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Abstract 

As the world leader in CO2 emissions, China is a key focus for climate change 

mitigation. In this paper, we conducted a cross-province comparison of CO2 emission 

trends in China from 2006 to 2012. We determined effects of CO2 emission factor 

(EMF), energy mix change (EMX), potential energy intensity change (PEI), industrial 

structure (STR), economic activity (EAT), technological change (BPC) and energy 

efficiency change (EC) as underlying forces of CO2 emission changes with 

production-based decomposition. Compared to other production-theory 

decomposition analyses (PDA), the method used in this paper can overcome the 

weakness of PDA on the measurement of structural changes and energy mix effect. 

The results provided strong evidence that EAT is the main driver behind rising 

emissions, while changes in PEI, EMX and EC have led to CO2 emission reductions 

in most provinces/municipalities in China. In particular, we introduced the global 

benchmark technology to establish the relationship between CO2 emissions and 

energy use technology. The potential CO2 reductions in China were further measured 

under the scenarios of contemporaneous technology and global technology. The 

principal empirical implication is that the promotion of energy conservation 

technology and reductions in inter-regional technological disparity would be effective 

in reducing CO2 emissions in technically inefficient regions. 

Keywords: Decomposition; Shephard distance function; Production-theory 

decomposition analysis; Data envelopment analysis. 
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Highlights 

 A combination of IDA and PDA is developed to investigate CO2 emissions in 

China. 

 Economic activity is the main driver behind China’s rising CO2 emissions. 

 The less developed regions show large potential reduction of CO2 emissions.   
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1. Introduction 1 

As the world leader in CO2 emissions from fossil fuel combustion, China has 2 

attracted worldwide attention with its accelerating CO2 emissions over the past three 3 

decades. Considering its critical role in global CO2 emissions, China becomes a key 4 

focus for effects in emission mitigations. In this context, a lot of efforts have been 5 

made to identify and quantify the underlying driving forces that affect CO2 emission 6 

changes in China. In literature, factors that influence changes of China’s CO2 7 

emissions have been widely discussed in previous studies ([1]; [2]; [3]; [4]; [5]). 8 

However, CO2 emission trends among different provinces in China have been less 9 

systematically investigated ([6]). 10 

It should be noted that significant diversity exists among eastern, central and 11 

western areas in China ([7]). For example, indicators such as per capita GDP, carbon 12 

emission intensity and energy efficiency differ greatly across regions in China ([8]), 13 

and the differences are most prominent between the developed regions in eastern area 14 

and the less developed regions in western area of China. In order to control 15 

greenhouse gas emissions, the Chinese government established a set of carbon 16 

emission reduction targets for different regions in the 11th and 12th Five-Year Plans 17 

(FYP) for national economic and social development. However, how to reasonably 18 

allocate regional CO2 reduction targets based on the actual situations and reduction 19 

potential of various regions is still worthy of discussion ([9]). Therefore, 20 

understanding the key drivers behind China’s growing CO2 emissions and developing 21 

regional emission reduction policies in China have theoretical and practical values for 22 

1 
 



decision makers. 23 

CO2 emissions in China have attracted increasing attentions in light of China’s 24 

decisive role in the global carbon emission mitigation. Technically, CO2 emission 25 

changes can be analyzed by attributing the changes in CO2 emissions into several 26 

pre-defined factors by adopting decomposition analysis ([10]). In literature, the 27 

structural decomposition analysis (SDA) and the index decomposition analysis (IDA) 28 

are the most commonly used decomposition techniques ([11]; [12]; [13]; [14]; [15]; 29 

[16]; [17]; [18]; [19]; [20])1. In terms of data and methodologies, the SDA uses the 30 

input–output framework and data, while the IDA uses only sector level data to 31 

decompose changes in indicators. Therefore, compared to SDA, the method of IDA is 32 

more flexible, easy to use, and has relatively lower data requirements for empirical 33 

models. As a result, IDA has been widely used to decompose CO2 emissions in 34 

different countries and various time periods ([21]; [22]; [23]; [24]; [25]). Under the 35 

framework of IDA, factors such as the carbon intensity of energy use, energy 36 

intensity, structural change and economic activity were identified as the major factors 37 

affecting CO2 emissions, and the decline in energy intensity was identified as the 38 

driving force for the considerable decrease in China’s CO2 emissions ([26]; [27]; 39 

[28]). However, IDA could not provide a quantitive analysis for the impacts of 40 

technological change effect, substitutions between energy and other inputs (i.e., 41 

capital and labor), and the effect of technical efficiency change on sectoral intensity 42 

change, because it simply regards the energy/emission intensity change as the effect 43 

1 A useful summary of the various methods of IDA can be found in Ang and Zhang (2000). In addition, Ang et al. 
(2010) also provides a systematic review on the existing IDA-based energy efficiency accounting systems. 
Additionally, Hoekstra and Van den Bergh (2003) provided a comparison between SDA and IDA. 
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of production technology ([29]; [30]). Therefore, the method of IDA is difficult to 44 

provide reasonable explanations on the mechanism of sectoral energy/emission 45 

intensity changes based on economic theories ([31]; [32] ). 46 

More recently, in order to analyze the impact of production technology, 47 

decomposition analysis was improved and conducted within the production theory 48 

framework. [33] proposed production-theoretical decomposition analysis (PDA) 49 

based on Shephard output distance functions, which can be computed using data 50 

envelopment analysis (DEA) techniques. Empirical analyses of CO2 emission changes 51 

based on the method of PDA include [34]; [35]; [36]; [37]; [38], etc. The proposed 52 

methodologies can assess the effects of “technological change” and “technical 53 

efficiency change”. The former measures the effect of best practice technology, and 54 

the latter measures the effect of changes in production efficiency. PDA provides 55 

detailed information about the influence of production technologies, which could be 56 

used to evaluate the degree of “energy efficiency paradox” ([36]). However, its 57 

measurement on energy mix effect and the industrial structure effect, which are 58 

regarded as important factors of emission change, is possibly inconsistent with reality. 59 

For example, when industrial structure transforms from energy intensive industries to 60 

less energy intensive industries, it is expected that the industrial structure change 61 

would reduce an economy’s overall energy intensity. However, results from PDA 62 

indicates that such an industrial structure transformation has a negative effect on 63 

energy intensity reduction ([39]). PDA has a similar problem for the measurement of 64 

energy mix effect. When energy consumption structure has been improved, it is 65 
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expected that such improvement would promote energy intensity reduction or at least 66 

would not has a negative impact on energy intensity reduction. However, results from 67 

PDA demonstrate the inconsistency. 68 

The main reason for the above problems of PDA is that the structural components 69 

in output distance function are symmetrical. In other words, different properties of 70 

industries and energies cannot be reflected in the PDA model. Specifically, the lower 71 

energy consumption feature of the tertiary industry sector compared to the second 72 

industry sector is not reflected in the distance function. Therefore, the PDA model 73 

cannot provide information on the real effect of industrial structure transformation. In 74 

the PDA model, the output proportions of three sectors (primary, secondary, and 75 

tertiary) are all included in the output distance functions. The industrial structure was 76 

assumed to change as follows: the share of primary industry remained constant, the 77 

share of secondary industry declined, while the share of tertiary increased 78 

correspondingly. On one hand, the declined proportion of secondary industry in 79 

output would make the value of output distance function smaller; on the other hand, 80 

the increased proportion of tertiary industry in output would make the value of output 81 

distance function bigger. If the effect of the latter were bigger than the former, the 82 

industrial structure transformation would have a negative impact on energy intensity 83 

reduction, which is contrary to fact. 84 

Based on the above analysis, we combined the advantages of IDA and PDA to 85 

examine the influencing factors of China’s CO2 emission changes and compare CO2 86 

emissions among provinces in China. Specifically, we establish the decomposition 87 
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model based on the Shephard energy distance function to disaggregate the provincial 88 

level changes of CO2 emissions in China during 2006-2012, and then introduce the 89 

global benchmark technology to establish the relationship between CO2 emissions and 90 

energy use technologies. The central idea of the combination is introducing Shephard 91 

energy distance functions which captures the impacts from production technology in 92 

the expression of the aggregate CO2 emissions, and then conducting IDA (e.g., LMDI) 93 

for this equation to identify the influencing factors driving change in the aggregate 94 

CO2 emissions. In this sense, PDA and IDA are embodied together to provide the 95 

mechanism of CO2 emission change. The contributions of this paper lie in the 96 

following aspects: First, the decomposition method used in this paper can overcome 97 

the weakness of PDA on the measurement of structural changes, and thus can produce 98 

more reasonable results; Second, the proposed approach has been applied in the field 99 

of investigating CO2 emission trends among provinces in China; Third, from the 100 

methodological perspective, this paper specifies a different production technology 101 

setting which could be extended to other application areas. 102 

The remainder of this article is organized as follows: Section 2 describes 103 

methodology and data; Section 3 presents and discusses the empirical results; Section 104 

4 is conclusions and implications. 105 

2. Methodology and Data 106 

2.1 The decomposition model  107 

The CO2 emissions of country Nn ,...,1=  can be expressed as:  108 
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where n
tijE ,  denotes the consumption of the type-j energy in the sub-sector i of 110 

country n at the period t, and n
tijC ,  represents the CO2 emissions from n

tijE , ; )(i ⋅gD  111 

and )(c
i ⋅D  are the Shepard energy distance functions defined on the 112 

contemporaneous benchmark technology and the global benchmark technology, 113 

respectively. Specifically, the contemporaneous production technology for the 114 

industrial sub-sector Ii ,...,1=  at time period Tt ,...,1=  can be expressed as: 115 

{ tititititi ECYET ,,,,
c
, :),,(=  can produce }),( ,, titi CY            (2) 116 

The global benchmark technology for the industrial sub-sector i is defined as 117 

([40] and [41]): 118 

}...{ c
,

c
2,

c
1,

g
Tiiii TTTT ∪∪∪=                                 (3) 119 

According to [42], the Shepard energy distance function relative to the 120 

contemporaneous benchmark technology and the global benchmark technology can be 121 

described as Eq. (4) and Eq. (5), respectively. 122 

}),,/(:sup{),,( ,,,,,,,,
c
tititititititi

c
ti TCYECYED ∈= θθ                (4) 123 

}),,/(:sup{),,( ,,,,,,
g

ititititititi
g
i TCYECYED ∈= θθ                (5) 124 

Using DEA-type linear programming technique, the Shepard energy distance 125 

function can be estimated through the following optimization problems. 126 
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Using the LMDI method, the change in CO2 emissions between time period t and 129 

time period τ  can be decomposed as: 130 

ECBPCEATSTRPEIEMXEMF
n
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),( ⋅⋅L is a weighting scheme called logarithmic mean weight which is expressed 139 

as follows: 140 
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The decomposition model presented above is a modification of [36]. Unlike [36], 142 

we introduce the global benchmark technology to establish the relationship between 143 

CO2 emissions and energy use technology. Our formulation avoids the introduction of 144 

the cross-period distance functions so that it can be free from the infeasibility issue. 145 

Eq. (8) shows that the change in CO2 emissions over times can be decomposed 146 

into seven components. The first component DEMF is the CO2 emission factor effect. 147 

The second component DEMX refers to the effect of energy mix change. The third 148 

component DPEI captures the energy intensity change under the scenario without 149 

energy inefficiency relative to the global technology. Following [42] and [36], we 150 

term this component as the potential energy intensity change. The fourth component 151 

DSTR is industrial structure effect, accounting for the impact from output composition 152 

change. The fifth component DEAT refers to the impact from output scale change 153 

which is usually regarded as economic activity effect. 154 
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the value of this ratio means technological change. Thus, the sixth component DBPC 159 

which is the weighting sum of the reciprocal of 
),,(/),,(
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n
ti

n
ti

n
ti

g
i

n
ti

n
ti

n
ti

c
i

n
i

n
i

n
i

g
i

n
i

n
i

n
i

c
i

CYEDCYED
CYEDCYED ττττττ  160 

describes the impact from technological change in energy use. ( )n
ti

n
ti

n
ti

c
ti CYED ,,,, ,,/1  is 161 

the ratio of the minimum energy input (under the contemporaneous technology) to the 162 

real energy input, which is usually defined as energy use efficiency (denoted as EC). 163 

The last component DEC is the weighting sum of the reciprocal of EC , thereby 164 

indicating the effect of energy efficiency change. 165 

In summary, the change in CO2 emissions over time can be attributed into seven 166 

indexes: emission factor change, energy mix change, potential energy intensity 167 

change, output structure change, economic activity effect, the effect of energy 168 

technological change and the effect of energy efficiency change. For any one of them, 169 

it will contribute to the increase of (decline in) CO2 emissions if its value is greater 170 

(less) than one. 171 

2.2 Data 172 

A panel data set including China’s 30 provinces/municipalities during the period 173 

of 2006-2012 is collected for the empirical study1. The whole economy for each 174 

province is divided into six subsectors: “agriculture”, “industry”, “construction”, 175 

“transport, storage and post”, “wholesale, retail, hotels and catering services”, and 176 

“financial intermediation, real estate and other tertiary industries”. The output variable 177 

is represented by value-added of the economic subsector. Data on value-added are 178 

1 Due to data unavailability, Tibet is not included in this study. 
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collected from China Premium Database1. Data on different types of energy are 179 

obtained from China Energy Statistical Yearbook (CESY)2. Data on energy-related 180 

CO2 emissions are estimated by the method described in [43]. In addition, our 181 

calculation of energy-related CO2 emissions also includes the indirect emissions from 182 

heat and power consumption of each subsector. Electricity emission factor is obtained 183 

by dividing energy-related CO2 emissions from electricity generation by the power 184 

output. Heat emission factor is obtained by dividing energy-related CO2 emissions 185 

from heat generation by the heat output. Data in value terms are measured at the 2005 186 

real 108 Chinese Yuan (CNY). 187 

3. Results and discussion 188 

3.1 Empirical results of decomposition 189 

Table 1 reports changes in China’s CO2 emissions and contributions to CO2 190 

emission changes from effects of CO2 emission factor (EMF), energy mix change 191 

(EMX), potential energy intensity change (PEI), industrial structure (STR), economic 192 

activity (EAT), technological change (BPC) and energy efficiency change (EC) in 193 

different provinces in China during 2006-2012. 194 

As shown in column (1), we can see that CO2 emissions in all 195 

provinces/municipalities in China increased during 2006-2012 except for Beijing. As 196 

a political and economic center of China, Beijing is one of the world’s most polluted 197 

cities. Beijing made great efforts to reduce energy-related CO2 emissions. For 198 

1 Available at: http://www.ceicdata.com. 

2 Available at: http://tongji.cnki.net/overseas/engnavi/NaviDefault.aspx 
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example, Beijing raised emission standards and promoted the use of electric 199 

automobiles during the preparation for the Olympic Games in 2008. In 2011, Beijing 200 

was identified as one of the pilots of the first batch of national carbon emission 201 

trading, and its carbon emission trading scheme was launched in the late 2012. 202 

Additionally, the local government used a series of measures to reduce CO2 emissions: 203 

first, shutting down or moving highly polluted factories to neighboring provinces (e.g., 204 

Hebei, Tianjin); second, promoting the emission reduction policies such as “using 205 

electricity instead of coal” and “burning natural gas instead of coal”; third, 206 

encouraging the transfer of energy saving technologies in energy intensive industries, 207 

etc. 208 

The values of CO2 emission factor effect (DEMF) in column (2) are almost smaller 209 

than 1 except for those in provinces of Gansu, Hainan, Inner Mongolia and Xinjiang. 210 

However, it can be seen that DEMF has a trifling effect on emission changes. 211 

The effect of energy mix change (DEMX) in column (3) has led to the decline of 212 

CO2 emissions in 13 provinces in China. However, the energy mix change for 17 213 

provinces contributes to their increase in CO2 emissions. The findings are a little 214 

different from the results of [44] which shows that the effect of energy mix change 215 

play a negative role in CO2 emissions in most of China’s provinces. 216 

The effect of potential energy intensity (DPEI) in column (4) measures the impact 217 

of energy intensity change on CO2 emissions under the scenario without energy 218 

inefficiency relative to the global technology. The values of DPEI in this paper are 219 

almost less than one. The results are basically consistent with the findings of [38], 220 
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indicating that the change of energy intensity will contribute to the decline of CO2 221 

emissions when inefficiency of the energy-usage technology relative to the global 222 

technology has been improved as much as possible. In particular, provinces such as 223 

Hunan, Jilin and Anhui have experienced larger impacts of DPEI compared to other 224 

provinces. In contrast, provinces such as Hainan and Xinjiang have experienced 225 

increased potential energy intensity that leads to increasing CO2 emissions.  226 

The values of industrial structure effect (DSTR) in column (5) were smaller than 227 

one for most provinces/municipalities including Beijing, Gansu, Guangdong, Guizhou, 228 

Hainan, Hebei, Heilongjiang, Jiangsu, Ningxia, Shandong, Shanxi, Shaanxi, Shanghai, 229 

Tianjin, Xinjiang, Yunnan and Zhejiang. In which, 9 provinces/municipalities are 230 

economically developed regions located in the eastern coast of China; 6 provinces are 231 

the less economically developed regions located in the western China; and 2 232 

provinces are from central China. It indicated that the industrial structure change has 233 

changed such that CO2 emissions have decreased in these provinces. However, the 234 

values of DSTR were larger than one for provinces such as Anhui, Guangxi, Henan, 235 

Hubei, Hunan, Jilin, Jiangxi, Liaoning, Inner Mongolia, Qinghai, Sichuan and so on. 236 

It can be seen that most of the listed provinces are less economically developed 237 

regions located in the central and western China. In addition, the economic transfer 238 

(the transfer of energy-intensive industries) between East and West China may 239 

accelerate the transfer of pollution between the two regions. 240 

As shown in column (6), the values of economic activity change (DEAT) in all 241 

provinces in China are greater than one in this paper. Results indicated that DEAT has 242 
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played the most dominant role in increasing CO2 emissions in all provinces in China. 243 

The changes for provinces/municipalities such as Anhui, Fujian, Guangxi, Guizhou, 244 

Hubei, Hunan, Jiangxi, Liaoning, Inner Mongolia, Qinghai, Shaanxi, Sichuan, Tianjin 245 

and Chongqing are greater than the geometric mean (2.0343), indicating that these 246 

provinces have experienced higher increases in CO2 emissions by economic activity 247 

expansion. It can be seen that most of listed provinces are located in the central and 248 

western China. These findings are in line with most previous studies, e.g., [35]; [38]; 249 

[44]. 250 

Columns (7) in Table 1 described the effect of technological change (DBPC) on 251 

CO2 emission changes. The indicator reflected the capabilities for innovating new and 252 

advanced technologies. In general, the impacts of technological improvement on CO2 253 

emission reductions were insignificant, implying that technological change has a 254 

weaker influence on the reduction of CO2 emissions compared to other indicators. 255 

However, for China’s wealthy coastal provinces or rich municipalities including 256 

Beijing, Guangdong, Shanghai and Tianjin, the contributions of DBPC to the abatement 257 

of CO2 emissions were significant. As the most developed metropolises in China, the 258 

top research institutions were concentrated in Beijing and Shanghai. With the 259 

advantage of location close to Beijing, Tianjin has recorded China’s highest per-capita 260 

GDP since 2013. Additionally, Tianjin was transforming into a hub city for research 261 

and development ([45]). As the richest province which borders on Hong Kong, 262 

Guangdong has experienced rapid technological progress in recent years ([35]). 263 

Columns (8) in Table 1 described the effect of energy efficiency change (DEC) on 264 
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CO2 emission changes. Results indicated that most provinces decreased CO2 265 

emissions due to the improved energy efficiencies. Meanwhile DEC in 266 

provinces/municipalities such as Hebei, Hubei, Qinghai, Shaanxi, Shanghai, Sichuan, 267 

Tianjin and Chongqing slightly affected growing CO2 emissions. 268 

Table 1 here 269 

 270 

3.2 The potential of CO2 emission reductions 271 

This subsection further measures the potential CO2 reduction (PCR) in China. 272 

Under the contemporaneous technology scenario, the PCR for region n at the time 273 

period t can be calculated as: 274 

t,c t t,bpc

ij,t ij,t i,t i,t i,t i,t
t,bpc i,t

ij,t i,t i,t

/ ( , , )

n n n

n n n c n n n
in n

n n nij

PCR C C

C E E D E Y C
C Y

E E Y

= −

=∑
           (12) 275 

We obtain the potential of nationwide CO2 emission reduction by summing up 276 

the potentials of CO2 emission reduction in different regions in China. Results of the 277 

potential CO2 reduction under the contemporaneous technology scenario are shown in 278 

Table 2. 279 

Table 2 here 280 

 281 

As shown in Table 2, the nationwide potential CO2 reductions (PCR) under the 282 

contemporaneous technology scenario showed an increasing trend overall. 283 

Specifically, the nationwide PCR increased from 15.70 billion tons in 2006 to 20.81 284 

billion tons in 2012 with an average growth rate of 4.93 per annum. The smaller the 285 

14 
 



numerical value of PCR is, the closer the technological gap between each 286 

province/municipality’s actual technology and the contemporaneous technology is. In 287 

other words, PCR indicates the successfulness of the adoption of the 288 

contemporaneous technology of each province/municipality. Therefore, results 289 

showed that China’s capabilities to improve production technical efficiency through 290 

introducing international advanced technologies and international cooperation on 291 

technological innovation have been weakened over the years. 292 

The PCRs of provinces/municipalities including Beijing, Hainan, Shanghai, 293 

Tianjin, Zhejiang and so on were relatively lower. This means that the diffusion of 294 

production technologies of these provinces/municipalities were more efficient. Most 295 

of the above provinces were economically developed regions located in East China. 296 

Among which, the PCR of Hainan was the lowest, the average value of which was 297 

0.0973 billion tons during 2006-2012. Particularly, the PCR of Beijing dropped 298 

significantly from 0.2442 billion tons in 2010 to 0.0973 billion tons in 2011, 299 

equivalent to a decrease of 60.16%. Moreover, Beijing, Guangdong and Shanghai 300 

have experienced lower potential for mitigation over time. The results are consistent 301 

with the analysis in section 3.1. 302 

On the contrary, the PCRs of provinces such as Hebei, Henan, Liaoning, 303 

Shandong and Shanxi were relatively higher. This means that the diffusions of 304 

production technologies of these provinces/municipalities were less efficient. In 305 

particular, the PCR of Hebei was the highest among provinces, the average value of 306 

which was 2.0082 billion tons during 2006-2012, accounting for 40.69% of the 307 
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nationwide average value of PCR. In preparation for the 2008 Olympics, Beijing 308 

moved some highly polluted and high energy-consuming industries out of the city to 309 

Hebei province to control industrial pollution. With the integration of 310 

Beijing-Tianjin-Hebei, more energy intensive industries have been relocated in Hebei 311 

province. The simply relocation of these industries without technological upgrades 312 

might be the possible reason for the high PCR of Hebei. 313 

Similarly, the PCR for region n at the time period t under the global technology 314 

scenario can be calculated as: 315 

t,g t t,bpg

ij,t ij,t i,t i,t i,t i,t
t,bpg i,t

ij,t i,t i,t

/ ( , , )

n n n

n n n g n n n
in n

n n nij

PCR C C

C E E D E Y C
C Y

E E Y

= −

=∑
           (13) 316 

Results of the potential CO2 reduction under the global technology scenario are 317 

shown in Table 3. Under the global technology scenario, PCR indicated the 318 

successfulness of the adoption of the global technology, which also reflected the 319 

degree of international cooperation on technological innovation and development. 320 

Results indicated that the nationwide potential CO2 reduction (PCR) under the global 321 

technology scenario also showed an increasing trend overall. These can be interpreted 322 

to mean that the gaps between China’s actual technology and the global technology 323 

have become larger over the years. In other words, China’s capabilities to improve 324 

production technological efficiency through introducing international advanced 325 

technologies or international cooperation on technological innovation and 326 

development have been weakened in recent years, and thus resulted in the production 327 

technological efficiency of China trailed far behind the world. Although China has 328 
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become a global manufacturing center, most products made in China have low added 329 

value. According to China statistical yearbooks, the dominant technological intensity 330 

level of the Chinese manufacturing industry was low-tech (more than 40%). In the 331 

current state of the global supply chain, China’s manufacturing industry mainly plays 332 

the role of “manufacturing, processing and assembly”. In addition, the development of 333 

the secondary industry was relatively extensive during the rapid urbanization process, 334 

and the introduction of international advanced technology was relatively limited. 335 

Therefore, upgrading manufacturing technology levels would be a big challenge faced 336 

by China in a new phase of economic development. 337 

Comparatively, the numerical values of PCR were larger under the global 338 

technology scenario than those under the contemporaneous technology scenario. It 339 

indicated that the technological diffusion under the global technology scenario among 340 

provinces in China would be slower than that under the contemporaneous technology. 341 

This means that the abilities of provinces/municipalities in China to adopting global 342 

technologies related to energy usage were even weaker. Specially, provinces such as 343 

Hainan, Beijing, Gansu, Ningxia, Qinghai, Tianjin, Shanghai and so on have lower 344 

potentials for emission mitigation than provinces including Hebei, Henan, Hubei, 345 

Liaoning, Shandong, Shanxi and Sichuan. On one hand, these can be interpreted to 346 

mean that provinces/municipalities such as Hainan, Beijing, Gansu, Ningxia, Qinghai, 347 

Tianjin, Shanghai and so on have made efforts to adopt the relatively latest production 348 

technologies through international cooperation. On the other hand, these can also be 349 

interpreted to mean that the spread of energy conservation technologies and 350 
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reductions in inter-regional technological disparity would be effective in reducing 351 

carbon emissions in technically inefficient regions. 352 

Table 3 here 353 

 354 

4. Conclusions and implications 355 

As the public concerns about environmental pollution increase and the global 356 

concern about the increasing CO2 emissions from China, how to control and mitigate 357 

CO2 emissions have become the priority of the Chinese government at the stage of 358 

“new normal” economic development. Although the government has set reduction 359 

targets of CO2 emissions for different regions in China, the reasonable allocation of 360 

regional CO2 reduction targets based on the actual situations and reduction potentials 361 

as well as the differentiated reduction strategies among regions still need further 362 

research. 363 

With a production-based decomposition approcah ([36]), this study identified the 364 

emission trends among different provinces/municipalities in China, discussed the 365 

impacts of the driving forces behind CO2 emissions, and evaluated the mitigation 366 

potential of each province/municipality under the scenarios of contemporaneous 367 

technology and global technology. Specifically, this paper introduced the global 368 

benchmark technology to establish the relationship between CO2 emissions and 369 

energy use technology. Additionally, we combined the advantages of IDA and PDA to 370 

examine the impacts of energy mix effect and the industrial structure effect on China’s 371 

CO2 emission changes, which made up for the defects of PDA that may result in 372 

18 
 



unreasonable results in the measurement of the above two kinds of effects. 373 

The changes of CO2 emissions for China’s 30 provinces/municipalities were 374 

decomposed into seven components for the time period 2006-2012. The 375 

decomposition results showed that CO2 emissions in all provinces/municipalities in 376 

China increased during 2006-2012 except for Beijing. The results provided strong 377 

evidence that the economic activity effect is the main driver behind rising emissions, 378 

which is consistent with the conclusions of the existing literature, while changes in 379 

potential energy intensity, energy mix and energy efficiency change have led to CO2 380 

emission reductions in most provinces/municipalities in China. In general, the impacts 381 

of technological improvement on CO2 emission reductions were trifling. However, for 382 

provinces/municipalities including Beijing, Guangdong, Shanghai and Tianjin, the 383 

contributions of technological change to the abatement of CO2 emissions were 384 

significant. These can be interpreted to mean that the above provinces/municipalities 385 

showed stronger capabilities for innovating new and advanced energy saving 386 

technologies. 387 

Because of the increase in the service sector and a decrease in the secondary 388 

sector, industrial structure changes have reduced CO2 emissions in many 389 

economically developed regions located in the eastern coast of China. However, the 390 

growing proportion of secondary industry due to the economic transfer between East 391 

and West China, the changes of industrial structure have resulted in the increase in 392 

CO2 emissions in many less economically developed regions located in western 393 

China. 394 
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Based on the analysis of the potential of CO2 emission reductions (PCR), we 395 

determined that China have experienced higher potential for mitigation over time. 396 

Additionally, the numerical values of PCR were larger under the global technology 397 

scenario compared to those under the contemporaneous technology scenario. 398 

However, the PCRs of economically developed regions located in East China were 399 

relatively lower than the less economically developed regions located in central and 400 

western China. This means that the diffusions of production technologies of 401 

economically developed regions were more efficient. Results indicated that research 402 

and development investment in production technology as well as the spread of 403 

advanced technologies through international cooperation can effectively reduce the 404 

potential for CO2 emissions mitigation. In particular, the results revealed that energy 405 

conservation technology (ECT) promotion and reductions in inter-regional 406 

technological disparity would be effective in reducing carbon emissions in technically 407 

inefficient regions. Therefore, this paper also provided insights into how the 408 

underdeveloped regions in western area of China may develop a low emissions future. 409 
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