Effect of hypoglycemia on inflammatory responses and the response to low dose endotoxemia in humans

Iqbal, Ahmed; Prince, Lynne R; Novodvorsky, Peter; Bernjak, Alan; Thomas, Mark R; Birch, Lewis; Lambert, Danielle; Kay, Linda J; Wright, Fiona J; Macdonald, Ian A; Jacques, Richard M; Storey, Robert F; McCrimmon, Rory J; Francis, Sheila; Heller, Simon R; Sabroe, Ian

DOI: 10.1210/jc.2018-01168

License: None: All rights reserved

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 18/12/2018
This is a pre-copyedited, author-produced version of an article accepted for publication in The Journal of Clinical Endocrinology & Metabolism following peer review. The version of record Ahmed Iqbal, Lynne R Prince, Peter Novodvorsky, Alan Bernjak, Mark R Thomas, Lewis Birch, Danielle Lambert, Linda J Kay, Fiona J Wright, Ian A Macdonald, Richard M Jacques, Robert F Storey, Rory J McCrimmon, Sheila Francis, Simon R Heller, Ian Sabroe, Effect of Hypoglycemia on Inflammatory Responses and the Response to Low Dose Endotoxemia in Humans, The Journal of Clinical Endocrinology & Metabolism is available online at: https://doi.org/10.1210/jc.2018-01168.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 21. Oct. 2023
Effect of Hypoglycemia on Inflammatory Responses and the Response to Low Dose Endotoxemia in Humans

Ahmed Iqbal¹, Lynne R. Prince¹, Peter Novodvorsky²,³, Alan Bernjak³,⁴, Mark R. Thomas¹,²,⁵, Lewis Birch¹, Danielle Lambert¹, Linda J. Kay¹, Fiona J. Wright¹, Ian A. Macdonald⁶, Richard M. Jacques⁷, Robert F. Storey¹,², Rory J. McCrimmon⁸, Sheila Francis¹,

Simon R. Heller*²,³, Ian Sabroe*¹,²

* share senior authorship

¹Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom. ²Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom, ³Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom, ⁴INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom, ⁵Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom. ⁶MRC/ARUK Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University Nottingham, Nottingham, United Kingdom, ⁷School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom, ⁸Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom.

Short title: Hypoglycemia modulates innate immune responses

Keywords: hypoglycemia, inflammation, endotoxin, monocytes, monocyte subsets, platelets.

Word count: 4574 words (includes introduction, materials and methods, results, discussion and acknowledgements).
Correspondence and reprint requests: Simon R. Heller, Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, S10 2 RX, Sheffield, United Kingdom, Tel: +44 (0)114 271 3204, Fax: +44 (0) 114 226 5937, Email: s.heller@sheffield.ac.uk

Funding: This work was funded by the Medical Research Council (MRC), United Kingdom by means of a MRC Clinical Research Training Fellowship (R/139602-11-1) awarded to Dr Ahmed Iqbal.

Disclosure Summary: SRH has served as a Consultant for Sanofi Aventis and Boeringher Ingelheim; has served as an advisory board panel member for Eli Lilly & Co, Novo Nordisk A/S, Lifescan Inc. and Takeda; and has attended Speakers’ Bureaux for Astra-Zeneca, Novo Nordisk, Eli Lilly & Co and MSD. RFS declares research grants from Astra-Zeneca and Plaque Tec; consultancy fees from Actelion, Avacta, Astra-Zeneca, Bayer, Bristol Myers Squibb/Pfizer, Idorsia, Novartis and Thromboserin; and honoraria from Astra-Zeneca and Bayer. The other authors have no conflicts of interest to declare that relate to this topic of research.

Abbreviations: ACCORD, Action to Control Cardiovascular Risk in Diabetes; AMI, acute myocardial infarction; APC, allophycocyanin; AR1, autoregressive correlation structure; AUC, area under the curve; BMI, body mass index; CCL2, C-C motif chemokine ligand 2; CM, classical monocytes; CM-MPA, classical monocyte-platelet aggregates; CV, cardiovascular; CXCL8, C-X-C motif chemokine ligand 8; CX3CL1, CX3C chemokine ligand 1; CX3CR1, CX3C chemokine receptor 1; FACS, fluorescence-activated cell sorting; FITC, fluorescein isothiocyanate; IM, intermediate monocytes; IM-MPA, intermediate monocyte-platelet aggregates; MPA, monocyte-platelet aggregates; NaCl, sodium chloride; NCM, non-
classical monocytes; NCM-MPA, non-classical monocyte-platelet aggregates; PBS, phosphate-buffered saline; PE, phycoerythrin; STEMI, ST-elevation myocardial infarction; WBC, white blood cell.

Précis: Using a novel in vivo human experimental model, we show that hypoglycemia primes the innate immune system leading to a more profound inflammatory response to a subsequent inflammatory stimulus.

Abstract

Context
Hypoglycemia is emerging as a risk for cardiovascular events in diabetes. We hypothesized that hypoglycemia activates the innate immune system, which is known to increase cardiovascular risk.

Objective
To determine whether hypoglycemia modifies subsequent innate immune system responses.

Design and Setting
Single-blinded, prospective study of three independent parallel groups.

Participants and Interventions
Twenty-four healthy participants underwent either a hyperinsulinemic-hypoglycemic (2.5 mmol/l), euglycemic (6.0 mmol/l) or sham-saline clamp (n=8 for each group). Forty-eight hours later, all participants received low-dose (0.3 ng/kg) intravenous endotoxin.

Main outcome measures
We studied in-vivo monocyte mobilization and monocyte-platelet interactions.
Results

Hypoglycemia increased total leucocytes (9.98±1.14 x10^9/l vs euglycemia: 4.38±0.53 x10^9/l; P<0.001 vs sham-saline: 4.76±0.36 x10^9/l; P<0.001) (mean±SEM), mobilized proinflammatory intermediate monocytes (42.20±7.52/μl vs euglycemia: 20.66±3.43/μl; P<0.01 vs sham-saline: 26.20±3.86/μl; P<0.05) and non-classical monocytes (36.16±4.66/μl vs euglycemia: 12.72±2.42/μl; P<0.001 vs sham-saline: 19.05±3.81/μl; P<0.001). Following hypoglycemia vs euglycemia, platelet aggregation to agonist (AUC) increased (73.87±7.30 vs 52.50±4.04; P<0.05) and formation of monocyte-platelet aggregates increased (96.05±14.51/μl vs 49.32±6.41/μl; P<0.05). Within monocyte subsets, hypoglycemia increased aggregation of intermediate monocytes (10.51±1.42/μl vs euglycemia: 4.19±1.08/μl; P<0.05 vs sham-saline: 3.81±1.42/μl; P<0.05) and non-classical monocytes (9.53±1.08/μl vs euglycemia: 2.86±0.72/μl; P<0.01 vs sham-saline: 3.08±1.01/μl; P<0.05) with platelets compared to controls. Hypoglycemia led to greater leucocyte mobilization in response to subsequent low-dose endotoxin challenge (10.96±0.97 vs euglycemia: 8.21±0.85 x10^9/l; P<0.05).

Conclusions

Hypoglycemia mobilizes monocytes, increases platelet reactivity, promotes interaction between platelets and proinflammatory monocytes, and potentiates the subsequent immune response to endotoxin. These changes may contribute towards increased cardiovascular risk observed in people with diabetes.
Introduction

Hypoglycemia is associated with a greater propensity to adverse cardiovascular (CV) outcomes in diabetes (1-3). To determine if such outcomes were dependent upon changes in innate immune responses, we devised a novel model whereby subjects were challenged with a hypoglycemic clamp, and then the durable effects on the innate immune system probed by an in vivo endotoxin challenge 48 hours later.

Iatrogenic hypoglycemia remains a major barrier to effective treatment of insulin-treated diabetes (4). The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial showed that intensive glucose control, during which patients were exposed to significantly more hypoglycemia (5), was associated with excess CV mortality. Despite the evidence confirming an association between hypoglycemia and mortality, cause and effect has not been established. Trial evidence suggests that the relationship is, at least in part, explained by ‘confounding’, i.e. that hypoglycemia identifies individuals with comorbidities who are both vulnerable to hypoglycemia and more likely to die for other reasons (6). Nevertheless, a recent large meta-analysis (7) has suggested that comorbidities alone are unlikely to explain this relationship. Furthermore, there is a growing body of evidence highlighting a number of mechanisms whereby hypoglycemia may lead to CV events (8, 9).

Hypoglycemia has proinflammatory consequences, including increases in levels of factor VIII and von Willebrand factor and impaired fibrinolysis (10-12). In addition, hypoglycemia has been shown to increase proinflammatory cytokines (12-14) and promote rises in the levels of proatherogenic cell adhesion molecules (12). Repeated episodes of hypoglycemia have also been reported to impair nitric oxide-mediated vasodilation (15).
Monocytes are phagocytes that are central to the etiology of atherosclerosis (16) and play a role in precipitating acute CV events by promoting plaque destabilization and rupture (17). The extent to which monocytosis and monocyte activation is modified by hypoglycemia remains uncertain. Recent studies have also determined that monocytes can be classified into 3 distinct subsets, termed classical monocytes (CM: CD14++ CD16-, ‘Mon1’), intermediate monocytes (IM: CD14++ CD16+, ‘Mon2’), and non-classical monocytes (NCM: CD14+ CD16++, ‘Mon3’) (18, 19). A number of observational studies indicate that IM may be particularly proatherogenic. Elevated levels of IM are associated with adverse CV outcomes (20-23), independently predict future CV events (22), and have been associated with coronary plaque vulnerability in patients with angina (24). Elevated levels of CM may also independently predict CV events (25).

Acute myocardial infarction (AMI) results in monocytosis, mediated by sympathetic nervous system activation (26). In humans, CD16+ monocytes selectively mobilize, in a catecholamine-dependent fashion, following exercise (27). As epinephrine is the key counter-regulatory hormone produced in response to hypoglycemia, we hypothesized that hypoglycemia would also exert significant effects on monocytes. We further hypothesized that we would see additional synergistic changes in monocyte and platelet activation, as revealed by formation of monocyte-platelet aggregates, which are increased after AMI (20, 28). In large prospective studies, CV events did not appear to occur during the hypoglycemic episode per se but there was an increased risk of events in the weeks and months following the episode (29-31). We hypothesized, therefore, that acute hypoglycemia may prime the innate immune system, leading to a more pronounced inflammatory response to a subsequent inflammatory stimulus downstream from the initial episode of hypoglycemia. It is also relevant to note that people with diabetes experience increased incidences of acute and
chronic infections that will further activate innate immunity. To reveal if hypoglycemia modulated monocyte function in the human in vivo, we chose to combine a classical hypoglycemic stimulus with a subsequent in vivo systemic stimulus of the innate immune system. To achieve this, we combined hyperinsulinemic hypoglycemic-euglycemic and sham-saline clamps with low-dose intravenous endotoxin challenge 48 hours later in healthy participants. Endotoxin, otherwise known as Gram-negative bacterial lipopolysaccharide, was employed as it induces a short-lived, sterile inflammation that is both safe and reproducible (32).

Materials and Methods

Study Design and Participants

This was a single-blinded, prospective study of three independent parallel groups (hyperinsulinemic-hypoglycemia/euglycemia and sham-saline controls) conducted in a random group order at the Clinical Research Facility, Northern General Hospital, Sheffield, United Kingdom between January 2015 and April 2016. We therefore had three groups that had euglycemia with insulin, hypoglycaemia with insulin, or saline. Each then received endotoxin. Baseline values at the start of endotoxin administration were studied in all groups, providing a set of data obtained prior to endotoxin. Twenty-four healthy participants without diabetes were recruited from the University of Sheffield and Sheffield Teaching Hospitals with written informed consent in accordance with a protocol approved by Yorkshire and the Humber-Sheffield Research Ethics Committee (REC 14/YH/1264). All participants had a HbA1C < 6.5% (< 48 mmol/mol), measured using ion-exchange high-performance liquid chromatography, and none had impaired glucose tolerance based on HbA1C as judged by the American Diabetes Association criteria (33, 34). Participants were in good health as determined by a medical history, physical examination, vital signs and clinical laboratory test.
results including full blood count and renal and liver function. Those with an intercurrent illness in the previous 4 weeks were excluded. Participants taking beta-blockers, QT interval-prolonging agents and anticoagulant, antiplatelet or antiinflammatory medications were also excluded. Female participants were on secure contraception and also had negative urinary pregnancy tests on the morning of the clamp and endotoxin studies.

Clamp studies

All participants attended at 0800h after an overnight fast and were blinded to their group allocation. Participants were instructed to avoid caffeine, alcohol and vigorous exercise 24 hours before the study visit. An intravenous cannula was inserted into the antecubital fossa of the non-dominant arm for insulin and dextrose infusion. A second intravenous cannula was inserted into the antecubital fossa of the dominant arm for all blood measurements except glucose. Following the application of a local anesthetic cream (EMLA, Astra-Zeneca, Macclesfield, UK) to the dorsal hand or wrist of the non-dominant arm, a retrograde cannula was inserted and the hand placed in a warming chamber (The Sheffield Hand Warmer, Sheffield, UK) at 55°C to allow arterialisation of venous blood for glucose measurement. In hypoglycemia and euglycemia study groups, a primed continuous insulin (Human Actrapid, Novo Nordisk Pharmaceuticals LT, Crawley, UK) infusion was administered at a rate of 90 mU m\(^{-2}\) min\(^{-1}\) with total insulin exposure matched between groups. A 20% dextrose (Baxter, Baxter Healthcare Ltd., Thetford, UK) variable rate infusion was administered simultaneously and the rate adjusted according to arterialized whole blood glucose concentrations measured every 5 minutes using a glucose oxidase method (Yellow Springs Instrument 2300 STAT, Yellow Springs, Ohio, USA). Following a brief (30 minutes) euglycemic phase in both groups, blood glucose was lowered to 2.5 mmol/l in the hypoglycemia group and maintained for 60 minutes at this level. In the euglycemia group,
blood glucose was maintained at 6 mmol/l for 60 minutes. Participants in the sham-saline group were investigated identically but did not receive insulin/dextrose infusions and instead received a slow intravenous infusion of 0.9% sodium chloride (NaCl) (Baxter, Baxter Healthcare Ltd., Thetford, UK) at a pre-determined fixed rate. Thus, participants in the sham-saline group were under normoglycemic conditions allowing us to control for the effects of insulin and dextrose. Blood was sampled at baseline and at 60 minutes. Members of staff processing assays were blinded to glucose group allocation.

Endotoxin challenge

Endotoxin challenge is a safe and well-studied model of innate immune activation *in vivo* (35). Forty-eight hours following the clamp, participants re-attended at 0800h having fasted overnight and refrained from caffeine, alcohol and vigorous exercise since the clamp visit. An intravenous cannula was inserted into the antecubital fossa of the non-dominant arm for administration of endotoxin and a second cannula inserted into the contralateral antecubital fossa for blood sampling. All participants received 0.3 ng/kg *Escherichia coli* O:113 lipopolysaccharide (Clinical Centre Reference Endotoxin, National Institutes of Health, Bethesda, Maryland, USA). Endotoxin powder was reconstituted in 1 ml of sterile 0.9% NaCl to form a solution at a concentration of 1000 ng/ml, which was vortexed for 60 minutes. The weight-adjusted dose of endotoxin was obtained from this solution, added to 5 ml of 0.9% NaCl and administered as a slow bolus injection over 1 minute. An intravenous infusion of 500 ml of 0.9% NaCl (Baxter, Baxter Healthcare Ltd., Thetford, Norfolk, UK) then continued for 4 hours following endotoxin to avoid hypotension. Venous blood was sampled at baseline and 2, 4 and 6 hours following endotoxin. All laboratory measurements were performed by staff blinded to glucose group allocation.
Biochemical analysis

To measure epinephrine, venous forearm blood was collected into chilled lithium heparin tubes and centrifuged at 4°C, 1000g for 10 minutes. The resulting supernatant was stored at -80°C until assayed by high-performance liquid chromatography. To determine insulin levels, EDTA-anticoagulated blood was centrifuged at 3000g for 10 minutes, and free insulin levels measured in the resulting plasma using an immunoassay (Roche Cobas, Roche Diagnostics, Burgess Hill, West Sussex, UK). Venous blood was centrifuged at 3000g for 10 minutes and the resulting serum used to measure cortisol and growth hormone using an immunoradiometric assay (Roche Cobas, Roche Diagnostics, Burgess Hill, West Sussex, UK). Sample collection for cortisol and growth hormone was controlled for time of day across the three study groups.

Cell counts and flow cytometry

Total and differential white blood cell (WBC) and platelet counts in EDTA-anticoagulated blood were determined using an automated clinical grade Sysmex cell counter (XN-9000, Sysmex, Milton Keynes, UK). For the clamp visit, alternative WBC counting methodologies were piloted for the first two subjects in each group but these were later deemed less accurate than the Sysmex cell counter. Data shown below in Figures 2, 3 and 4a, 4c, 4d, 4e and 4f are Sysmex data from n=6 in each study group. Flow cytometry was used to determine monocyte-platelet aggregates (MPA): blood was collected into tubes containing trisodium citrate dihydrate (3.13% w/v) and incubated in a heat block at 37°C for 10 minutes, erythrocytes lysed using fluorescence-activated cell sorting (FACS) lyse solution (BD, Oxford, UK) and stained with FITC-conjugated CD16 (BioLegend, London, UK), APC-conjugated CD14 (BioLegend, London, UK) and PE-conjugated CD42a (BD, Oxford, UK) in
addition to matched isotype controls. Cells were fixed using FACS Fix (BD, Oxford, UK) and analyzed using flow cytometry (Accuri C6 multi-colour flow cytometer, BD, Oxford, UK) within a consistent time frame for all subjects. Monocytes were gated based on morphology and CD14 expression. Neutrophils were gated on morphology and through exclusion of monocytes. Monocyte-platelet aggregation was determined by measuring monocyte mean fluorescence of the platelet-specific marker CD42a. To phenotype and enumerate monocyte subsets, anticoagulated blood was stained with FITC-conjugated CD16 (BioLegend, London, UK), APC-conjugated CD14 (BioLegend, London, UK), PE-conjugated CD66c (BD Biosciences, Oxford, UK), PE-Cy7-conjugated CD11b (BioLegend, London, UK) and (PerCP)-eFluor® 710-conjugated CX3CR1 (eBioscience, Altrincham, UK). Matched isotype controls and a ‘fluorescence minus one’ strategy optimized compensation. Stained whole blood was lysed with FACS lyse as above, and the pellet resuspended in PBS prior to fixation using 1% w/v formaldehyde. Samples were immediately processed for analysis using flow cytometry (LSRII, BD, Oxford, UK). Monocytes were gated based on morphological characteristics and through the exclusion of neutrophils using CD66c. Monocyte subsets were identified based on relative expression of CD14 and CD16. Flow cytometry data were analysed using Flow Jo (FlowJo, version 10, Ashland, Oregon, USA).

Platelet aggregation

Platelet aggregation was measured using impedance aggregometry (Multiplate®, Verum Diagnostica GmBH, Munich, Germany). Aliquots of 300μl saline and 300μl hirudin-anticoagulated blood were added to the cuvette and incubated at 37 °C for 3 minutes. Twenty microliters of adenosine diphosphate (ADP, at a final concentration of 6.45μM) was added as
agonist and the assay commenced. The area-under-the curve (AUC) was measured, which represents the level of platelet aggregation.

Statistical analysis

Our pilot data indicated that a sample size of 7 participants per group would have 90% power to detect a 50% relative difference in mobilization of monocytes between hypoglycemia and controls. Eight subjects were recruited per group to allow for a 13% drop out rate. Mean baseline measurements of glucose were compared between groups using analysis of variance (ANOVA). Mean measurements of glucose, insulin, and epinephrine at 60 minutes post clamp were compared, adjusting for clamp baseline measurement, using analysis of covariance (ANCOVA). In the event of unequal variance between groups, a log transform was applied and the analysis repeated. Longitudinal and between-group comparisons were made for post-endotoxin measurements using mixed effects linear models. For models examining between-group differences, the baseline endotoxin measurement was included as a covariate. For all mixed-effects linear models, an autoregressive correlation structure (AR1) was used to allow for the correlation between multiple measurements on the same person. Planned contrasts were made versus baseline and between groups at equivalent time points with Sidak’s correction for multiple comparisons. All data are expressed as mean ± SEM, unless otherwise specified, and a P value of < 0.05 was deemed statistically significant. Analysis was performed using SPSS (version 22.0, IBM, Chicago, Illinois, USA).

Results

Participants

Study participants across the three groups were well matched for age, sex, BMI, HbA1c and total WBC count with no significant differences at screening (Table 1). Participant numbers at each stage of study is illustrated in a flow diagram (Supplemental flow diagram).
Clamp studies

Glucose, insulin and counter regulatory hormones

Arterialized blood glucose values are shown in Fig. 1a. The glucose values were 2.51 ± 0.11 mmol/l and 6.04 ± 0.16 mmol/l at the end of the hypoglycemia and euglycemia clamps, respectively. Glucose values at the end of the sham-saline clamp were 4.64 ± 0.09 mmol/l. A counterregulatory response to hypoglycemia was evident with epinephrine levels during hypoglycemia (1.87 ± 0.25 nmol/l) being significantly higher (P < 0.001) compared to euglycemia (0.07 ± 0.01 nmol/l) and sham-saline (0.10 ± 0.04 nmol/l) (Fig. 1b). Free insulin levels at the end of clamp were similar between hypoglycemia (968.5 ± 149.1 pmol/l) and euglycemia groups (1025.4 ± 81.4 pmol/l, P = 0.996) but significantly higher (P < 0.001) then those in the sham-saline (31.3 ± 6.3 pmol/l) group (Fig. 1c). Serum cortisol and growth hormone were significantly higher in the hypoglycemia group compared to euglycemia and sham-saline controls (Fig. 1d and 1e).

Total and differential leucocyte count

We determined if hypoglycemia results in changes in circulating leucocytes. Hypoglycemia significantly increased the total number of WBC compared to controls (Fig. 2a). There was an increase across all classes of leucocytes studied, including neutrophils (Fig. 2b), lymphocytes (Fig. 2c) and total monocytes (Fig. 3a).

Monocyte subsets

We sought to determine if hypoglycemia exerted specific effects on monocyte subsets associated with cardiac pathology. Hypoglycemia increased the absolute number of all three circulating monocyte subsets compared to euglycemia and sham-saline (Fig. 3b-d). The
number of circulating NCM after 60 minutes of hypoglycemia compared to baseline (17.6 ± 2.9 cells/μl) increased twofold. IM numbers after 60 minutes of hypoglycemia compared to baseline (23.2 ± 4.5 cells/μl) increased by a factor of 1.81 and CM after 60 minutes of hypoglycemia compared to baseline (442.4 ± 55.3 cells/μl) increased by a factor of 1.29. There were no significant differences in the baseline values of all three monocyte subsets between the study groups.

Platelet count, aggregation and monocyte-platelet aggregates

Activation of platelets and generation of platelet-leucocyte aggregates contribute to leucocyte mobilization and inflammation in the vasculature (36). We therefore studied platelet number and function and their interaction with leucocytes. Total platelet count increased in hypoglycemia compared to euglycemia and sham-saline controls (Fig. 4a). ADP-induced platelet aggregation increased following 60 minutes of hypoglycemia versus euglycemia (P = 0.014) and there was numerically, but not statistically significantly, higher platelet aggregation detected in the hypoglycemia group compared to sham-saline group (P = 0.064) (Fig. 4b). The total number of MPA increased following 60 minutes of hypoglycemia compared to euglycemia (Fig. 4c). Whilst total MPA were not significantly higher in hypoglycemia compared to sham-saline controls at 60 minutes (Fig. 4c), we observed specific increases in non-classical monocyte (NCM) and intermediate monocyte (IM)-platelet aggregates (Fig. 4d and 4e). Classical monocyte (CM)-platelet aggregates appeared to increase following 60 minutes of hypoglycemia versus euglycemia and sham-saline but this was not statistically significant (P = 0.054) (Fig. 4f).
Cell surface markers

To further explore the activation state of monocytes after hypoglycemia, we studied expression levels of chemokine receptor CX₃CR1 and integrin CD11b. Hypoglycemia did not alter the expression of CX₃CR1 or CD11b (Supplemental Fig. 1a and 1b).

Endotoxin challenge

To determine if prior hypoglycemia affected the subsequent response to a classical immune activator, and thus to reveal if hypoglycemia had any longer-lasting effects on the innate immune system, we next proceeded to a low-dose intravenous endotoxin challenge 48 hours after the hypoglycemic challenge in all subjects. Consistent with the low-dose model employed, no fever or significant change in mean arterial blood pressure was recorded following endotoxin challenge across the study groups.

Epinephrine, cortisol and growth hormone

In contrast to the stress response induced by hypoglycemia, epinephrine levels were not significantly different between study groups 6 hours following endotoxin administration (Fig. 5a). In the hypoglycemia group, epinephrine levels were 0.15 ± 0.04 nmol/l versus 0.06 ± 0.01 nmol/l in euglycemia group and 0.09 ± 0.01 nmol/l in sham-saline group. There were also no differences detected between groups in serum cortisol and growth hormone levels following endotoxin administration (Fig. 5b and 5c). However, a rise versus baseline in the stress hormone cortisol was evident whereby serum cortisol levels peaked at 4 hours following endotoxin challenge in all study groups (P = 0.005) (Fig. 5b).
Total and differential leucocyte count

We observed that antecedent hypoglycemia modulated the subsequent WBC response to endotoxin. Total number of WBC increased significantly following endotoxin in all the study groups (Fig. 6a). The peak WBC response occurred at 4 hours post endotoxin and this was significantly higher in the hypoglycemia group at $10.96 \pm 0.97 \times 10^9/l$ vs $8.21 \pm 0.85 \times 10^9/l$ in the euglycemia group ($P = 0.012$) (Fig. 6a). Total WBC count 4 hours post endotoxin in the sham-saline group was $10.65 \pm 0.64 \times 10^9/l$ and this was significantly higher compared to euglycemia ($P = 0.033$), but not hypoglycemia ($P = 0.974$). The rise in WBC was mainly a consequence of an increase in neutrophil count (Fig. 6b). The lymphocyte count decreased following endotoxin (Fig. 6c) and the monocyte count initially decreased prior to recovery 6 hours post endotoxin (Fig. 7a). There was a trend towards a higher total monocyte count in the hypoglycemia group 4 hours post endotoxin compared to euglycemia but this comparison did not reach statistical significance ($P = 0.085$). The absolute number of circulating monocyte subsets did not differ significantly between study groups (Fig. 7b, 7c and 7d). NCM and IM numbers decreased significantly following endotoxin compared to baseline values in all groups ($P < 0.001$) (Fig. 7b and 7c). Compared to baseline, CM numbers significantly declined at 2 hours ($P < 0.001$), prior to rising and reaching a peak at 6 hours ($P < 0.001$) (Fig. 7d).

Cell surface markers

We examined monocyte activation following endotoxin exposure by measurement of cell surface marker CX3CR1 expression. Endotoxin administration caused a significant decline in expression of this marker across all study groups compared to baseline ($P < 0.001$) (Supplemental Fig. 2a). This was accompanied by an increase in the concentration of...
CX3CL1 in plasma at 4 and 6 hours compared to baseline in all groups (P < 0.001) (Supplemental Fig. 2e). Activation of monocytes was also revealed by increased expression of CD11b expression at 4 and 6 hours following endotoxin compared to baseline in all groups (P < 0.001) (Supplemental Fig. 3a). In addition, the percentage of total monocytes that were positive for CD11b expression was higher in hypoglycemia group versus euglycemia group at 2 hours post endotoxin (P = 0.007) (Supplemental Fig. 3b).

Discussion

Hypoglycemia may contribute to exacerbations of ischemic CV disease. We aimed to investigate the effect of acute experimental hypoglycemia and subsequent low-dose endotoxemia on aspects of the innate immune response (total leucocytes, leucocyte subsets and specifically monocyte subsets), thrombosis (platelet aggregation) and cross-talk between inflammation and thrombosis (monocyte-platelet aggregates). Our main findings were: (1) hypoglycemia increased the number of all three circulating monocyte subsets, in association with a stress response characterized by increased plasma epinephrine levels; (2) hypoglycemia increased platelet reactivity, promoted formation of MPAs and promoted aggregate formation between proinflammatory monocytes and platelets; (3) leucocyte mobilization to the stress response of low-dose endotoxin was independent of epinephrine, and antecedent hypoglycemia resulted in a significantly higher inflammatory leucocyte response to low-dose endotoxin administered 48 hours later.

As shown previously (13, 37), we confirm that hypoglycemia results in leucocytosis. In addition, we present, for the first time, the effect of hypoglycemia on monocyte subset kinetics and demonstrate an increase in the absolute number of all three circulating monocyte subsets. The largest increase was observed in numbers of circulating NCM (2-fold) and IM
(1.8-fold) with a modest increase in the number of CM (1.3-fold). These data are in keeping
with an observed selective mobilization of CD16+ monocytes in response to exercise (27, 38)
and epinephrine infusion (39). Ratter et al. also recently determined that hypoglycemia might
modify selective monocyte mobilization (37). However, they did not phenotype monocyte
subsets but rather measured total levels of CD16 on peripheral blood mononuclear cells
isolated from both healthy participants and those with type 1 diabetes in experimental
hypoglycemia settings. Our data identify specific changes in monocyte subsets that have been
previously linked to monocyte activation and atherogenesis. As observational data support
the notion of CD16+ monocytes being proatherogenic (20, 22-24), and adrenergic modulation
of monocytes induces proinflammatory changes (40), an increase in the circulating number of
these cells following hypoglycemia may enhance CV risk in diabetes.

Previous studies investigating effects of hypoglycemia on platelet biology have suggested an
increase in platelet reactivity; however, this was in the context of significant hypoglycemic
stimulus as part of an insulin stress test (41). An older investigation into the effect of
hypoglycemia on monocyte-platelet interactions in type 1 diabetes and healthy controls has
also suggested a trend towards increased MPA formation, but these data were not conclusive
with little difference between euglycemic and hypoglycemic conditions (42). Our study also
recapitulates and extends previous findings that hypoglycemia is prothrombotic, as evidenced
by an increased platelet count and increased platelet reactivity to ADP (43). We have now
conclusively demonstrated an overall increase in formation of MPA in hypoglycemia in
comparison to euglycemia. Furthermore, we provide novel data demonstrating MPA
formation within monocyte subsets in experimental hypoglycemia. MPA formation is a
highly sensitive marker of both monocyte and platelet activation (44, 45). MPA formation
promotes monocyte release of the proinflammatory cytokines; TNFα, CXCL8 and CCL2 (46,
47) and increases adhesive properties of monocytes (48), thereby representing a bridge between inflammation and thrombosis, that may serve to increase CV risk. In acute coronary syndromes, MPA formation correlates with troponin elevation, risk of in-hospital cardiac events including death and risk of future cardiac events (20, 49). We have also shown that NCM and IM aggregate more readily with platelets in response to hypoglycemia compared to CM. A similar observation of proportionally higher IM-MPA and NCM-MPA formation has been reported in patients following an ST-elevation myocardial infarction (STEMI) with higher IM-MPAs in particular being a poor prognostic indicator at 6 weeks following STEMI (20). Thus, our data suggest that hypoglycemia not only increased circulating numbers of CD16+ monocytes, but also promoted increased interaction between these proinflammatory monocyte subsets and platelets.

In a first model of its type, we wished to determine whether antecedent hypoglycemia modulated responses to low-dose endotoxin. We chose a low-dose endotoxin model firstly because we felt it the safest way to combine the clamp and endotoxin human models, secondly because future extension to the study of people with diabetes would be more feasible with this model, and finally because people with diabetes are often exposed to chronic low-grade infections through foot ulceration and periodontitis which might further increase the risk of CV mortality (50, 51). In our model, we observed in all groups that monocytes were activated even in response to low-dose endotoxin, as indicated by upregulation of systemic levels of the CX3CR1 ligand CX3CL1, and the upregulation of the adhesion molecule CD11b on the monocytes themselves. Interestingly, compared to euglycemia, hypoglycemia resulted in greater leucocyte mobilization in response to low-dose intravenous endotoxemia 48 hours later. Furthermore, we noted a non-significant trend towards a higher total monocyte count in the hypoglycemia group 4 hours post endotoxin.
compared to euglycemia. The percentage of monocytes that were CD11b positive was also higher in hypoglycemia group compared to euglycemia group at 2 hours post endotoxin. Levels of leucocyte mobilization were similar between groups who received prior sham-saline or hypoglycemia. These data suggest that euglycemia with insulin suppressed leucocyte mobilization in response to endotoxin 48 hours later, consistent with the known antiinflammatory actions of insulin (52, 53) and that the physiological stress of hypoglycemia overcame this insulin-mediated suppression of inflammatory responses. Our data show that drivers for differential leucocyte mobilization to endotoxin are unlikely to be due to differences between groups in epinephrine, cortisol and growth hormone levels post endotoxin as these were not significantly different. Our observation that a single episode of hypoglycemia compared to euglycemia invokes a stronger proinflammatory response to endotoxin up to 2 days later is of potential clinical relevance given that trial data suggest downstream mortality following hypoglycemia (29-31).

The strengths of our study include use of a novel human experimental model and detailed flow cytometric analysis that allowed us to comprehensively describe immune cell kinetics and activation status in response to experimental hypoglycemia and endotoxin challenge in vivo. The separation of clamp and endotoxin studies by 48 hours allowed us to probe the longitudinal effects of hypoglycemia on innate immunity. Moreover, by using a sham-saline group, we specifically controlled for the immunological effects of insulin, thereby robustly investigating proinflammatory changes in response to hypoglycemia.

One limitation was our decision to study a relatively small number of young healthy participants. This limits the applicability of our findings to older patients with diabetes, established CV risk factors and atherosclerosis. For ethical and safety reasons, we decided to
examine our novel experimental model initially in healthy participants. We also specifically adopted a low-dose endotoxin model with future translatability in older, higher-risk participants in mind. Future studies should therefore confirm our findings in those with diabetes. In addition, it is worth noting that we studied cell numbers, phenotypic changes and activation status in circulating immune cells and this may not necessarily reflect the functional capacity of these cells in an atherosclerotic plaque. An animal model of combined experimental hypoglycemia and atherosclerosis may help to resolve these questions.

In conclusion, hypoglycemia mobilized proatherogenic monocyte subsets and induced prothrombotic changes by increasing platelet reactivity. In addition, hypoglycemia amplified interactions between platelets and monocytes by promoting MPA formation with enhanced aggregation of proinflammatory monocytes with platelets. Hypoglycemia may also prime the innate immune system to respond more robustly to stimuli such as endotoxin. This implies proinflammatory consequences of hypoglycemia beyond the acute episode. These data provide novel mechanistic insights into how hypoglycemia could increase CV risk through upregulation of inflammatory responses.

Acknowledgements

We thank all volunteers and staff at the National Institute for Health Research (NIHR) Clinical Research Facility, Northern General Hospital, Sheffield, UK for hosting and facilitating this study. We are very grateful for nursing assistance provided by Susan Hudson, Chloe Nisbet and Helena Renberg-Fawcett during clamp and endotoxin visits. We are also indebted to Sally Cordon (School of Life Sciences, University of Nottingham, UK) for assisting with the epinephrine assay and Dr Anthony Suffredini (National Institutes of Health, USA) for kindly supplying endotoxin.
References

Table & Figure legends

Table 1: Comparison of participant characteristics at baseline. Data are mean ± SD or median (interquartile range). *P* values indicate comparisons between study groups via parametric or nonparametric testing. BMI, body mass index; WBC, white blood cells.

Figure 1: Glucose, insulin and counter-regulatory hormones in clamp studies. Arterialized whole blood glucose values during hyperinsulinemic hypoglycemic, euglycemic and sham-saline clamps (a), epinephrine (b), free insulin (c), cortisol (d) and growth hormone values (e) after 60 minutes of hypoglycemia, euglycemia or sham-saline injection. Data are mean (SEM), *P*<0.05, **P*<0.01, ***P*<0.001, ns-non-significant, *P*-values are provided for comparison between study groups. Black circles (and dashed line 1a)-hypoglycemia group; open circles-euglycemia group; black triangles (and solid line 1a)-sham-saline group.

Figure 2: Peripheral total white blood cell, neutrophil and lymphocyte kinetics in experimental hypoglycemia and controls. Number of circulating total WBCs (a), neutrophils (b) and lymphocytes (c) after 60 minutes of hypoglycemia, euglycemia or sham-saline injection. Data are mean (SEM), **P*<0.01, ***P*<0.001, *P*-values are provided for comparison between study groups. Black circles-hypoglycemia group; open circles-euglycemia group; black triangles-sham-saline group. WBC, white blood cells.

Figure 3: Total monocyte count and monocyte subset kinetics in experimental hypoglycemia and controls. Absolute circulating numbers of total monocytes (a) and monocyte subsets comprising of NCM (b), IM (c) and CM (d) after 60 minutes of hypoglycemia, euglycemia or sham-saline injection. Data are mean (SEM), *P*<0.05, **P*<0.01, ***P*<0.001, *P*-values are provided for comparison between study groups. Black
circles-hypoglycemia group; open circles-euglycemia group; black triangles-sham-saline group. NCM, non-classical monocytes; IM, intermediate monocytes; CM, classical monocytes.

Figure 4: Platelet reactivity and monocyte-platelet aggregate formation in experimental hypoglycemia and controls. Total platelet count (a), platelet aggregation to ADP 6.45 μM (b), total MPA formation (c) and MPA formation within monocyte subsets; NCM-MPA (d), IM-MPA (e) and CM-MPA (f) after 60 minutes of hypoglycemia, euglycemia or sham-saline injection. Data are mean (SEM), *P<0.05, **P<0.01, ns-non-significant, P-values are provided for comparison between study groups. Black circles-hypoglycemia group; open circles-euglycemia group; black triangles-sham-saline group. MPA, monocyte-platelet aggregates; NCM-MPA, non-classical monocyte-platelet aggregates; IM-MPA, intermediate monocyte-platelet aggregates; CM-MPA, classical monocyte-platelet aggregates.

Figure 5: Changes in epinephrine, cortisol and growth hormone response post endotoxin challenge. Epinephrine (a), cortisol (b) and growth hormone (c) responses 2, 4 and 6 hours following low dose (0.3 ng/kg) intravenous endotoxin challenge in participants that underwent hypoglycemia, euglycemia or a sham-saline clamp 48 hours earlier. Data are mean (SEM), **P<0.01, ns-non-significant, P-value on dashed line in (b) represents change in cortisol at 4 hours compared to baseline in all groups, solid horizontal lines represent significance for comparison between study groups. Dashed line in (a) illustrates the mean epinephrine response in hypoglycemia clamp subjects. Black circles-hypoglycemia group; open circles-euglycemia group; black triangles-sham-saline group.
Figure 6: Peripheral total white blood cell, neutrophil and lymphocyte kinetics post endotoxin challenge. Number of circulating total WBCs (a), neutrophils (b) and lymphocytes (c) 2, 4 and 6 hours following low dose (0.3 ng/kg) intravenous endotoxin challenge in participants that underwent hypoglycemia, euglycemia or a sham-saline clamp 48 hours earlier. Data are mean (SEM), *P<0.05, ns-non-significant, P-values are provided for comparison between study groups, solid horizontal line in (c) represents significance for comparison between study groups. Black circles-hypoglycemia group; open circles-euglycemia group; black triangles-sham-saline group.

Figure 7: Total monocyte count and monocyte subset kinetics post endotoxin challenge. Absolute circulating numbers of total monocytes (a) and monocyte subsets comprising of NCM (b), IM (c) and CM (d) 2, 4 and 6 hours following low dose (0.3 ng/kg) intravenous endotoxin challenge in participants that underwent hypoglycemia, euglycemia or a sham-saline clamp 48 hours earlier. Data are mean (SEM), ***P<0.001, ns-non-significant, P-value on dashed line in (b) represents change in number of NCMs at 2, 4 and 6 hours compared to baseline in all study groups. P-value on dashed line in (c) represents change in number of IM at 2, 4 and 6 hours compared to baseline in all study groups. P-value on dashed lines in (d) represent change in number of CM at 2 and 6 hours compared to baseline in all study groups. Solid horizontal lines represent significance for comparison between study groups. Black circles-hypoglycemia group; open circles-euglycemia group; black triangles-sham-saline group. NCM, non-classical monocytes; IM, intermediate monocytes; CM, classical monocytes.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hypoglycemia</th>
<th>Euglycemia</th>
<th>Sham-saline</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total n=24</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>N/A</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>4/4</td>
<td>4/4</td>
<td>4/4</td>
<td>N/A</td>
</tr>
<tr>
<td>Age (years)</td>
<td>21 (19-22)</td>
<td>21 (20-23)</td>
<td>21.5 (21-26)</td>
<td>0.299</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24 ± 2</td>
<td>23 ± 2</td>
<td>24 ± 4</td>
<td>0.638</td>
</tr>
<tr>
<td>HbA1c %</td>
<td>5.2 ± 0.31</td>
<td>5.2 ± 0.26</td>
<td>5.1 ± 0.14</td>
<td>0.792</td>
</tr>
<tr>
<td>mmol/mol</td>
<td>34 ± 3.6</td>
<td>33.5 ± 2.8</td>
<td>32.6 ± 1.4</td>
<td>0.616</td>
</tr>
<tr>
<td>Total WBC (x10⁹/l)</td>
<td>6.26 ± 1.42</td>
<td>4.83 ± 0.91</td>
<td>4.50 ± 1.69</td>
<td>0.102</td>
</tr>
</tbody>
</table>
Figure Iqbal jc.2018-01168_Fig1.pdf
Figure 2: Changes in blood cell counts over time.

A) Total white blood cells (x10^9/L)

B) Neutrophils (x10^9/L)

C) Lymphocytes (x10^9/L)

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05.
Figure Iqbal jc.2018-01168_Fig5.pdf

Figure 5:

(a) Mean Epinephrine Hypoglycemia (clamp)

(b) Serum cortisol

(c) Serum growth hormone