Influence of Calcination on Sol-Gel Synthesis of Lanthanum Oxide Nanoparticles

---Manuscript Draft---

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Influence of Calcination on Sol-Gel Synthesis of Lanthanum Oxide Nanoparticles</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Regular papers</td>
</tr>
<tr>
<td>Corresponding Author:</td>
<td>Humayun Kabir, MPhi; Jahangirnagar University Dhaka, Dhaka BANGLADESH</td>
</tr>
<tr>
<td>Corresponding Author’s Institution:</td>
<td>Jahangirnagar University</td>
</tr>
<tr>
<td>Corresponding Author’s Secondary Institution:</td>
<td></td>
</tr>
<tr>
<td>First Author:</td>
<td>Humayun Kabir, MPhi;</td>
</tr>
<tr>
<td>First Author Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Order of Authors:</td>
<td>Humayun Kabir, MPhi;</td>
</tr>
<tr>
<td></td>
<td>Sooraj Hussain Nandyala, PhD</td>
</tr>
<tr>
<td></td>
<td>M Mahbubur Rahman, PhD</td>
</tr>
<tr>
<td></td>
<td>Md Alamgir Kabir, MRes</td>
</tr>
<tr>
<td></td>
<td>Artemis Stamboulis, PhD</td>
</tr>
<tr>
<td>Order of Authors Secondary Information:</td>
<td></td>
</tr>
<tr>
<td>Funding Information:</td>
<td></td>
</tr>
<tr>
<td>Abstract:</td>
<td>A facile sol-gel technique was employed to synthesize Lanthanum Oxide nanoparticles (La2O3 NPs) effectively using micro-sized La2O3 powder, 20% nitric acid and high molecular weight polyethylene glycol (PEG) as starting materials and later their characteristics were studied via several characterization techniques, namely X-Ray diffraction (XRD), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier Transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. To investigate the influence of calcination temperatures on the particle size and other properties, the synthesized La2O3 nanopowder was calcined at several temperatures including 600 0C, 750 0C and 900 0C. The obtained results indicated that calcination temperatures affected significantly the crystallinity, particle size and lattice strain. The XRD patterns confirmed the hexagonal phase of the La2O3 NPs with lattice constant values, a = b = 0.3973 nm and c = 0.6129 nm. The average particle size of the La2O3 NPs estimated from ESEM images were in good agreement with the average crystal size obtained from the XRD data. The crystallinity as well as the mean crystallite size of the La2O3 NPs increased, while the lattice strain decreased with increasing calcinations temperatures. The Photoluminescence spectra of La2O3 NPs illustrated a strong emission band located at the wavelength of 364 nm which is typical green band and the wavelength of this band was not affected by the temperatures of the calcination.</td>
</tr>
</tbody>
</table>
Influence of Calcination on Sol-Gel Synthesis of Lanthanum Oxide Nanoparticles

Humayun Kabira,b, Sooraj Hussain Nandyalaa, M Mahbubur Rahmanb,c, Md Alamgir Kabira,b,d, Artemis Stamboulisa

aSchool of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
bDepartment of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
cSurface Analysis & Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Murdoch, WA 6150, Australia.
dDepartment of Physics, Kent State University, Kent, Ohio 44243, USA.

Abstract:

A facile sol-gel technique was employed to synthesize Lanthanum Oxide nanoparticles (La\textsubscript{2}O\textsubscript{3} NPs) effectively using micro-sized La\textsubscript{2}O\textsubscript{3} powder, 20% nitric acid and high molecular weight polyethylene glycol (PEG) as starting materials and later their characteristics were studied via several characterization techniques, namely X-Ray diffraction (XRD), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier Transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. To investigate the influence of calcination temperatures on the particle size and other properties, the synthesized La\textsubscript{2}O\textsubscript{3} nanopowder was calcined at several temperatures including 600 °C, 750 °C and 900 °C. The obtained results indicated that calcination temperatures affected significantly the crystallinity, particle size and lattice strain. The XRD patterns confirmed the hexagonal phase of the La\textsubscript{2}O\textsubscript{3} NPs with lattice constant values, $a = b = 0.3973$ nm and $c = 0.6129$ nm. The average particle size of the La\textsubscript{2}O\textsubscript{3} NPs estimated from ESEM images were in good agreement with the average crystal size obtained from the XRD data. The crystallinity as well as the mean crystallite size of the La\textsubscript{2}O\textsubscript{3} NPs increased, while the lattice strain decreased with increasing calcinations temperatures. The Photoluminescence spectra of La\textsubscript{2}O\textsubscript{3} NPs illustrated a strong emission band located at the wavelength of 364 nm which is typical green band and the wavelength of this band was not affected by the temperatures of the calcination.
Graphical Abstract

Key Words
Sol-gel technique, X-Ray diffraction, crystallinity, hexagonal phase, crystal size.

Corresponding Author Informations
Humayun Kabir a,b
rumy140@juniv.edu
a School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
b Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.

Highlights
- La2O3 NPs were synthesized successfully via a facile sol-gel technique.
- The calcination temperatures affected significantly the crystallinity, particle size and lattice strain.
- The crystallinity and the mean crystallite size of the La2O3 NPs increased, while the lattice strain decreased with increasing calcinations temperatures.
The thermograms of all samples showed three main thermal transitions associated with weight loss.

In PL spectra a strong emission band located at the wavelength of 364 nm is typical green band.

1. Introduction

Rare earth elements are distinguished by their high density, high melting point, high thermal conductance and conductivity. Because of their 4f orbital electron, they possess unique physical as well as chemical properties and have wide applications in electronics, medical, biomedical and agronomical fields [1, 2]. In plenty of areas of physics, chemistry, and materials science, metal oxides keep exceptionally significant contributions [3]. They can indicate metallic, semiconductor, or insulator character; because they can take an extensive number of structural geometries with a specific electronic structure. They have vast applications in technology, including fabrication of microelectronic circuits, sensors, piezoelectric devices, fuel cells, coatings against corrosion, and as catalysts. Metal oxides (MOs) are used as catalysts to prepare different products in chemical and petrochemical industries [4, 5]. They also used as catalysts or sorbents to carry away CO, NOx, and SOx species formed during the combustion of fossil fuels [5]. The greater portion of semiconductor industry uses of MOs to generate electronic components, like chips used in computers [6]. If the metal oxide’s size is taken down to nanometer range, a number of properties depending on size initially develop because of surface chemistry [7-9]. As metal oxide nanoparticles (NPs) have confined size, so they can express unique chemical as well as physical properties. Particle size has impact on three momentous fundamental properties of a material. Firstly, the structural characteristics, exemplary lattice symmetry and unit cell parameters [10]. Normally, bulk MOs is stable with specific crystallographic structures. When the particle size decreases, the stability of thermodynamic as well as unit cell parameters alters and hence structural transformations may happen [11]. Secondly, particle size of MOs is connected to the electronic properties. If the size of particle reduces, the energy of exciton levels of a semiconductor MOs displaces and therefore the optical band gap of the MOs varies [12]. When the structural and electronic properties of MOs vary, they evidently switch the physical as well as chemical properties of a MOs. This is the third group of characteristics that is dominated by the size of the particles [13].

Lanthanum (III) oxide, La$_2$O$_3$, called lanthania is an odourless, white solid and is a rare earth metal oxide. Lanthania is not soluble in water, but soluble in dilute acid. La$_2$O$_3$ has the greatest
optical band gap of the rare earth oxides, 4.3 eV, the minimum lattice energy and an extremely high dielectric constant, 27 [14]. Because of these interesting properties, lanthana has a lot of potential applications in different cases, for instance fuel cells, dielectric layers in devices, optics, magnetic data storage and magnetic resonance imaging (MPI), ceramics, gas sensors, catalysis, automobiles, biosensors, automobiles, water treatment, biomedicine, protective and optical coating, preparing several perovskite nanostructures, photoelectric conversion, optical filters, light converting agricultural films, in light emitting materials (blue powder), for preparing high refractive optical fibres, precision optical glasses and other alloys materials, etc. [15-19]. A several methods have developed for the synthesizing of La$_2$O$_3$ ultrafine powders, nanopowders, nanorods, nanowires, nanosheets, nanoneedles, nanobundles and nanoparticles, incorporate with sol–gel [20, 21], hydrothermal [22, 23], sonochemical [24, 25], microwave [26], solvo-thermal [27], laser deposition [28], thermal decomposition [29], chemical precipitation [30], reverse micelles [31], arc-discharge [32], green carbonation [33], starch template [34] and other chemical and physical techniques. All these methods have their own advantages and disadvantages. Amongst these methods, the sol–gel synthesis process is a facile, inexpensive and does not require any specialist equipment. Goharshadi et al. synthesized lanthana nanoparticles [35] using LaCl$_3$, 7H$_2$O as the starting materials, ammonia solution as hydrolysis agents and hexadecyltrimethyl ammonium bromide as a surfactant using hydrothermal process. The obtained average particle size was below 30 nm. La$_2$O$_3$ NPs were also prepared by Nejad et al. using same process starting from lanthanum nitrate, La(NO$_3$)$_3$, 6H$_2$O and the obtained mean particle size was around 50 nm [22]. A simple sol–gel method has been employed by Wang et al. [36] to synthesis La$_2$O$_3$ nanoparticles by mixing commercial powder La$_2$O$_3$, polyethylene glycol (PEG) and nitric acid. They showed that particle size is strongly influenced by calcination temperature as well as concentration of PEG in the solution. The average particle size of La$_2$O$_3$NPs decreased with increasing PEG concentration. Niasari et al. studied the synthesis of lanthanum carbonate, La$_2$(CO$_3$)$_3$ for the preparation of La(OH)$_3$ and La$_2$O$_3$ NPs via sonochemical method [37]. They reported the variation of surfactant, calcination temperature as well as sonication time on the morphology and particle size of the NPs and concluded that sonication time of 30 min and calcination temperature of 600 ºC are optimum condition to synthesize La$_2$(CO$_3$)$_3$ and La$_2$O$_3$, respectively and addition of surfactant is not required. Synthesis of nanostructure La$_2$O$_3$ as a heterogeneous catalyst has been reported by Zhou et al. [38] via sonochemical technique for biodiesel synthesis.

In this study, we reported surfactant assisted sol–gel technique to synthesis La$_2$O$_3$ NPs using surfactant PEG as template agent and micro-sized lanthanum oxide powder as precursors. As-synthesized products were characterized by XRD, ESEM, TGA, DSC, PL and FTIR spectroscopy. The influence of calcination temperatures on average particle size was also
investigated. A deeper understanding the properties and the synthesis technique will be useful for developing the potential applications of La$_2$O$_3$ NPs.

2. Experimental details

2.1 Raw materials and synthesis process La$_2$O$_3$ NPs

All the chemical reagents used in this synthesis process were analytical grade, purchased from Sigma Aldrich, UK, and were used as direct without further purification.

In this synthesis process, the sol-gel technique was used to prepare La$_2$O$_3$ NPs. In a typical process, 2.00 g micro-sized (∼300 μm) commercially purchased La$_2$O$_3$ powder was kept in a pre-cleaned glass beaker. The required amount (∼18.5 ml) of 20% aqueous solution of HNO$_3$ was added drop wise to the La$_2$O$_3$ powder with continuous and vigorous magnetic stirring until all La$_2$O$_3$ powder reacted with HNO$_3$ to produce an aqueous solution of lanthanum nitrate (La(NO$_3$)$_3$.6H$_2$O). Then various amounts of PEG were added to produce a solution with different PEG concentrations, such as 30 g/l, 40 g/l, 45 g/l, 50 g/l, 60 g/l and 70 g/l. The solution was then further stirred for 15 minutes using a magnetic stirrer. The solution was then kept in a water bath at 80 °C with continuous stirring for approximately 2.0 hours until most of the water was evaporated and a clear gel was formed. The obtained product was allowed to cool down to room temperature. The whole experimental procedure was carried out in the fume cupboard for safety reasons. Thereafter, the product (clear gel) was placed in an oven at 90 °C for 72 h to obtain a dry gel. The dry gel was then grounded using an agate mortar and pestle to obtain a white powder. In order to remove the organic phase and decompose the La(NO$_3$)$_3$, the powder was heat treated in a furnace at 300 °C. Eventually, the resultant powder was calcined at the several temperatures including 750 °C, 900 °C, and 1000 °C. The final product was La$_2$O$_3$ NPs. The flow chart for the preparation of La$_2$O$_3$ NPs via the sol-gel technique is illustrated in Fig. 1. Within six trial samples, best three samples (PEG concentration: 30 g/l, 45 g/l and 60 g/l) in each calcination temperature, such as 750 °C, 900 °C and 1000 °C were taken for different measurements.

2.2 Characterization of Samples

An Equinox 3000 X-ray powder diffractometer was used to perform the structural characterization of the as synthesised La$_2$O$_3$ NPs in the 2θ range from 10° to 60°, and step of 0.03°, with graphite monochromatic Cu Kα radiation (λ = 0.154 18 nm). The operating voltage and current was 35 kV and 25 mA, respectively. The surface morphology of all NPs samples was investigated using a Philips XL 30 ESEM equipped with Oxford INCA EDX FEG electron microscope operated at 20 kV at different magnifications. Specimens were prepared by dispersing...
La$_2$O$_3$ NPs in absolute ethanol under ultra-sonication, dropping a little solution onto thin Cu coating film which was set previously on a steel stab and evaporating the solvent naturally in air. Then resulting specimens were sputter coated with a thin layer of platinum in vacuum. The EDS of the samples was performed by a Philips XL 30 ESEM and EDX FEG electron microscope operated at 10 kV. The FTIR spectra were recorded in transmittance (%) mode at room temperature by using a double beam IR spectrophotometer (Nicolet 8600 FTIR spectrometer) in the wavenumber range from 400 to 4000 cm$^{-1}$. To obtain the IR spectra, a ratio of 1:100 of the sample and potassium bromide, KBr were used. The background using a control sample of KBr was always taken prior to each measurement. The applied resolution and number of scan was 4 cm$^{-1}$ and 100 per minute, respectively. TG and DSC analysis were performed at room temperature 25 $^\circ$C to 1000 $^\circ$C at a heating rate of 10 $^\circ$C /min under argon gas flow by a NETZSCH Thermal Analysis STA 449C. A QuantaMaster™ 510 spectrofluorometer (HORIBA Jobin Yvon GmbH, Germany) was used to record photoluminescence spectra at room temperature with excitation wavelength, $\lambda_{ex} = 300$ nm.

3. Results and discussion

3.1. XRD analysis

Fig. 2 illustrates the X-ray diffraction patterns of La$_2$O$_3$ NPs prepared with PEG concentration of 60 g/l calcined at 750 $^\circ$C, 900 $^\circ$C and 1000 $^\circ$C, and all these X-ray diffraction patterns reveal the overall crystal structure and phase purity of the La$_2$O$_3$ NPs. The diffraction peaks of all samples were indexed to (100), (002), (101), (102), (110), (200), (112), and (201) reflections corresponding to the pure hexagonal phase with lattice constant, $a = b = 0.3973$ nm and $c = 0.6129$ nm (JCPDS card No. 83-1348). The strong and sharp diffraction peaks of all samples confirm the good crystallinity of the La$_2$O$_3$ NPs. The broader peaks suggest the nanometer-sized structures of the La$_2$O$_3$ NPs. It is observed that with increasing calcination temperature from 750 $^\circ$C to 1000 $^\circ$C the height of the peak increases and full width at half maximum (FWHM) decreases, that is diffraction peaks become stronger and sharper indicating the crystallinity of the samples improve and the size of particles getting larger [36, 37].

The lattice constants, a, b and c of the unit cell for hexagonal structure of La$_2$O$_3$, were calculated by the following equation [39]:

$$\frac{1}{d_{kl}^2} = \frac{4}{3} \left(\frac{a^2 + \sqrt{3}k^2 + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

(1)
where d_{hkl} is the interplanar spacing of the atomic planes and hkl is Miller indices. The calculated values of a, b and c is listed in Table 1. The obtained results are well agreement with the reported values [40].

The width of the diffraction peak varies with the crystallite size of the material. The crystallite size, D of sample material can be estimated by using the Scherrer’s formula [41]:

$$D = \frac{M\lambda}{\beta \cos \theta_B}$$

(2)

where D is the diameter of the crystallite, β is the FWHM of the selected diffraction peak, θ_B is the Bragg angle, λ is the wavelength of the X-ray used, and M is a constant of which the value depends on the shape of the crystallite.

The FWHM of the XRD peaks may also contain contributions from lattice strain, ε_{str} and the strain induced in powders owing to crystal imperfection and distortion can be calculated by using the Stokes-Wilson equation [42]:

$$\varepsilon_{str} = \frac{\beta c}{4 \tan \theta}$$

(4)

The values of average crystallite size and lattice strain determined by using Equations (3) and (4) and values are tabulated in Table 2. It is observed from the data in the Table 2 that the average crystallite size decreases while lattice strain increases with increasing concentration of PEG in the sol. On the contrary, average crystallite size increases while lattice strain decreases with increasing calcination temperature. The similar result was reported by Wang et al. [36].

A variety of properties of the materials is strongly affected by crystallographic defects or irregularity within a crystal structure. This defects or irregularity is known as dislocation. The dislocation density, δ for La$_2$O$_3$ NPs can be determined by the expression [43]:

$$\delta = \frac{15\beta \cos \theta}{4aD}$$

(5)

In crystalline solids, atoms or molecules exist in a periodic nature and repeat fixed distance positions, called unit cell parameter. The unit cell volume, V for hexagonal La$_2$O$_3$ NPs can be calculated by the relation below [44]:

$$V = \frac{\sqrt{3}}{2} a^2 c$$

(6)

The calculated values of δ and V for all samples are listed in Table 2.
The crystalinity of the sample material can be represented by the crystal index, \(C_i \), and can be calculated by the following equation [35]:

\[
C_i = \frac{I_{\text{max}}}{\beta_c} \quad (7)
\]

In this case \(I_{\text{max}} \) is the maximum intensity of the XRD peak and \(\beta_c \) is the value of corrected FWHM.

The obtained value of dislocation density, unit cell volume and crystal index are listed in Table 2. It is found that dislocation density is higher for samples calcined at 900 °C presenting the higher concentration of crystal imperfections in the samples. It is apparent that samples calcined at temperature 1000 °C have larger unit cell volume as compared to the other samples.

3.2 Surface Morphology and Particle Size Measurement

Fig. 3, Fig. 4 and Fig. 5 show SEM micrographs of dispersed La\(_2\)O\(_3\) NPs prepared with PEG concentration of 60 g/l calcined at 750 °C, 900 °C and 1000 °C, respectively at different magnifications. In this case, to get average crystallite size for every sample, at least ten crystallites were considered and their diameter were measured from a software connected with ESEM which was marked in every samples. The nanoparticles were dispersed in ethanol with the help of an ultrasonic bath (probe power level 3 and power density of 0.275 W/mL) for 20 min. From all Figures, it can be seen that the La\(_2\)O\(_3\) NPs are uniformly dispersed and mostly spherical in shape with diameters from approximately 32 nm to 56 nm. This can be attributed to the fact that the acoustic waves transmitted by ultra-sonication are effective in dispersing La\(_2\)O\(_3\) NPs owing to the transient cavitations and acoustic streaming that can possibly redefine the shape and structure of NPs and change the surface morphology [45]. From the results [shown in supplementary Figures], it can be seen that the particle size of the as synthesized La\(_2\)O\(_3\) NPs decreased with increasing PEG concentration. This can be attributed to the enhanced steric hindrance by the adsorption of polymer polyethylene glycol on the surfaces of lanthanum oxide particles. That is the polyethylene glycol polymer surrounds the crystal nuclei of lanthanum nitrate and prevents their growth which creates steric hindrance effect resulting to reduce particle-particle aggregation. When the concentration of PEG is not enough to fully cover the crystal nuclei, the growth of crystal is not impeded effectively by adsorbing PEG. As a result, bigger particles will be acquired. On the other hand, if the concentration of PEG rises, then the coverage degree of PEG on the crystal nuclei will increase and consequently average particle size is thinly decreased. At the same time, the particle-particle agglomeration is gradually reduced [36].
The change of the average particle size with calcinations temperature is summarized in Table 3 to understand the influence of particle size on the calcination temperature clearly. It can be concluded from the result shown in Table 3 that the particle size is gradually increased with the increase in calcination temperatures. This is fact can be explained as that at low temperature the particles grow gently while at higher temperature particles grow very rapidly to form agglomeration. The similar type of results was found by earlier researchers [36].

3.3 Chemical Composition Study

The EDS spectra of NPs La$_2$O$_3$ NPs prepared with PEG concentration of 60 g/l calcined at 750 °C, 900 °C and 1000 °C are represented in Fig. 6, respectively. The EDS spectrum shows presence of lanthanum, oxygen, carbon, and platinum. The small carbon peak was originated from the tiny carbon tape mounted on a stainless steel stab which was applied during the sample preparation for SEM. The Pt peak was resulted from platinum coating of the samples which was used to make the sample highly conductive. The weight percentage (wt. %) of the different elements present in all samples are listed in Table 4. It is observed from the results shown in Table 4, that highest weight percentage of Lanthanum (La) is present in the sample while a good amount of Oxygen (O) is also observed. The theoretical percentage of lanthanum in La$_2$O$_3$ NPs is 85.3% and that of oxygen is 14.73 % while the EDX results showed on the average 75.03 % of lanthanum and 19.76 % of oxygen. These obtained results confirmed a good agreement with previous work [35]. The EDX analysis indicates no presence of any impurity.

3.4 Thermal analysis of La$_2$O$_3$ NPs

Fig. 7 illustrates the TG-DSC curves of the lanthanum dried gel powder prepared at PEG concentration of 60 g/l. The thermogram of Fig. 7 shows four different regions indicated by letter A, B, C and D. These regions are indication of different weight losses of the sample at different range of temperature. The weight loss approximately 1.5 % in the first region (A) between temperature 30 to 250 °C corresponds to the removal of surface absorbed water of the sample and because of this a small endothermic peak in DSC curve is obtained at about 95 °C. In the second region (B) between temperature 250-400 °C, DSC curve indicates a sharp endothermic peak at 380°C and the corresponding weight loss in the in this region is 8.25 %. This can be explained as the evaporation of the surfactant (PEG), whose boiling point is 260 °C. The weight loss (2.75 %) in the third region, C is due to the oxidation of the residual organic compounds from surfactant, PEG. A small endothermic peak in this region at a temperature 510 °C is also observed. Finally, in the fourth region (D) an endothermic peak at 750 °C in DSC curve is obtained and the corresponding weight loss in this region is around 3.5 %. This is because of the final decomposition of lanthanum.
compound of the sample [36]. That is, PEG and all others lanthanum compound of the sample decomposed completely at 750 °C. Hence, 750 °C was chosen as the minimum calcination temperature.

3.5 Fourier Transform Infrared Spectroscopy analysis

The FTIR spectra in the wavenumber range 4000-400 cm\(^{-1}\) of the as-prepared La\(_2\)O\(_3\) NPs samples are depicted in Fig. 8. At the spectrums of the samples with PEG concentration of 60 g/l calcined at 750 °C, 900 °C and 1000 °C in Fig. 8, a broad band is observed at the wavenumber of 3439 cm\(^{-1}\) (A), 3424 cm\(^{-1}\) (A) and 3442 cm\(^{-1}\) (A), respectively and these bands show the presence of O-H stretching vibration which is due to absorbed moisture on the surface of the samples [36]. The absorption peaks at around 1459, 1460 and 1464 cm\(^{-1}\) (B) as well as sharp absorption bands at 1362, 1363 and 1363 cm\(^{-1}\) (C) in the samples is found because of the asymmetric and symmetric stretching of COO\(^{-}\), respectively [37]. The band at 1067 cm\(^{-1}\) (D) in three samples is for C-O stretching vibration but in the same samples, the sharp absorption bands at around 856 cm\(^{-1}\) (E) is owing to C-O bending vibration. The broad absorption bands at 648, 678 and 663 cm\(^{-1}\) (F) in three samples is observed because of the La-O stretching vibration while the small bands at 510, 510 and 514 cm\(^{-1}\) (G) in the same samples is due to La–O bending vibration. The presence of above mentioned bands therefore confirmed the existence of La\(_2\)O\(_3\) [38]. The location of all the band frequencies and their corresponding modes of vibration are recorded in Table 5 for better comparison.

3.6 Photoluminescence Spectroscopy Study

The Photoluminescence (PL) spectra of different La\(_2\)O\(_3\) NPs samples are illustrated in Fig. 9. From Figures 9 it is seen that the strongest emission band is found to be located at the wavelength of 364 nm for all samples. The observed emission band at 364 is a typical green band. This may be ascribed to recombination of a delocalized electron near to the conduction band with a single charged state of a surface oxygen vacancy [46]. The higher fluorescence intensity of the La\(_2\)O\(_3\) sample is an indication of the higher surface-to-volume ratio and due to higher density of single ionized oxygen vacancies, resulting from the small particle size as has been suggested by G. Wang et al. [47]. A small band is also observed at 465 nm for all samples.
4. Conclusions

La$_2$O$_3$ nanoparticles were successfully synthesised via a simple sol-gel technique and the effect of calcinations temperature on the size of nanoparticles was also investigated. All of the diffraction peaks of La$_2$O$_3$ NPs obtained from XRD data were indexed to (100), (002), (101), (102), (110), (200), (112), and (201) reflections corresponding to the pure hexagonal phase. The average crystal size calculated by the Debye Scherrer’s equation was found to be in the range of 18.14-29.31 nm while that of estimated from ESEM micrographs for different dispersed La$_2$O$_3$ NPs samples were found from 32.59 nm to 55.73 nm. The particle size was found to be increased with increasing calcination temperature while that of decreased with increasing concentration of the PEG in the solution. The EDS study confirmed the presence of Oxygen and Lanthanum in the synthesized nanoparticles. The thermograms of all samples showed three main thermal transitions associated with weight loss. The FTIR spectroscopy suggested that all samples exhibited a broad band in the range of 3442-3424 cm$^{-1}$ associated with O-H stretching vibrations in absorbed water molecules. Absorption bands in the frequency range 1067 cm$^{-1}$ associated with C-O stretching vibrations were observed, while C-O bending vibrations appeared in the range of 856-845 cm$^{-1}$. La-O stretching and bending vibrations were observed in the wavenumber range of 678-648 cm$^{-1}$ and 514-510 cm$^{-1}$, respectively. The Photoluminescence spectra of different samples of La$_2$O$_3$ NPs presented a strong emission band located at the wavelength of 364 is typical green band.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Acknowledgments

The author (H. Kabir) acknowledged gratefully for the financial support of Bangladesh Government under Bangabandhu Fellowship. He also acknowledges thankfully Jahangirnagar University, Bangladesh for providing the required study leave to carry out this work at School of Metallurgy and Materials, University of Birmingham, UK.

References

[1] P. Huang, J. Li, S. Zhang, C. Chen, Y. Han, N. Liu, Y. Xiao, H. Wang, M. Zhang, Q. Yu, Y. Liu, and W. Wang, Effects of lanthanum, cerium, and neodymium on the nuclei and

101.

[37] M. S. Niasaria, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum carbonate nanoparticles

Fig. 1. Flow chat for the synthesis of La$_2$O$_3$ NPs via sol-gel technique.

Fig. 2. XRD patterns of La$_2$O$_3$ NPs samples calcined at 750 °C, 900 °C and 1000 °C [PEG concentration 60 g/l].
Fig. 3: SEM micrographs of dispersed La$_2$O$_3$ NPs sample calcined at 750 °C, at magnification (a) 40k×, (b) 50k×.

Fig. 4: SEM micrographs of dispersed La$_2$O$_3$ NPs sample calcined at 900 °C, at magnification (a) 40k×, (b) 50k×.

Fig. 5: SEM micrographs of dispersed La$_2$O$_3$ NPs sample calcined at 1000 °C, at magnification (a) 40k×, (b) 50k×.
Fig. 6: EDS spectra of La₂O₃ NPs samples calcined at 750 °C, 900 °C and 1000 °C [PEG concentration 60 g/l].

Fig. 7: TG-DSC traces of the lanthanum compound dried gel powder prepared at PEG concentration of 60 g/l.
Fig. 8: FTIR spectra of La$_2$O$_3$ NPs samples calcined at 750 °C, 900 °C and 1000 °C [PEG concentration 60 g/l].

Fig. 9: PL spectra of La$_2$O$_3$ NPs samples calcined at 750 °C, 900 °C and 1000 °C [PEG concentration 60 g/l].
Table 1. Determination of interplanar distance and lattice constants of La$_2$O$_3$ NPs.

<table>
<thead>
<tr>
<th>Sample (Calcination Temp.)</th>
<th>Interplanar distance, d_{hkl} (Å)</th>
<th>Lattice constants, a and b (Å)</th>
<th>Lattice constants, c (Å)</th>
<th>Average values of a or b (Å)</th>
<th>Average of c (Å)</th>
</tr>
</thead>
</table>

Table 2. Crystallographic parameters of La$_2$O$_3$ NPs.

<table>
<thead>
<tr>
<th>Sample (Calcination Temp.)</th>
<th>Crystallite size, D (nm)</th>
<th>Lattice strain, ε</th>
<th>Dislocation density, δ</th>
<th>Unit cell volume, V (Å3)</th>
<th>Crystal index, C_i</th>
<th>c/a ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 °C</td>
<td>18.14</td>
<td>0.0077</td>
<td>0.0240</td>
<td>82.5274</td>
<td>1561.16</td>
<td>1.5593</td>
</tr>
<tr>
<td>900 °C</td>
<td>25.37</td>
<td>0.0055</td>
<td>0.1081</td>
<td>82.0993</td>
<td>4056.49</td>
<td>1.5623</td>
</tr>
<tr>
<td>1000 °C</td>
<td>29.31</td>
<td>0.0048</td>
<td>0.0089</td>
<td>84.2509</td>
<td>3775.58</td>
<td>1.5379</td>
</tr>
</tbody>
</table>

Table 3. Average particle size for different dispersed samples of La$_2$O$_3$ NPs:

<table>
<thead>
<tr>
<th>Sample (Calcination Temp.)</th>
<th>Magnification(k×)</th>
<th>Particle size (nm)</th>
<th>Average particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>750 °C</td>
<td>40</td>
<td>31.55±3.49</td>
<td>32.59±4.04</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>35.02±4.58</td>
<td></td>
</tr>
<tr>
<td>900 °C</td>
<td>40</td>
<td>40.81±4.59</td>
<td>41.71±3.90</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>41.23±3.21</td>
<td></td>
</tr>
<tr>
<td>1000 °C</td>
<td>40</td>
<td>40.82±3.60</td>
<td>55.73±4.32</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>62.86±5.05</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. The weight percentage (wt. %) of the different elements present in different samples of La$_2$O$_3$ NPs.

<table>
<thead>
<tr>
<th>Sample (Calcination Temp.)</th>
<th>Element present in Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>La</td>
</tr>
<tr>
<td>750 °C</td>
<td>67.81</td>
</tr>
<tr>
<td>900 °C</td>
<td>69.83</td>
</tr>
<tr>
<td>1000 °C</td>
<td>80.20</td>
</tr>
</tbody>
</table>
Table 5. Assignments of FTIR absorption peaks for La$_2$O$_3$ nanoparticles samples.

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Wavenumber (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>As prepared La$_2$O$_3$ nanoparticles</td>
</tr>
<tr>
<td></td>
<td>750 °C</td>
</tr>
<tr>
<td>O-H stretching vibration (A)</td>
<td>3439</td>
</tr>
<tr>
<td>Asym. stretching of COO$^-$ (B)</td>
<td>1509, 1459</td>
</tr>
<tr>
<td>Symmetric stretching of COO$^-$ (C)</td>
<td>1362</td>
</tr>
<tr>
<td>C-O stretching vibration (D)</td>
<td>1067</td>
</tr>
<tr>
<td>C-O bending vibration (E)</td>
<td>856, 845</td>
</tr>
<tr>
<td>La-O stretching vibration (F)</td>
<td>648</td>
</tr>
<tr>
<td>La–O bending vibration (G)</td>
<td>510</td>
</tr>
</tbody>
</table>
The Editor
Journal of Applied Physics A

Submission of Full-Length Article to Journal of Applied Physics A

With reference to the above, I attach herewith an article entitled “Influence of Calcination on Sol-Gel Synthesis of lanthanum oxide nanoparticles” for submission to Journal of Applied Physics A as a full-length research paper.

Authors are ensuring that this is an original article. The article has been written by the stated authors who are ALL aware of its content and all authors have approved the final article. We would like to assure the publisher that this work has not been published/submitted or being submitted to another journal or is not under consideration for publication elsewhere. Authors also declared that no conflict of interest exists for this article. Authors also confirming that if accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher. It is also assured to the publisher that this manuscript was not previously submitted to Journal of Applied Physics A. All the authors mutually agree to submission of the manuscript to Journal of Applied Physics A and assign to Springer Link the copyright if the article is accepted for publication.

We appreciate your kind action on for publishing this paper at your esteemed journal.

Thank you,

Yours sincerely,

Humayun Kabir
Corresponding author
Email: rumy140@juniv.edu