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Abstract  24 

The toxicity of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) has been associated with their 25 

dissolution or ability to release metal ions while the toxicity of cerium dioxide (CeO2) NPs has been 26 

related to their ability to induce or reduce oxidative stress dependent on their surface redox state. To 27 

examine the underlying biochemical mechanisms, multiple omics technologies were applied to 28 

characterise the responses at the molecular level in cells exposed to various metal-based particles and 29 

their corresponding metal ions. Human lung epithelial carcinoma cells (A549) were exposed to various 30 

Ag, ZnO, and CeO2 NPs, Ag and ZnO micro-sized particles (MPs), Ag ions (Ag+) and zinc ions (Zn2+) over a 31 

24h time course. Molecular responses at exposure levels that caused ~20% cytotoxicity were 32 

characterised by direct infusion mass spectrometry lipidomics and polar metabolomics and by RNAseq 33 

transcriptomics. All Ag, Zn and ZnO exposures resulted in significant metabolic and transcriptional 34 

responses and the great majority of these molecular changes were common to both ionic and NP 35 

exposures and characteristic of metal ion exposure. The low toxicity CeO2 NPs elicited few molecular 36 

changes, showing slight evidence of oxidative stress for only one of the four CeO2 NPs tested. The 37 

multiple omics analyses highlight the main pathways implicated in metal ions-mediated effects. These 38 

results can be used to establish adverse outcome pathways as well as strategies to group nanomaterials 39 

for risk assessment. 40 

 41 
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nanoparticles, nanotoxicology, transcriptomics, metabolomics, lipidomics 43 



3 
 

1. Introduction 44 

Although nanomaterials are increasingly used in many different applications, detailed 45 

knowledge on the underlying biochemical mechanisms by which they may induce harmful 46 

effects on humans and the environment is lacking. Several possible mechanisms of action have 47 

been proposed1. One of the proposed mechanisms of action is related to the release of metal 48 

ions. For both silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), toxicity is often related to 49 

their dissolution or ability to release metal ions2, 3. However, studies comparing the toxicity of 50 

these NPs with that of their ionic forms indicate that the toxicity of the NPs cannot always be 51 

fully explained by the release of metal ions4, 5. Another proposed mechanism of action is via the 52 

induction of oxidative stress through the generation of reactive oxygen species (ROS). Cerium 53 

dioxide (CeO2) NPs may have oxidative as well as anti-oxidative properties, depending on their 54 

redox surface state. The ability to shift valence states from Ce3+ to Ce4+ or from Ce4+ to Ce3+ at 55 

the surface of the NPs is suggested to influence the ability of the CeO2 NPs to either scavenge 56 

or generate reactive oxygen species (ROS), respectively, subsequently increasing or decreasing 57 

the ability to induce oxidative stress6, 7. However, previous studies comparing CeO2 NPs with 58 

different valence states indicate that the mechanisms by which the redox surface status of NPs 59 

influences the toxicity are not yet fully understood7.  60 

 61 

Transcriptomics (gene transcriptional profiling), metabolomics (profiling of polar metabolites), 62 

proteomics (profiling of proteins) and lipidomics (profiling of lipids) are valuable non-hypothesis 63 

driven methods to gain insight into the mechanisms of actions or pathways leading to biological 64 

effects of NPs on living organisms, especially when these approaches are combined into a multi-65 
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omics approach to explore a larger molecular landscape8. Computational modelling can be used 66 

to search for molecular signatures that can contribute to the discovery of molecular key 67 

(initiating) events within adverse outcome pathways (AOPs), i.e. mechanistically based 68 

molecular changes that are related to both an (upstream) molecular initiating event and 69 

(downstream) key events leading to higher levels of phenotypic change9. These signatures can 70 

be used in the screening, ranking and risk assessment of nanomaterials. When designing a 71 

multi-omic study, it is important to generate time-resolved data to be able to follow the 72 

different molecular responses within a pathway leading to a biological response10. Multi-omics 73 

approaches have not yet been widely used within the field of nanotoxicology11, 12.  74 

 75 

In this study, toxicological, analytical and computational methods are combined to 1) identify 76 

the molecular mechanisms by which Ag, ZnO and CeO2 NPs induce toxicity and 2) investigate 77 

the influence of dissolution and redox surface state on the NP toxicity using transcriptomics, 78 

metabolomics and lipidomics. A549 lung epithelial cells were exposed to nano, micro and ionic 79 

forms of Ag, Zn or ZnO and various CeO2 NPs over a 24 hour time course. A549 cells were 80 

selected as they are lung epithelial cells and inhalation is considered an important route of 81 

exposure in occupational settings and for consumers using spray products13, 14. To investigate 82 

the role of dissolution and ionic release on the pathways leading to adverse effects of metal 83 

(oxide) NPs, Ag and ZnO NPs and MPs as well as Ag+ and Zn2+ were studied in parallel. In 84 

addition, CeO2 NPs with different amounts of zirconium (Zr)-doping were studied as a means to 85 

investigate the effect of the redox surface state on the biological response. Zr-doping increases 86 

the Ce3+:Ce4+-ratio and is therefore expected to increase the antioxidant potential of the CeO2 87 
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NPs6, 7. Concentrations of NPs and their equivalent ions that induced approximately 20% 88 

cytotoxicity after 24 hrs exposure were chosen for this study, aiming to achieve a similar level 89 

of cellular damage in all cases. Importantly, temporal responses were investigated by sampling 90 

after different exposure times (1, 6 and 24 hrs) to characterize the development of the 91 

toxicological responses over time.  92 

 93 

 94 

2. Materials and Methods 95 

 96 

2.1 Nanomaterials: selection, dispersion and characterisation 97 

Ag, ZnO and CeO2 NPs were selected because of their expected modes of action that involve 98 

either the release of ions or their ability to generate or scavenge ROS. An overview of the 99 

physicochemical characteristics of the selected materials is given in Table 1. When provided as 100 

powder the micro- and nano-sized particles were dispersed using the previously published 101 

protocol by Jensen et al.15.  For a final stock concentration of 2.56 mg/mL the powder was pre-102 

wetted with 0.5 vol% ethanol and dispersed in water with 0.05% w/v bovine serum albumin 103 

from Sigma-Aldrich Chemie (Zwijndrecht, The Netherlands), and sonicated for 16 minutes on ice 104 

using a 400 Watt Branson Sonifier S-450D set at 10% amplitude with a 3 mm probe (Branson 105 

Ultrasonics Corp., Danbury, CT, USA). When provided as dispersions, the NPs were vortexed for 106 

15 s and sonicated for 5 mins in an ultrasonic bath (Branson CPX2800, 40 kHz, 110W) to re-107 

disperse any possible agglomerates.  108 

 109 
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2.2 Cell culture and exposures 110 

A549 cells were obtained from ATCC (VA, USA). The cells were cultured in tissue culture flasks in 111 

RPMI 1640 medium with Glutamax (Gibco, ThermoFisher Scientific Inc., Landsmeer, the 112 

Netherlands) supplemented with 10% Fetal Bovine Serum (FBS, Greiner BioOne BV, Alphen aan 113 

de Rijn, the Netherlands) and 1% penicillin/streptomycin (Gibco). Cells were cultured at 37oC in 114 

a humidified atmosphere of 5% CO2 in air. The adherent cells were harvested by a short 115 

incubation with 0.5% EDTA trypsin in Ca/Mg free Dulbecco’s Phosphate Buffered Saline (Gibco).  116 

 117 

To determine the EC20 (effective concentration resulting in 20% cytotoxicity) dose-response 118 

studies were performed. A549 cells were harvested and counted 24 hrs before exposure.  119 

Twenty thousand (2x104) cells were seeded in wells of 96-well plates in 100 µL supplemented 120 

RPMI 1640 medium. After 24 hrs incubation a semi-confluent monolayer of cells was obtained 121 

and the cells were exposed to the various materials. Cell survival (i.e. cytotoxicity) was 122 

determined after 24 hrs of exposure by a colorimetric assay using cell proliferation reagent 123 

WST-1 (Roche, Sigma-Aldrich Chemie). All exposures were performed in triplicate. Dose-124 

response modelling and derivations of the EC20 were performed using PROAST software 16 125 

version 60.1. For the four CeO2 NPs and Ag MP no EC20 was obtained, since the highest 126 

concentration tested (128 µg/mL) resulted in less than 20% cytotoxicity. An overview of the 127 

EC20 values and confidence intervals can be found in Electronic Supplementary Information 128 

(ESI) 1. Dissolution of nanoparticles and microparticles in cell culture medium was measured 129 

using ICP-OES (ESI 2).  130 
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Table 1: Physicochemical characteristics of the selected materialsa and cell viability at doses applied in the omics study 131 

Test 
material Batch no Short Description Primary size 

(nm±SD) 

Hydrodynamic size 
(nm±SD) measured 
with disc centrifuge 

Hydrodynamic size 
(nm±SD) measured 

with DLS  

Dose b 
(µg/mL) 

Ion conc. c 
(µg/mL) 

Cell viability 
(%) 

Ag NP-
NM300K 

JRC-Ag<20nm-
NM03002a000855b 

Ag NPs dispersed in H2O with 4% 
polyoxy-ethylene glycerol trioleate 
and 4% Tween 20.mean particle 
size 15 nm 

< 20 n.m. 50 to 70 38.6 0.04 79 

Ag MP SIGMA- AgBulk - 2-
3.5microns- 180215a micro-sized Ag particles powder >1000? n.m. n.m. 128 0.005 95 

AgNO3 - ionic silver nitrate (AgNO3) soluble 
powder n.a. n.a. n.a. 8 5.08 83 

ZnO NP-
NM110 

JRC-ZnOun-NM110-
0801b 

uncoated ZnO NPs powder 
mean particle size 150 nm,  
primary particle size 42 nm 

151 ± 57 193 ± 3 275 ± 4 15 1.41 94 

ZnO NP-
NM111 

JRC-ZnOTECS-NM111-
2995b 

ZnO NPs coated with triethoxy-
caprylsilane powder 
mean particle size 140 nm,  
primary particle size 34 nm 

141 ± 66 n.m.d 253 ± 1 10 0.989 89 

ZnO MP SIGMA – ZnO- 5 
microns- 180215a micro-sized ZnO particles powder 5000 n.m. n.m. 30 1.46 82 

ZnCl2 - ionic zinc chloride (ZnCl2) soluble 
powder n.a.e n.a. n.a. 24.6 11.80 67 

CeO2 NP-A 
 
 

PROM-CeO2-20nm-
batchCE026A-a 

undoped CeO2 NPs dispersed in 
H2O 4.7 ± 1.4 39 172 ± 2 128 <LODf 88 

CeO2 NP-C 
PROM-ZrCeO2-
batchCE026C-a 

27% ZrO2 -doped CeO2 NPs 
dispersed in H2O 4.6 ± 1.4 40 297 ± 4 128 <LOD 89 

CeO2 NP-E 
PROM-ZrCeO2-
batchCE025E-a 

78% ZrO2 doped CeO2 NPs 
dispersed in H2O 4.7 ± 1.4 41 358 ± 6 128 <LOD 89 

CeO2 NP-
NM212 

Umnicore-CeO2-
NM212-RIVM-batch 

uncoated CeO2 NPs powder 
primary particles size 33 nm 28.4 ± 10.4 135 ± 4 213 128 

<LOD 
87 

a CeO2 NP-NM212, ZnO NPNM110, ZnO NP-NM111 and Ag NP-NM300K were characterized within the OECD sponsorship programme 17-19. The other NPs were 132 
characterized within the NanoMILE project (Lynch et al., in preparation); b Exposure doses for the A549 cells, adapted for incubation in the 6-well plates, are 133 
shown in bold figures; c Ion concentration measured for the NPs and MPs in cell culture medium after 24 hrs (see ESI 2 for details) and estimated using the 134 
molecular weight for AgNO3 and ZnCl2; d n.m. = not measured; e n.a. = not applicable; f <LOD = below limit of detection.  135 
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For the omics studies, 8x105 cells per well were seeded in 6-well plates and cultured for 18 hrs, 136 

after which the cells were exposed to the determined EC20 concentrations or to 128 µg/mL for 137 

the particles where EC20 was not reached. Because the cytotoxicity of the A549 cells was higher 138 

in the 6-well plates compared to the 96-well plates, several concentrations were adapted and 139 

applied as presented in Table 1. Omics analyses were carried out on independent replicates 140 

from 14 exposure and control groups. Biological replication was, for polar metabolomics n=6, 141 

lipidomics n=6 and transcriptomics n=4. Different cell plates were exposed for t=1, t=6 and t=24 142 

hrs to monitor changes in the molecular responses over time. At t=24 hrs, additional control 143 

wells were included to measure the actual cytotoxicity and possible interference of the 144 

materials with the viability assay. After exposure, the cells (approximately 2x106 per well) were 145 

quickly washed with PBS (phosphate buffered saline) twice at room temperature after which 146 

the 6-well plates were deep frozen by quenching on liquid nitrogen (-196oC) and stored at -80oC 147 

until extraction for omics evaluation.  148 

 149 

2.3 Omics Analyses 150 

Brief descriptions of the methods used for omics analysis are shown. Full methodological details 151 

are provided in ESI 3. 152 

 153 

2.3.1 Extraction of metabolites and lipids 154 

Cells were harvested then vortexed in methanol:chloroform:water (v/v/v at 1:1:0.9) and the 155 

phases separated by centrifugation. The polar phase was dried in a speed vac concentrator 156 
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(Thermo Savant, Holbrook, NY) for 4 hr. The non-polar phase was dried under a stream of 157 

nitrogen for 5 mins. All dried samples were then frozen at -80°C until analysis.  158 

 159 

2.3.2 Direct infusion mass spectrometry (DIMS)  160 

The DIMS analysis method used was similar to previous studies20, 21. Dried extracts were re-161 

suspended in 80:20 (v/v) methanol:water with 0.25% formic acid (for positive ion mode analysis 162 

of polar extracts) or 80 μL 2:1 methanol:chloroform with 5 mM ammonium acetate (for 163 

negative ion mode analysis of lipids). Samples were analysed (in quadruplicate) using direct 164 

infusion mass spectrometry (Q Exactive, Thermo Fisher Scientific, Germany) in positive ion 165 

mode (for polar metabolomics) or negative ion mode (for lipidomics), utilising a Triversa 166 

nanoelectrospray ion source (Advion Biosciences, Ithaca, NY, USA).  167 

 168 

2.3.3 Metabolomics Data Processing 169 

Mass spectra were recorded using the selected ion monitoring (SIM) stitching approach from 170 

m/z 50-620 (for polar metabolomics) or from m/z 50-1020 (for lipidomics) and then processed 171 

using custom-written Matlab scripts as previously reported22, 23. The resulting matrices of peak 172 

intensities (termed “DIMS dataset”) were probabilistic-quotient normalised (PQN) and 173 

intensity-drift corrected using a Quality Control-Robust Spline Correction (QC-RSC) algorithm. 174 

Finally, the missing values were imputed using the k-nearest neighbours (KNN) algorithm. For 175 

multivariate analysis, generalized log (Glog) transformation of the DIMS dataset was 176 

performed. 177 

 178 
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2.4 RNA seq gene expression profiling 179 

2.4.1 Sequencing 180 

Total RNA was extracted from A549 cells using a micro RNeasy Kit (Qiagen, Crawley, UK). All 181 

RNA libraries were produced using the Biomek FxP (Beckman Coulter A31842) with Ultra 182 

Directional RNA Library Prep Kit (New England Biolabs E7420L) and NEBnext Multiplex Oligos 183 

for Illumina Dual Index Primers (New England Biolabs E7600S), using provided protocols and 184 

500ng of total RNA. Multiplex library clustering and sequencing was performed upon the 185 

HiSeq2500 (Illumina) with HiSeq Rapid Cluster Kit v2 (Illumina GD-402-4002) at 12pM library 186 

concentration with 10% PhiX Control v3 spiked in (Illumina FC-110-3001). The sequencing run 187 

was carried out using HiSeq Rapid SBS Kit v2 (Illumina FC-402-4021). 188 

 189 

2.4.2 RNA seq Data Processing 190 

The binary base call (BCL) files were converted to FASTQ format (containing a biological 191 

sequence and its corresponding quality scores) using Illumina bcl2fastq conversion software 192 

(v1.8.4). Sequences were then trimmed using Trimmomatic (v0.36). Five low quality samples 193 

were identified and removed accordingly. The FASTQ files were aligned to the GENCODE human 194 

transcript sequences (release 25, GRCh38.p7) using Bowtie2 (v2.3.0). The resulting Sequence 195 

Alignment Map (SAM) data were converted into Browser Extensible Data (BED) format using 196 

SAMtools (v1.3.1) and bamToBed (v2.19.1). Finally, the RNA read counts were extracted from 197 

the BED files with a Python script. To provide gene-level analysis, the RNA reads were collapsed 198 

to the counts of their coding genes. The gene annotation information was retrieved from the 199 

Ensembl database (release 87). 200 
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2.5 Omics Data Analysis 201 

Putative metabolite annotations were added using MI-Pack24. ANOVA, t-tests and principal 202 

components analyses (PCA) were performed in Genespring (v7.3.1. Agilent) using multiple 203 

testing corrections25. DESeq226 was used for differential gene expression analysis with a q<0.05 204 

cut-off. Combined gene and metabolite pathway over-representation analyses were performed 205 

with IMPaLA27, using gene identifiers and Human Metabolite Database (HMDB) identifiers 28 for 206 

each peak identified as significantly altered as input lists. Comparative pathway analyses were 207 

performed with Ingenuity Pathway Analysis (IPA; Qiagen) on combined sets of genes, lipids and 208 

polar metabolite identifiers. Raw transcriptomic data and experimental details are archived at 209 

ArrayExpress (accession number: E-MTAB-5734). 210 

 211 

 212 

3. Results 213 

In total, 259 polar metabolomic, 250 lipidomic and 156 transcriptomic samples passed the 214 

quality control metrics. Four RNAseq samples were removed prior to further analysis due to 215 

anomalously low counts. The full results of univariate analyses comparing each exposure group 216 

with its time-matched control group are shown in ESI 4. Comparisons were made with time-217 

matched controls since gene expression and metabolite profiles varied significantly with time 218 

between the control groups sampled at 1h, 6h and 24h. Figure 1 illustrates the overall numbers 219 

of significantly changing (q<0.05) genes and metabolites in comparison with time-matched 220 

controls. The numbers of molecular (transcript and metabolic) changes at 24h correlated 221 

significantly with cytotoxicity (Table 1) for all silver (Ag MP, Ag NP and Ag+) exposures (r2=0.98; 222 
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p<0.01) and all zinc (ZnO MP, ZnO NP and Zn2+) exposures (r2=0.85; p<0.03) but not for the CeO2 223 

NP exposures. All silver exposures resulted in significantly more changes than CeO2 exposures, 224 

and all zinc exposures led to the most numerous alterations. Silver exposures ranked from the 225 

largest to the smallest effect in the order Ag+, Ag NP and then Ag MP, whereas zinc exposures 226 

ranked highest for Zn2+, followed by ZnO MP, ZnO NP-NM110 and ZnO NP-NM111. These rank 227 

orders matched the orders of ionic concentrations determined by dissolution analysis (Table 1). 228 

CeO2 NP exposures resulted in few gene expression or metabolic changes, and ionic dissolution 229 

was below the limit of detection. Of these few changes, CeO2 NP-A (undoped CeO2 NPs) was the 230 

only CeO2 NP that increased metabolites putatively identified as cysteine at 1 hr (3.5 fold; 231 

q<0.032) and γ-glutamylcysteine at 6h (1.5 fold; q<0.02). 232 

 233 

 PCA scores plots of transcriptomic and polar metabolomic data after 6h of exposure are shown 234 

in Figure 2, with PCAs for all other timepoints, as well as for the lipidomics data, shown in ESI 5. 235 

For silver there was grouping of replicate samples and separation from the controls was 236 

apparent for all exposure groups. For zinc, replicate samples grouped tightly and clearly 237 

diverged from the control group along PC1, with the degree of divergence corresponding with 238 

the number of molecular changes outlined above (see also Figure 1). There was little or no 239 

apparent grouping of the CeO2 NP samples or divergence from the control group. 240 

IMPaLA pathway over-representation analysis results are shown in full in ESI 6, while over-241 

representation of selected pathways is illustrated in Figure 3. All silver and zinc exposures at 6h 242 

and 24h resulted in significant enrichment of the terms ‘Response to metal ions’ and 243 

‘Metallothioneins bind metals’. Terms relating to the heat shock response were enriched in the 244 
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same groups at 6h but not at 24h, except for the Ag+ and Zn2+ exposures where they persisted. 245 

Other enriched terms, including ‘Translation’, ‘Nonsense-Mediated Decay’, ‘Apoptosis’ and 246 

‘Immune System’ were highlighted with all zinc exposures and either Ag+ or Ag NP exposure at 247 

6h and sometimes also at 24 h. Zn2+, ZnO MP and ZnO NP-NM110 repressed molecules related 248 

to DNA repair. CeO2 exposures elicited few molecular changes and showed no enriched 249 

pathway annotations, apart from ‘HIF-1 alpha transcription network’ induced at 24h with CeO2 250 

NM212 and ‘ID signalling pathway’ repressed at 6 and 24h with CeO2 NP-A,- C and E.  251 

 252 

Ingenuity Pathway Analysis (IPA) Comparison Analyses were used to compare molecular 253 

pathway responses to the various silver and zinc exposures. Figure 4 shows the top 20 254 

canonical pathways and the top 20 ‘diseases and bio-functions’ associated with the silver and 255 

zinc exposures, ordered by function or process from IPA’s Pathway Activity Analysis function, 256 

representing predicted pathway activation or inhibition. Particularly prominent for silver was 257 

the Nrf2-mediated oxidative stress response pathway, predicted to be activated by Ag NP at 6h 258 

and by Ag+ at all timepoints. The Nrf2 pathway was also predicted to be activated by all Zn 259 

exposures at 6h, but repressed at 24h. The canonical pathway comparison of silver exposures 260 

was otherwise dominated by modulation of several molecular signalling pathways, particularly 261 

with Ag+ at 6h. All Zn exposures resulted in very similar profiles of predicted pathway activation, 262 

highlighting co-ordinated induction of signalling pathways at 6h, followed by repression at 24h, 263 

except for Zn2+ for which these pathways were predicted to still be activated at 24h.  Data from 264 

CeO2 NP exposures were not used due to the low numbers of responsive molecules. 265 
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To identify candidate nano-specific responses, t-tests were performed comparing, for silver, the 266 

Ag NP group versus respectively the control, Ag+ and Ag MP groups. Molecules were only 267 

selected if statistically significantly (FDR<0.05) changed in all comparisons. A similar procedure 268 

was followed for ZnO NP-NM110 and ZnO NP-NM111. The results of these comparisons and 269 

IMPaLA pathway analyses using these data are shown in Figure 5 and ESI 7. For Ag NPs, 17.6% 270 

of transcriptional and 22% of metabolic changes were assessed as candidate nano-specific. The 271 

induced molecules associated with several pathways, particularly those concerned with amino 272 

acid metabolism, while the decreasing molecules associated with glycolysis and galactose 273 

metabolism and reduced transcription relating to phase II xenobiotic metabolism. ZnO NP-274 

NM110 elicited only 12 (0.15%) candidate nano-specific changes and ZnO NP-NM111 elicited 22 275 

(0.77%), mostly reduction in metabolites associated with galactose metabolism. 276 

 277 

 278 

4. Discussion 279 

In our study molecular changes were sought that were unique to the nanomaterial exposures, 280 

not appearing in response to the ionic or micro-sized particle exposures at any timepoint. These 281 

were termed ‘candidate nano-specific responses’ as only three timepoints were examined for 282 

each exposure, raising the possibility of these responses having occurred at an unexamined 283 

timepoint in the non-NP exposures. For silver there was evidence for candidate nano-specific 284 

changes supported by both the transcriptomics and metabolomics data (Figure 5 and ESI 7). 285 

These were related to increases in amino-acid transport, reduced glycolysis and galactose 286 

metabolism and reduced glucuronidation and xenobiotic metabolism. Potentially these changes 287 
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could result in lower capacity to detoxify organic xenobiotics and it could be instructive to 288 

compare modulation of organic xenobiotic toxicity in co-exposures with Ag NP or Ag+. However, 289 

since no dispersant control (for Ag NP-NM300K) was included in the omics study, some of these 290 

nano-specific changes may be caused by the dispersant (water with 4% polyoxyethylene 291 

glycerol trioleate and 4% Tween 20), instead of the Ag NPs. Although previous studies with the 292 

same Ag NPs and its dispersant indicated that the dispersant was not cytotoxic to A549 cells up 293 

to 256 µg/mL, 29, 30 DNA damage was observed in the absence of cytotoxicity 31 in A549 cells. 294 

For zinc there was very little evidence of candidate nano-specific responses, limited to 295 

metabolomics changes related in pathway analyses to a reduction in galactose metabolism. 296 

Although candidate nano-specific responses were found for Ag NPs, by far the majority (>78%) 297 

of responses to the Ag NPs were also seen with Ag+ and Ag MP, as was found by NMR 298 

metabolomics in HaCaT cells32, implying that nano-specific toxicity is likely a minor component 299 

compared with that elicited by silver ions.  300 

 301 

All silver and zinc exposures induced transcription of genes responsive to metal ions at 6h and 302 

24h. Metallothionein induction was particularly notable, with MT1A, MT1B, MT1F, MT1G, 303 

MT1X, and MT2A highly and significantly induced with all Ag and Zn exposures but MT1H and 304 

MT1E induced only with Zn. Several of these MT transcript inductions exceeded 1000-fold, 305 

including MT1B with Ag NPs and Ag+ at 6h and MT1H with ZnO NM-110, Zn2+ and Zn MP at 6h 306 

and 24h. Additionally the zinc transporter SLC30A1 (ZnT-1), responsible for export of zinc ions, 307 

was induced by both Zn and Ag exposures. Ag ions have been shown to release Zn ions in 308 

fibroblasts33.  309 
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Metallothioneins have long been considered biomarkers for metal ion exposure and oxidative 310 

stress 34 and metal-based NP studies frequently report their induction35, 36. Metallothionein 311 

induction may be viewed as an adaptive response enabling cells to bind and sequester metal 312 

ions and for Ag MP exposure this response appeared effective, resulting in only 5% cytotoxicity 313 

(Table 1) and few significant alterations in other biological pathways (Figure 3; ESI 6). However 314 

with the other Ag and Zn exposures resulting in higher cytotoxicity, it was apparent that this 315 

capacity was exceeded, leading to stress responses and cellular damage. The heat shock 316 

response was activated in all 6h and 24h Zn exposures and with Ag2+ and Ag NPs; transcripts 317 

encoding the molecular chaperones HSPA1A, HSPA1L, HSPA6, HSPA7, HSPB1, HSPH1, 318 

HSP90AA1, HSP90AB1, DNAJB1 and DNAJB6 were induced, implying a response to protein 319 

damage.  320 

 321 

Oxidative stress is a well-established outcome following NP exposure, including Ag, ZnO and 322 

CeO2, NPs37, 38. IPA highlighted the Nrf2 mediated oxidative stress response as activated by Ag+ 323 

and all 6h Zn exposures. Nrf-2 (NFE2L2) transcript was significantly but not highly induced (<1.6-324 

fold) with Zn2+ and Zn MP and several key antioxidant enzyme transcripts were either mildly but 325 

significantly induced (SOD1, TXN, GLRX, GCLM, GSS) at 6h or mildly repressed (CAT, GCLC, GSR, 326 

PRDX1). Aldehyde oxidase AOX1 was induced over 2-fold, as were heme oxygenase (HMOX1), 327 

several chaperones mentioned above and transcription factors FOS, JUN and ATF4. 328 

Transcription of KEAP1, a repressor of Nrf-2 signalling, was significantly repressed with ZnO 329 

NM-110, Zn2+ and Zn MP at 6h. Nrf2 pathway induction has previously been found for Ag NPs39 330 

and for ionic Ag and Zn40. Several polar metabolite peaks that were putatively annotated as 331 
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glutathione (GSH) followed a similar profile of a significant increase with Ag+ at 1h but a 332 

significant decrease with all zinc exposures at 6h and 24h. GSH is the major intracellular 333 

antioxidant and its depletion implies vulnerability to further oxidative damage. GSH has 334 

previously been found to decrease with ZnO NP treatment in mouse livers and kidneys41, 42.  335 

 336 

A metabolite peak putatively annotated as cysteine was particularly highly increased with all Ag 337 

exposures, and amino acid concentrations were significantly altered with most exposures. This 338 

may represent an adaptive reorganisation of amino acid synthesis and transport. Expression of 339 

transcripts involved in translation, including those encoding ribosomal subunits, was increased 340 

with Ag NP, ZnO MP and Zn2+ exposure. Interestingly nonsense mediated decay pathway 341 

transcripts were induced in the same exposures, implying an increase in mRNAs with premature 342 

stop codons. Potentially this could be due to an increased rate of DNA damage, as transcription 343 

of DNA repair genes was reduced, including those of the base excision repair, mismatch repair, 344 

nucleotide excision repair and double-strand break repair pathways, particularly with Zn2+, Zn 345 

MP and ZnO NP-NM110. DNA damage has previously been described for Ag+, Ag NPs43, 44, Zn2+ 346 

and Zn NPs45. Transcription of the stress-inducible AP-1 transcription factor genes was 347 

increased by Zn2+ and ZnO NP exposure, and by Ag+, including induction of FOS, FOSB, FOSL1, 348 

JUN and JUNB. Cell cycle gene transcription was significantly repressed with both Ag and Zn 349 

exposures. These effects have previously been seen with Ag NPs43, 46, 47. There was an induction 350 

of transcription associated with apoptosis and with immune signalling with Ag+ and all Zn 351 

exposures at 6h, persisting to 24h with Zn2+. Both ionic and NP Ag and Zn can increase 352 

apoptosis in A549 cells48, 49. By 24h Zn2+ exposure, both transcripts and metabolites of the TCA 353 
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cycle were significantly reduced, indicating major disruption of cellular respiration pathways, 354 

consistent with the bioenergetic disruption reported for ZnO NP exposure of A549 cells50.  355 

 356 

These molecular alterations illustrate a progression from adaptive changes, such as 357 

metallothionein induction, to depletion of antioxidants, such as glutathione, repressed DNA 358 

repair and induction of apoptosis. Several of these molecular changes have been proposed as 359 

key events (KE) in the Adverse Outcome Pathway (AOP) paradigm51. Examples include increase 360 

in oxidative stress, activation of Nrf-2, depletion of glutathione, repression of DNA repair and 361 

increased apoptosis. It is however apparent that many additional pathways, genes and 362 

metabolites were altered during the exposures to Ag and Zn (ESI 5 and 6) and that using a cell 363 

line model one can only examine those events leading up to cell death.  364 

 365 

For ZnO NPs and MPs, responses indicative of damage tended to peak at 6h, with a reduction 366 

by 24h, for example acute phase signalling (Figure 5), while with Zn2+ these changes persisted 367 

to 24h, consistent with the greater cytotoxicity caused by this treatment. The responses to Ag 368 

and Zn clearly demonstrated the importance of measuring molecular responses over time in 369 

order to robustly assess molecular toxicity. At 1h there were relatively few molecular pathway 370 

changes (Figure 3), at 6h molecular responses indicative of toxicity had developed, but at 24h 371 

for several exposures (Ag+, Ag MP, ZnO NP-NM110, ZnO NP-NM111 and Zn MP) the responses 372 

had declined, or even reversed (Figure 4) whereas these persisted with the more cytotoxic 373 

ZnCl2 exposure. This time-dependence of molecular response can be explained by adaptive 374 

changes, such as induction of metallothioneins that ameliorate cellular damage by sequestering 375 
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the metal ions, as illustrated by the Ag MP exposure. There may also be a time dependency in 376 

exposure to the metal ions, due to different uptake rates and dissolution kinetics of the 377 

different micro- and nano-sized particles resulting in different intracellular concentrations, or 378 

different intracellular compartmentalisation of the metal ions. In A549 cells and phagocytic 379 

murine macrophages, Ag NPs were associated with lysosomes52, whereas ionic Ag+ was bound 380 

to metallothioneins53. ZnO NPs showed intracellular dissolution in lysosomes of macrophages54 381 

and extracellular dissolution with only ions entering hepatocytes55. Additionally NP dissolution 382 

can also occur within the NP preparations56 and in cell culture medium (ESI 2). The dynamic 383 

molecular responses detected could therefore reflect changing intracellular doses of metal ions. 384 

For future studies it is therefore recommended to obtain additional supporting data to estimate 385 

the intracellular doses, including time-resolved data on the bioavailable ion concentrations 386 

after exposure to the salts and cellular uptake rates of MPs, NPs and ions. 387 

 388 

CeO2 NPs led to relatively few significant alterations of transcription or metabolism compared 389 

with silver and zinc, reflecting both a decrease in molecular alterations with increasing EC20 390 

concentrations (effective concentrations resulting in 20% cytotoxicity) and their low solubility 391 

(Table 1). A similar mild metabolomic and transcriptomic response to CeO2 NPs was found by 392 

Taylor et al.12 in algae. Among the few significant alterations induced by the CeO2 NPs, only 393 

CeO2 NP-A (undoped CeO2 NP) exposure significantly increased metabolites putatively 394 

identified as cysteine and γ-glutamylcysteine, potentially representing an adaptive response to 395 

oxidative stress by increased uptake and synthesis of these glutathione precursors. Because 396 

these changes were not observed after exposure to CeO2 NP-C (27% Zr-doped CeO2 NPs) or 397 
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CeO2 NP–E (78% Zr-doped CeO2 NPs), this finding might indicate that modification of the 398 

surface redox state by Zr-doping increases the ability to scavenge ROS, resulting in a decreased 399 

induction of oxidative stress of the CeO2 NPs. Since all CeO2 NPs showed very low cytotoxicity and 400 

exposure to only one of the four CeO2 NPs showed any slight evidence of molecular response to 401 

oxidative stress, the actual occurrence of oxidative stress, ROS or damage related to ROS was not 402 

further investigated. 403 

 404 

CeO2 NP-A, -C and -E exposures all resulted in repression of ID family gene expression (Figure 405 

4). Verstraelen et al. 57 similarly found repression of ID2 transcription in A549 cells treated with 406 

CeO2 NPs. The ID, or Inhibitor of DNA binding, genes are binding partners of bHLH transcription 407 

factors and are involved in regulation of a wide variety of biological processes, including 408 

metastasis and vascularisation58. CeO2 NP-NM212 elicited a different molecular response from 409 

the other CeO2 NPs, activating genes of the HIF1-alpha transcription factor network (Figure 4) 410 

by 24h. This response was also shared by the 6h Ag and Zn exposures, with additional induction 411 

of heme oxygenase (HMOX1). HIF1-alpha responsive genes are also commonly induced by 412 

several metal ions and particles59 and in cancer cells by ROS60, leading to angiogenesis via VEGF. 413 

This finding is consistent with CeO2 and Ag NPs inducing angiogenesis61, 62.  414 

 415 

 416 

5. Conclusions 417 

A time series experiment was used to determine the similarity of A549 cellular responses 418 

following exposure to NPs and ions, as focussing on a single timepoint would have led to 419 
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erroneous conclusions in the absence of internal dose measurements. The majority of 420 

molecular responses of A549 cells to the Ag and Zn NPs, such as metallothionein induction, 421 

depletion of antioxidants, repressed DNA repair and induction of apoptosis, are similar to their 422 

responses to Ag and Zn ions, respectively, confirming that the modes of action of these NPs are 423 

largely mediated by dissolved metal ions rather than by the physical aspects of the NPs. Low 424 

toxicity CeO2 NPs elicited only minor molecular responses. Of the four CeO2 NPs tested, only 425 

CeO2 NP-A elicited any molecular changes indicative of oxidative stress. 426 

427 
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Figure Legend 614 

Figure 1: Number of genes significantly differentially expressed (black bars) and metabolite 615 

peaks significantly altered in concentration (clear bars) (q<0.05) in A549 cells after silver, zinc, or 616 

CeO2 NPs, MPs and/or ionic exposures for 1, 6 or 24 h.  617 

 618 

Figure 2: Principal components analysis scores plots of transcriptomics and metabolomics data 619 

from A549 cells exposed to silver, zinc, or CeO2 for 6 hrs. For silver, control samples are shown 620 

in black, Ag NP treated in red, Ag MP in cyan, Ag+ in blue. For zinc, control samples are shown in 621 

black, ZnO NP-NM110 in red, ZnO NP-NM111 in cyan, Zn2+ in blue and ZnO MP in pink. For 622 

CeO2, control samples are shown in black, CeO2 NP-A treated in red, CeO2 NP-C in cyan, CeO2 623 

NP-E in blue and CeO2 NP-NM212 in pink. PCAs for all timepoints are shown in ESI 5.  624 

 625 

Figure 3: Heatmap illustrating selected pathway annotation terms significantly differentially 626 

represented (q<0.05) by IMPaLA among genes and metabolites induced (red) or repressed 627 

(green) in comparison with time matched control groups after exposure of A549 cells to silver, 628 

zinc, or CeO2 (NPs, MPs or ions) for 1, 6 or 24h. Full data are shown in ESI 6.  629 

 630 

Figure 4: The top 20 canonical pathways and the top 20 ‘diseases and bio-functions’ associated 631 

with the silver and zinc exposures in A549 cells, ordered by function or process from Ingenuity 632 

Pathway Analysis (IPA) Pathway Activity Analysis function, representing predicted pathway 633 

activation (orange) or inhibition (blue) with maximum colour intensity set to z-score ≥2. 634 

 635 



27 
 

Figure 5: Heatmap illustrating selected pathway annotation terms significantly differentially 636 

represented (q<0.05) by IMPaLA among candidate nano-specific transcripts and metabolites 637 

induced (red) or repressed (green) in comparison with control, microparticle and ionic 638 

exposures over all timepoints. Full data are shown in ESI 7. 639 
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