

University of Birmingham

Better path-finding algorithms in LPS Ramanujan
graphs
Carvalho Pinto, Eduardo; Petit, Christophe

DOI:
10.1515/jmc-2017-0051

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Carvalho Pinto, E & Petit, C 2018, 'Better path-finding algorithms in LPS Ramanujan graphs', Journal of
Mathematical Cryptology, vol. 12, no. 4, pp. 191-202. https://doi.org/10.1515/jmc-2017-0051

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 22/01/2019

This is the author accepted manuscript version of a paper published in the Journal of Mathematical Cryptology which can be found at:
https://doi.org/10.1515/jmc-2017-0051

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1515/jmc-2017-0051
https://doi.org/10.1515/jmc-2017-0051
https://birmingham.elsevierpure.com/en/publications/630498ad-b79e-407d-b996-039b0be6f413

Noname manuscript No.
(will be inserted by the editor)

Better path-finding algorithms in LPS Ramanujan graphs

Eduardo Carvalho Pinto · Christophe Petit

Abstract We provide a new heuristic polynomial time algorithm that computes short paths between
arbitrary pairs of vertices in Lubotzky-Philipps-Sarnak’s Ramanujan graphs. The paths returned by our
algorithm are shorter by a factor approximately 16/7 compared to previous work, and they are close to
optimal for vertices corresponding to diagonal matrices. Our results also lead to an improved cryptanalysis
of Charles-Goren-Lauter hash function.

Mathematics classification and key words: 94A60; 11Y50; 05C12; 05C25; 08A50; cryptography; Cayley graph;

Tillich-Zémor hash function; path finding algorithm.

1 Introduction

LPS graphs were introduced by Lubotzky, Philipps and Sarnak [8]. LPS graphs are Ramanujan graphs,
namely they are graphs with optimal expansion properties, and they have many applications in mathemat-
ics and computer science [7]. In [2], Charles, Goren and Lauter introduced a cryptographic hash function
whose security relied on the presumed computational intractability of computing short paths between
arbitrary pairs of vertices in the graph. Due to the algebraic nature of LPS graphs this problem can also
be stated in group-theoretic terms: given the group G = PSL(2,Fp) and a particular set of generators,
and given an element of G, find a short factorization of this element as a product of the generators. This
problem was later solved in [15,10], leading to a full cryptanalysis of the cryptographic construction.

The quality of a path-finding algorithm is measured by its running time, but also by the lengths of the
paths returned. In this paper we are interested in minimizing this length while keeping a polynomial run
time complexity. While the algorithm in [10] returns paths that are a priori optimal up to a constant factor
16/3, we improve this algorithm and decrease this factor down to 7/3 under several plausible heuristic
conditions. Similarly to [10] we first solve the case of diagonal matrices, then we reduce the general case
to this case. Our algorithm improves both the diagonal case and the reduction, and for the diagonal case
it returns factorizations with lengths very close to the expected minimal.

LPS graphs have recently been suggested for quantum circuit design. In this setting LPS generators
correspond to elementary quantum gates, and they are combined to approximate arbitrary quantum gates
on a single qbit. Interestingly, an algorithm similar to our diagonal algorithm has been independently
developed in that context [1,11]. It was later transposed to our setting [12], resulting in an algorithm very
similar to our algorithm in the diagonal case. It seems very likely that our other improvement (reducing
from the general case to the diagonal case) can also be adapted to the problem of quantum circuit design;
this will be the purpose of a future paper.

1.1 Outline

The paper is organized as follows. Section 2 describes LPS graphs and previous path-finding algorithms for
these graphs; Section 3 gives an optimal algorithm when the optimal solution is short; Section 4 describes
the diagonal case; Section 5 gives our new reduction and describe the full algorithm; Section 6 gives
experimental support to our heuristic analysis and Section 7 concludes the paper.

Eduardo Carvalho, Ecole Polytechnique · Christophe Petit, University of Birmingham, E-mail:
christophe.f.petit@gmail.com, ORCID 0000-0003-3482-6743

2 Eduardo Carvalho Pinto, Christophe Petit

2 Path-finding algorithms in LPS Ramanujan graphs

In this section we recall the definition of LPS graphs and we briefly describe previous path-finding algo-
rithms in these graphs. In our exposition we mostly follow [15,10], and we refer to those papers for details
and proofs.

2.1 LPS Ramanujan graphs

In this paper p and ` will be two distinct primes congruent to 1 modulo 4 such that ` is a quadratic
residue modulo p. We think of p and ` as being respectively “large” and “small” primes, and in fact in our
complexity estimates we will assume ` = O(1). We denote the finite field with p elements by Fp. With an
abuse of notation we will often identify elements of Fp and integers in {0, 1, . . . , p − 1}. For any ring R,
we write GL2(R) and PSL2(R) respectively for the general linear group and the projective special linear
group of rank 2 over R. We define G := PSL2(Fp). We write I for the identity matrix in any of those
matrix groups.

We denote by B = Q[i, j] the quaternion algebra over the rationals generated by two elements i and
j such that i2 = j2 = −1 and k := ij = −ji. For any q = a + bi + cj + dk ∈ B, the conjugate of q is
q := a− bi− cj−dk and the norm of q is n(q) = qq = a2 + b2 + c2 +d2. Note that the norm is multiplicative:
for any q1, q2 ∈ B, we have n(q1q2) = n(q1)n(q2).

With some abuse of notation we also use the symbol i for the imaginary unit, and we denote the
Gaussian integers by Z[i]. The map σ : GL2(Z[i])→ B defined by

m =

(
a+ bi c+ di

−c+ di a− bi

)
→ σ(m) = a+ bi+ cj + dk

is an isomorphism of algebras. Note that we have detm = n(σ(m)), and that both σ and its inverse are

efficiently computable. For any matrix m =
(
a+bi c+di
−c+di a−bi

)
∈ GL2(Z[i]) we define its conjugate matrix by

m :=
(
a−bi −c−di
c−di a+bi

)
. Clearly, we have m = m and σ(m) = σ(m).

Following [15] for any integer e ≥ 1 we define Ee as the set of 4-tuples (a, b, c, d) ∈ Z4 such that a2 + b2 + c2 + d2 = `e,

a > 0, a = 1 mod 2,
b = c = d = 0 mod 2.

Up to multiplication by a unit there are ` + 1 elements of norm ` in B; these correspond to elements of
E1. We also denote by Σ the set of matrices corresponding to E1, and we define

Ω :=

{(
a+ bi c+ di

−c+ di a− bi

)
|(a, b, c, d) ∈ Ee for some integer e > 0

}
.

Note that Σ is symmetric in the sense that for any s ∈ Σ, there exists s′ = s ∈ Σ with ss′ = `I. An
important observation for the path-finding algorithms below is that matrices in Ω admit essentially unique
factorizations in the elements of Σ.

Lemma 1 ([15], citing [8,5,14]) Any matrix in Ω can be expressed in a unique way as a product

M = ±`rM1M2 . . .Me

where log`(det(M)) = e+ 2r and Mi ∈ Σ and MiMi+1 6= `I for i = 1, . . . , e− 1.

LPS graphs were introduced by Lubotsky, Philips and Sarnak in [8]. Let ι ∈ Fp such that ι2 = −1.
Reduction modulo p extends into a group homomorphism φ : GL2(Z[i])→ G defined by

φ

(
a+ bi c+ di

−c+ di a− bi

)
=

(
a+ bι c+ dι

−c+ dι a− bι

)
.

Let S = {φ(s)|s ∈ Σ} be the set of images of elements in Σ through the homomorphism φ. The LPS graph
for parameters p and ` is the Cayley graph constructed from the group G and the generator set S; in other
words it is a graph whose vertices correspond to the elements of G, and such that there is an edge between
two vertices corresponding to g1 and g2 if and only if there is an element s ∈ S such that g2 = g1s. This
graph is an undirected (`+ 1)-regular graph. For any fixed ` and increasing p, LPS graphs form a family
of Ramanujan graphs, in other words they are optimal expander graphs [8,7].

LPS graphs were used by Charles, Goren and Lauter in [3] to construct families of cryptographic
hash functions. The security arguments for the construction relied on the hope that there was no efficient
algorithm to solve the following computational problem.

Better path-finding algorithms in LPS Ramanujan graphs 3

Problem 1 Let p, `,G, S as above, and let m ∈ G. Write m as a “short” product of elements in S.

Recommended parameters in [3] are ` = 5 and p a 1024-bit prime. For practical purposes “short” could
be given a concrete value such as 240; in this paper we consider a product as short when it is made of
at most L products, where L is a polynomial function of log p. This is consistent with the definition of
Babai’s conjecture on the diameter of simple groups, as formulated by Helfgott in [6].

2.2 Finding paths in LPS graphs

In this paper, we are interested in algorithms to solve Problem 1, or equivalently to compute short paths
between any two vertices in LPS graphs.

Let all notations be as above, and let m be a matrix in G that we want to write as a short product of
elements from the set S.

The algorithm of Petit et al. [10] first decomposes the matrix m as a product

m = λ ·D1 · s ·D2 · s ·D3 · s ·D4 (1)

where λ ∈ F∗p, the factors Di are diagonal matrices with a non zero square determinant, and s is a particular
(arbitrary) generator in the set S. As the equation is over the projective special linear group, each diagonal
matrix can be normalized as Di =

(
1 0
0 αi

)
. Equation 1 then amounts to a small polynomial system with

four equations and five variables. The algorithm given in [10] to solve this system picks random solutions
until all αi are square, and it is heuristically expected to need 16 trials on average.

Petit et al. [10] also provide an algorithm to factor any diagonal matrix with square determinant in a
short product of the generators S. This algorithm extends a previous algorithm from Tillich and Zémor [15]
for the identity matrix. First the diagonal matrix is lifted into an element of Ω, then a factorization of this
element as a product of the elements of Σ is computed. The factorization of the input diagonal matrix in
the elements of S = φ(Σ) follows by the group homomorphism φ. We now give some details on the first
and second step.

Let m =
(
A+Bι 0

0 A−Bι

)
∈ G be a diagonal matrix with detm = A2 + B2 a square. The lifting step

consists in finding e ∈ N and λ,w, x, y, z ∈ Z with (Aλ+ wp)2 + (Bλ+ xp)2 + 4p2(y2 + z2) = `e

Aλ+ wp = 1 mod 2,
Bλ+ xp = 0 mod 2.

(2)

After fixing e large enough, Petit et al. solve the norm equation modulo p; as A2 + B2 is a square this
gives two possible values for λ and one is picked randomly. Next, the norm equation is considered modulo
p2: this gives a bilinear equation in w and x, and a random solution is selected. At this point, the norm
equation is considered over the integers, and it gives

4(y2 + z2) = n

where

n :=
(
`e − (Aλ+ wp)2 − (Bλ+ xp)2

)
/p2 ∈ Z (3)

for λ, x, z chosen as before. This equation has a solution whenever n/4 is an integer, and all prime factors
of n congruent to 3 modulo 4 appear an even number of times in the factorization of n. To avoid a
costly factorization step, Petit et al. suggest to pick random solutions for (w, x) until n is 4 times a prime
congruent to 1 modulo 4. Suitable values for (y, z) are then computed with Cornacchia’s algorithm [4].
Taking e larger than log 8p4 ≈ 4 log p ensures that n is positive in this algorithm.

Once the integers e, λ, w, x, y, z are found they give a matrix

m̃ =
(

(A+wp)+(B+xp)i 2yp+2zpi
−2yp+2zpi (A+wp)−(B+xp)i

)
∈ Ω

reducing to m modulo p. Remember that by Lemma 1 factorization is essentially unique in Ω. Tillich and
Zémor showed in [15] how to recover all the factors successively: for any s ∈ Σ we have m̃ = m̃′s with
m̃′ ∈ Ω if and only if m̃s−1 ∈ Ω.

The correctness and running time of this algorithm are analyzed in the following lemma:

Lemma 2 For any m̃ ∈ Ω, Algorithm 1 successively recovers the factorization given by Lemma 1, in a time

O(log2
` det m̃).

4 Eduardo Carvalho Pinto, Christophe Petit

Algorithm 1 Factorization in Ω

Require: m̃ ∈ Ω
Ensure: list L = (s1, . . . , sN) such that si ∈ Σ and m̃ =

∏
i si

1: Initialize L to an empty list
2: Find largest r such that `r divides all coefficients of m̃
3: m̃← m̃/`r

4: while det(m̃) 6= 1 do
5: Find s ∈ Σ such that ` divides all coefficients of m̃s
6: m̃← m̃s/`
7: Append s at the beginning of list L
8: end while
9: return L

Proof Let m̃ ∈ Ω and det(m̃) 6= 1. Then, there is a unique s ∈ Σ such that m̃ = m̃′s with m̃′ ∈ Σ, by
Lemma 1. Therefore, there is an equally unique s′ = s ∈ Σ such that ss′ = `I and m̃′ss′ is divisible by `.
. This way, by iterating over Σ, the algorithm always finds the matrix s if det(m̃) 6= 1, adding it to the
beginning of the list L, and finishes when det(m̃) = 1. In the end, L holds the complete factorization in
the right order for m̃ on elements of Σ.

As for the running time, one can write all coefficients of m̃ in base ` in O(log` det m̃) bit operations,
after which Step 3 becomes trivial. The while loop is executed log` det m̃ times and each iteration requires
O(`2) = O(1) multiplications of a O(log` det m̃) length element by a O(`) = O(1) length element, and each
of them requires O(log` det m̃) bit operations.

The algorithm of this paper will incorporate two crucial improvements over Petit et al.’s algorithm to
reduce factorization lengths from 16 log` p to (7 + o(1)) log` p. In Section 4 we will reduce the factorization
lengths for diagonal matrices from 4 log` p to (3+o(1)) log` p. In Section 5, we show how to factor arbitrary
matrices with two diagonal matrices plus a third matrix with factorization length log` p.

We will provide an alternative method to reduce the general factorization problem to the factorization
of only two diagonal matrices instead of four.

3 Algorithm for short paths

Our first algorithm computes the shortest path between any two matrices when the length of this shortest
path is short enough. This is useful in a cryptanalysis of Charles-Goren-Lauter hash function assuming
short messages are hashed.

The algorithm relies on the following simple observation: when the products are short, then no reduction
modulo p occurs and the lifting step required in previous algorithms [10,15] becomes trivial.

Lemma 3 Let m be a product of at most b2 logl(p/2)c matrices in Σ. Then there exist integers A,B,C,D ∈[
−dp2e, b

p
2c
]
such that m =

(
A+Bi C+Di
−C+Di A−Bi

)
.

Proof Let m = m1 . . .mk =
(

A+Bi C+Di
−C+Di A−Bi

)
be a product of k matrices in Σ. Then, we know that

detm = A2 +B2 + C2 +D2 = `k.

If we choose k to be at most 2 logl(p/2) then

A2 +B2 + C2 +D2 = `k ≤ `2 logl(p/2) =
p2

4
.

This implies that A,B,C,D ∈
[
−dp2e, b

p
2c
]
.

More generally, let m1,m2 ∈ G such that there exists a product m of at most b2 logl(p/2)c matrices
in φ(Σ) such that m2 = m1m. For every possible length e up to b2 logl(p/2)c, Algorithm 2 normalizes the

matrix to ensure its determinant is `e, then it writes the result in the form
(
a+bι c+dι
−c+dι a−bι

)
and it checks

whether a, b, c, d are small enough to be lifted directly to Ω. When the correct factorization length is
identified the algorithm then proceeds as in Tillich-Zémor algorithm to compute all the factors.

We remark that there is at most one value of e ≤ blogl(p)c so that the algorithm succeeds: indeed the
girth of LPS graphs is larger than 2 log` p when ` is a quadratic residue modulo p [8]. Lemma 4 below gives
the complexity of this algorithm.

Better path-finding algorithms in LPS Ramanujan graphs 5

Algorithm 2 Short path algorithm

Require: m1,m2 ∈ G such that m1 = m2
∏N
i=1 si with N ≤ b2 logl(p/2)c

Ensure: list of factors L = (s1, . . . , sN)

1: m← m−1
2 m1

2: Normalize the representation of m so that it has determinant 1
3: for e ∈ {1, . . . , b2 logl(p/2)c} do

4: Write m
√
`e in the form

(
a+bι c+dι
−c+dι a−bι

)
with a, b, c, d ∈ (− p

2
, p
2

)

5: if a2 + b2 + c2 + d2 = `e (over the integers) then
6: go to Step 9
7: end if
8: end for
9: Run Algorithm 1 on m̃ :=

(
a+bi c+di
−c+di a−bi

)
to get a list of factors L

10: Replace every element s in L by its projection φ(s)
11: return L

Lemma 4 Let m1,m2 ∈ G such that m−1
2 m1 has a factorization of length e ≤ b2 log`(p/2)c in the elements of

φ(Σ). Then Algorithm 2 returns the smallest such factorization using Õ(log2
` p) bit operations.

Proof Step 2 requires to compute a determinant, a square root modulo p and a division modulo p. One can
also precompute the square root of ` modulo p and the matrix m

√
` between Step 2 and 3, and compute

m
√
`e in Step 4 as ` · (m

√
`e−2). Given the matrix m

√
`e =

(
A B
C D

)
, one can complete Step 4 by computing

a = A+D
2 mod p, b = A−D

2i = −iA−D2 , etc. This requires a few divisions by 2 and a few full multiplications
modulo p. As the cost of a square root is O(log p) multiplications, and as multiplying and dividing by
small integers requires a few additions, the cost of the whole algorithm up to Step 8 is bounded by O(log p)
multiplications, which is Õ(log2 p) bit operations. By Lemma 2 the last step is faster than this, so the
whole algorithm costs Õ(log2 p) bit operations.

4 Improved algorithm for diagonal matrices

We now turn to diagonal matrices, and improve the algorithm of Petit et al. [10] to return factorizations
of length (3 + o(1)) log p instead of 4 log p. A similar algorithm was independently suggested in [12].

Let m =
(
A+Bι 0

0 A−Bι

)
∈ G be a diagonal matrix with determinant (A2 + B2) a quadratic residue

modulo p. If B = 0 then m is the identity matrix and it admits a trivial factorization. So we now assume
B 6= 0.

Our algorithm follows the lines of Petit et al.’s algorithm sketched in Section 2.2. Recall that in this
algorithm we need e ≈ 4 log p to ensure that the value n defined by Equation 3 is positive. In their algorithm
(w, x) is chosen as a random solution to the norm equation modulo p2 such that n is of a form that makes
Cornacchia’s algorithm efficient. Our main idea for the algorithm of this section is to choose (w, x) not
randomly but

1. to minimize the value (Aλ+ wp)2 + (Bλ+ xp)2,
2. while keeping n =

(
`e − (Aλ+ wp)2 − (Bλ+ xp)2

)
/p2 of a form that makes Cornacchia’s algorithm

efficient.

We now show how to model the minimization problem as a variant of a closest vector problem in a
two dimensional lattice, which can then be solved using classical techniques such as lattice reduction, the
Euclidean algorithm, or equivalently continued fractions.

Let e be a positive integer (to be fixed later) and let λ ∈ Z such that λ2(A2 + B2) = `e mod p. Let
w0 = 1 if Aλ is even and w0 = 0 otherwise. Similarly, let x0 = 0 if Bλ is even and x0 = 1 otherwise. For
any couple (x, y) that is part of a solution to System 2 there corresponds a couple of integers (w′, x′) such
that w = w0 + 2w′ and x = x0 + 2x′. Moreover we have

(Aλ+ (w0 + 2w′)p)2 + (Bλ+ (x0 + 2x′)p)2 = `e mod p2

or equivalently
αw′ + x′ = β mod p (4)

where we defined

α := A/B mod p, β :=

(
`e − λ2(A2 +B2)

p
− 2λ(Aw0 +Bx0)

)
/4λB mod p.

We observe that the solutions to Equation 4 are obtained by translation of a certain lattice.

6 Eduardo Carvalho Pinto, Christophe Petit

Lemma 5 The set of solutions (w′, x′) ∈ Z2 to Equation 4 is the set L+ (0, β) = {v + (0, β) | v ∈ L}, where
L is the two-dimensional lattice generated by the vectors (1,−α) and (0, p).

We then re-write the norm we want to minimize as the distance between a particular element in the
Euclidean plane and a lattice element:

(Aλ+ (w0 + 2w′)p)2 + (Bλ+ (x0 + 2x′)p)2 = 4p2 ||v − t||2

where v := (w′, x′) − (0, β) is a lattice point and t :=
(
−Aλ+w0p

2p ,−Bλ+x0p
2p − β

)
. Minimizing this norm is

an instance of the closest vector problem for which standard algorithmic solutions exist [9]. We adapt these
solutions to incorporate the additional requirement that n := `e − 4p2 ||v − t||2 is of a form that makes
Cornacchia’s algorithm efficient.

Our strategy is to first compute a minimal basis for the lattice, namely two vectors that generate the
lattice and have minimal norms. This can be done using Gauss reduction, or equivalently the Euclidean
algorithm. We then write t as a linear combination of the two short vectors, and we round the coefficients
to obtain a lattice vector v that is close to t. Finally, we add small lattice vectors to v and compute the
corresponding value of n, until it is of a suitable form. Once we find n of a suitable form, we compute the
values of w and x and we apply Cornacchia’s algorithm to compute y and z. In our algorithm we start
with an a priori sufficient value e = 3 log` p+ log log` p, determined by our complexity analysis below, and
then we increase e during the course of the algorithm if no n value of a suitable form can be found. This
strategy is described in Algorithm 3.

Algorithm 3 Diagonal matrix algorithm
Require: a diagonal matrix D ∈ G
Ensure: list of factors L = (s1, . . . , sN) such that si ∈ S and D =

∏N
i=1 si

1: Write D as D =
(
A+Bι 0

0 A−Bι

)
2: if B = 0 then
3: return a void list L
4: end if
5: e← d3 log` p+ log log` pe
6: λ← square root of `e/(A2 +B2) modulo p
7: (w0, x0)← (1−Aλ,Bλ) mod 2
8: α← A/B mod p

9: β ←
(
`e−λ2(A2+B2)

p
− 2λ(Aw0 +Bx0)

)
/4λB mod p

10: L ← lattice generated by (1, β) and (0, p)
11: {v1, v2} ← reduced basis for L
12: t← (−Aλ/2p− w0/2,−Bλ/2p− x0/2− β)
13: v ← element in L closest to t
14: (w, x) = (w0, x0) + 2v + 2(0, β)

15: n← `e−(Aλ+wp)2−(Bλ+xp)2

4p2

16: if n > 0 then
17: if n is “nice for Cornacchia’s algorithm”
18: (for example n is a (pseudo)prime and n = 1 mod 4) then
19: (y, z)← solution to norm equation y2 + z2 = n
20: else
21: v = (w′, x′)← element in L closest to t not yet used
22: go to Step 14
23: end if
24: else
25: e← e+ 1
26: go to Step 6
27: end if
28: m̃←

(
(A+wp)+(B+xp)i 2yp+2zpi
−2yp+2zpi (A+wp)−(B+xp)i

)
29: Run Algorithm 1 on m̃ to get a list of factors L
30: Replace every element s in L by its projection φ(s)
31: return L

While the algorithm of Petit et al. returns factorizations of length 4 log` p, we expect our algorithm to
return factorizations of length (3 + o(1)) log` p on most inputs. Our analysis in the proof of the following
lemma relies on the probability that the number n generated by the algorithm is a prime. We approximate
this by the probability that random numbers of the same size are prime. The bound only holds for inputs
such that the corresponding lattice satisfies the so-called “Gaussian heuristic”, namely when the two vectors
in a minimal basis are of norm roughly

√
detL. This will be true for most inputs, but for exceptional inputs

one of these vectors may be significantly larger than the other one, in which case the best achievable bound

Better path-finding algorithms in LPS Ramanujan graphs 7

is (4 + o(1)) log` p. We refer to [12] for a more thorough analysis on a very similar algorithm, and to [13]
for some progress on the heuristic assumptions involved in this analysis.

Lemma 6 Let m ∈ G be a diagonal matrix, not equal to the identity. Then under plausible heuristic assumptions

Algorithm 3 requires Õ(log3 p) bit operations and for most inputs it returns factorizations of lengths e = (3 +
o(1)) log` p.

Proof Correctness of the algorithm follows from our description above; we therefore focus on expected
length and running time.

The lattice L has discriminant p, therefore by the Gaussian heuristic we can expect that it contains a
basis of vectors of length approximately p1/2. As a result, the minimal value of (Aλ+ wp)2 − (Bλ+ xp)2

satisfying the norm equation modulo p2 is of size approximately p3, and we must take e at least 3 log` p.
This minimal value, however, may not lead to an n of the correct form for Cornacchia’s algorithm, so
our algorithm tries other short vectors in the lattice. Following estimates given by the prime number
theorem we heuristically expect that O(log p3) = O(log p) trials will be necessary and sufficient. As a
result we can correct our estimate for (Aλ+wp)2 − (Bλ+ xp)2 to approximately p3 log p, and expect that
e ≈ 3 log` p+ log log` p will be sufficient.

We now analyze the running time of the algorithm. As argued above we only expect to test O(1) values
for e. The main complexity parts come from the lattice reduction algorithm, O(log p) pseudoprimality
tests (on numbers that we heuristically assume to behave like random numbers of the same size), one
execution of Cornacchia’s algorithm and one execution of Algorithm 1. The lattice reduction in dimension
2 and Cornacchia’s agorithm are both variants of the Euclidean algorithm and require Õ(log2 p) bit opera-
tions. The primality tests can be done using Miller-Rabin; this requires O(1) modular exponentiations for
most random numbers and O(log p) modular exponentiations for prime numbers, in other words Õ(log3 p)
operations in total. This dominates the cost of Algorithm 3, as the cost of Algorithm 1 is less than that.

Note that paths of length about 3 log` p are expected to be necessary and sufficient for random matrices
in G (since G is of size roughly p3/2). We therefore expect that the factorizations we compute are close to
optimal ones unless diagonal matrices are particularly close to the identity in LPS graphs, which there is
no reason to believe a priori.

5 Improved algorithm in the general case

We now consider the case of arbitrary matrices in G. In [10] Petit et al. showed how to factor general
matrices with four diagonal matrices, for a total factorization length of 16 log` p. Here we factor general
matrices with just two diagonal matrices and one matrix in Ω, for a total expected length of (7+o(1)) log p.

Let J :=
(

0 1
−1 0

)
. We will use the following lemma.

Lemma 7 Let a, b, c, d ∈ Z. We have

1.
(
a+bi c+di
−c+di a−bi

)
=
(
a+bi 0
0 a−bi

)
+
(
c+di 0
0 c−di

)
J ,

2. J
(
a+bi 0
0 a−bi

)
=
(
a−bi 0
0 a+bi

)
J .

These properties are of course preserved by reduction modulo p through the homomorphism φ. For any

diagonal matrix D =
(
a+bi 0
0 a−bi

)
we define its conjugate D̄ =

(
a−bi 0
0 a+bi

)
, which is equal to D−1 up to a

scalar factor.
Let m ∈ G. Our strategy is to find a matrix m2 ∈ Ω and two diagonal matrices m1,m3 ∈ G such that

m1m = φ(m2)m3, (5)

then to use the factorization algorithms for Ω elements and diagonal matrices to compute a factorization
of m. (Note that since the inverse of any element in Σ is also in Σ, a factorization of m1 will also give a
factorization of m−1

1 .)
Following Lemma 7 we write m = D + EJ with D,E diagonal matrices in G, and similarly we write

m2 = X2 + Y2J , with X2, Y2 matrices of the form
(
w+xi 0

0 w−xi
)
. We also define X1 := m1 and X3 := m3 to

highlight that they are diagonal matrices. Equation 5 and the requirement that m2 is in Ω then lead to
the following system: {

X1D = φ(X2)X3,

X1E = φ(Y2)X3.
(6)

Taking determinants of both equations and dividing one by another, we deduce

detD

detE
=

detX2

detY2
mod p.

8 Eduardo Carvalho Pinto, Christophe Petit

Since we require m2 ∈ Ω we also have
detX2 + detY2 = `e

for some positive integer e. These last two equations together fix the determinants of X2 and Y2 up to a
multiple of p, for each value of e:

detX2 =
detD

detm
· `e mod p, detY2 =

detE

detm
· `e mod p. (7)

Given the determinant d of a matrix of the form
(
w+xi 0

0 w−xi
)
, we can recover suitable values for w and x

by solving a Diophantine equation w2 + x2 = d; this can be done efficiently as long as a factorization of d
is known and all prime factors congruent to 3 modulo 4 appear an even number of times.

In our algorithm (Algorithm 4 below), we will fix e a priori to dlog` pe, then try every possible value
of detX2 < `e consistent with its value modulo p, and deduce detY2 = `e − detX2, until both detX2 and
detY2 are a power of 2 times a prime congruent to 1 modulo 4. As in previous algorithms, this restriction
may lead to suboptimal factorization lengths but it allows to avoid a costly factorization step. Once the
condition is satisfied we apply Cornacchia’s algorithm on both detX2 and detY2 to obtain X2 and Y2, and
we deduce the matrix m2. If no suitable values for detX2 and detY2 are found we simply increase e and
try again.

Let us now assume that X2 and Y2 are fixed as above. From System 6 we deduce{
X1 = φ(X2)X3D

−1 = φ(Y2)X3E
−1

X3 = φ(X2)−1X1D = E X1φ(Y2)−1 (8)

As diagonal matrices commute, each of these two equations can be rewritten in the form

XiKi = Xi

for i = 1, 3 and some known diagonal matrices Ki. Moreover by the way we constructed X2 and Y2 we
have detKi = 1.

If Ki is the identity then we can take the identity for Xi. Otherwise we write Xi =
(
w+xι 0

0 w−xι
)

and

Ki =
(
w0+x0ι 0

0 w0−x0ι

)
for unknown w, x and known w0, x0, and we deduce the following system(

w0 − 1 −x0
x0 w0 + 1

)(
w

x

)
=

(
0
0

)
.

Moreover since det
(
w0−1 −x0
x0 w0+1

)
= w2

0 + x20 − 1 = detKi − 1 = 0, this system is equivalent to the single
equation

(w0 − 1)w − x0x = 0

where w0 − 1 and x0 are both non zero, as otherwise Ki would be the identity. We can therefore choose
w = x0 and x = w0 − 1, in other words

Ki =
(
x0+(w0−1)ι 0

0 x0−(w0−1))ι

)
.

In order to call our diagonal matrix factorization algorithm on X1 and X3 we also need their determi-
nants to be quadratic residues modulo p. By assumption detm and detm2 = `e are quadratic residues, so
either both detX1 and detX3 are quadratic residues or none of them is. In our algorithm when they are
non quadratic residues we just search for new values of detX2 and detY2.

In addition to the heuristic involved in Lemma 6, Algorithm 4 requires other heuristics related to the
probability to find suitable determinants for X2 and Y2 that are not too large, and the probability that
both diagonal matrices have square determinant. Under these heuristics the runtime complexity and the
output of this algorithm are given by the following lemma:

Lemma 8 Let m ∈ G. Then under plausible heuristic assumptions Algorithm 4 requires Õ(log4 p) bit operations

and it returns factorizations of lengths (7 + o(1)) log` p.

Proof Taking as definition of “Cornaccia-nice” that the integers are pseudo-primes congruent to 1 modulo
4, the condition is satisfied for both nX and nY with a probability 1/16 log2 p (here we heuristically assume
that these numbers behave like random numbers of the same size). Using Miller-Rabin pseudo-primality
test, we will need one modular exponentiation on most couples, and O(log p) modular exponentiations
when at least one of the two numbers is prime. In total we will need O(log2 p) modular exponentiation
until we have a couple (nX , nY) of the correct form, which amount to Õ(log4 p) bit operations. Cornacchia’s
algorithm itself is more efficient than that, as are all the other parts of the algorithm. Note that to allow
enough randomness in the choice of nX and nY we expect e to grow up to roughly log` p + log log` p, so
we expect the while loop to be executed only O(log log p) times. The expected length is e plus twice the
expected length for Algorithm 3.

Better path-finding algorithms in LPS Ramanujan graphs 9

Algorithm 4 General factorization algorithm

Require: matrix m =
(
A+Bi C+Di
−C+Di A−Bi

)
∈ G

Ensure: list of factors L = (s1, . . . , sN) such that si ∈ S and m =
∏N
i=1 si

1: e← dlog` pe
2: nx ← `e(a2 + b2)/(a2 + b2 + c2 + d2)
3: nX ← smallest positive integer congruent to nx modulo p and to 1 modulo 4
4: while nX ≤ `e do
5: nY ← `e − nX
6: if both nX and nY are “nice for Cornacchia’s algorithm” (for example they
7: are power of four times a (pseudo)prime congruent to 1 mod 4) then

8: X2 ←
(
w+xi 0

0 w−xi

)
where w2 + x2 = nX

9: Y2 ←
(
y+zi 0

0 y−zi

)
where y2 + z2 = nY

10: m2 ←
(
w+xi y+zi
−y+zi w−xi

)
11: K1 ← φ(X2)−1φ(Y2)DE−1

12: K3 ← φ(X2)φ(Y2)−1D−1E
13: for i = 1, 3 do
14: if Ki = I then
15: Xi ← I
16: else
17: Xi ←

(
x0+(w0−1)ι 0

0 x0−(w0−1))ι

)
where

(
w0+x0ι 0

0 w0−x0ι

)
= Ki

18: end if
19: end for
20: if detX1 is a square then
21: Run Algorithm 3 on X−1

1 to obtain a list L1

22: Run Algorithm 1 on X2 + Y2J to obtain a list L2

23: Run Algorithm 3 on X3 to obtain a list L3

24: Replace every element s in L2 by its projection φ(s)
25: Concatenate the three lists in a single list L
26: return L
27: end if
28: else
29: nX ← nX + 4p
30: end if
31: end while
32: e← e+ 1
33: go to Step 2

Note that paths of length about 3 log` p are expected to be necessary and sufficient for random matrices
in G. The factorizations produced by our algorithm are therefore expected to be a factor 7/3 larger than
optimal ones, instead of 16/3 larger than optimal ones for the algorithm of Petit et al. [10]. Moreover, the
best diameter bound on LPS graphs is 6 log p so in that sense we can expect that our factorizations are
only 16% larger than optimal ones in the worst case.

6 Experimental Validation

Because of the heuristic nature of our analysis we have experimentally checked our results using the
computer algebra package Magma [16]. In our experiments we fixed ` = 5 and we generated various p
such that p = 1 mod 4 and (`p) = 1. For each such set of parameters we generated various matrices of
square determinant, and we ran Algorithm 4 on them. The resulting factorization lengths are displayed in
Figure 6 as functions of the parameter log` p. The best near square approximation line for the data points
has a slope equal to 7.03, confirming our analysis that the lengths are (7 + o(1)) log` p.

7 Conclusion

We presented a new algorithm that computes short paths between arbitrary pair of vertices in LPS Ra-
manujan graphs. Subject to several plausible heuristics the algorithm is polynomial time and for LPS
graphs with parameters p and ` it returns paths of length (7 + o(1)) log` p.

Acknowledgements This work was done while the second author was working at the University of Oxford under a
research grant from the UK government.

10 Eduardo Carvalho Pinto, Christophe Petit

Fig. 1 Factorization lengths of our algorithm for general matrices.

References

1. Alex Bocharov Andreas Blass and Yuri Gurevich. Optimal ancilla-free pauli+v circuits for axial rotations, 2014.
2. D. Charles and K. Lauter. Computing modular polynomials, 2005.
3. Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren. Cryptographic hash functions from expander graphs. J.

Cryptology, 22(1):93–113, 2009.
4. G. Cornacchia. Su di un metodo per la risoluzione in numeri interi dell’ equazione

∑n
h=0 chx

n−hyh = p. Giornale di
Matematiche di Battaglini, 46:33–90, 1903.

5. Giuliana Davidoff, Peter Sarnak, and Alain Valette. Elementary Number Theory, Group Theory, and Ramanujan
Graphs. Cambridge University Press, 2003.

6. Harald Andrés Helfgott. Growth and generation in SL2(Z/pZ). Ann. of Math. (2), 167 (2):601–623, 2008.
7. Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc.,

43:439–561, 2006.
8. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261–277, 1988.
9. Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspective. Springer,

2002.
10. Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater. Full cryptanalysis of LPS and Morgenstern hash

functions. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors, SCN, volume 5229 of Lecture Notes in
Computer Science, pages 263–277. Springer, 2008.

11. Neil J. Ross. Optimal ancilla-free clifford+v approximation of z-rotations, 2015.
12. Naser T. Sardari. Complexity of strong approximation on the sphere. arxiv.org/abs/1703.02709, 2017.
13. Naser T. Sardari. The least prime number represented by a binary quadratic form. arxiv.org/abs/1803.03218, 2018.
14. Peter Sarnak. Some Applications of Modular Forms. Cambridge University Press, 1990.
15. Jean-Pierre Tillich and Gilles Zémor. Collisions for the LPS expander graph hash function. In Nigel P. Smart, editor,

EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 254–269. Springer, 2008.
16. C. Fieker A. Steel (eds.) W. Bosma, J. J. Cannon. Handbook of Magma functions, edition 2.20. http://http:

//magma.maths.usyd.edu.au/magma/, 2013.

arxiv.org/abs/1703.02709
http://http://magma.maths.usyd.edu.au/magma/
http://http://magma.maths.usyd.edu.au/magma/

	Introduction
	Path-finding algorithms in LPS Ramanujan graphs
	Algorithm for short paths
	Improved algorithm for diagonal matrices
	Improved algorithm in the general case
	Experimental Validation
	Conclusion

