are overloaded. �e role of the name a will be discussed later.
�roughout the paper, we use $ to refer to a ground-type operation
(i.e. $ ∈ {+,−,×,/,+a ,×a ,•a | a ∈ A}), and # to refer to a primitive
operation (i.e. # ∈ {+,−,×,/,+a ,×a ,•a , folda | a ∈ A}).

Terms t are de�ned by the grammar t ::= x | λxT .t | t t | p | t #
t | {p} | AT

a (f ,x).t , where T is a type, f and x are variables, and
p ∈ F is an element of the �eld. We identify t folda u with folda t u.
�e novel syntactic elements of the language are cells {p} and a

family of type- and name-indexed graph abstractions AT
a (f ,x).t .

Graph abstraction as discussed in the introduction is de�ned as
syntactic sugar abs t ≡ (A (f ,x).(f ,x)) t .

Let A ⊂�n A be a �nite set of names, Γ a sequence of typed
variables xi :Ti , and ~p a sequence of elements of the �eld F (i.e. a
vector over F). We write A ` Γ if A is the support of Γ. �e type
judgements are of shape: A | Γ | ~p ` t : T , and type derivation rules
are given below.

A ` Γ; T
A | Γ; x : T ; ∆ | − ` x : T

A | Γ; x : T ′ | ~p ` t : T

A | Γ | ~p ` λxT ′ :t : T ′ → T

p ∈ F

A | Γ | − ` p : F
A | Γ | ~p ` t : T ′ → T A | Γ | ~q ` u : T

A | Γ | ~p; ~q ` t u : T

A | Γ | ~p ` t1 : T1 A | Γ | ~q ` t2 : T2 # : T1 → T2 → T

A | Γ | ~p; ~q ` t1 # t2 : T

p ∈ F

A | Γ | p ` {p } : F

A; a | Γ; f : Va → T ′; x : Va | ~p ` t : T A ` Γ; T ′; T

A | Γ | ~p ` AT ′
a (f ; x):t : T ′ → T

Note that the rules are linear with respect to the cells ~p. In a
derivable judgement A | Γ | ~p ` t : T , the vector ~p gives the
collection of all the cells in the term t .

Graph abstraction AT ′
a (f ,x).t serves as a binder of the name a

and, therefore, it requires in its typing a unique vector type Va
collecting all the cells. Because of name a, this vector type cannot
be used outside of the scope of the graph abstraction. An immediate
consequence is that variables f and x used in the abstraction of a
graph share the type Va , so that this type cannot be involved in
other graph abstractions. �is is a deliberate restriction, because
abstracting di�erent graphs results in vectors of parameters of
unknown, at compile-time, sizes. Mixing such vectors would be a
source of unsafe behaviour.

3 Graph-rewriting semantics
We �rst present an abstract machine, with roots in the Geometry
of Interaction [11], which will be used to interpret the language.
�e state of the machine is a graph with a selected edge (token) an-
notated with extra information. �e token triggers graph rewriting
in a deterministic way by selecting redexes, and it also propagates
information through the graph. �is abstract machine is a vari-
ant of the Dynamic GoI (DGoI) machine, which has been used to
give uniform, cost-accurate models for call-by-need and call-by-
value computation [14, 15]. �e graph-rewriting style of the DGoI
will prove to be a convenient execution model which matches the
data-�ow-graph intuitions of TF and ITF. �e interpretation is ‘op-
erational’, in the sense that computational costs of its steps are at
most linear in the size of the program.

3.1 Graphs and graph states
A graph is de�ned by a set of nodes and a set of edges. �e nodes
are partitioned into proper nodes and link nodes. A distinguished
list of link nodes forms the input interface and another list of link
nodes forms the output interface. Edges are directed, with at least
one endpoint being a link node. An input link (i.e. a link in the
input interface) is the source of exactly one edge and the target of
no edge. Similarly an output link (i.e. a link in the output interface)
is the source of no edge and the target of exactly one edge. Every
other link must be the source of one edge and the target of another
one edge. A graph may contain adjacent links, but we identify
them as a single link, by the notion of ‘wire homeomorphism’ [13]

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

#

! AC

!

F!!T

!

? ?

G

!T1 T2 !T !T

T1 ! T2 T !T

p

Va!T

PD

!

F

F

!

F

!

F

!

F

F !Va

!

F

!T1

T2

T1 T2

@ D C

T
!T

!(Va ! T) !Va

T1 ! T2

!!T

!

F

T

!

!p

F

Figure 2. Connection of edges

used in a graphical formalisation of string diagrams. We may write
G (n,m) to indicate that a graph G has n links in the input interface
andm links in the output interface. From now on we will refer to
proper nodes as just ‘nodes’, and link nodes as ‘links’.

Links are labelled by enriched types T̃ , de�ned by T̃ ::= T | !T | !

F
where T is any type of terms. Adjacent links are labelled with the
same enriched types, to be coherent with the wire homeomorphism.
If a graph has only one input, we call it ‘root’, and say the graph has
enriched type T̃ if the root has the enriched type T̃ . We sometimes
refer to enriched types just as ‘types’, while calling the enriched
type !

F ‘cell type’ and an enriched type !T ‘argument type’. Note
that the types used by the labels are ignored during execution, but
they make subsequent proofs easier.

Nodes are labelled, and we call a node labelled with X an ‘X -
node’. We have several sorts of labels. Some represent the basic
syntactic constructs of the lambda calculus: λ (abstraction), @ (ap-
plication), p ∈ F (scalar constants), ~p ∈ Fn (vector constants), and
(primitive operations). Node P handles the decomposition of a
vector in its elements (coordinates). Node A indicates the graph
abstraction. Nodes !, ?, D, and C play the same role as exponential
nodes in proof nets [10], handling sharing and copying for argu-
ment types. Adaptations of these nodes, namely !, ?, Dand C, are
for sharing (but not copying) of cells. Note that we use generalised
contractions (C, C) of any input arity, which includes weakening.
We sometimes write W (resp. W) to emphasise a contraction C
(resp. C) has no inputs and hence is weakening.

We use the following diagrammatic conventions. Link nodes are
not represented explicitly, and their labels are only given when they
cannot be easily inferred from the rest of the graph. By graphical
convention, the link nodes at the bo�om of the diagram represent
the input interface and they are ordered le� to right; the link nodes
at the top of the diagram are the output, ordered le� to right. A
double-stroke edge represents a bunch of edges running in parallel
and a double stroke node represents a bunch of nodes.

�e connection of edges via nodes must satisfy the rules in Fig. 2,
where !~T denotes a sequence !T1, . . . , !Tm of enriched types, and
: T1 → T2 → T is a primitive operation. �e outline box in
Fig. 2 indicates a sub-graph G (1,n1 + n2), called a !-box. Its input
is connected to one !-node (‘principal door’), while the outputs
are connected to n1 ?-nodes (‘de�nitive auxiliary doors’), and n2?-nodes (‘provisional auxiliary doors’).

A graph context is a graph with exactly one distinguished node
that has label ‘�’ and any interfaces. We write a graph context
as G[�] and call the unique extra �-node ‘hole’. When a graph G
has the same interfaces as the �-node in a graph context G[�], we
write G[G] = G[�/G] for the substitution of the hole by the graph
G. �e resulting graph G[G] indeed satis�es the rules in Fig. 2,
thanks to the matching of interfaces.

Finally, we say a graph G (1,0) is composite, if its !-nodes satisfy
the following: (i) they are outside !-boxes; (ii) there is a unique
total order on them; and (iii) their outputs are connected to (scalar)
constant nodes. Each connected pair of a !-node and a constant node
is referred to as ‘cell’. A composite graph G (1,0) can be uniquely
decomposed as below, and wri�en as G = H ◦ (~p)‡:

G(1, 0) = H(1, n) ! !

(!p)à(!p)à = ...

where

p0 pn!1

where H (1,n) contains no !-nodes, ~p ∈ Fn , and cells are aligned le�
to right according to the ordering. A graph is said to be de�nitive if
it contains no !-nodes and all its output links have the cell type !

F.
�e graph-rewriting semantics works on composite graphs.
De�nition 3.1 (Graph states). A graph state σ = ((G,e),δ) con-
sists of a composite graph G = H ◦ (~p)‡ with a distinguished link e ,
and token data δ = (d, f ,S ,B) that consists of a direction d ::= ↑ | ↓,
a rewrite �ag f ::= � | λ | $ | ? | ! | F(n), a computation stack
S ::= � | @ : S | ? : S | λ : S | p : S | ~p : S , and a box stack
B ::= � | e ′ : B, where p ∈ F, ~p is a vector over F, n is a natural
number, and e ′ is a link of the graph G.

In the de�nition above we call the link e of (G,e) the ‘position’
of the token. �e rewrite �ag determines the applicable graph
rewriting. �e computation stack tracks intermediate results of
program evaluation and the box stack tracks duplications. We call
λ, scalar and vector constants ‘token values’. Together, the two
stacks determine the trajectory of the token, which models the �ow
of program evaluation.

3.2 Transitions
We de�ne a relation on graph states called transition ((G,e),δ) →
((G ′,e ′),δ ′). Transitions are either pass or rewrite.

Pass transitions occur if and only if the rewrite �ag is �. �ese
transitions do not change the overall graph but only the token, as
shown in Fig. 3. In particular, the stacks are updated by changing
only a constant number of top elements. In the �gure, only the node
targeted by the token is shown, with token position and direction
indicated by a black triangle. �e symbol ‘−’ denotes any token
value, k = k1 $k2, X ∈ { !

,

?

,

D

,D}, Y ∈ { !

,

?

,

D

} and Z ∈ {C,

C

}.
�e order of evaluation is right-to-le�. A le�-to-right application

is possible, but more convoluted for ordinary programs where the
argument is o�en of ground type. An abstraction node (λ) either
returns the token with a value λ at the top of the computation stack
or triggers a rewrite, if @ is at the top of the computation stack,
hence no a downward pass transition for application. �e token
never exits an application node (@) downward due to rewrite rules
which eliminate λ-@ node pairs.

A ground-type operation ($) is applied to top two values of the
computation stack, yielding a value k = k1 $k2, in its downward
pass transition. �e downward pass transition over a fold operation
raises the rewrite �ag F(n), using the size of the token value ~p ∈ Fn .
When passing a Z -node (i.e. C or C) upwards, the token pushes the
old position e to the box stack. It uses the top element e ′ of the
box stack as a new position when moving downwards the Z -node,
requiring e ′ to be one of the inputs of the node. �e other nodes (?,
A and P) only participate in rewrite transitions.

Rewrite transitions are wri�en as
((G[G],e), (d, f ,S ,B)) → ((G[G ′],e ′), (d, f ′,S ,B′))

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

!, S, B!, S, B

XX

#

##!

!, ! : S, B !, ! : S, B

!, @ : S, B !, S, B

p p

!, ! : S, B

!, ! : S, B

! !

?, S, B

!, S, B !, S, B

Z Z

!, S, B !, S, e : B

!

! ! ! ! Y Y

!, S, B !, ! : S, B

!, ! : S, B !, @ : S, B

!, ! : S, B !, S, B !, S, B

@ @

@ @

!, S, B !, ! : S, B !, S, B !, S, B

$ $

!, S, B

ZZ

!, S, e! : B

!p !p

!, p : S, B

!, !p : S, B

!, k1 : k2 : ! : S, B !, k : S, B

F F

!, ! : "p : S, B F(n), S, B

Figure 3. Pass transitions

$$
!

@ $

Z1 Z1Z2 Z2

!, S, B !, S, B !, S, B!, S, B

k1 k2

k

$, S, B $, S, B

Figure 4. Rewrite transitions: computation

and they apply to states where the rewrite �ag is not �, i.e. to which
pass transitions never apply. �ey replace the (sub-)graph G with
G ′, keeping the interfaces, move the position, and modify the box
stack, without changing the direction and the computation stack.
We call the sub-graph G ‘redex’, and a rewrite transition ‘f -rewrite
transition’ if a rewrite �ag is f before the transition.

�e redex may or may not contain the token position e , but it
is always de�ned relative to it. We call a rewrite transition ‘local’
if its redex contains the token position, and ‘remote’ if not. Fig. 4,
Fig. 7b and Fig. 7c de�ne local rewrites, showing only the redexes.
We explain some rewrite transitions in detail.

�e rewrites in Fig. 4 are computational in the sense that they
are the common rewrites for CBV lambda calculus extended with
constants (scalars and vectors) and operations. �e �rst rewrite is
the elimination of a λ-@ pair, a key step in beta reduction. Following
the rewrite, the incoming output link of λ will connect directly to
the argument, and the token will enter the body of the function.
Ground-type operations ($) also reduce their arguments, if they
are constants k1 and k2, replacing them with a single constant
k = k1 $k2. If the arguments are not constant-nodes (Z1 and Z2 in
the �gure), then they are not rewri�en out, leading to the creation
of computation (data-�ow) graphs when cells are involved.

Rewrite rules for the fold operations are in Fig. 5. Once the
rewrite �ag F(n) is raised, the sub-graph G above the fold node (F)
is recursively unfoldedn times. �is yieldsG itself with a weakening
(W) if n = 0, and a graph Hn

n otherwise. If n > 0, for any 0 < i < n,
the i-th unfolding Hn

i inserts an application to the basis ~en−i ∈ F
n ,

noting that the bases themselves are not syntactically available.
�e rewrites in Figs. 7a–7c de�ne three classes of rewrites in-

volving !-boxes. �ey govern duplication of sub-graphs, and the
behaviour of graph abstraction, including application of its result
function. �ey are triggered by rewrite �ags ‘?’ or ‘!’ whenever the
token reaches the principal door of a !-box.

�e �rst class of the !-box rewrites are remote rules, in which the
rewrites apply to parts of the graphs that have not been reached by
the token yet. A redex of a remote rule is determined relative to the

F

G

!

?

F (0), S, B !, S, B

GW

F

G

!

?

!, S, B

Hn
n

F (n), S, B

? ?

@

!@

!D

C

!en!i

Hn
i := Hn

i!1

G

?

@

!@

!DHn
1 :=

!en!1

Figure 5. Rewrite transition: unfolding over the bases

token position, namely as a sub-graph of E in Fig. 6 that consists of
a !-box H , whose principal door is connected to either a A-node, a
P-node with more than one inputs, a C-node, or another !-box. �e
principal door of the !-box H has to satisfy the following: (i) the
node is ‘box-reachable’ (see Def. 3.2 below) from one of de�nitive
auxiliary doors of the !-box G (in Fig. 6), and (ii) the node is in the
same ‘level’ as one of de�nitive auxiliary doors of the !-box G, i.e.
the node is in a !-box if and only if the door is in the same !-box.

De�nition 3.2 (Box-reachability). In a graph, a node/linkv is box-
reachable from a node/link v ′ if there exists a �nite sequence of
directed paths p0, . . . ,pi such that: (i) if i > 0, for any 0 ≤ j < i , the
path pj ends with the root of a !-box and the path pj+1 begins with
an output link of the !-box, and (ii) the path p0 begins with v and
the path pi ends with v ′.

We call the sequence of paths in the above de�nition ‘box-path’.
Box-reachability is more general than normal graph reachability,
since it may involve a !-box whose doors are not connected.

In order to de�ne the remote rewrite rules let us introduce some
notation. We write G[X/Y] for a graph G in which all Y -nodes are
replaced with X -nodes of the same signature, and write G[ϵ/Y] for
a graph G in which all Y -nodes (which must have one input and
one output) are replaced with links. �e remote rewrite rules are
given in Fig. 7a.

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

A

!

?

H

(!p)à

W

(!p)à

!

?

D

!

W

P

!

!

!Va

!

F

!

F

G G[C/

C

, !/

?

]G

!(Va ! T) !(Va ! T)

H[C/

C

, ?/

?

, D/

D

]

!Va

P

?

H

!

?

C

!Va

!F

!{a} Æ H

¥

!

!F

...

?

!{a} Æ H

¥

!

!F

!

C

?

H

!

?
C

...!sup(T) Æ H

!

?

!sup(T) Æ H

!T
!T !T

!p

!e0 !en!1

!

???

!

?

H

!

??

!

?

H

?

H ! H !

!T !T

(a) Remote rules: graph abstraction, absorption, contraction, projection

!

?

G

??

!

?

H

!

?

G

?

!

?

H

?

!

G

?

?, S, B ?, S, B

?, S, B !, S, B

!

G

?

(b) Rewrite transitions: merging !-boxes

? ? ?

!

G G

D

!, S, B !, S, B

!

G

!

G

!, S, B !, S, B

Y Y
!

?

C

...

!

?

!T !T

?

!

G

C

!, S, e : B

!

?

!T

... !sup(T) Æ G!sup(T) Æ G!sup(T) Æ G

!, S, B

(c) Rewrite transitions: copying closed !-boxes

Figure 7. Rewrite transitions: !-boxes

?

!

?

G

!

?

G

?, S, B ?, S, B

?

E F FE'

Figure 6. Remote rules triggering

�e top le� remote rule is graph abstraction, that takes into
account the sub-graph G ◦ (~p)‡ outside its redex (i.e. the !-box H ,
its doors and the A-node). �e sub-graph G ◦ (~p)‡ contains exactly
all nodes that are graphically reachable, in a directed way, from
auxiliary doors (?) of the !-box H . It is indeed a composite graph,
with G containing only C-nodes or ?-nodes, due to the typing. �e
cells (~p)‡ may not be all the cells of the whole graph, but a unique
and total order on them can be inherited from the whole graph.

Upon applying the graph abstraction rule, the two input edges
of the A-node will connect to the result of graph abstraction, a

function and arguments. �e function is created by replacing the
cells (~p)‡ with a projection (P), inserting a λ-node and a dereliction
(D). A copy of the cells used by other parts of the graph is le�
in place, which means the sub-graph G ◦ (~p)‡ is le� unchanged.
Another copy is transformed into a single vector node (~p) and linked
to the second input of graph abstraction, which now has access to
the current cell values. �e unique and total ordering of cells (~p)‡
is used in introducing the P-node and the ~p-node, and makes graph
abstraction deterministic.

Note that the graph abstraction rule is the key new rule of the
language, and the other remote rules are meant to support and
complement this rule. �ese remote rules can involve nodes only
reached by box-reachability, because we want all parameters of a
model to be extracted in graph abstraction, including those con-
tributed, potentially, by its free variables. A ‘shallow’ local version
of graph abstraction would be simpler and perhaps easier to imple-
ment but not as powerful or interesting.

�e bo�om le� remote rule eliminates a contraction node (C),
and replicates the !-boxH connected to the contraction. �e bo�om
right rule handles vector projections. Any graph H handling a
vector value with n dimensions is replicated n times to handle each

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

coordinate separately. �e projected value is computed by applying
the dot product using the corresponding standard base. In these two
rules, the names in H are refreshed using the name permutation
action πN , where N ⊆ A, de�ned as follows: all names in N are
preserved, all other names are replaced with fresh (globally to the
whole graph) names.

Names indexing the vector types must be refreshed, because as
a result of copying, any graph abstraction may be executed sev-
eral times, and each time the resulting computation graphs and
cells must be kept distinct from previously abstracted computation
graphs and cells. �is is discussed in more depth in Appendix B, not-
ing that in general types are ignored during execution but including
them in the graphs makes proofs easier.

�e top right remote rule cause an ‘absorption’ of the !-box
H into the !-box H ′ it is connected to. Because the ?-nodes of
!-boxes arise from the use of global or free variables, this box-
absorption process models that of closure-creation in a conventional
operational semantics. �e !-box H ′ in Fig. 7a is required not to be
the !-box where the token position is.

�e local version of absorption, where the lower !-box has the
token position in it, belongs to the second class of !-box rewrites
shown in Fig. 7b. A�er this local absorption is exhaustively applied,
the rewrite �ag changes from ‘?’ to ‘!’, and the last class of rewrites,
shown in Fig. 7c are enabled. �ese rules handle copying of shared
closed values, i.e. !-boxes accompanied by no ?-nodes.

�e �rst two rules in Fig. 7c (Y < {D,C}) change rewrite mode to
pass mode, by se�ing the rewrite �ag to �. �e third rewrite copies
a !-box. It requires the top element e of the box stack to be one of
input links of the contraction node (C). �e link e determines the
copy of the !-box G that has the new token position in. As in the
remote duplication rule, names are refreshed in the new copies.

All transitions presented so far are well-de�ned.

Proposition 3.3 (Form preservation). All transitions send a graph
state to another graph state, in particular a composite graphG ◦ (~p)‡

to a composite graph G ′ ◦ (~p)‡ of the same type.

Proof. Transitions make changes only in de�nitive graphs, keeping
the cells (~p)‡ which contains only constant nodes and !-nodes.
Transitions do not change redex interfaces. �

Recall that we identify adjacent links in a graph as a single link,
using wire homeomorphism. All transitions can be made consistent
with wire homeomorphism by incorporating the ‘identity’ pass
transition that only changes the token position along a link.

All the pass transitions are deterministic and so are local rewrites.
Remote and copying rewrites are not deterministic but are con�uent,
as no redexes are shared between rewrites. �erefore, the overall
beginning-to-end execution is deterministic.

De�nition 3.4 (Initial/�nal states and execution). Let G be a com-
posite graph with root e . An initial state Init (G) on the graph G
is given by ((G,e), (↑,�,? : �,�)). A �nal state Final (G,κ) on the
graph G, with a token value κ, is given by ((G,e), (↓,�,κ : �,�)).
An execution on the graph G is any sequence of transitions from
the initial state Init (G).

Proposition 3.5 (Determinism of �nal states). For any graph state
σ , the �nal state Final (G,κ) such that σ →∗ Final (G,κ) is unique up
to name permutation, if it exists.

Proof. See Appendix A. �

Corollary 3.6 (Determinism of executions). For any initial state
Init (H), the �nal state Final (G,κ) such that Init (H) →∗ Final (G,κ)
is unique up to name permutation, if it exists.

3.3 Translation of terms to graphs
A derivable type judgementA | Γ | ~p ` t : T is inductively translated
to a composite graph (A | Γ | ~p ` t : T)†, as shown in Fig. 8,
where names in type judgements are omi�ed. �e top le� graph
in the �gure shows the general pa�ern of the translation, where
(A | Γ | ~p ` t : T)† has three components: weakening nodes (W),
cells Pt = (~p)‡, and the rest Gt . �e translation uses variables
as additional annotations for links, to determine connection of
output links. In the �gure, the annotation !Γ denotes the sequence
x0 : !T0, . . . ,xm−1 : !Tm−1 of variables with enriched types, made
from Γ = x0 : T0, . . . ,xm−1 : Tm−1, and !∆ is made from ∆ in the
same way. �e other annotations are restrictions of !Γ. Let FV(u) be
the set of free variables of a term u. �e annotation !Γ1, appearing
in inductive translations of typing rules with one premise, is the
restriction of !Γ to FV(t), and !Γ0 is the residual. �e annotations !Γt ,
!Γt t ′ and !Γt ′ , in translations of typing rules with two premises, are
restrictions of !Γ to FV(t)\FV(t ′), FV(t)∩ FV(t ′) and FV(t ′)\FV(t),
respectively. Note that the translation is not compositional in the
component of weakening nodes (W).

3.4 Soundness
�e �rst technical result of this paper is soundness, which expresses
the fact that well typed programs terminate correctly, which means
they do not crash or diverge. �e challenge is, as expected, dealing
with the graph abstraction and related rules.

�eorem 3.7 (Soundness). For any closed program t such that A |
− | ~p ` t : T , there exist a graph G and a token value κ such that:
Init ((A | − | ~p ` t : T)‡) →∗ Final (G,κ).

Our semantics produces two kinds of result at the end of the
execution. One, intensional result, is the graph G. It will involve
the cells of values ~p and computation depending on them, which
are not reduced during execution. �e other one, extensional result,
is the value κ carried by the token as it ‘exits’ the graph G. �e
value κ will always be either a scalar, or a vector, or the symbol λ
indicating a function-value result.

�e proof is given in Appendix G. It uses logical predicates on
de�nitive graphs, to characterise safely-terminating graphs induc-
tively on types. �e key step is to prove that graph abstraction
preserves the termination property of a graph, which involves an
analysis of sub-graphs that correspond to data-�ow (i.e. ground-
type computation only with cells, constants and ground-type oper-
ations). Graph abstraction enables more rewrites to be applied to
a graph, by turning non-duplicable cells into duplicable function
arguments of ground types. �anks to the call-by-value evalua-
tion, the newly enabled rewrites can only involve the data-�ow
sub-graphs and hence do not break the termination property.

4 Programming in ITF
Let us consider a more advanced example which will show how the
treatment of cells and graph abstraction in ITF reduces syntactic
overhead and supports our semantic intuitions. We create a lin-
ear model for a set of points in the plane corresponding to (x ,y)
measurements from some instrument. �e model must represent
the relationship between y and x not pointwise but as a con�dence

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

p W

F

!!

(! | !p ! t : T) :=
Gt

T

W

!!0!!1

!

T ! ! T

WGt(! | !p ! "xT !
.t : T ! " T) :=

!!0!!1

!

T ! ! T

WGt(! | !p ! "xT !
.t : T ! " T) :=

!!0!!1

W

(if f, x ! fv(t))

(if x !" fv(t))(if x ! fv(t))

Pt

Pt

!

D

!

T ! ! T

?? ?

A

?

W

!!0!!1

Pt

Gt(! | !p ! AT !

a (f, x).t : T ! " T) :=
(if f ! fv(t), x "! fv(t)) !

D

!

T ! ! T

?? W

A

?

W

!!0!!1

Pt

Gt(! | !p ! AT !

a (f, x).t : T ! " T) :=

!

@

?

C

Gt Gt!(! | !p, !q ! t t! : T) :=

T

? ?

W

!!0!!t !!t!!!tt!Pt Pt!

F

? ? ? ?

! !

??

C

T

W

!!0!!t !!t!!!tt!Pt!Pt

Gt Gt!(! | !p, !q ! folda t t! : Va) :=

? ? ? ?

! !

??

C

W

!!0!!t !!t!!!tt!Pt!Pt

Gt Gt!(! | !p, !q ! t $ t! : T) :=

D D

$

T

Pt

(! | ! " p : F) := D

F

W

!

p !!

(! | p ! {p} : F) :=

WW

!! !"

D

T

!T

(!, x : T, " | ! " x : T) :=

Figure 8. Inductive translation

interval. Concretely, let us look at two (parameterised) such mod-
els: linear regression with con�dence interval (CI) and weighted
regression (WR) [4]. �e �rst model is suitable when training data
has measurement errors independent of the value of x , while the
second model is suitable when errors vary linearly with x .1

Letpair = λx .λy.λz.z x y be the Church-encoding of pairs and let
f = λa.λb .λx .a×x +b be a generic linear function with unspeci�ed
parameters a and b. Let opt ci and opt wr be generic learning
functions that can be applied to some model m and seed p, de�ned
elsewhere, suitable for CI and WR, respectively, incorporating the
reference data points, suitable loss functions, and optimisation
algorithms.

An ITF program for the con�dence-interval model is shown
below, emphasising each step in the construction.

let a = {1}
let ci = pair (f a {1}) (f a {2}) (con�dence interval)
let (pcim,p) = abs ci (parameterised CI model)

1�ese examples and more can be explored in the online visualiser: h�ps://cwtsteven.
github.io/GoI-TF-Visualiser/

let pci = opt ci pcim (learn CI parameters)
let cim = pcim pci (concrete CI model)

�e model consists of a pair of linear functions which share the
same slope (a) but may have di�erent intercepts. �e graph abstrac-
tion turns the computation graph ci into a conventional function
pcim which will take three parameters. However, the number of
parameters of the function is hidden into the vector type of the
argument. �e generic optimisation function opt ci will compute
the best values for the parameters (pci) which can be then used to
create a concrete model cim which can be then used, as a regular
function, in the subsequent program.

In contrast, the weighted-regression model is a pair of indepen-
dent linear functions. �e structure of the program is otherwise
similar.

let wr = pair (f {1} {0}) (f {1} {0}) (weighted regression)
let (pwrm,p) = abswr (parameterised WR model)
let pwr = opt wr pwrm (learn WR parameters)
let wrm = pwrm pwr (concrete WR model)

https://cwtsteven.github.io/GoI-TF-Visualiser/
https://cwtsteven.github.io/GoI-TF-Visualiser/

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

P

? ?

f’

!

pair’

!

!

?

? ?

f’

!

1
¡

¿ ¿

f’

!

pair’

!

A

? ?

2
¡

¿ ¿

f’

!

C

[1;1;2]

?

1
¡

C

!

G

!

G

!

!

¿ ¿ ¿ ¿

? ? ? ?

D

Figure 9. Graph-abstracting the CI model

�ese codes can be wri�en more concisely, e.g.

let ci = (λa.pair (f a {1}) (f a {2})) {1}
let cim = (A(pcim,p).pcim (opt ci pcim)) ci

let wr = pair (f {1} {0}) (f {1} {0})
let wrm = (A(pwrm,p).pwrm (opt wr pwrm)) wr

�is relatively simple example illustrates several key features of
ITF. First, there is no distinction between regular lambda terms and
data-�ow graphs. A higher-order computation graph is constructed
automatically. Second, cells are treated as references rather than
as constants, ensuring that the programmer has a grasp on how
many parameters can be adjusted by the optimiser. For CI there are
three parameters, the (shared) slope and two intercepts, whereas
for WR there are four parameters, two slopes and two intercepts.
�ird, cells are collected into parameters of the graph-abstracted
function not just from the term to which abs is applied, but from
its free variables as well.

�e key step in both examples is the graph abstraction. Figs. 9-
10 show how the two models di�er. �e !-box G represents the
programming context when graph abstraction is triggered. Pre-
abstraction the computation graphs of CI share a cell, resulting post-
abstraction in a function with a shared argument. In contrast, the
WR computation graph and resultant function involve no sharing.

In the absence of graph abstraction, the obvious alternatives in
a functional se�ing, such as explicitly parameterising models with
vectors involves error-prone index manipulation to control sharing
([k0; . . . ;km] is a vector and p[i] is element access), for example:

let f p x = p[0] × x + p[1]
let ci p = pair (f [p[0];p[1]]) (f [p[0];p[2]])
let cim = ci (opt ci ci)

let wr p = pair (f [p[0];p[1]]) (f [p[2];p[3]])
let wrm = wr (opt wr wr)

�e alternatives are comparably awkward.

pair’

f’ f’

1
¡

0
¡

¿ ¿

!

!

A
? ?

P

? ?

f’

!

pair’

!

!

?

1
¡

0
¡

¿ ¿

!

? ?

f’

!

[1;0;1;0]

?

!

G

!

G

¿ ¿ ¿ ¿

? ? ? ?

!

!

D

Figure 10. Graph-abstracting the WR model

5 Contextual equivalence
Usually programs (closed ground-type terms) are equated if and
only if they produce the same values. However in the presence of
cells, this is not enough. For example, evaluating programs {1} + 2,
1 + 2 and 1 + {2} yields the same token value (3) but di�erent �nal
graphs, which can be made observable by graph abstraction.

De�nition 5.1 (Token-value equivalence). Two composite graphs
G1 (0,1) and G2 (0,1) are token-value equivalent, wri�en as G1=̇G2,
if there exists a token value κ such that the following are equiva-
lent: Init (G1) →∗ Final (G ′1,κ) for some composite graph G ′1, and
Init (G2) →∗ Final (G ′2,κ) for some composite graph G ′2.

We li� token-value equivalence to a congruence by de�nition,
just like the usual program equivalence is li�ed to open terms.

De�nition 5.2 (Graph-contextual equivalence). Two graphsG1 (n,m)
andG2 (n,m) are graph-contextually equivalent, wri�en asG1 � G2,
if for any graph context G[�] that makes two composite graphs
G[G1] and G[G2] of ground type, the token-value equivalence
G[G1]=̇G[G2] holds.

�e graph-contextual equivalence � is indeed an equivalence
relation, and also a congruence with respect to graph contexts.
We say a binary relation R on graphs implies graph-contextual
equivalence, if R ⊆ �.

In the DGoI machine, the token always moves along a node,
and a redex can always be determined as a sub-graph relative to
the token position. �is locality of the machine behaviour enables
us to give some instances of the graph-contextual equivalence by
means of the following variant of simulation, ‘U-simulation’. Let
(·)+ stand for the transitive closure of a binary relation.

De�nition 5.3 (U-simulation). A binary relation R on graph states
is a U-simulation, if it satis�es the following two conditions. (I) If
σ1 R σ2 and a transition σ1 → σ ′1 is possible, then (i) there exists a
graph state σ ′2 such that σ2 → σ ′2 and σ ′1 R+ σ ′2, or (ii) there exists
a sequence σ ′1 →

∗ σ2 of (possibly no) transitions. (II) If σ1 R σ2
and no transition is possible from the graph state σ1, then there
exist composite graphs G1 and G2 and a token value κ such that
σ1 = Final (G1,κ) and σ2 = Final (G2,κ).

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Intuitively, a U-simulation is the ordinary simulation between
two transition systems (the condition (I-i) in the above de�nition),
‘Until’ the le� sequence of transitions is reduced to the right se-
quence (the condition (I-ii)). �e reduction may not happen, which
resembles the weak until operator of linear temporal logic. �e con-
dition (I-i) involves the transitive closure R+, in case the reduction
steps are multiplied.

Proposition 5.4. Let R be a U-simulation. If σ1 R σ2, then there
exists a token value κ such that the following are equivalent: σ1 →∗

Final (G1,κ) for some composite graph G1, and σ2 →∗ Final (G2,κ)
for some composite graph G2.

Proof. See Appendix H. �

We will use U-simulations to see if some rewrites on graphs,
which may or may not be triggered by the token, imply the graph-
contextual equivalence.

Proposition 5.5. Let ≺ be a binary relation on graphs with the
same interface, and its li�ing ≺ on graph states de�ned as follows:
((G[G1],e),δ) ≺ ((G[G2],e),δ) i� G1 ≺ G2 and the position e is in
the graph-context G[�]. If the li�ing ≺ is a U-simulation, the binary
relation ≺ implies the graph-contextual equivalence �.

Proof. We assume G1 ≺ G2, and take an arbitrary graph con-
text G[�] that makes two composite graphs G[G1] and G[G2].
�e li�ing ≺ relates initial states on these composite graphs, i.e.
G[G1] ≺ G[G2]. �erefore, if it is a U-simulation, these two graphs
are token-value equivalent G[G1]=̇G[G2], by Prop. 5.4. We can
conclude the graph-contextual equivalence G1 � G2. �

Finally, the notion of contextual equivalence of terms can be
de�ned as a restriction of the graph-contextual equivalence, to
graph-contexts that arise as translations of (syntactical) contexts.

De�nition 5.6 (Contextual equivalence). Two termsA | Γ | ~p ` ti :
T ′ (i = 1,2) in the same derivable type judgement are contextually
equivalent, wri�en as A | Γ | ~p ` t1 ≈ t2 : T ′, if for any context
C〈·〉T such that the two type judgements A | Γ | ~q ` C〈ti 〉 : T
(i = 1,2) are derivable for some vector ~q and some ground type T ,
the token-value equivalence (A | Γ | ~q ` C〈t1〉 : T)†=̇(A | Γ | ~q `
C〈t2〉 : T)† holds.

5.1 Garbage collection
Large programs generate sub-graphs which are unreachable and
unobservable during execution (garbage). In the presence of graph
abstraction the precise de�nition is subtle, and the rules for garbage
collection are not obvious. We show safety of some forms of garbage
collection, as below.

Proposition 5.7 (Garbage collection). Let ≺W , ≺W ′ and ≺GC be
binary relations on graphs, de�ned by

W

W

C C C C

!

?

G

?

W

W

X0

!W !W !

!GC

where the X -node is either aW-node, or a P-node with no input. �ey
altogether imply the graph-contextual equivalence, i.e. ≺W ∪ ≺W ′

∪ ≺GC implies the graph-contextual equivalence.

Sketch of proof. �e relation≺W ∪ ≺W ′ ∪ ≺GC li�s to a U-simulation,
where the condition (I-ii) in Def. 5.3 is not relevant. We then use
Prop. 5.5. �

5.2 Beta equivalence
We can prove a form of beta equivalence, where the function ar-
gument is a closed value without cells. �e substitution t[u/x]
is de�ned as usual. �e proof is by making U-simulations out of
special cases of λ-rewrites and !-rewrites, and is also by the garbage
collection shown above.

Proposition 5.8 (Beta equivalence). Let v be a value de�ned by
the grammar v ::= p | λxT .t | AT

a (f ,x).t . If the type judgement
A′ | − | − ` v : T ′ is derivable, the contextual equivalence A | Γ |
~p ` (λxT ′ .t)v ≈ t[v/x] : T holds.

Sketch of proof. See Appendix H.1. �

6 Conclusion and related work
Machine learning can take advantage of a novel programming
idiom, which allows functions to be parameterised in such a way
that a general purpose optimiser can adjust the values of parameters
embedded inside the code. �e nature of the programming language
design challenge is an ergonomic one, making the bureaucracy of
parameter management as simple as possible while preserving
soundness and equational properties. In this paper we do not aim
to assess whether the solution proposed by TF re�ects the best
design decisions, but we merely note that automating parameter
management requires certain semantic enhancements which are
surprisingly complex.

�e new feature is the extraction of the variable-dependencies
of a computation graph (the parameters) into a single vector, which
can be then processed using generic functions. Moreover, we place
this feature in an otherwise pure, and quite simple, programming
language in order to study it semantically (ITF). Our contribution
is to provide evidence that this rather exotic feature is a reasonable
addition to a programming language: typing guarantees safety of
execution (soundness), garbage collection is safe, and a version of
the beta law holds. Moreover, the operational semantics does not
involve ine�cient (worse than linear) operations, indicating a good
potential for implementability. Reaching a language comparable
in sophistication and e�ciency with TF is a long path, but we are
making the �rst steps in that direction [3]. �e advantages of using
a stand-alone language, especially when there is evidence that it
has a reasonably well behaved semantics, are signi�cant, as EDSLs
su�er from well known pitfalls [18].

Other than TF, we only know of one other language which
supports the ability to abstract on state (‘wormholing’), with a
similar motivation but with a di�erent application domain, data
science [17]. For keeping the soundness argument concise the lan-
guage lacks recursion, but sound extensions of GoI-style machines
with this feature have been studied in several contexts and we
do not think it presents insurmountable di�culties [5, 16]. Fur-
ther extensions of the language, in particular e�ects, pose serious
challenges however.

We chose to give a semantics to ITF using the Dynamic Geometry
of Interaction (DGoI) [14, 15], a novel graph-rewriting semantics
initially used to give cost-accurate models for various reduction
strategies of the lambda calculus. �e graph model of DGoI is
already, in a broad sense, a data-�ow graph with higher-order

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

features, which is a natural �t for the language we aim to model.
�e semantics of call-by-value lambda calculus is based on the
one in [15], where it is shown to be e�cient, in a formal sense.
In this paper we do not formally analyse the cost model of ITF
but we can see, at least informally, that the operations involved in
handling language extensions such as cells, computation graphs,
and graph abstraction are not computationally onerous. Some of
the more expensive operations, such as box-reachability, could be
implemented in constant time using ‘jump links’ between the end-
points of a path, thus trading o� space and time costs. �e idea of
jumping can be found in the GoI literature [7, 9].

Pragmatically speaking, even though the infrastructure required
to support computation graphs and graph abstraction involves a
non-negligible overhead, the impact of this overhead on the running
cost of a typical machine-learning program as a whole is negligible.
�is is because the running cost of machine-learning programs is
dominated by the learning phase, realised by the optimisers. �is
phase involves only ‘conventional’ functions, the result of graph
abstraction, in which all the overhead can be simply discarded as
super�uous. �is overhead is only required in the model creation
phase, which is not computationally intensive.

�is paper represents a �rst step in the study of ITF, focussing
on what we believe to be the most challenging semantic feature of
the language. In the future we plan to study the execution mode
of the graphs, by propagating automatically changes to the cells
through the graph, much like in incremental or self-adjusting com-
putation, and the way such features interact with graph abstraction.
Finally, in the longer term, to develop a usable functional counter-
part of TF we also aim to incorporate a safe version of automatic
di�erentiation, as well as probabilistic execution.

References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, et al.
2016. Tensor�ow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Umut A. Acar, Ma�hias Blume, and Jacob Donham. 2013. A consistent semantics
of self-adjusting computation. J. Funct. Program. 23, 3 (2013), 249–292.

[3] Steven Cheung, Victor Darvariu, Dan R. Ghica, Koko Muroya, and Reuben N. S.
Rowe. 2018. A functional perspective on machine learning via programmable
induction and abduction. In FLOPS 2018. (forthcoming).

[4] William S Cleveland. 1979. Robust locally weighted regression and smoothing
sca�erplots. Journal of the American statistical association 74, 368 (1979), 829–836.

[5] Ugo Dal Lago, Claudia Faggian, Benoı̂t Valiron, and Akira Yoshimizu. 2015.
Parallelism and synchronization in an in�nitary context. In LICS 2015. IEEE,
559–572.

[6] Vincent Danos and Laurent Regnier. 1989. �e structure of multiplicatives. Arch.
Math. Log. 28, 3 (1989), 181–203.

[7] Vincent Danos and Laurent Regnier. 1996. Reversible, irreversible and optimal
lambda-machines. Elect. Notes in �eor. Comp. Sci. 3 (1996), 40–60.

[8] Jack B Dennis. 1974. First version of a data �ow procedure language. In Program-
ming Symposium. Springer, 362–376.

[9] Maribel Fernández and Ian Mackie. 2002. Call-by-value lambda-graph rewriting
without rewriting. In ICGT 2002 (LNCS), Vol. 2505. Springer, 75–89.

[10] Jean-Yves Girard. 1987. Linear logic. �eor. Comp. Sci. 50 (1987), 1–102.
[11] Jean-Yves Girard. 1989. Geometry of Interaction I: interpretation of system F.

In Logic Colloquium 1988 (Studies in Logic & Found. Math.), Vol. 127. Elsevier,
221–260.

[12] Andreas Griewank et al. 1989. On automatic di�erentiation. Mathematical
Programming: recent developments and applications 6, 6 (1989), 83–107.

[13] Aleks Kissinger. 2012. Pictures of processes: automated graph rewriting for
monoidal categories and applications to quantum computing. arXiv preprint
arXiv:1203.0202 (2012).

[14] Koko Muroya and Dan R. Ghica. 2017. �e dynamic Geometry of Interaction
machine: a call-by-need graph rewriter. In CSL 2017 (LIPIcs), Vol. 82.

[15] Koko Muroya and Dan R. Ghica. 2017. E�cient implementation of evaluation
strategies via token-guided graph rewriting. In WPTE 2017.

[16] Koko Muroya, Naohiko Hoshino, and Ichiro Hasuo. 2016. Memoryful Geometry
of Interaction II: recursion and adequacy. In POPL 2016. ACM, 748–760.

[17] Tomas Petricek. Retrieved 2017. Design and implementation of a live coding
environment for data science. (Retrieved 2017). h�p://tomasp.net/academic/
dra�s/live/live.pdf.

[18] Josef Svenningsson and Emil Axelsson. 2015. Combining deep and shallow em-
bedding of domain-speci�c languages. Computer Languages, Systems & Structures
44 (2015), 143–165. h�ps://doi.org/10.1016/j.cl.2015.07.003

[19] Zhanyong Wan and Paul Hudak. 2000. Functional reactive programming from
�rst principles. ACM sigplan notices 35, 5 (2000), 242–252.

http://tomasp.net/academic/drafts/live/live.pdf
http://tomasp.net/academic/drafts/live/live.pdf
https://doi.org/10.1016/j.cl.2015.07.003

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

A Determinism
�e only sources of non-determinism are the choice of fresh names
in replicating a !-box and the choice of ?-rewrite transitions (Fig. 7a
and Fig. 7b). Introduction of fresh names has no impact on execu-
tion, as we can prove ‘alpha-equivalence’ of graph states.

Proposition A.1 (‘Alpha-equivalence’ of graph states). �e binary
relation∼α of two graph states, de�ned by ((G,e),δ) ∼α ((π ·G,e),δ)
for any name permutation π , is an equivalence relation and a bisim-
ulation.

Proof. Only rewrite transitions that replicate a !-box (in Fig. 7a and
Fig. 7c) involve name permutation. Names are irrelevant in all the
other transitions. �

We identify graph states modulo name permutation, namely the
binary relation ∼α in the above proposition. Now non-determinism
boils down to the choice of ?-rewrites, which however does not
yield non-deterministic overall executions.

Proposition A.2 (Determinism). If there exists a sequence

((G,e),δ) →∗ ((G ′,e ′), (d ′,�,S ′,B′)),

any sequence of transitions from the state ((G,e),δ) reaches the state
((G ′,e ′), (d ′,�,S ′,B′)), up to name permutation.

Proof. �e applicability condition of ?-rewrite rules ensures that
possible ?-rewrites at a state do not share any redexes. �erefore ?-
rewrites are con�uent, satisfying the so-called diamond property: if
two di�erent ?-rewrites ((G,e),δ) → ((G1,e1),δ1) and ((G,e),δ) →
((G2,e2),δ2) and are possible from a single state, both of the data δ1
and δ2 has rewrite �ag ?, and there exists a state ((G ′,e ′),δ ′) such
that ((G1,e1),δ1) → ((G ′,e ′),δ ′) and ((G2,e2),δ2) → ((G ′,e ′),δ ′).

�

Corollary A.3 (Prop. 3.5). For any graph state σ , the �nal state
Final (G,κ) such that σ →∗ Final (G,κ) is unique up to name permu-
tation, if it exists.

Corollary A.4 (Cor. 3.6). For any initial state Init (G), the �nal state
Final (G,κ) such that Init (G) →∗ Final (G,κ) is unique up to name
permutation, if it exists.

B Validity
�is section investigates a property of graph states, validity, which
plays a key role in disproving any failure of transitions. It is based
on three criteria on graphs.

In the lambda calculus one o�en assumes that bound variables
in a term are distinct, using the alpha-equivalence, so that beta-
reduction does not cause unintended variable capturing. We start
with an analogous criterion on names.

De�nition B.1 (Bound/free names). A name a ∈ A in a graph is
said to be:

1. bound by an A-node, if the A-node has input typesVa → T)
and !Va , for some type T .

2. free, if a ~p-node has input type Va or a P-node has output
type Va .

De�nition B.2 (Bound-name criterion). A graph G meets the
bound-name criterion if any bound name a ∈ A in the graph G
satis�es the following.

Uniqueness. �e name a is not free, and is bound by exactly
one A-node.

Scope. Bound names do not appear in types of input links of
the graph G. Moreover, if the A-node that binds the name
a is in a !-box, the name a appears only strictly inside the
!-box (i.e. in the !-box, but not on its interfaces).

�e name permutation action accompanying rewrite transitions
(Fig. 7a and Fig. 7c) is an explicit way to preserve the above require-
ment in transitions.

Proposition B.3 (Preservation of bound-name criterion). In any
transition, if an old state meets the bound-name criterion, so does a
new state.

Proof. In a ?-rewrite transition that eliminates a A-node, the name
a ∈ A bound by the A-node turns free. As the name a is not bound
by any other A-nodes, it does not stay bound a�er the transition.
�e transition does not change the status of any other names, and
therefore preserves the uniqueness and scope of bound variables.

Duplication of a !-box, in a rewrite transition involving a C-node
or a P-node applies name permutation. �e scope of bound names
is preserved by the transition, because if an A-node is duplicated, all
links in which the name bound by theA-node appears are duplicated
together. �e scope also ensures that, if an A-node is copied, the
name permutation makes each copy of the node bind distinct names.
�erefore the uniqueness of bound names is not broken by the
transition.

Any other transitions do not change the status of names. �

�e second criterion is on free names, which ensures each free
name indicates a unique vector space Fn .

De�nition B.4 (Free-name criterion). A graph G meets the free-
name criterion if it comes with a ‘validation’ map v : FRG → N,
from the set FRG of free names in the graphG to the setN of natural
numbers, that satis�es the following.

• If a ~p-node has input typeVa , the vector ~p has the size v (a),
i.e. ~p ∈ Fv (a)

• If a P-node has output type !Va , it has v (a) input links, i.e.
n = v (a).

�e validation map is unique by de�nition. We refer to the com-
bination of the bound-name criterion and the free-name criterion
as ‘name criteria’.

Proposition B.5 (Preservation of name criteria). In any transition,
if an old state meets both the bound-name criterion and the free-name
criterion, so does a new state.

Proof. With Prop. B.3 at hand, we here show that the new state
ful�lls the free-name criterion.

A free name is introduced by a ?-rewrite transition that elimi-
nates a A-node. �e name was bound by the A-node and not free
before the transition, because of the bound-name criterion (namely
the uniqueness property). �erefore the validation map can be
safely extended.

�e name permutation, in rewrite transitions that duplicate a
!-box, applies for both bound names and free names. It introduces
fresh free names, without changing the status of names, and there-
fore the validation map can be extended accordingly.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

Some computational rewrite rules (Fig. 4) act on links with vector
type Va , however they have no impact on the validation map. Any
other transitions also do not a�ect the validation map. �

�e last criterion is on the shape of graphs. It is inspired by
Danos and Regnier’s correctness criterion [6] for proof nets.
De�nition B.6 (Covering links). In a graph G (1,n), a link e is
covered by another link e ′, if any box-path (see Def. 3.2) from the
root of the graph G to the link e contains the covering link e ′.
De�nition B.7 (Graph criterion). A graphG (1,n) ful�lls the graph
criterion if it satis�es the following.

Acyclicity Any box-path, in which all links have (not nec-
essarily the same) argument types, is acyclic, i.e. nodes or
links appear in the box-path at most once. Similarly, any
directed path whose all links have the cell type !

F is acyclic.
Covering At any λ-node, its incoming output link is covered

by its input link. Any input link of A-node or P-node is
covered by a ?-node.

Proposition B.8 (Preservation of graph criterion). In any transi-
tion, if an old state meets the graph criterion, so does a new state.

Proof. An @-rewrite transition eliminates a pair of a λ-node and
an @-node, and connects two acyclic box-paths of argument types.
�e resulting box-path being a cycle means that there existed a
box-path from the free (i.e. not connected to the λ-node) output link
of the @-node to the incoming output link of the λ-node before the
transition. �is cannot be the case, as the incoming output link must
have been covered by the input link of the λ-node. �erefore the
@-rewrite does not break the acyclicity condition. �e condition
can be easily checked in any other transitions.

�e covering condition is also preserved. Only notable case for
this condition is the graph abstraction rule that introduces a λ-node
and a P-node. �

Finally the validity of graph states is de�ned as below. �e
validation map of a graph is used to check if the token carries
appropriate data to make computation happen.
De�nition B.9 (�eries and answers). Let d : A → N be a map
from a �nite set A ⊂�n A of names to the set N of natural numbers.
For each type T̃ , two sets QryT̃ and Ansd

T̃
are de�ned inductively

as below.
QryF = Qry !

F := {?}, Ansd
F = Ansd!

F
:= F

QryVa
:= {?}, Ansd

Va
:=

8><>
:

Fd (a) (if a ∈ A)
∅ (otherwise)

QryT1→T2 := {?,@}, Ansd
T1→T2

:= {λ}

Qry!T := QryT , Ansd
!T := Ansd

T .

De�nition B.10 (Valid states). A state ((G,e), (d, f ,S ,B)) is valid
if the following holds.

1. �e graph G ful�lls the name criteria and the graph crite-
rion.

2. If d = ↑ and the position e has type ρ, the computation stack
S is in the form of X : S ′ such that X ∈ Qryρ .

3. Let v be the validation map of the graph G. If d = ↓ and
the position e has type ρ, the set Ansvρ is not empty, and
the computation stack S is in the form of X : S ′ such that
X ∈ Ansvρ .

Proposition B.11 (Preservation of validity). In any transition, if
an old state is valid, so is a new state.

Proof. Using Prop. B.5 and Prop. B.8, the proof boils down to check
the bo�om two conditions of validity. Note that no rewrite transi-
tions change the direction and the computation stack. When the
token passes a $-node downwards, application of the primitive
operation $ preserves the last condition of validity. All the other
pass transitions are an easy case. �

In an execution, validity of intermediate states can be reduced
to the criteria on its initial graph.

Proposition B.12 (Validity condition of executions). For any exe-
cution Init (G0) →∗ ((G,e),δ), if the initial graphG0 meets the name
criteria and the graph criterion, the state ((G,e),δ) is valid.

Proof. �e initial state Init (G0) has the direction ↑, and its com-
putation stack has the top element ?. Since any type ρ satis�es
? ∈ Qryρ , the criteria implies validity at the initial state Init (G0).
�erefore the property is a consequence of Prop. B.11. �

C Stability
�is section studies executions in which the underlying graph is
never changed.

De�nitionC.1 (Stable executions/states). An execution Init (G) →∗

((G,e),δ) is stable if the graph G is never changed in the execution.
A state is stable is there exists a stable execution to the state itself.

A stable execution can include pass transitions, and rewrite tran-
sitions that just lower the rewrite �ag, as well. Since the only source
of non-determinism is rewrite transitions that actually change a
graph, a stable state comes with a unique stable execution to the
state itself.

�e stability property enables us to backtrack an execution in
certain ways, as stated below.

Proposition C.2 (Factorisation of stable executions).
1. If an execution Init (G) →∗ ((G,e),δ) is stable, it can be

factorised as Init (G) →∗ ((G,e ′),δ ′) →∗ ((G,e),δ) where
the link e ′ is any link covering the link e .

2. If an execution Init (G) →∗ ((G,e), (↓,�,X : S ,B)) is stable,
it can be factorised as Init (G) →∗ ((G,e), (↑,�,? : S ,B)) →∗
((G,e), (↓,�,X : S ,B)).

Proof of Prop. C.2.1. �e proof is by induction on the length of the
stable execution Init (G) →∗ ((G,e),δ). When the execution has
null length, the last position e is the root of the graph G, and the
only link that can cover it is the root itself.

When the execution has a positive length, we examine each
possible transition. Rewrite transitions that only lower the rewrite
�ag are trivial cases. Cases for pass transitions are the straightfor-
ward use of induction hypothesis, because for any link and a node,
the following are equivalent: (i) the link covers one of outgoing
output links of the node, and (ii) the link covers all input links of
the node. �

Proof of Prop. C.2.2. �e proof is by induction on the length n of
the stable execution Init (G) →n ((G,e), (↓,�,X : S ,B)).

As the �rst state and the last state cannot be equal, base cases
are for single transitions, i.e. when n = 1. Only possibilities are

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

pass transitions over a λ-node, a p-node or a ~p-node, all of which is
in the form of ((G,e), (↑,�,? : S ,B)) → ((G,e), (↓,�,X : S ,B)).

In inductive cases, we will use induction hypothesis for any
length that is less than n. If the last transition is a pass transition
over a λ-node, a p-node or a ~p-node, the discussion goes in the
same way as in base cases. All the other possible last transitions
are: pass transitions over a node labelled with !, !, ?, Dor C; and
rewrite transitions that do not change the underlying graph but
discard the rewrite �ag $.

If the last transition is a pass transition over a Z -node such that
Z ∈ {!, !

,

?

,

D

,

C

}, the last position (referred to as in(Z)) is input to
the Z -node, and the second last position (referred to as out (Z)) is
output of the Z -node. Induction hypothesis (on n − 1) implies the
factorisation below, where n =m + l + 1:

Init (G) →m ((G,out (Z)), (↑,�,? : S ,B′))

→l ((G,out (Z)), (↓,�,X : S ,B′))
→ ((G, in(Z)), (↓,�,X : S ,B)).

Moreover the state ((G,out (Z)), (↑,�,? : S ,B′)) must be the result
of a pass transition over the Z -node. �is means we have the
following further factorisation if Z , !,

Init (G) →m−1 ((G, in(Z)), (↑,�,? : S ,B))
→ ((G,out (Z)), (↑,�,? : S ,B′))

→l ((G,out (Z)), (↓,�,X : S ,B′))
→ ((G, in(Z)), (↓,�,X : S ,B))

and the one below if Z = !.

Init (G) →m−3 ((G, in(Z)), (↑,�,? : S ,B))
→ ((G,out (Z)), (↑,?,? : S ,B))
→ ((G,out (Z)), (↑, !,? : S ,B))
→ ((G,out (Z)), (↑,�,? : S ,B′))

→l ((G,out (Z)), (↓,�,X : S ,B′))
→ ((G, in(Z)), (↓,�,X : S ,B))

If the last transition is a rewrite transition that discards the
rewrite �ag $, it must follow a pass transition over a $-node. Let
in, out1 and out2 denote input, le� output and right output, respec-
tively, of the $-node. We obtain the following factorisation where
n =m+l2+l1+3 and k = k1 $k2, using induction hypothesis twice
(on n − 2 and n − l1 − 3).

Init (G) →m−1 ((G, in), (↑,�,? : S ,B))
→ ((G,out2), (↑,�,? : ? : S ,B))

→l2 ((G,out2), (↓,�,k2 : ? : S ,B))
→ ((G,out1), (↑,�,? : k2 : ? : S ,B))

→l1 ((G,out1), (↓,�,k1 : k2 : ? : S ,B))
→ ((G, in), (↓,$,k : S ,B))
→ ((G, in), (↓,�,k : S ,B))

�

Inspecting the proof of Prop. C.2.2 gives some intensional char-
acterisation of graphs in stable executions. We say a transition
‘involves’ a node, if it is a pass transition over the node or it is a
rewrite transition whose (main-)redex contains the node.

Proposition C.3 (Stable executions, intensionally). Any stable exe-
cution of the form Init (G) →h ((G,e), (↑,�,? : S ,B)) →k ((G,e), (↓,�,X :
S ,B)) satis�es the following.

• If the position e has a ground type or the cell type

!

F, the last
k transitions of the stable execution involve nodes labelled
with only {p,~p,$, !

,

D

,

C

| p ∈ F, ~p ∈ Fn , n ∈ N}.
• If the position e has a function type, i.e. T1 → T2, it is the

input of a λ-node, and k = 1.

Proof. �e proof is by looking at how factorisation is given in the
proof of Prop. C.2.2. Note that, since we are ruling out argument
types, i.e. enriched types of the form of !T , the factorisation never
encounters !-nodes (hence nor ?-nodes). �

�e fundamental result is that stability of states is preserved by
any transitions. �is means, in particular, rewrites triggered by
the token in an execution can be applied beforehand to the initial
graph without changing the end result. Another (rather intuitive)
insight is that, in an execution, the token leaves no redexes behind
it.

Proposition C.4 (Preservation of stability). In any transition, if an
old state is stable, so is a new state.

Proof. If the transition does not change the underlying graph, it
clearly preserves stability. If not, the preservation is a direct conse-
quence of Lem. C.5 and Lem. C.6 below. �

Lemma C.5 (Stable executions in graph context). If all positions in
a stable execution Init (G[G]) →∗ ((G[G],e),δ) are in the graph con-
text G, there exists a stable execution Init (G[G ′]) →∗ ((G[G ′],e),δ)
for any graph G ′ with the same interfaces as the graph G.

Proof. �e proof is by induction on the length of the stable execu-
tion Init (G[G]) →∗ ((G[G],e),δ). �e base case for null length is
trivial. Inductive cases are respectively for all possible last transi-
tions. When the last transition is a pass transition, the single node
involved by the transition must be in the graph contextG[�]. �ere-
fore the last transition is still possible when the graphG is replaced,
which enables the straightforward use of induction hypothesis.

When the last transition is a ‘stable’ rewrite transition that sim-
ply changes the rewrite �ag f to �, we need to inspect its redex.
Whereas a part of the redex may not be inside the graph context
G[�], we con�rm below that the same last transition is possible for
any substitution of the hole, by case analysis of the rewrite �ag f .
Once this is established, the proof boils down to the straightforward
use of induction hypothesis. Possible rewrite �ags are ground-type
operations $, and symbols ? and ! for !-box rewrites.

If the rewrite �ag is $, the redex consists of one $-nodes with
two nodes connected to its output. �e rewrite �ag must have
been raised by a pass transition over the $-node, which means the
$-node is in the graph context G[�]. Moreover, by Lem. C.2.2, the
two other nodes in the redex are also in the graph context G[�].
�erefore the stable rewrite transition, for the rewrite �ag $, is not
a�ected by substitution of the hole.

If the rewrite �ag is ?, the redex is a !-box with all its doors.
Since the rewrite �ag must have been raised by the pass transition
over the principal door, the principal has to be in the graph context
G[�]. All the auxiliary doors of the same !-box are also in the
graph context G[�], by de�nition of graphs. �e stable rewrite
transition for the rewrite �ag ? is hence possible, regardless of any

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

substitution of the hole, while the !-box itself may be a�ected by
the substitution. If the rewrite �ag is !, the redex is a !-box, all
its doors, and a node connected to its principal door. �is case is
similar to the last case. �e connected node, to the principal door,
is also in the graph context because the token must have visited
the node before passing the principal door. �

Lemma C.6 (Stabilisation of actual rewrites). Let
((G[G],e),δ) → ((G[G ′],e ′),δ ′)

be a rewrite transition, where G is the redex replaced with a di�er-
ent graph G ′. If the rewrite transition follows the stable execution
Init (G[G]) →∗ ((G[G],e),δ), there exist an input link e0 of the hole
� (equivalently of G and G ′) and token data δ0 such that:

• the stable execution can be factorised as Init (G[G]) →∗ ((G[G],e0),δ0) →∗

((G[G],e),δ), where all positions in the �rst half sequence
are in the graph context G[�]

• there exists a sequence ((G[G ′],e0),δ0) →∗ ((G[G ′],e ′),δ ′)
in which the graph G[G ′] is never changed.

Proof. �e proof is by case analysis of the rewrite �ag of the data δ .
Note that we only look at rewrites that actually change the graph.

When the rewrite �ag f is λ, the redex contains a connected
pair of an @-node and a λ-node. We represent the outgoing output
of the λ-node by out (λ), one output of the @-node connected to
the λ-node by in(λ), the other output of the @-node by out (@),
and the input of the @-node by in(@). Lem. C.2.2 implies that the
stable execution Init (G[G]) →∗ ((G[G],e),δ) can be factorised as
below, for some element X of the computation stack.

Init (G[G]) →∗ ((G[G], in(@)), (↑,�,S ,B))

→ ((G[G],out (@)), (↑,�,? : S ,B))
→∗ ((G[G],out (@)), (↓,�,X : S ,B))
→ ((G[G], in(λ))), (↑,�,@ : S ,B)
→ ((G[G],out (λ)), (↑,λ,S ,B))

�e four links out (λ), in(λ), out (@) and in(@) cannot happen in the
stable pre�x execution Init (G[G]) →∗ ((G[G], in(@)), (↑,�,S ,B)),
except for the last state, otherwise the rewrite �ag λ must have been
raised in this execution, causing the change of the graph. �e other
link in the redex, the incoming output of the λ-node, neither appears
in the pre�x execution, as no pass transition is possible at the link.
�erefore the pre�x execution contains only links in the graph
context G[�], and we can take e0 as in(@) and (↑,�,S ,B) as δ0. �e
rewrite yields the state ((G[G ′],e ′), (↑,�,S ,B)) = ((G[G ′],e0),δ0).

When the rewrite �ag f is $, the redex is a $-node with two
constant nodes (k1 and k2) connected. Let in($), in(k1) and in(k2)
denote the unique input of these three nodes, respectively. �e
stable execution Init (G[G]) →∗ ((G[G],e),δ) is actually in the
following form, where k = k1 $k2.

Init (G[G]) →∗ ((G[G], in($)), (↑,�,? : S ′,B′))
→ ((G[G], in(k2)), (↑,�,? : ? : S ′,B′))
→ ((G[G], in(k2)), (↓,�,k2 : ? : S ′,B′))
→ ((G[G], in(k1)), (↑,�,? : k2 : ? : S ′,B′))
→ ((G[G], in(k1)), (↓,�,k1 : k2 : ? : S ′,B′))
→ ((G[G], in($)), (↓,$,k : S ′,B))

�e links in($), in(k1) and in(k2) cannot appear in the stable pre�x
execution Init (G[G]) →∗ ((G[G], in($)), (↑,�,? : S ′,B′)), except

for the last state, otherwise the rewrite �ag $ must have been
raised and have triggered the change of the graph. As the links
in(k1) and in(k2) are the only ones outside the graph context G[G]
and the link in($) is input of the redex G, the pre�x execution is
entirely in the graph context G[�]. We can take in($) as e0 and
(↑,�,? : S ′,B′) as δ0. �e rewrite of the redex does not change
the position, which means e0 = e ′ = in($). �e resulting graph G ′

consists of one constant node (k), and we have a single transition
((G[G ′],e0)), (↑,�,? : S ′,B′)) → ((G[G ′],e)), (↓,�,k : S ′,B)) to
the result state of the rewrite.

When the rewrite �ag is F(n), the redex is a F-node with one
!-box connected to its right output link. By Lem. C.2.2, the stable
execution Init (G[G]) →∗ ((G[G],e),δ) is in the form of:

Init (G[G]) →∗ ((G[G], in), (↑,�,? : S ′,B′))
→ ((G[G],out2), (↑,�,? : ? : S ′,B′))
→∗ ((G[G],out2), (↓,�,~p : ? : S ′,B′))
→ ((G[G],out1), (↑,�,? : ~p : ? : S ′,B′))
→∗ ((G[G],out1), (↓,�,λ : ~p : ? : S ′,B′))
→ ((G[G], in), (↑,F(n),? : S ′,B))

where in, out2 and out1 denote the input, the right output and the
le� output of the F-node, respectively, and ~p ∈ Fn . Any links in the
redex, i.e. the three interface links of the F-node and links in the
connected !-box, are covered by the link in. �erefore by Lem. C.2.1,
these links do not appear in the pre�x execution Init (G[G]) →∗
((G[G], in), (↑,�,? : S ′,B′)) except for the last in. �e last state of
the pre�x execution has the same token position and token data as
the result of the rewrite.

�e rewrite �ag ? is raised by a pass transition over a !-node,
principal door of a !-box. �e pass transition is the last one of the
stable execution Init (G[G]) →∗ ((G[G],e),δ), i.e.

Init (G[G]) →∗ ((G[G], in),δ) → ((G[G],out),δ)
where in and out are respectively the input and output of the !-
node. Since any ?-rewrite leaves the !-node in place and keeps
the position and data of the token, we have a pass transition
((G[G ′], in),δ) → ((G[G ′],out),δ) to the resulting state of the
rewrite. It remains to be seen whether the stable pre�x execution
Init (G[G]) →∗ ((G[G], in),δ) is entirely in the graph context G[�].

First, the links in and out cannot appear in the pre�x execution
except for the last, otherwise there must have been a non-stable
?-rewrite. When the rewrite �ag ? triggers the contraction rule
(bo�om-right in Fig. 7a) or the absorption rule (le� in Fig. 7b),
any links in the redex are covered by the link in, by de�nition of
graphs. �erefore by Lem. C.2.1, these links neither appear in the
pre�x execution. When the projection rule (top-right in Fig. 7a)
occurs, the interface links of the P-node do not appear in the pre�x
execution, as there is no pass transition over the P-node. Since the
input link of the P-node covers all the other links in the redex, by
Lem. C.2.1, no links in the redex have been visited by the token.
�e case of the graph abstraction rule (le� in Fig. 7a) is similar to
the projection case. Recall that the redex for the graph abstraction
rule excludes the sub-graph (G ◦ (~p)‡ in the �gure) that stays the
same. In graph abstraction case, all links in the redex do not appear
in the pre�x execution, while the unchanged sub-graph is included
by the graph context G[�] by assumption.

Finally for the rewrite �ag !, the stable execution Init (G[G]) →∗
((G[G],e),δ) ends with several pass transitions, including one over

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

a !-node, and a rewrite transition that sets the rewrite �ag:

Init (G[G]) →∗ ((G[G],e0),δ0) →
∗ ((G[G], in), (↑,�,S ,B))

→ ((G[G],out), (↑,?,S ,B)) → ((G[G],out), (↑, !,S ,B))

where e0 is an input link of the redex G, and in and out are respec-
tively the input and output of the !-node. Inspecting each !-rewrites
yields a stable sequence ((G[G ′],e0),δ0) →∗ ((G[G ′],out), (↑, !,S ,B))
to the result state of the rewrite. �e inspection also con�rms that
the stable pre�x execution Init (G[G]) →∗ ((G[G],e0),δ0) is en-
tirely in the graph context G, as below.

In the �rst two rewrites of Fig. 7c, the link e0 is the only input
of the redex and it covers the whole redex. As the link e0 cannot
appear in the stable pre�x execution, neither any link in the redex,
by Lem. C.2.1. In the last rewrite of Fig. 7c, the input link e0 of the
redex covers the whole redex except for the other input links. �e
uncovered input links, in fact, must have not been visited by the
token, otherwise the token has proceeded to a !-node and triggered
copying. �

Since stability is trivial for initial states, we can always assume
stability at any states in an execution.

PropositionC.7 (Stability of executions). In any execution Init (G0) →∗

((G,e),δ), the state ((G,e),δ) is stable.

Proof. �is is a consequence of Prop. C.4, since any initial states
are trivially stable. �

D Productivity and safe termination
By assuming both validity and stability, we can prove productiv-
ity: namely, a transition is always possible at a valid and stable
intermediate state.

Proposition D.1 (Productivity). If a state is valid, stable and not
�nal, there exists a possible transition from the state.

Proof in Sec. D.1. �

We can obtain a su�cient condition for the safe termination of
an execution, which is satis�ed by the translation of any program.

Proposition D.2 (Safe termination). Let Init (G0) be an initial state
whose graph G0 meets the name criteria and the graph criterion. If
an execution Init (G0) →∗ ((G,e),δ) can be followed by no transition,
the last state ((G,e),δ) is a �nal state.

Proof. �is is a direct consequence of Prop. B.12, Prop. C.7 and
Prop. D.1. �

Proposition D.3 (Safe termination of programs). For any closed
program t such that − | − | ~p ` t : T , if an execution on the
translation (− | − | ~p ` t : T)‡ can be followed by no transition, the
last state of the execution is a �nal state.

Proof. �e translation (− | − | ~p ` t : T)‡ ful�lls the name criteria
and the graph criterion, which can be checked inductively. Note
that all names in the translation are bound. �is proposition is
hence a consequence of Prop. D.2. �

D.1 Proof of Prop. D.1
First we assume that the state has rewrite �ag �. Failure of pass
transitions can be caused by either of the following situations: (i)
the position is eligible but the token data is not appropriate, or (ii)
the position is not eligible.

�e situation (i) is due to the wrong top elements of a compu-
tation/box stack. In most cases, it is due to the single top element
of the computation stack, or top elements of the box stack, which
can be disproved easily by validity, or respectively, stability. �e
exception is when the token points downwards at the le� output
of a primitive operation node (#), and the top three elements of
the computation stack have to be checked. Let in, out1 and out2
denote the input, the le� output and the right output of the $-node,
respectively. By stability and Lem. C.2.2, the state is the last state
of a stable execution of the following form.

Init (G) →∗ ((G,out1), (↑,�,? : S ,B)) →∗ ((G,out1), (↓,�,X1 : S ,B))

�e intermediate state has to be the result of a pass transition, i.e.

Init (G) →∗ ((G,out2), (↓,�,S ,B)) → ((G,out1), (↑,�,? : S ,B))
→∗ ((G,out1), (↓,�,X1 : S ,B)).

Since the last state is valid, the graphG ful�lls the criteria (Def. B.2,
Def. B.4 and Def. B.7) and any states in this execution is valid by
Prop. B.12. �erefore the computation stack S is in the form of
S = X2 : S ′, and using Lem C.2.2 again yields:

Init (G) →∗ ((G,out2), (↑,�,? : S ′,B))
→∗ ((G,out2), (↓,�,X2 : S ′,B))
→ ((G,out1), (↑,�,? : X2 : S ′,B))
→∗ ((G,out1), (↓,�,X1 : X2 : S ′,B)).

�e �rst intermediate state, again, has to be the result of a pass
transition, i.e.

Init (G) →∗ ((G, in), (↑,�,S ′,B)) → ((G,out2), (↑,�,? : S ′,B))
→∗ ((G,out2), (↓,�,X2 : S ′,B))
→ ((G,out1), (↑,�,? : X2 : S ′,B))
→∗ ((G,out1), (↓,�,X1 : X2 : S ′,B)).

Since the �rst intermediate state of the above execution is valid, the
computation stack S ′ is in the form of S ′ = ? : S ′′, which means
S = X1 : X2 : ? : S ′′. Moreover validity ensures that the elements
X1 and X2 are values and eligible for a pass transition from the last
state. In particular, vector operations +, × and · are always given
two vectors of the same size.

We move on to the situation (ii), where the token position is not
eligible to pass transitions. To disprove this situation, we assume a
valid, stable and non-�nal state from which no pass transition is
possible, and derive contradiction.

�e �rst case is the state ((G,e), (↓,�,S ,B)) where the position
e is the incoming output of a λ-node. By the graph criterion, the
position is covered by the outgoing output out (λ) of the λ-node,
and Lem. C.2 implies the following stable execution.

Init (G) →∗ ((G,out (λ)), (↑, f ,S ′,B′)) →∗ ((G,e), (↓,�,S ,B))

Due to stability, the intermediate state ((G,out (λ)),δ) must be the
result of a pass transition over the λ-node. However the transition
sets λ as the rewrite �ag f , which triggers elimination of the λ-node
and contradicts stability.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

�e second case is the state ((G,e), (↓,�,S ,B)) where the position
e is the le� output of an @-node. By validity the computation stack
S is in the form of S = λ : S ′, and Lem. C.2.2 gives the stable
execution

Init (G) →∗ ((G,e), (↑,�,? : S ′,B)) →∗ ((G,e), (↓,�,λ : S ′,B))

to the state. �e only transitions that can yield the intermediate
state, at the le� output of the @-node, are rewrite transitions that
change the graph, which is contradiction.

�e third case is the state ((G,e), (↑,�,S ,B)) where the position
e is the input of a ?-node, an auxiliary door of a !-box. Since the
link e is covered by the root of the !-box, by Lem. C.2.1, the token
has visited its principal door, i.e. !-node. �is visit must have raised
rewrite �ag ?. Because of the presence of the ?-node, the rewrite
�ag must have triggered a rewrite that eliminates the ?-node, which
is contradiction.

�e fourth case is when the position e is one of the interface
(i.e. either input or output) links of an A-node or a P-node. By the
covering condition of the graph criterion, this case reduces to the
previous case.

�e last case is the state ((G,out (Z)), (↓,�,S ,B)) where the po-
sition out (Z) is the output of an Z -node, for Z ∈ {D,C,?}. If Z = ?,
i.e. the node is an auxiliary door of a !-box, the position is covered
by the root of the !-box. �is reduces to the previous case. If not,
i.e. Z ∈ {D,C}, Lem. C.2.2 gives the stable execution

Init (G) →∗ ((G,out (Z)), (↑,�,S ,B)) →∗ ((G,out (Z)), (↓,�,S ,B))

to the state. �e graph criterion (Def. B.7) implies the Z -node be-
longs to an acyclic box-path of argument types. By typing, any
maximal acyclic box-path ends with either a λ-node or a !-node,
and the token must visit this node in the second half of the stable
execution. �is implies contradiction as follows. If the last node
of the maximal box-path is a λ-node, the token must visit the in-
coming output link of the λ-node, from which the token cannot
been proceeded. If the last node is a !-node, the token must pass
the !-node and trigger rewrites that eliminate the Z -node.

�is completes the �rst half of the proof, where we assume the
state has rewrite �ag �. In the second half, we assume that the
state has a rewrite �ag which is not �, and show the graph of the
state contains an appropriate redex for the rewrite �ag.

When the rewrite �ag is λ, by stability, the token must be at the
outgoing output of a λ-node which is connected to the le� output
of an @-node. �erefore the λ-rewrite is possible. For the rewrite
�ag F(n), stability implies that a !-box with no de�nitive auxiliary
doors (?) must be connected to the right output of a F-node. Rewrite
transitions for rewrite �ags $ and F(n) are exhaustive.

When the rewrite �ag is !, by stability, the state is the result of
the ?-rewrite that only changes the rewrite �ag. �is means the
token is at the root of a !-box with no de�nitive auxiliary doors
(?-nodes). Transitions for the rewrite �ag ! are exhaustive for the
closed !-box.

When the rewrite �ag is ?, the token is at the root of a !-box,
which we here call ‘inhabited !-box’. By typing, output links of
de�nitive auxiliary doors of the inhabited !-box can be connected to
C-nodes, P-nodes, A-nodes, !-nodes, ?-nodes or λ-nodes. However
?-nodes and λ-nodes are not the case, as we see below in two steps.

First, we assume that a de�nitive auxiliary door of the inhabited
!-box is connected to another ?-node. �is means that the inhabited
!-box is inside another !-box, and therefore the token position is

covered by the root of the outer !-box. By Lem. C.2.1, the token
must have visited the principal door of the outer !-box and triggered
the change of the graph, which contradicts stability.

Second, we assume that a de�nitive auxiliary door of the inhab-
ited !-box is connected to the incoming output link of a λ-node.
�is λ-node cannot be inside the inhabited !-box, since no !-box has
incoming output. Clearly there exists a box-path from the token
position to the incoming output of the λ-node. �erefore the token
position, the unique input of the !-box, is covered by the input of
the λ-node; otherwise the graph criterion is violated. �is covering
implies that the token must have passed the λ-node upwards and
triggered its elimination, by Lem. C.2.1, which contradicts stability.

Now, if a !-node is connected to a de�nitive auxiliary door of the
inhabited !-box, the !-node is a principal door of another !-box, and
the !-box may have de�nitive auxiliary doors. Output links of these
de�nitive auxiliary doors, again, can be only connected to C-nodes,
P-nodes, A-nodes, or !-nodes, which are principal doors of other
!-boxes. �is means there can be chains of !-boxes starting from the
inhabited !-box, where a principle door of a !-box is connected to a
de�nitive auxiliary door of another !-box via C-nodes and P-nodes.
Since the graph of any valid graph state has no output and satis�es
the acyclicity property (in Def. B.7), these chains must be acyclic,
and hence they must end with !-boxes without de�nitive auxiliary
doors. �erefore, when the rewrite �ag ? is raised, there is always
a possible remote rule.

�e last remark for the rewrite �ag ? is about the replacement of
nodes in the graph abstraction rule. Typing of links ensures that the
replacement never fails and produces a correct graph. In particular
the sub-graph G in Fig. 7a only consists of C-nodes and ?-nodes.
Finally, in conclusion, the state with rewrite �ag ? is always eligible
for at least one of the rules in Fig. 7a and Fig. 7b. �

E Provisional contexts and congruence of
execution

To deal with shared cells that arise in an execution, we introduce
another perspective on composite graphs which takes C-nodes into
account.

De�nition E.1 (Provisional contexts). A graph context of the form

(!p)à

H(n, m)

!

denoted by P[�], is a provisional context if it satis�es the following.
• �e graph H (n,m) consists solely of C-nodes, and ~p ∈ Fm .
• For any graph G (1,n) that ful�lls the graph criterion, the

graph P[G] also ful�lls the graph criterion.

In the above de�nition, the second condition implies that the
graph H contains no loops. We sometimes write P[�]n

T̃
to make

explicit the input type and the number of output links of the hole.
Note that a graph P[G], where P[�] is a provisional context and
G is a de�nitive graph, is a composite graph. As an extension of
Prop. 3.3, we can see a provisional context is preserved by transi-
tions.

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Proposition E.2 (Provisional context preservation). When a tran-
sition sends a graph G to a graph G ′, if the old graph G can be
decomposed as P[H] where P[�] is a provisional context andH (1,n)
is a de�nitive graph, the new graph G ′ can be also decomposed as
P[H ′] for some de�nitive graph H ′(1,n), using the same provisional
context.

Proof. In addition to Prop. 3.3, no transition changes existing C-
nodes. �erefore a provisional context is preserved in any transition.

�

Since our operational semantics is based on low-level graphical
representation and local token moves, rather than structured syn-
tactical representation, any structural reasoning requires extra care.
For example, evaluation of a term of function type is not exactly
the same, depending on whether the term appears in the argument
position or the function position of function application t u. �e
token distinguishes the evaluation using elements ? and @ of a
computation stack, which is why we explicitly require termination
in de�nition of PT1→T2 . Moreover congruence of execution is not
trivial.

To prove a speci�c form of congruence, we begin with ‘extracting’
a provisional context out of a graph context. Let G[�] be a graph
context, such that for any de�nitive graph G (1,n) of type T , the
graph G[G] is a composite graph. We can decompose the graph
context G[�] as

G[�] =

(!p)à

!

H(n + k, m)

G0(1, 1 + k)

n

k

!
F

!

F

where the graph H (n + k,m) consists of all reachable nodes from
output links of the hole �. By the assumption on the graph context
G[�], all the output links of the hole � have the cell type !

F. �ere-
fore typing ensures the graphH in fact consists of only C-nodes and?-nodes. We can turn the graph H ◦ (~p)‡ to a provisional context
P[�], by dropping all ?-nodes and adding k weakening nodes (W),
as below.

P[�] =

(!p)à

!

H[!/

?

]

W

We say the provisional context P[�] is ‘induced’ by the graph
context G[�].

Proposition E.3 (Congruence of execution). Let G[G] be a com-
posite graph where G (1,n) is a de�nitive graph of type T , and e
be the root of the hole of the graph context G[�]. Assume an execu-
tion Init (P[G]) →∗ ((P[G ′],e ′), (d, f ,S ′,B′)), where the provisional
context P[�] is induced by the graph context G[�]. �en, for any
stacks S and B, there exists a sequence

((G[G],e), (↑,�,? : S ,B)) →∗ ((G[G ′],e ′), (d, f ,S ′′,B′′)) (1)

of transitions, where S ′′ = S ′::S and B′′ = B′::B. �e decomposition ::
replaces the bo�om element � of the �rst stack with the second stack.
Moreover, if T is a function type, there also exists a sequence

((G[G],e), (↑,�,@ : S ,B)) →∗ ((G[G ′],e ′),δ ′) (2)

of transitions, for some token data δ ′.

Proof. By the way the provisional context P[�] is induced by the
graph context G[�], any link of the graph P[G] has at least one
(canonically) corresponding link in the graphsG , H and (~p)‡. A link
may have several corresponding links, because of ?-nodes dropped
in the induced provisional context P[�]. �e sequence (1) is given
as a consequence of the following weak simulation result, where
weakness is due to ?-nodes.

Weak simulation. Let

((P[H],e), (d, f ,S ,B)) → ((P[H ′],e ′), (d ′, f ′,S ′,B′))

be a single transition of the assumed execution Init (P[G]) →∗
((P[G ′],e ′), (d, f ,S ′,B′)). For any computation stack S0 and any
box stack B0, there exists a sequence ((G[H],e), (d, f ,S :: S0,B ::
B0)) →∗ ((G[H ′],e ′′), (d ′, f ′,S ′ :: S0,B′ :: B0)) of transitions from
a stable state, where the position e ′′ is one of those corresponding
to e ′.

�e proof of the weak simulation follows from the fact that the
presence of the graphG0 below the graphG does not raise any extra
rewriting, so long as the token data is taken from the execution on
the graph P[G].

Finally, if T is a function type, replacing the element ?with the
element @ in the sequence (1) only a�ects a pass transition over a
λ-node, which sends the computation stack ? : S to λ : S .

�e execution Init (P[G]) →∗ ((P[G ′],e ′), (d, f ,S ′,B′)), in fact,
can contain at most one pass transition over a λ-node which changes
the computation stack? : � to λ : �. To make the second such tran-
sition happen, some other transition has to remove the top element
of the computation stack λ : �, however by stability (Prop. C.7),
no transition can do this. Moreover, such pass transition can be
only the last transition of the execution. Any transitions that can
possibly follow the pass transition, which sets direction ↓ and com-
putation stack λ : �, are pass transitions over !-nodes, !-nodes,?-nodes or D-nodes; the existence of these nodes contradicts with
the type T = T1 → T2 of the underlying graph.

Since the sequence (1) weakly simulates the execution, where the
weakness comes from only ?-nodes, we can conclude that there is
no occurrence, or exactly one occurrence at the last, in the sequence
(1), of the pass transition which is a�ected by the replacement of
the element ? with the element @. �erefore if the sequence (1)
contains no such pass transition, the sequence (2) can be directly
obtained by replacing the element?with the element @. Otherwise,
cu�ing the last transition of the sequence (1) just does the job, as
the transition does not change the underlying graph and the token
position. �

F Data-�ow graphs
�is section looks at graphs consisting of speci�c nodes. �e re-
striction on nodes rules out some rewrites, especially @-rewrites
for function application and the graph abstraction rule.

De�nition F.1 (Data-�ow graphs). A data-�ow graph is a graph
with no !-nodes, that satis�es the following.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

• All its input links have ground types.
• Any reachable (in the normal graphical sense) nodes from

input links are labelled with {p,~p,$, !,?, ?

,D,C,

D

,

C

| p ∈
F, ~p ∈ Fn , n ∈ N}.

In particular, a data-�ow graph is called pure if these reachable
nodes are not labelled with {!,?, ?

,D,C}.

Data-�ow graphs intensionally characterises graphs of �nal
states. Graphs of �nal states play the role of ‘values’, since our
semantics implements (right-to-le�) call-by-value evaluation.

Proposition F.2 (Final graphs intensionally). Let G ◦ (~p)‡ be a
composite graph of (non-enriched) type T . If a �nal state Final (G ◦
(~p)‡,κ) is stable, the de�nite graph G satis�es the following.

1. When T is a ground type, the graph G is a pure data-�ow
graph.

2. When T is a function type, i.e. T = T1 → T2, the root of the
graph G is the input of a λ-node.

Proof. �e second case, whereT = T1 → T2, is a direct consequence
of Prop. C.3. For the �rst case, where T is a ground type, Prop. C.3
tells us that the stable execution Init (G ◦ (~p)‡) →∗ Final (G ◦ (~p)‡,κ)
only involves nodes labelled with {p,~p,$, !

,

D

,

C

| p ∈ F, ~p ∈ Fn , n ∈
N}. It boils down to show that any reachable node from the root
of the graph G is involved by the stable execution. We can show
this by induction on the maximum length of paths from the root
to a reachable node. �e base case is trivial, as the root of the
graph G coincides with an input link of the reachable node. In the
inductive case, induction hypothesis implies that any reachable
node is connected to a reachable node which is involved by the
stable execution. By Prop. C.2.2 and labelling of the involved node,
the stable execution contains a transition that passes the token
upwards over the involved node, and hence makes the reachable
node of interest involved by the following transition. �

We can directly prove soundness of data-�ow graphs.

Proposition F.3. Let G (1,n) be a data-�ow graph, with a link e of
ground type which is reachable from the root of G. For any vector
~p ∈ Fn , if a state ((G ◦ (~p)‡,e), (↑,�,S ,B)) is stable and valid, there
exists a data-�ow graph G ′(1,n) that agrees with G on the link e ,
and a computation stack S ′, such that ((G ◦ (~p)‡,e), (↑,�,S ,B)) →∗

((G ′ ◦ (~p)‡,e), (↓,�,S ′,B)).

Proof. �e �rst observation is that any transition sends a data-�ow
graph, composed with a graph (~p)‡, to a data-�ow graph with the
same graph (~p)‡.

Given a composite graph G ◦ (~p)‡ where G is a data-�ow graph,
we de�ne a partial ranking map ρ which assigns natural numbers
to some links of G. �e ranking is only de�ned on links which are
reachable from the root ofG and labelled with either a ground type
or an argument type, as follows: ρ (e) := 0 if e is input of a p-node
(p ∈ F), a ~q-node (~q ∈ Fk) or a D-node; ρ (e) := max (ρ (e1),ρ (e2))+1
if e is input of a $-node, and e1 and e2 are output links of the $-node;
and ρ (e) := ρ (e ′) + 1 if e is input of a !-node, a ?-node, a D-node
or a C-node, and e ′ is the corresponding output link. �is ranking
on reachable links is well-de�ned, as the composite graph G ◦ (~p)‡

meets the graph criterion.
Since the state ((G ◦ (~p)‡,e), (↑,�,S ,B)) is stable and the position

e has ground type, the ranking ρ of the composite graph G ◦ (~p)‡

is de�ned on the position e . �e proof is by induction on the rank
ρ (e).

Base cases are when ρ (e) = 0. If the position e is input of aD-node, the graph criterion implies an acyclic directed path from
the D-node to a !-node. Intermediate nodes of this path are onlyC-nodes, and the proof is by induction on the number of theseC-nodes. Otherwise, the position e is input of a constant node (p
or ~q), and the proof is by one pass transition over the node.

In inductive cases, induction hypothesis is for any natural num-
ber that is less than ρ (e). When the position e is input of a D-node,
the graph criterion implies an acyclic directed path from the D-
node to a !-node, with only C-nodes as intermediate nodes. �is
means, from the state ((G◦ (~p)‡,e), (↑,�,S ,B)), the token goes along
the directed path, reaches the !-node, and trigger rewrites. �ese
rewrites eliminate all the nodes in the path, and possibly include
remote rules that eliminate other ?-nodes and C-nodes. When these
rewrites are completed, the position e and its type are unchanged,
but its rank ρ (e) is strictly decreased. �erefore we can use induc-
tion hypothesis to prove this case. �e last case, when the position e
is input of a $-node, boils down to repeated but straightforward use
of induction hypothesis, which may be followed by a $-rewrite. �

Corollary F.4 (Soundness of data-�ow graphs). If a data-�ow
graph G (1,n) meets the name criteria and the graph criterion, for
any vector ~p ∈ Fn , there exist a data-�ow graphG ′(1,n) and a token
value κ such that Init (G ◦ (~p)‡) →∗ Final (G ′ ◦ (~p)‡,κ).

Graph abstraction enables us to replace a computation graphs
with a regular function, parameterised explicitly by what used to
be the cells of the computation graph. �is replacement is not at
all simple; in an execution, it can happen inside a !-box, or happen
outside a !-box before the resulting graph gets absorbed by the
!-box. Moreover, it can change the number of cells extracted by
graph abstraction. Our starting point to formalise this idea of
replacement is the notion of ‘data-�ow chain’. It is a sequence of
sub-graphs, which are partitioned by auxiliary doors and essentially
representing data �ow.

De�nition F.5 (Data-�ow chains). In a graph G , a data-�ow chain
D is given by a sequence D0 (n0,n1), . . . ,Dk (nk ,nk+1) of k + 1 sub-
graphs, where k is a natural number, that satis�es the following.

• �e �rst sub-graph D0 (n0,n1) is a data-�ow graph.
• If k > 0, there exists a unique number h such that 0 < h ≤ k .

For each i = 1, . . . ,h − 1, the sub-graph Di (ni ,ni+1)
can contain only C-nodes, P-nodes, C-nodes or !-boxes
with their doors, where these !-boxes are data-�ow graphs.
Input links of the sub-graph Di (ni ,ni+1) are connected to
output links of the previous sub-graphDi−1 (ni−1,ni), viani
parallel ?-nodes. �ese delimiting parallel doors (?) belong
to the same !-box, whose principal door (!) is not included
in the whole sequence of sub-graphs.

For each j = h, . . . ,k , the sub-graph D j (nj ,nj+1) solely
consists of C-nodes. Input links of the sub-graphD j (nj ,nj+1)
are connected to output links of the previous sub-graph
D j−1 (nj−1,nj), via nj parallel ?-nodes. �ese delimiting
parallel doors (?) belong to the same !-box, whose principal
door (!) is not included in the whole sequence of sub-graphs.

• �e �nal sub-graph Dk (nk ,nk+1) satis�es either one of the
following: (i) all its output links have the cell type !

F and
connected to !-nodes, or (ii) all its output links are input

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Dk

!

?

Dk

?

?

É

?

Dk!1

É

?

D0

?

É

?

D0

Dk

Pnk+1

Figure 11

links of a single P-node with nk+1 inputs, whose output
link is connected to a λ-node.

• If a node of the graphG is box-reachable from an input link
of the �rst sub-graph G0, it is either (i) in the sub-graphs
D0, . . . ,Dk , (ii) in auxiliary doors partitioning them, or (iii)
box-reachable from an output link of the last sub-graph Gk .

We refer to input of the �rst sub-graph D0 as input of the data-�ow
chain D, and output of the last sub-graph Dk as output of the data-
�ow chain D. Fig. 11 illustrates some forms of data-�ow chains.

We de�ne a binary relation ∝ between de�nitive graphs that
applies single replacement of a data-�ow chain. It is li�ed to a
binary relation ∝ on some states.

De�nition F.6 (Data-�ow replacement of graphs). LetG (1,n) and
H (1,m) be two de�nitive graphs, that contain data-�ow chains DG
and DH , respectively. Two de�nitive graphs G (1,n) and H (1,m)
satis�es G ∝ H if the following holds.

• Two data-�ow chains have the same number of input. �e
data-�ow chain DH has no more length than the data-�ow
chain DG . �e data-�ow chain DH can have an arbitrary
number of output, whereas the data-�ow chain DG has at
least one output.

• Exactly the same set of names appears in both graphsG and
H .

• �e graphs G and H only di�er in the data-�ow chains DG
and DH , and their partitioning auxiliary doors.

De�nition F.7 (Data-�ow replacements of states). Two stable and
valid states ((G◦(~p)‡,e), (d, f1,S1,B1)) and ((H◦(~q)‡,e), (d, f2,S2,B2))
are related by a binary relation ∝ if the following holds.

• �e de�nitive graphs satisfy G ∝ H .
• �e position e is either an input link of the data-�ow chain

replaced by ∝, or (strictly) outside the data-�ow chain.
• Two stable executions to these states give the exactly same

sequence of positions.
• �e rewrite �ags f1 and f2 may only di�er in numbers n of

F(n).
• �e validation mapsvG andvH of these states, respectively,

satisfy that: vG (a) = 0 implies vH (a) = 0, for any a ∈ A on
which they both are de�ned.

As usual, we use ∝∗ to denote the re�exive and transitive closure
of the relation ∝.

Proposition F.8. If

((G ◦ (~p)‡,e), (↑, f1,S1,B1))∝
∗ ((H ◦ (~q)‡,e), (↑, f2,S2,B2))

holds, a sequence

((G ◦ (~p)‡,e), (↑, f1,S1,B1))

→∗ ((G ′ ◦ (~p‡),e), (↓,�,S ′1,B
′
1)) (3)

implies a sequence

((H ◦ (~q)‡,e), (↑, f2,S2,B2))

→∗ ((H ′ ◦ (~q)‡,e), (↓,�,S ′2,B
′
2)) (4)

such that the resulting states are again related by ∝∗.

Proof. �e proof is by induction on the length of the sequence (3).
Base cases are when the sequence (3) consists of one pass transition
over a constant node (scalar or vector) or a λ-node, and hence
f = �. If the transition is over a λ-node, the same transition is
possible at the state ((H ◦ (~q)‡,e), (↑, f ,S2,B2)). If the transition is
over a constant node, the constant node may be a part of a data-
�ow chain replaced by a data-�ow chain D in the graph H . By
stability of the state ((H ◦ (~q)‡,e), (↑, f ,S2,B2)), we can conclude
that any partitioning auxiliary doors of the data-�ow chain D are?-nodes, if they are box-reachable from the position e . �is can
be con�rmed by contradiction as follows: otherwise the position
e must be in a !-box with de�nitive auxiliary doors (i.e. ?-nodes),
which contradicts with stability and the fact f = �. �is concludes
the proof for base cases.

First inductive case is when the position e is an input link of
a data-�ow chain DG , which is replaced with a data-�ow chain
DH in the graph H . If the rewrite �ag is f = �, similar to base
cases, we can see that the data-�ow chain DH is in fact not par-
titioned by ?-nodes (but possibly ?-nodes). Moreover by stability
and the graph criterion, output links of the data-�ow chain DH are
not connected to a P-node. �is implies that the data-�ow chain
DH with partitioning auxiliary doors altogether gives a data-�ow
graph. �erefore the sequence (4) can be obtained by Prop. F.4 and
Prop. E.3.

If the rewrite �ag f is not equal to �, possibilities are f = λ,?, !.
�e λ-rewrite in the graph G sets the rewrite �ag � and does not
change the position e . �e same λ-rewrite is also possible in the
graph H , and we can use induction hypothesis. If f = ?, there will
be at least one rewrite transitions, in both graphs G and H , until

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

the rewrite �ag is changed to !. �ese ?-rewrites may a�ect the
data-�ow chains DG and DH . Since the position e is an input of
the data-�ow chains, these ?-rewrites can only eliminate C-nodes,
P-nodes, or ?-nodes that partition the data-�ow chains. Elimination
of C-nodes and P-nodes is where the transitive closure ∝∗ plays a
role. It does not change the partitioning structure of the data-�ow
chains DG and DH . Elimination of ?-nodes in the graph G must
introduce ?-nodes, because the replacement ∝ requires the data-
�ow chain DG to have at least one output. �erefore the ?-rewrites
changes the data-�ow chain DG to a new one while keeping its
length. On the other hand, elimination of ?-nodes may not happen
in the graph H , or may decrease the length of the data-�ow chain
DH . As a result, a�er the maximal number of ?-rewrites until the
rewrite �ag is changed to !, resulting graphs are still related by ∝∗
and the position e is not changed. Finally if f = !, until the rewrite
�ag is changed to �, the same nodes (D-nodes and C-nodes) are
eliminated in both graphs G and H , and both the data-�ow chains
decrease their length by one, if possible. Once rewrites are done
and the rewrite �ag � is set, the position e is still unchanged, and
we use induction hypothesis.

Second inductive case is when the position e is the input of a
F-node, with rewrite �ags f1 = F(n1) and f2 = F(n2) are raised. If
n1 = 0, by de�nition of the relation ∝, it holds that n2 = 0, and the
proof follows from stability. If not, the sequence (3) begins with
non-trivial unfolding of the F-node. �e sequence (4) can be proved
by induction on n2, which is an arbitrary natural number, with
n2 ≤ n1 being the base case.

Finally, the last inductive case is when the position e is not in
data-�ow graphs replaced by ∝∗. If f = � and the sequence (3)
begins with a pass transition, the same transition is possible in
the graph H ◦ (~q)‡, and we can use induction hypothesis. We
use it more than once, when the pass transition is over a $-node.
Possibly the sequence (3) ends with a $-rewrite, which may not be
possible on the other side. However, this is when the position e
becomes an input of a data-�ow chain in the resulting graph G ′,
and the di�erence of $-rewrites is dealt with by the replacement
∝. If f , �, discussion in the �rst inductive case is valid, except
for any ?-rewrites being possible, namely the graph abstraction
rule. We use induction hypothesis once consecutive rewrites are
done. �e key fact is that, when the graph abstraction rule applies
to graphs related by the replacement ∝, the resulting graphs are
again related by ∝. �e resulting graphs may di�er in the size of
extracted vectors and in the number of input links of the introduced
P-nodes. �is is dealt with by the replacement∝ of data-�ow chains,
in particular, a single constant node itself is a data-�ow chain. Note
that, if a P-node with no inputs is introduced on the side of graph
G, it is also introduced on the other side, because any data-�ow
chain of null output is not replaced by ∝. �e graph abstraction rule
is essentially the only transition that is relevant to the condition
of validation maps for the relation ∝, and it does not violate the
condition. �is concludes the whole proof. �

Corollary F.9 (Safety of dara-�ow replacement). Let G ◦ (~p)‡ and
H ◦ (~q)‡ be composite graphs, meeting the name criteria and the graph
criterion, such that G ∝∗ H . If an execution on the graph G ◦ (~p)‡

reaches a �nal state, an execution on the graph H ◦ (~q)‡ also reaches
a �nal state.

G Soundness
Our soundness proof uses logical predicates on de�nitive graphs.
�ese logical predicates are analogous to known ones on typed
lambda-terms.

De�nition G.1 (Logical predicates). Given a termT , a logical pred-
icate PT is on de�nitive graphs, that meet the name criteria and
the graph criterion, of type T . It is inductively de�ned as below.

• When T is a ground type, G (1,n) ∈ PT holds if: for any
provisional context P[�]nT , there exist a composite graph H
and a token value κ such that Init (P[G]) →∗ Final (H ,κ).

• When T = T1 → T2, G (1,n) ∈ PT holds if:
1. for any provisional context P[�]n

T , there exists a com-
posite graph H such that Init (P[G]) →∗ Final (H ,λ)

2. for any H (1,m) ∈ PT1 , the following graph, denoted by
G@!H , satis�es G@!H ∈ PT2 .

G H

?

@

!

Proposition G.2 (Deterministic termination). IfG (1,n) ∈ PT , for
any provisional context P[�]nT , there exist a unique de�nitive graph
G ′(1,n) of typeT and a unique token valueκ such that Init (P[G]) →∗
Final (P[G ′],κ).

Proof. �is is a direct consequence of Prop. 3.6 and Prop. E.2. �

Proposition G.3 (Congruence of termination). Let G[G] be a com-
posite graph whereG (1,n) is a de�nitive graph of typeT , and e be the
root of the hole of the graph context G[�]. IfG (1,n) ∈ PT holds, then
for any stacks S and B, there exist an element X of a computation
stack and a sequence

((G[G],e), (↑,�,? : S ,B)) →∗ ((G[G ′],e), (↓,�,X : S ,B))
of transitions. Moreover, if T is a function type, there also exists the
following sequence.

((G[G],e), (↑,�,@ : S ,B)) →∗ ((G[G ′],e), (↑,�,@ : S ,B))

Proof. �is is a corollary of Prop. E.3. �

�e following properties relate logical predicates to transitions,
in both forward and backward ways.

Proposition G.4 (Forward/backward reasoning).
Forward reasoning LetG (1,n) be a de�nitive graph such that

G ∈ PT , and P[�]n
T be a provisional context. For any exe-

cution Init (P[G]) →∗ ((H ′,e),δ) on the graph P[G], there
exists a de�nitive graph G ′(1,n) such that H ′ = P[G ′] and
G ′ ∈ PT .

Backward reasoning A de�nitive graph G (1,n) satis�es G ∈
PT , if: (i) it meets the name criteria and the graph criterion,
and (ii) for any provisional context P[�]n

T , there exist a de-
�nitive graph G ′(1,n) ∈ PT and a state ((P[G ′],e),δ) such
that Init (P[G]) →∗ ((P[G ′],e),δ).

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Proof. First of all, Prop. E.2 ensures the decomposition H ′ = P[G ′],
where G ′(1,n) is a de�nitive graph, in the forward reasoning. We
prove the both reasoning simultaneously by induction on the type
T . Base cases of both reasoning, where T is a ground type, relies
on determinism and stability, as we see below.

We begin with the base case of the forward reasoning, whereT is
a ground type. Given any execution Init (P[G]) →∗ ((P[G ′],e),δ)
whereG (1,n) ∈ PT andP[�]nT is a provisional context, by Prop. G.2,
there exists a unique �nal state Final (H ′′,κ) such that Init (P[G]) →∗
Final (H ′′,κ). �e uniqueness implies the factorisation Init (P[G]) →∗
((P[G ′],e),δ) →∗ Final (H ′′,κ). Since the state ((P[G ′],e),δ) is
stable by Prop. C.7, we have a stable execution Init (P[G ′]) →∗
((P[G ′],e),δ). As a result we have an execution Init (P[G ′]) →∗
Final (H ′′,κ), which proves G ′′ ∈ PT .

In the base case of the backward reasoning, where T is a ground
type, G ′ ∈ PT implies an execution Init (P[G ′]) →∗ Final (H ,κ) to
a unique �nal state (Prop. G.2). Since the last state of the execution
Init (P[G]) →∗ ((P[G ′],e),δ) is stable by Prop. C.7, there is a
stable execution Init (P[G ′]) →∗ ((P[G ′],e),δ). �e uniqueness
of the �nal state Final (H ,κ) gives the sequence ((P[G ′],e),δ) →∗
Final (H ,κ) of transitions, which yields an execution Init (P[G]) →∗
((P[G ′],e),δ) →∗ Final (H ,κ) and proves G ∈ PT .

In inductive cases of both reasoning, where T = T1 → t2, we
need to check two conditions of the logical predicate PT . �e �rst
condition, i.e. termination, is as the same as base cases. �e other
inductive condition can be proved using induction hypotheses of
both properties, together with Prop. E.3 and Cor. G.3, as below.

In the inductive case of the forward reasoning, our goal is to
prove G ′@!H ∈ PT2 for any H (1,m) ∈ PT1 , under the assumption
of the execution Init (P[G]) →∗ ((P[G ′],e),δ) where G (1,n) ∈
PT1→T2 . Let P ′[�]n+m

T2
be any provisional context. Since H ∈ PT1 ,

Prop. G.3 implies two executions, where the position e ′ is the right
output of the @-node,

Init (P ′[G@!H]) →∗ ((P ′[G@!H ′],e ′), (↓,�,κ : ? : �,�)) (5)
Init (P ′[G ′@!H]) →∗ ((P ′[G ′@!H ′],e ′), (↓,�,κ : ? : �,�)) (6)

such that Init (P ′′[H]) →∗ Final (P ′′[H ′],κ) for some provisional
context P ′′[�]mT1

and some token value κ. By the assumption of
G ∈ PT1→T2 and Prop. E.3, we can continue the execution (5) as:

Init (P ′[G@!H]) →∗ ((P ′[G@!H ′],e ′), (↓,�,κ : ? : �,�))

→∗ ((P ′[G ′@!H ′],e),δ)
for some token data δ . Since G ∈ PT1→T2 and H ∈ PT2 by the
assumption, we can use induction hypothesis of the forward rea-
soning and obtain G ′@!H ′ ∈ PT2 . Using induction hypothesis
of the backward reasoning along the execution (6), we conclude
G ′@!H ∈ PT2 .

In the inductive case of the backward reasoning, we aim to
prove G@!H ∈ PT2 for any H (1,m) ∈ PT1 . Let P ′[�]n+m

T2
be any

provisional context. Since H ∈ PT1 , Cor. G.3 gives an execution,
where the position e ′ is the right output of the @-node,

Init (P ′[G@!H]) →∗ ((P ′[G@!H ′],e ′), (↓,�,κ : ? : �,�))

such that there exists a provisional context P ′′[�]mT1
and an execu-

tion Init (P ′′[H]) →∗ Final (P ′′[H ′],κ). Using the assumption on
the graph G, with Prop. E.3, yields its expansion

Init (P ′[G@!H]) →∗ ((P ′[G@!H ′],e ′), (↓,�,κ : ? : �,�))

→∗ ((P ′[G ′@!H ′],e),δ)

such that G ′ ∈ PT1→T2 , arising in an execution Init (P ′′′[G]) →∗
((P ′′′[G ′],e),δ), for some provisional context P ′′′[�]n

T1→T2
. In-

duction hypothesis of the forward reasoning implies H ′ ∈ PT1 , and
therefore G ′@!H ′ ∈ PT2 . We conclude G@!H ∈ PT2 by induction
hypothesis of the backward reasoning. �

�e key ingredient of the soundness proof is ‘safety’ of graph
abstraction. �is is where we appreciate call-by-value evaluation.

Proposition G.5 (Safety of graph abstraction). If G (1,n) ∈ PT
holds, the graph Ĝ given as below

Ĝ =

!(G)

?

?
!F n ! k

H(k, m)

!

F
Pm

D

!

!

belongs to PVa→T , where:

• the name a ∈ A is any name that does not appear in the graph
G ′

• the graph H (k,m), where k ≤ n andm is arbitrary, consists
solely of C-nodes connected to each other in an arbitrary way,
and ful�lls the graph criterion

• the graph ϕ (G) is obtained by: (i) choosing k output links
of the graph G arbitrarily, and (ii) replacing any

C

-nodes,?

-nodes and

D

-nodes with C-nodes, ?-nodes and D-nodes,
respectively, if one of the chosen output links can be reachable
from these nodes via links of only the cell type

!

F.

Proof. It is easy to see the graph Ĝ meets the name criteria and the
graph criterion, givenG ∈ PT . Since the graph Ĝ has a λ-node at the
bo�om, the termination condition of the logical predicate PVa→T
is trivially satis�ed. For any graph E ∈ PVa , we prove Ĝ@!E ∈ PT .

Let P ′[�]T be any provisional context. By Cor. G.3, an exe-
cution on the graph P ′[Ĝ@!E] �rst yields the graph P ′[Ĝ@!E ′],
where the graph E ′ comes from some execution Init (P0[E]) →∗
Final (P0[E ′],κ) to a �nal state. �en the token eliminates the pair
of the λ-node and the @-node at the bo�om of the graph, and trig-
gers the rewrite involving the graph H (C-nodes) and the P-node
of the graph ϕ (G). �is rewrite duplicates the graph E ′ in a !-box,
introducing dot-product nodes and vector nodes. Finally the token
eliminates the D-node and the !-box around the graph ϕ (G). In the
resulting graph, we shall write as P ′[R], the graph R consists of the
graph ϕ (G), whose output links of type !F are connected to !-boxes,
and further, C-nodes. �e following illustrates the graph R, whereC-nodes are omi�ed.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

!(G)

!F

n ! k

!

F

?

F0

!F

?

É
Fk!1

! !

.
Fi

!

F

F

= Fi

!

F

F

Va

!pi

Let ~F be these !-boxes. �ey all have type F, and each of them
contains the graph E ′, with a dot-product node and a vector node.
Since the provisional context P ′ is arbitrary, we can reduce the
problem to R ∈ PT , using the backward reasoning (Prop. G.4).

If n = 0, the replacement ϕ actually changes nothing on the
graph G, and hence ϕ (G) = G. �erefore, in this case, R ∈ PT
follows from G ∈ PT , by Prop. G.3. We deal with the case where
n > 0 below.

First, as a consequence of Cor. F.9, the execution on the graph
P ′[R] reaches a �nal state, given the assumption G ∈ PT . �is
is because, for any provisional context P[�]n

T , we have P[G] ∝∗
P ′[R]. Since any name appears in the graph P[G] also appears in
the graphP ′[R], we can infer Init (P[G])∝∗Init (P ′[R]). �is means
R ∈ PT when T is a ground type, and the termination condition of
R ∈ PT when T is a function type.

To check the inductive condition of R ∈ PT where T = T1 → T2,
we need to show R@!F ∈ PT2 for any F ∈ PT1 . By the assumption
G ∈ PT1→T2 , we have G@!F ∈ PT2 . Using induction hypothesis
on this graph yields the graph FG@!F ∈ PVb→T2 . Let Ẽ ∈ PVb is a
graph obtained by renaming E. We can take a provisional context
P ′′[�]T2 such that an execution on the graph P ′′[(FG@!F)@!Ẽ]
yields a graph P ′′[(FG@!F)@!Ẽ ′] where the graph Ẽ ′ is a renaming
of the graph E ′. By proceeding the execution, we obtain the graph
R′, which consists of the graph ϕ (G)@!F and !-boxes connected
to some outputs of ϕ (G), each of which contains the graph Ẽ ′, a
dot-product node and a vector node. Since FG@!F ∈ PVb→T2 , the
forward reasoning (Prop. G.4) ensures R′ ∈ PT2 . Moreover, the
graph R′ is in fact a renaming of the graph R@!F , therefore we
have R@!F ∈ PT2 . �

Finally the soundness theorem, stated below, is obtained as a
consequence of the so-called fundamental lemma of logical predi-
cates.

�eorem G.6 (�m. 3.7). For any closed program t such that A |
− | ~p ` t : T , there exist a graph G and a token value κ such that:
Init ((A | − | ~p ` t : T)‡) →∗ Final (G,κ).

Proof. �is is a corollary of Prop G.7 below. �

Proposition G.7 (Fundamental lemma). For any derivable judge-
ment A | Γ | ~p ` t : T , where Γ = x0 : T0, . . . ,xm−1 : Tm−1, and any
graphs ~H = H0, . . . ,Hm−1 such that Hi ∈ PTi , if the following graph

G meets the name criteria and the graph criterion, it belongs to PT .

G =

!F

!

F

?

!F

?

É
H0 Hm!1

T

!T0 !Tm!1

! !

Gt

Sketch of proof. �e �rst observation is that the translation (A | Γ |
~p ` t : T)† itself meets the name criterion and the graph criteria.
Since ~H ∈ PΓ , the whole graph again meets the graph criteria. We
can always make the whole graph meet the name criteria as well,
by renaming the graphs ~H . Note that some names in the translation
(A | Γ | ~p ` t : T)† are not bound or free, and turns free once we
connect the graphs ~H .

�e proof is by induction on a type derivation, that goes in a sim-
ilar way to a usual proof for the lambda calculus. To prove G ∈ PT ,
we look at an execution on the graphG using the backward reason-
ing (Prop. G.4) and the congruence property (Cor. G.3). �e only
unconventional cases are: the fold operations fold t u, whose proof
is by induction on the number of bases introduced in unfolding the
operation; and graph abstraction AT ′

a (f ,x).t , whose proof relies on
Prop. G.5. �

H Graph-contextual equivalence
Proposition H.1 (Prop. 5.4). Let R be a U-simulation. If σ1Rσ2,
then there exists a token value κ such that the following are equiva-
lent: σ1 →∗ Final (G1,κ) for some composite graph G1, and σ2 →∗

Final (G2,κ) for some composite graph G2.

Proof. We �rst prove (i) implies (ii), by induction on the length
of the sequence σ1 →∗ Final (G1,κ). In the base case, where σ1 =
Final (G1,κ), the condition (II) in Def. 5.3 implies σ2 = Final (G2,κ)
for some composite graph G2. �e inductive case, where σ1 →
σ ′1 →

∗ Final (G1,κ) for some state σ ′1, has two situations. �e
�rst situation is when the condition (I-i) in Def. 5.3 holds. We can
use the induction hypothesis along the transitive closure R+. �e
second situation is when the condition (I-ii) holds and there exists
a sequence σ ′1 →

+ σ2. Because of the determinism of �nal states
(Prop. 3.5), there exists a sequence from the state σ2 to the same
�nal state Final (G1,κ).

Second, we prove (ii) implies (i), also by induction on the length
of the sequence σ2 →∗ Final (G2,κ). In the base case, where σ2 =
Final (G2,κ), the state σ1 either reduces to the same �nal state (the
condition (I-ii)) or is the �nal state itself (the condition (II)). �e
inductive case is where σ2 → σ ′2 →

∗ Final (G2,κ) for some state
σ ′2. �is implies the state σ2 is not �nal, and therefore neither
is the state σ1 (by the condition (II)). Given a possible transition
σ1 → σ ′1, the �rst situation is when there exists a state σ ′′2 such
that σ2 → σ ′′2 and σ ′1 R+ σ ′′2 . �e states σ ′2 and σ ′′2 may not be the
same, but thanks to the determinism (Prop. 3.5), they must result
in the same �nal state Final (G2,κ). We can then use the induction
hypothesis along the transitive closure R+. �e second situation is
when σ ′1 →

+ σ2 holds, and hence σ1 →∗ Final (G2,κ) holds. �

The Geometry of Computation-Graph Abstraction LICS ’18, July 9–12, 2018, Oxford, United Kingdom

H.1 Beta equivalence
�e proof of beta equivalence is via the so-called substitution lemma,
stated below. Unlike normal substitution lemmas used for call-by-
value evaluation, our version does not require the substitute to be a
value. Instead, we require that the substitute is closed and without
cells. Whether the current requirement can be relaxed is an open
question.

Lemma H.2 (Substitution lemma). For derivable judgements A |
Γ,x : T ′,∆ | ~p ` t : T and A′ | − | − ` u : T ′, if x ∈ FV(t),
a judgement A ∪ A′ | Γ,∆ | ~p ` t[u/x] : T is derivable, and the
following graph-contextual equivalence holds:

!

Gt

Gu

T

!!t !!t

x : !T !

!= Gt[u/x]

!!t !!t

T

where graphs Gt , Gu and Gt [u=x] are components of translations,
and !Γt and !∆t are restrictions of !Γ and !∆ to FV(t) (see Fig. 8).

Sketch of proof. Let three relations ≺D , ≺C and ≺? on graphs be
de�ned as in Fig. 12 where the graph G (1,0) does not contain any
links of cell type !

F. �e �rst step is to show each of these three
relations li�s to a U-simulation, and hence implies graph-contextual
equivalence (Prop. 5.5).

�e second step is by induction on the derivationA | Γ,x : T ′,∆ |
~p ` t : T . Because we assume x ∈ FV(t), the only base case is where
t is the variable x . �is case can be proved solely by the relation
≺D . Inductive cases can be shown by combination of the other
relations, i.e. ≺C and ≺?. �

Proposition H.3 (Prop. 5.8). Let v be a value de�ned by the gram-
mar v ::= p | λxT .t | AT

a (f ,x).t . If the type judgement A′ | − |
− ` v : T ′ is derivable, the contextual equivalence A | Γ | ~p `
(λxT ′ .t)v ≈ t[v/x] : T holds.

Sketch of proof. Let ≺β be a relation on graphs, de�ned by

!
@

!

G

!

G

!!

such that: (i) the graph G (1,0) does not contain any links of cell
type !

F, and (ii) there exists a token value κ such that the �nal state
Final (G,κ) on the graph G (1,0) is stable (see Def. C.1). It is easy to
see that the relation ≺β li�s to a U-simulation, with the help of the
congruence property (Cor. E.3). �erefore the relation ≺β implies
graph-contextual equivalence, by Prop. 5.5.

If the bound variable x is not free in t , the proof of the contextual
equivalence A | Γ | ~p ` (λxT ′ .t)v ≈ t[v/x] : T boils down to
the relation ≺β and the garbage collection shown in Prop. 5.7.
Otherwise the proof is combination of the relation ≺β and the
substitution lemma (Lem. H.2). Note that the component Gv of the
translation of the value v indeed satis�es the condition (ii) of the
relation ≺β . �

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Koko Muroya, Steven W. T. Cheung, and Dan R. Ghica

!

G G

D

!D
!

G

C

!

...

!

!T !T

!sup(T) Æ G !sup(T) Æ G

!C

!

??

?

!

!

?

G

?

!

HH

G

!?

Figure 12

	Abstract
	1 TF as a programming language
	2 ITF
	3 Graph-rewriting semantics
	3.1 Graphs and graph states
	3.2 Transitions
	3.3 Translation of terms to graphs
	3.4 Soundness

	4 Programming in ITF
	5 Contextual equivalence

