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Abstract 28 

Obstructive sleep apnoea (OSA) is a common disorder that is associated with serious co-morbidities 29 

with a negative impact on quality of life, life expectancy and health costs. As OSA is related to obesity 30 

and is associated with sleep disruption, increased inflammation and oxidative stress, it is not 31 

surprising that OSA has an impact on the secretion of multiple hormones and is implicated in the 32 

development of many endocrine conditions. On the other hand, many endocrine conditions that can 33 

affect obesity and/or upper airways anatomy and stability have been implicated in the development 34 

or worsening of OSA. This bi-directional relationship between OSA and the endocrine system has 35 

been increasingly recognised in experimental and epidemiological studies and there are an increasing 36 

number of studies examining the effects of OSA treatment on endocrine conditions and vice-versa. In 37 

this review article, we will critically appraise and describe the impact of OSA on the endocrine system 38 

including obesity, dysglycaemia, the pituitary, the thyroid, the adrenals, the reproductive system and 39 

the bones. In each section, we will assess whether a bi-directional relationship exists, and we will 40 

describe the potential underlying mechanisms. We have focused more on recent studies and 41 

randomised controlled trials where available and attempted to provide the information within clinical 42 

context and relevance.  43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 



Introduction:  54 

Obstructive Sleep Apnoea (OSA) is a common disorder that affects 13-33% of men and 6-19% of 55 

women1. OSA is characterized by instability in the upper airways (UAs) leading to recurrent episodes 56 

of the UA obstruction, particularly during the transition to sleep and rapid-eye-movement (REM) 57 

sleep (characterised by low-amplitude, mixed-frequency theta EEG waves, pronounced eye activity 58 

and low muscle tone2) (see online supplement)3-6. These repeated obstructions are associated with 59 

recurrent episodes of oxygen desaturation/ re-saturation, cyclical changes in blood pressure (BP), 60 

heart rate, sympathetic activity, and intrathoracic pressure, brief microarousals and changes to sleep 61 

architecture, such as the loss of REM and slow wave sleep ( SWS or deep sleep,  is stage N3 of NREM 62 

sleep characterised by high-amplitude slow waves, further decrease in muscle tone, possible eye 63 

movement cessation and is a restorative sleep stage decreasing though with age2) (Figure 1 & online 64 

supplement) 3, 5, 7.  65 

The interactions between OSA and the endocrine system have attracted much attention and they 66 

often can be bi-directional, which is not surprising considering the diurnal secretion pattern of many 67 

hormones. In addition, OSA treatment (namely continuous positive airway pressure CPAP) has an 68 

impact on the endocrine system (such as insulin resistance, cortisol secretion) while treating 69 

endocrine disorders (such as obesity, hypothyroidism, or acromegaly) can also improve OSA. 70 

Moreover, the well-established higher OSA risk in men vs. women also emphasises the potential 71 

relationship between sex hormones and OSA pathogenesis. Hence, it is important to understand the 72 

links between OSA and the endocrine/metabolic system in order to improve our understanding of the 73 

pathogenesis and the comorbidities and mortality associated with OSA and a variety of endocrine 74 

disorders8.  75 

In this article, we will review the interactions between OSA and the endocrine system and we will 76 

highlight the underlying mechanisms underpinning this bidirectional relationship when exists, as well 77 

as explore the potential impact of OSA treatment on the endocrine disorders and vice versa. Some 78 

aspects of this article require some understanding of the pathogenesis of OSA, hence we have 79 

provided an overview of OSA and its pathogenesis in the online supplement. 80 

OSA & Obesity Interplay 81 

Obesity is a major risk factor for the development of OSA9-11, which is driving the increase in OSA 82 

prevalence1, 12. Obesity prevalence in patients with OSA (approx. 70%)  is also higher than that of the 83 

general population13.  84 
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The impact of weight change on OSA 85 

Weight changes have significant impact on OSA and its severity. In a longitudinal study of randomly 86 

selected patients from Wisconsin, a 10% weight gain over 4 years was associated with 32% (95%CI 20-87 

45%) increase in the Apnoea- Hypopnoea Index (AHI: the average number of apnoea and hypopnea 88 

events per hour of sleep)  and 6-fold higher risk of developing moderate to severe OSA (95%CI 2.2-17) 89 

compared to weight stability11. On the other hand, 10% weight loss was associated with 26% (95%CI 90 

18-34%) decrease in the AHI compared to weight stability11, partly due to a reduction in UAs 91 

collapsibility observed with weight loss14. The favourable impact of weight loss on OSA and its 92 

severity seems to be evident regardless of the method of losing weight such as life-style 93 

interventions, pharmacotherapy, or bariatric surgery as has been shown by several studies among 94 

them and randomized controlled trials (RCTs)14-18. 95 

 In a RCT, of 60 patients with obesity and moderate to severe OSA, laparoscopic adjustable gastric 96 

banding (LAGB) resulted in greater weight loss (5.1 vs. 27.8 kg), and greater reductions in AHI (based 97 

on PSG) (-14.0 vs. -25.5 events/hour; between-group difference was -11.5 events/h 95% CI -28.3 to 98 

5.3; P = 0.18) over 2 years compared to life-style intervention (dietary, physical activity and behavioral 99 

conventional program)15. In a recent post-hoc analysis of this RCT, patients who achieved a normal 100 

supine AHI (i.e. AHI < 5/h) lost significantly more weight than those who had persistently elevated AHI 101 

(weight change −23.0 [−21.0 to −31.6]% vs. −6.9 [-1.9 to −17.4]%, p = 0.001)19. Other studies also 102 

showed significant improvements in the AHI and a high proportion of OSA resolution following sleeve 103 

gastrectomy and gastric bypass16, 17. A meta-analysis confirmed the positive impact of bariatric 104 

surgery on OSA severity, by showing a significant reduction of AHI post-surgery (by 38.2 events/hour, 105 

95% CI: 31.9-44.4)20. A more recent systematic review and meta-analysis by Wong et al showed that 106 

bariatric surgery was associated with a reduction in the AHI (WMD -25.1 events/h 107 

(95%CI −29.9, −20.2)); with the pooled mean pre- and post-surgery AHI of 39.3 ± 15.1 and 12.5 ± 5.6 108 

events/h respectively; however OSA persisted in most patients and there was high between studies 109 

heterogeneity mostly due to baseline AHIO and duration of follow up21. Hence, RCTs remain needed 110 

to address the impact of bariatric surgery on OSA, although these might be challenging to conduct. In 111 

another RCT, liraglutide 3mg daily combined with lifestyle intervention resulted in greater reductions 112 

in weight (-5.7% vs -1.6%, P<0.0001) and AHI (-12.2 vs -6.1 events/h, estimated treatment difference: 113 

-6.1 events/h; 95% CI -11.0 to -1.2, P=0.015) compared to life-style intervention only over 32 weeks18. 114 

The degree of weight loss correlated significantly with improvements in OSA in this trial18.  115 

Obesity can affect multiple aspects of OSA pathogenesis, as summarised in Figure 222-36 .   116 

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Field Code Changed

Formatted: Not Highlight

Formatted: Not Highlight



The impact of OSA on weight (Figure 2B) 117 

The impact of OSA on obesity is controversial. One possibility is that OSA could lead to worsening 118 

obesity via multiple mechanisms such as increased excessive daytime sleepiness (EDS) leading to a 119 

reduction in physical activity, sleep disruption leading to changes in hunger and satiety hormones37-39 120 

(leptin resistance, increased ghrelin, increased orexin, and neuropeptide Y levels), changes to sleep 121 

duration and architecture40-44  . Sleep restriction was associated with increased activation of the brain 122 

regions related to emotional response to stimuli and motivation and reward system based on 123 

functional MRI, which was similar to what observed following energy deprivation resulting in 124 

corrective behavior of seeking food45, 46. This is supported by cross-sectional studies showing that the 125 

AHI was significantly associated with increased preference of calorie-dense foods independent of the 126 

severity of obesity in adolescents and children47, 48 and that visceral obesity was increased in  patients 127 

with OSA and short sleep duration (< 5 h/night) (OR, 4.40, 95% CI, 1.80-10.77), compared to those 128 

who slept ≥ 7 h/night49. In addition, disruption of sleep architecture (suppression of SWS as happens 129 

in OSA) without affecting sleep duration in young healthy men, increased hunger for high-calorie food 130 

in the afternoon and evening50. OSA could also contribute to increased fat mass by activation of the 131 

HPA axis and increased cortisol secretion and by hypercapnia induced adipogenesis OSA could also 132 

cause obesity via increased cortisol secretion51 and hypercapnia induced adipogenesis52. However, 133 

despite the above mentioned plausible mechanisms, epidemiological evidence for an impact of OSA 134 

on weight longitudinally is lacking. One small (n=53) prospective study of patients with newly 135 

diagnosed OSA showed 7.4±1.5 kg weight-gain over 12 months, but these patients had also a history 136 

of weight gain in the year preceding OSA diagnosis53, hence quantifying the impact of OSA is difficult 137 

without an appropriate control group.  138 

Nonetheless, if OSA is a cause of obesity, then it would be expected that OSA treatment will lead to 139 

weight loss. However, a systematic review of 3181 patients from 25 RCTs showed that CPAP resulted 140 

in a modest but statistically significant increase in BMI and weight compared to control (BMI change: 141 

−0.018±0.243 kg/m2  for controls vs. 0.134±0.273 kg/m2  for CPAP; weight change: −0.096±0.718 kg 142 

for controls vs. 0.417±0.718 kg for CPAP)54. The mechanisms behind the weight gain after CPAP are 143 

not fully elucidated. However, CPAP reduces leptin (satiety hormone), intermittent hypoxia and 144 

sympathetic activity leading to reductions in lipolysis and energy expenditure and hence can cause 145 

weight gain55-61. 146 

Furthermore, it is plausible that OSA can lead to weight loss via increased sympathetic activity leading 147 

to increased energy expenditure and lipolysis via lipoprotein lipase inhibition and sympathetic 148 

activation62, 63. The net effects of the above-mentioned opposing mechanisms/impacts of weight gain 149 
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and weight loss is potentially weight maintenance in patients with OSA. CPAP treatment tilts the 150 

balance between these opposing mechanisms towards weight gain by inhibiting sympathetic activity 151 

(Figure 2), but this might be opposed to a certain degree by the impact of CPAP on increasing GH 152 

levels leading to lipolysis64. The above, however, is only a hypothesis that requires further 153 

investigations.”It is plausible that OSA might have multifaceted effects that can promote weight gain 154 

and weight loss resulting in largely opposing effects and when patients receive CPAP then the balance 155 

is tilted towards weight gain (Figure 2). This is, however, a hypothesis that needs to be examined. 156 

OSA & Dysglycaemia 157 

As obesity is a major risk factor for OSA, much of the research in this field has focused on pre-158 

diabetes/T2D. However, it is now increasingly recognized that OSA is common in patients with T1D as 159 

well. In this section, we will focus mostly on pre-diabetes/T2D but we will also summarise the 160 

evidence regarding T1D. 161 

Epidemiology: 162 

In general population studies, OSA has been shown to be associated with various comorbidities, 163 

including T2D9, which is not surprising since obesity is a common risk factor for OSA and T2D7, 65. 164 

Several cross-sectional studies showed a high prevalence of OSA (mild: 5 ≤ AHI < 15; moderate: 15 ≤ 165 

AHI < 30; severe: AHI ≥ 30) in patients with T2D (8.5-86%, 23.8-70% moderate-to-severe OSA), and a 166 

high prevalence of T2D in patients with OSA (15-30%)7, 66. This variation in prevalence estimates is due 167 

to different diagnostic methods and criteria used to define OSA and differences in studies 168 

populations67-71.  169 

Longitudinal studies have also shown that OSA is an independent risk factor for the development of 170 

T2D. A recent meta-analysis of 8 studies (63,647 participants) showed that OSA was an independent 171 

risk factor for T2D after adjustment for age, sex, and BMI (adjusted  RR 1.49, 95% CI:1.27, 1.75), which 172 

remained significant even in studies that defined OSA as AHI ≥ 5 (adjusted RR 1.42; 95% CI 1.02, 173 

1.99)72. A small RCT of 12 weeks in 80 patients with obesity (BMI > 45 kg/m2 and mostly with 174 

metabolic syndrome) suggested that CPAP resulted in improvements in impaired glucose tolerance 175 

status compared to no CPAP and that CPAP lowered the 2-h glucose levels following OGTT 73. 176 

However, there remains a need for large RCTs of long duration to assess the impact of CPAP, on its 177 

own or in combination with lifestyle intervention, on T2D prevention. 178 

OSA and insulin resistance and β-cell function:  179 

The impact of OSA on incident T2D is likely to be mediated by the effects of OSA on insulin resistance 180 

(IR) and β-cell dysfunction7. Studies that examined the relationship between OSA and IR had 181 
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conflicting results, due to variations in the definitions of OSA and IR, but most of the studies showed 182 

an association65. The association between OSA and IR was present in lean men, suggesting that the 183 

relationship is not dependant on obesity74, 75. Variation in EDS might contribute to the variation in the 184 

associations between IR and OSA observed in the different studies as Barcelo et al showed that the 185 

association between OSA and IR was only evident in patients with EDS vs. without EDS despite being 186 

matched for BMI76. In support of the relationship between OSA and IR, a recent meta-analysis of 6 187 

RCTs of adults without diabetes showed a favourable effect of CPAP on IR vs. no CPAP (mean 188 

difference in HOMA-IR -0.43; 95%CI:-0.75 to -0.11, p=0.008)77.  189 

The impact of OSA on β-cell function is much less examined in the literature. In one study of patients 190 

without diabetes, patients with moderate-to-severe OSA had a lower β-cell function (measured using 191 

the disposition index during frequent sampling intravenous glucose tolerance test (IVGTT)) compared 192 

to healthy controls; and higher AHI was associated with lower β-cell function despite adjustment for 193 

obesity78. Similar results were found in a more recent study79 and in another study in patients with 194 

T2D80. Similar to IR, CPAP improved β-cell function in compliant patients with moderate to severe 195 

OSA without diabetes (uncontrolled trial)81 or with pre-diabetes (RCT)82. 196 

Mechanisms: OSA leading to dysglycaemia and T2D: 197 

There are several putative mechanisms linking intermittent hypoxia (IH) and sleep fragmentation to 198 

IR, β-cell dysfunction, and dysglycaemia33 summarised in Figure 3.  199 

In rodent models, IH has been shown to increase β-cell death 83 and impair β-cell function 84. Results 200 

from experimental studies in healthy adults showed that 5 hours of IH (24.3 events/h, average oxygen 201 

saturation 90.6%, range 75.4-98%) resulted in blunted, rather than increased, insulin secretion 202 

despite reductions in insulin sensitivity (based on  IVGTT)85. Chronic IH (CIH) can lead to β-cell 203 

dysfunction and IR via increased oxidative stress86, which pancreatic β-cells are less able to handle 204 

compared to other tissues87-89, and increased inflammation (increased CD8+ cytotoxic T-cells 205 

recruitment, shift to M1-proinflammatory macrophages in crown-like structures, IL and TNF-a)90, 91. In 206 

addition, chronic IH can increase free fatty acid (FFA) release leading to ectopic fat deposition in the 207 

liver and muscle rusting in IR90. The impacts of chronic IH and oxidative stress on IR could also be 208 

mediated by hypoxia-inducible factor (HIF) tissue effects92. In rodents, 35 days of chronic IH 209 

decreased insulin receptor expression and phosphorylation in skeletal muscle and adipose tissue, but 210 

not in the liver which was accompanied by up-regulation of HIF-1α in the liver and down-regulation 211 

HIF-1α and HIF-2α in skeletal muscle93. 212 
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Changes in sleep architecture can also contribute to the effects of OSA on glucose metabolism94. In an 213 

experimental study of young healthy adults, all-night suppression of SWS (without awakening the 214 

subjects, changing sleep duration, or REM sleep) was achieved via acoustic stimuli of varying intensity 215 

and frequency for three nights94. This resulted in a reduction in insulin sensitivity (by 25%, which is 216 

similar to a weight gain of 8-13 kg) without a compensatory increase in insulin release (based on 217 

IVGTT) 94. These changes in insulin sensitivity and β-cell function were associated with increased 218 

sympathetic activity and in some cases changes in cortisol levels94, 95. In addition, several other 219 

neurohormonal mechanisms are invovled in the links between OSA and T2D, which are summarised 220 

in Figure 3 30,39, 51, 65, 96-113. 221 

 222 

The impact of Dysglycaemia on OSA: 223 

While the impact of OSA on glucose metabolism has been widely studied, the impact of T2D and 224 

dysglycaemia on OSA has not received much attention. Many cross-sectional studies showed a high 225 

prevalence of OSA in patients with T2D as we detailed above, but whether this prevalence is higher 226 

than an age- and obesity- matched population without T2D remains unclear. Recently, a population- 227 

based study of 151,194 participants with T2D showed a Hazard risk of incident OSA 1.53 (95% CI: 228 

1.32-1.77) and further patients treated with insulin had higher risk of OSA, especially if they were 229 

women (1.43; 95%CI: 1.11-1.83)114. In addition, the incidence and natural history of OSA in patients 230 

with T2D are currently unknown. One longitudinal study assessed the relationship between IR and 231 

possible OSA prospectively and showed that HOMA-IR was an independent predictor for incident 232 

witnessed sleep apneas (not formally diagnosed OSA) over 6 years (OR: 1.31; 95%CI1.13-1.51)115.  233 

Several possible mechanisms make it plausible that dysglycaemia/diabetes can lead to the 234 

development or worsening of OSA as summarized in Figure 3 7, 11, 115-132.  235 

OSA in patients with T2D 236 

OSA and glycaemic control in T2D: 237 

Several cross-sectional studies in patients with T2D showed that patients with OSA had worse fasting 238 

plasma glucose, glycaemic variability and HbA1c compared to patients without OSA despite 239 

adjustment for confounders (difference in HbA1c between patients with and without OSA 0.7 to 240 

3.7%)7, 133-135. In addition, OSA severity is correlated with worse glycaemic measures7. Interestingly, 241 

one study showed that the relationship between AHI and HbA1c was only evident for the AHI during 242 

REM sleep and not during NREM sleep (after adjustment for confounders)136. This raised the 243 

possibility that OSA treatment might improve glycaemic parameters in patients with T2D.  244 
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Several uncontrolled trials showed that CPAP improved glycaemic variability, postprandial glucose 245 

levels and HbA1c over the short-term65, 137. However, 3 RCTs showed conflicting results. Two of these 246 

RCTs showed that CPAP had no impact on HbA1c138, 139, while another RCT showed that CPAP for 6 247 

months lowered HbA1c by −0.4% (95%CI: −0.7% to −0.04%; P = 0.029) while there was no change in 248 

HbA1c in the control group140. These conflicting results could be due to differences in studies 249 

population  (β-cell reserve), baseline glycemic control (for example one of the negative RCTs had a 250 

baseline HbA1c of 7.3%, while the RCT that showed positive effects of CPAP had baseline HbA1c of 251 

7.6%)139, or study duration (3 vs 6 months)138. There were no significant changes in weight or 252 

anthropometrics measures in these RCTs between the CPAP and the control arm to explain the 253 

conflicting results. However, an important difference between these RCTs was compliance with CPAP; 254 

the positive RCT showed CPAP usage of 5.2 hours per night compared to below 4 hours/night in the 255 

trial by West et al138, 140. Longer CPAP duration per night might have an important impact on 256 

glycaemic control as REM tend to occur later during sleep and the AHI during REM correlated with 257 

HbA1c better than the AHI during NREM82, 136. Hence, there is still a need for well-designed RCTs of 258 

longer CPAP duration to answer the question whether CPAP can (or cannot) improve glycaemic 259 

control in patients with T2D.   260 

OSA and vascular complications in patients with T2D: 261 

Several plausible mechanisms have led to the hypothesis that OSA could lead to the development or 262 

progression of macro- and micro- vascular complications in patients with T2D as shown in Figure 4 141-263 

146.  264 

The relationship between OSA and CVD in patients with T2D has not been studied widely. A 265 

retrospective observational study showed that in patients with T2D and newly diagnosed OSA, CPAP 266 

for 9-12 months lowered systolic (mean change -6.81, 95%CI -9.94 to -3.67) and diastolic (-3.69, -5.53 267 

to -1.85) BP 147. Similar reductions in BP levels were observed after 3 months of CPAP in an RCT in 268 

which patients with T2D and OSA were randomised to early (<1 week) or late (1–2 months) CPAP148. 269 

The Sleep AHEAD study showed an association between AHI and a history of stroke (adjusted OR 270 

2.57; 95% CI:1.03, 6.42) but not with coronary artery disease 149. In a longitudinal study in 132 271 

patients with T2D and a normal baseline exercise echocardiography test, OSA predicted incident 272 

coronary artery disease (adjusted HR 2.2; 95% CI: 1.2–3.9; p = 0.01) and heart failure (3.5; 1.4–273 

9.0; p < 0.01) over a median follow-up of 4.9 years150. In another recent study of 1311 patients who 274 

had percutaneous coronary intervention (PCI), OSA was associated with increased risk of major 275 

adverse cardiac and cerebrovascular events (MACCE) over 3 years in patients with diabetes mellitus 276 

(adjusted HR 2.03, 95% CI 1.10–3.74, P = 0.023) after adjustment for age, sex, ethnicity, BMI, and 277 
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hypertension151. There is no interventional RCT published regarding the impact of CPAP on CVD in 278 

patients with T2D. 279 

OSA has been shown to be associated with diabetes-related microvascular complications including 280 

peripheral neuropathy, chronic kidney disease (CKD), retinopathy and autonomic neuropathy71 . Most 281 

of these studies were cross-sectional and no interventional studies have been published although 282 

several are ongoing.   283 

A recent systematic review of 15 cross-sectional studies concluded that there was no convincing 284 

evidence that OSA was associated with diabetic retinopathy (DR), but that there was some evidence 285 

to suggest that OSA was associated with greater DR severity 152. The systematic review also suggested 286 

that OSA was associated with maculopathy152. It is plausible that the impact of OSA on DR is more 287 

related to disease progression rather than the development of disease (which is a function of 288 

hyperglycaemia) 7. The increased retinal oxygen demands overnight will make the retina particularly 289 

vulnerable to the effects of the IH that occur in patients with T2D and OSA. This is supported by a 290 

recent longitudinal study in patients with T2D in which OSA was not associated with the development 291 

of DR but was associated with progression to pre-proliferative and proliferative DR153. In this 292 

longitudinal study, OSA was associated with sight threatening DR (STDR) (adjusted OR 2.3; 95% CI, 293 

1.1–4.9; P = 0.035), and maculopathy (adjusted OR 2.7, 95%CI 1.2–5.9, p= 0.01) at baseline153. After a 294 

median follow-up of 43.0 (IQR 37.0-51.0) months, patients with OSA were more likely than patients 295 

without OSA to develop pre-proliferative/ proliferative DR (18.4% vs. 6.1%; P = 0.02), which remained 296 

significant after adjustment for potential confounders (adjusted OR 5.2; 95% CI 1.2-23.0; P = 0.03)153. 297 

Interestingly in this study, patients with moderate to severe OSA who were compliant with CPAP 298 

were significantly less likely to develop pre-proliferative/proliferative DR compared to non-compliant 299 

patients153. This finding was supported by another proof of concept study that showed that CPAP 300 

treatment ≥2.5 h/night CPAP over 6 months in individuals with OSA and significant macular oedema 301 

was associated with improvement in visual acuity but without improvement in the oedema 154. 302 

Currently, RCTs assessing the impact of CPAP on DR are ongoing. 303 

In a systematic review of 2 longitudinal and 10 cross-sectional studies there was an association 304 

between OSA and CKD in patients with T2D (pooled OR 1.73, 95% CI: 1.13-2.64)155. In a longitudinal 305 

study in patients with T2D, CKD prevalence was higher in patients with OSA vs. without OSA (49.3% 306 

vs. 23.8%, P < 0.001), which remained significant after adjustment for confounders (adjusted OR 2.64, 307 

95% CI 1.13-6.16), P = 0.02). OSA was also associated with lower eGFR and more micro- and macro- 308 

albuminuria156.  After an average follow-up of 2.5 (0.7) years, eGFR decline was greater in patients 309 

with vs. without OSA (median -6.8% [IQR -16.1 to 2.2] vs. -1.6% [-7.7 to 5.3%], P = 0.002)156. After 310 



adjustment, having OSA (B = -3.8, P = 0.044) and higher AHI (B = -4.6, P = 0.02) were predictors of 311 

lower study-end eGFR156.  312 

The relationship between OSA and peripheral neuropathy in patients with T2D was examined in a 313 

cross-sectional study, which showed that OSA is associated with peripheral neuropathy based on the 314 

Michigan Neuropathy Screening Instrument (MNSI) vs. patients without OSA (60% vs. 27%, P < 0.001), 315 

which remained significant after adjustment (OR 2.82; 95% CI 1.44-5.52; P = 0.003)143. In addition, 316 

OSA was associated with lower intra-epidermal nerve fibre density (based on skin biopsies), and a 317 

history of foot ulceration in patients withT2D141. These studies suggest that OSA was associated with 318 

both large and small fibre neuropathy in patients with T2D. Cohort studies and RCTs assessing the 319 

relationship between OSA and CPAP on diabetes-related neuropathy and its complications are 320 

ongoing. 321 

OSA and T1D: 322 

As patients with T1D tend to be lean or leaner than patients with T2D, examining OSA in T1D received 323 

much less attention than in T2D 157. However, there is increasing interest in OSA in patients with T1D, 324 

particularly that some recent studies suggest that OSA in T1D might be more related to autonomic 325 

neuropathy rather than obesity158. In addition, epidemiological studies suggest that obesity 326 

prevalence is increasing in patients with T1D which might further increase their risk of developing 327 

OSA  159. 328 

In a systematic review of 4 studies (n= 186 patients), the prevalence of OSA (defined as AHI≥ 5) was 329 

51.9% among adult patients with T1D, but the 95% CI was wide (31.2-72.6) reflecting the small 330 

sample size the variation between studies160. The prevalence of moderate to severe OSA (AHI ≥15) in 331 

the same meta-analysis was 16.7% (95% CI: 1.1, 34.5)160.  332 

Autonomic neuropathy was suggested as one potential mechanism for the high prevalence of OSA in 333 

T1D as shown in a cross-sectional study of 199 patients with T1D in which OSA was present in 32% of 334 

the patients with normal BMI 161.  And another study showed a higher prevalence of OSA in patients 335 

with T1D and cardiac autonomic neuropathy compared to patients with T1D but without neuropathy 336 

(67% vs. 23%)162. Other factors might contribute to the high prevalence of OSA in children and 337 

adolescents with T1D including lower mean lung volumes (FVC, PEF, MMEF) 163, 164 and impaired gas 338 

exchange with lower diffusing capacity for carbon monoxide 165. There are similar findings of impaired 339 

pulmonary function in adult patients with T1D166-168. The natural history, impact, and pathogenesis of 340 

OSA in patients with T1D remain poorly explored and large well-designed studies are needed. 341 
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OSA & the Renin-Angiotensin-Aldosterone System (RAAS) 342 

The links between OSA and RAAS activation are potentially bi-directional (Figure 5). 343 

Hyperaldosteronism might also play an important role in the well-established links between OSA and 344 

hypertension (particularly resistant hypertension-RH) (Figure 5)9, 169-173.  345 

The pathophysiology of hyperaldosteronism in patients with OSA is mainly attributed to the 346 

activation of the RAAS due to cyclical/intermittent hypoxia172. In addition, some studies suggested a 347 

higher prevalence of primary aldosteronism (PA) in patients with OSA compared to patients without 348 

OSA173. 349 

A recent meta-analysis has examined the relationship between OSA and RAAS activation174 . The 350 

meta-analysis included 14 studies, all but one, were case-control studies and they included a 351 

relatively small sample size (mostly < 100, range 12 to 120) 174. The studies generally included middle 352 

age men and 8 of them included patients with hypertension174. The meta-analysis found no significant 353 

relationship between OSA and plasma renin activity (PRA) (mean difference 0.17 ng/mL per hour 354 

(95% CI: -0.22 to 0.55, P = 0.40)) or plasma renin concentration (PRC) (mean difference 0.95 ng/mL 355 

(95% CI: –0.58 to 2.48, P = 0.23)174. However, angiotensin II levels were significantly higher in patients 356 

with OSA compared to those without OSA (mean difference of 3.39 ng/L; 95% CI 2.00 to 4.79, P < 357 

0.00001)174. There was a trend towards higher plasma aldosterone concentration (PAC) in patients 358 

with OSA vs. no OSA (mean difference 0.95 ng/dL; 95% CI: –0.16 to 2.07, P = 0.09)174. However, when 359 

examined in patients with and without hypertension separately, patients with hypertension and OSA 360 

had significantly higher PAC vs. patients with hypertension but without OSA (mean difference 1.32 361 

ng/dL; 95% CI: 0.58 to 2.07, P = 0.0005)174. 362 

The above-mentioned meta-analyses had high heterogeneity, which could be due to variations in the 363 

definition of OSA174. The heterogeneity can also be attributed to the medication used prior to RAAS 364 

measurements; however, a meta-regression showed that anti-hypertensives did not affect the 365 

relationship between OSA and PAC174. Supporting the findings of this meta-analysis, another study 366 

showing that the AHI correlated significantly with PAC and urinary aldosterone levels (r= 0.568, p = 367 

0.0009; r = 0.533, p = 0.002, respectively) in patients with RH and hyperaldosteronism175. 368 

Several uncontrolled studies in patients with hypertension (mostly RH) showed that CPAP lowered 369 

angiotensin II and aldosterone levels176-179. One RCT in which 117 patients with RH were 370 

randomised to CPAP (n=57) vs. no CPAP (n=60) showed that 6 months of CPAP resulted in greater 371 

reduction in aldosterone excretion (based on 24 h urine) compared to the control group in the per-372 

protocol analysis (mean difference: -3.3 μg/24 h; 95% CI -6.1 to -0.4 μg/24 h; P = 0.027)180. 373 



However, the intention to treat analysis showed only a trend (p=0.07). The impact of CPAP on 374 

lowering aldosterone was particularly evident in those with uncontrolled hypertension, non-375 

dipping in nocturnal BP, not using spironolactone, and with patients with worse hypoxia180. A 376 

recent meta-analysis of 3 observational studies and 2 RCTs (did not include the above-mentioned 377 

RCT) showed that CPAP lowered aldosterone levels compared to no/sham CPAP (mean difference -378 

0.236, 95 % CI -0.45 to -0.02, p = 0.034)181.  379 

Chronic IH seems to play an important role in the impact of OSA on the RAAS and the mechanistic 380 

pathway is shown in Figure 5 172,182-185,176-178. 381 

On the other hand, RAAS activation and hyperaldosteronism might lead to or worsen OSA via 382 

multiple mechanisms as detailed in Figure 5. In a retrospective cohort registry based study, the 383 

risk of developing OSA was higher in patients with hypertension and hyperaldosteronism 384 

compared to those without hyperaldosteronism after adjustment for age, sex, BMI, diabetes 385 

mellitus, and heart failure (adjusted OR: 1.8; 95% CI 1.3-2.6)186.  Moreover, in a cross-sectional 386 

study of patients with RH, spironolactone treatment was associated with lower AHI187. In another 387 

uncontrolled study in patients with RH, spironolactone (25-50mg daily for 8 weeks) improved OSA 388 

severity (based on PSG) ( AHI: 39.8±19.5 vs 22.0±6.8 events/h; P<0.05;) 188. A  recent systematic 389 

review and meta-analysis found 3 studies (1 RCT) and concluded that spironolactone reduced the 390 

AHI by a mean of −21.12 (95% CI −27.47 to −14.77, P<0.00001)175.  Furthermore, in a small study of 391 

20 patients with PA who had PSGs, having  MR antagonists (n=13) or adrenalectomy (n=7) resulted 392 

in AHI reduction from 22.5 (14.7) to 12.3 (12.1) (P=0.02)185. These studies support the notion that 393 

hyperaldosteronism could worsen OSA and suggest that aldosterone antagonists can be useful in 394 

patients with hypertension or PA and OSA. 395 

Finally, due to the links between OSA and PA the recent guidelines of the Endocrine Society on the 396 

management of PA recommend that patients with hypertension and OSA are screened for PA173. 397 

Furthermore, well designed RCTs assessing the impact of MR antagonists on OSA are needed, 398 

particularly that OSA is associated with increased CVD risk and that CPAP compliance is often not 399 

optimal. 400 

Although not directly related to RAS activation, it is important to note that patients with OSA can 401 

present with hypertension and the clinical and biochemical features of phaeochromocytoma without 402 

the presence of a catecholamine secreting tumour (i.e. pseudo-phaeochromocytoma)110, 189-191. These 403 

cases are rare but have been reported in multiple case reports and series, and the clinical and 404 

biochemical features usually resolve with CPAP treatment or weight loss110, 189-191. 405 
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OSA & hypothalamic-pituitary-adrenal (HPA) axis 406 

Cortisol secretion has a well described circadian rhythm and is closely related to sleep stages192, 193. 407 

Sleep onset and SWS are associated with a decline in cortisol levels followed by increased cortisol 408 

secretion in late sleep (which is consistent with the rise in early morning)194. On the other hand, 409 

cortisol might impact on sleep architecture, for example, HPA axis hyperactivity inhibits SWS and 410 

promotes nocturnal awakening193.   411 

OSA and HPA axis activation: 412 

The impact of OSA on HPA axis is controversial with conflicting results due to the confounding effects 413 

of obesity, the sampling frequency (single time point vs. 24-hours profile), variability in matching 414 

between patients with and without OSA, small sample sizes, and short CPAP duration with variability 415 

in compliance. Some studies showed no relationship between OSA and the HPA axis, while some even 416 

suggested that OSA might inhibit the HPA axis [AHI and ODI correlated negatively with morning 417 

cortisol levels: r = −0.444, P = 0.002 and r = −0.381, P = 0.011 respectively) 195-198. In a systematic 418 

review of studies that compared cortisol levels in patients with OSA to either obese or lean control, 419 

there was no evidence of HPA activation in patients with OSA in 6/7 studies199. However, only 2 of 420 

these studies had plasma cortisol measurements over 24-h, while the rest had single time point 421 

measurements199. The two studies that measured 24-h cortisol profile reported contradicting results 422 

as one showed no difference in mean 24-h plasma cortisol between patients with OSA and obese 423 

controls200, while the other showed that OSA was associated with HPA activation compared to obese 424 

controls 201.  425 

However, the impact of OSA on HPA axis may not necessarily be consistent over the 24-h period, as 426 

the study by Vgontzas et al. showed that mean plasma cortisol levels between 23:00h and 7:00h were 427 

higher in patients with OSA and obesity vs. obese controls, consistent with nocturnal HPA activation 428 

when there is intermittent hypoxia and disruption of the sleep architecture201(Figure 6). Another 429 

important aspect is that the impact of OSA on HPA axis may not be simply related to basal or 24-h 430 

cortisol profiles but might be related to the dynamic responses to HPA inhibition or stimulation. 431 

Carneiro et al. showed that although basal salivary cortisol wasn’t different between patients with 432 

OSA vs. obese controls, the salivary cortisol inhibition following overnight dexamethasone 433 

suppression test (ONDST) was significantly less pronounced in patients with OSA compared to obese 434 

controls196. Interestingly, this deficit was corrected after 3 months of CPAP196. Another study also 435 

showed that ACTH responses to CRH stimulation were higher in patients with OSA compared to obese 436 

and lean controls202. 437 

  438 



In the same above-mentioned systematic review, 8 uncontrolled studies assessed the impact of CPAP 439 

on cortisol levels (blood or salivary)199. Five studies showed no impact76, 196, 203-205, while 3 studies 440 

showed that CPAP lowered cortisol levels (blood and salivary)201, 206, 207.  The studies that showed 441 

favourable impacts of CPA measured cortisol more frequently during the 24 hours compared to the 442 

negative studies199. However, a recent in-laboratory study showed that 8 hours of CPAP per night did 443 

not have any effect on 24-h cortisol profile208.  Nonetheless, this study was over a 1-week period, 444 

unlike the studies that showed positive impact of CPAP on cortisol which were over 3 months period.  445 

A slightly longer study of 14 days, showed that CPAP can lower morning salivary cortisol in men and 446 

women with obesity and OSA209. The confounding effects of obesity and gender on the relationship 447 

between OSA and HPA axis were addressed in a recent study of non-obese men and postmenopausal 448 

women which showed that OSA patients had higher 24h blood cortisol levels compared to controls, 449 

which were lowered after 2 months of CPAP51. 450 

Overall, while the studies showed conflicting results there is evidence that OSA is associated with HPA 451 

activation particularly nocturnally and that CPAP (14 days to 3 months) can lower cortisol 24-h profile 452 

rather than cortisol levels at single time points. The effects of OSA on the HPA axis can be mediated 453 

via mechanisms related to night awakenings (even when brief), sleep restriction, and intermittent 454 

hypoxia51, 210-216 as shown in Figure 6.    455 

OSA in patients with Cushing’s syndrome: 456 

Several studies have shown that OSA is common in patients with Cushing’s syndrome (CS) (whether 457 

endogenous or exogenous)217. The prevalence of OSA (based on PSG) was higher in women with 458 

active CS (n=35) compared to age- gender- and BMI- matched controls (n=30) (50% vs 459 

23%, P = 0.003)218. After controlling for BMI and HOMA score, serum cortisol remained independently 460 

associated with AHI (R2: 77.8%, P < 0.001), suggesting that the relationship between CS and OSA are 461 

not only related to obesity218. A recent Taiwanese population-based cohort study showed that 462 

patients with CS (n=53) were at increased risk of developing OSA compared to matched controlled 463 

(matched for age, sex and comorbidities including obesity, T2D, and hypertension)  ( 4.11 vs. 1.70 per 464 

thousand person/ year; HR 2.82, 95% CI: 1.67-4.77), with slightly higher risk in men vs. women219. 465 

Interestingly in this study, the survival curves for OSA development starting separating clearly from 466 

the first year after the diagnosis of CS219. Similarly, in patients without OSA (n=17) who had PSG 467 

before and after 3 months of prednisolone (10mg daily or more), AHI worsened by 56% compared to 468 

controls (with mild OSA but no steroid treatment)220. This increase in AHI did not correlate with 469 

changes in weight and neck circumference suggesting mechanisms other than adiposity responsible 470 

for the worsening in AHI220.  471 

 472 



While obesity might play an important role in the relationship between CS and OSA, it is clear from 473 

the above-mentioned studies that obesity is not the only factor. In addition to obesity, 474 

hyperglycaemia, IR, and ectopic fat (in the peritoneum, mediastinum and parapharyngeal spaces) 475 

may also play a role in the increased risk of OSA in patients with CS217, 221. Moreover, hypercortisolism 476 

can induce UA myopathy leading to compromised UAs (Figure 6)217, 219, 222. 477 

Future studies need to assess the impact of CS treatment on the incidence and severity of OSA and to 478 

examine whether the increased OSA risk in patients with CS is lifelong or simply related to the period 479 

where CS is active. In addition, endocrinologists, surgeons and anesthetists need to be aware of the 480 

high risk of OSA in patients with CS when considering surgical treatment (both pituitary and adrenal) 481 

in order to ensure the safety of the surgical intervention.  482 

OSA & Growth Hormone (GH)/IGF axis 483 

Summary of OSA impact on GH/IGF axis as well as the relation of GH excess and deficiency to OSA 484 

development or worsening can be found in Figure 7.  485 

 486 

OSA and the dysregulation of GH/IGF axis 487 

OSA-associated chronic IH and disruption of sleep architecture can lead to dysregulation of the 488 

GH/IGF axis as GH secretion is increased after sleep onset and during SWS (both of which are 489 

disrupted in patients with OSA)223, 224. Overall, studies in rodents and humans suggest that OSA is 490 

associated with suppression of basal and stimulated GH and IGF-1 levels which are improved by 491 

CPAP225. 492 

In rodents,  IH was shown to cause a recoverable dose-dependent suppression of GH release and GH 493 

mRNA expression, possibly due to modulation of somatostatin activity226. In humans, OSA was shown 494 

to be associated with a marked reduction in GH blood levels, which increased following one night of 495 

CPAP64. In addition, fasting IGF-1 levels correlated negatively with the ODI in men with OSA, but 496 

increased following 3 months of   CPAP195. Sleep disruption also plays a role in the relationship 497 

between OSA and the GH/IGF-1 axis. In an experimental study of patients with OSA who were 498 

examined for 1 night without CPAP and 1 night with CPAP, GH plasma levels and secretion rate 499 

(bloods were collected every 10 minutes over night) were reduced and increased after CPAP 500 

treatment; this improvement correlated with the improvement in SWS227. 501 

In support of the impact of OSA on the GH/IGF axis, a recent RCT in 65 middle-aged men with 502 

moderate to severe OSA showed that CPAP vs sham CPAP increased IGF-1 levels, total and pulsatile 503 

GH secretion, mean GH concentration, mass of GH secreted per pulse and pulse frequency after 12 504 

weeks of treatment with further increases in IGF-1 levels and a decrease in IGFBP-1 levels by week 505 
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24228. Furthermore, other treatments that can improve OSA, such as adenotonsilectomy in children, 506 

have also been shown to improve IGF-1 and IGFBP-3 levels229.  507 

Obesity is a potential confounder for the relationship between OSA and GH/IGF-1 dysregulation as 508 

obesity (particularly visceral) is linked to a reduction in GH secretion, IGF-1 levels and peripheral GH 509 

sensitivity, which can recover with weight loss230. However, IGF-1 levels were lower in patients with 510 

OSA compared to the weight matched controlled despite that both these groups had lower IGF-1 511 

levels compared to the lean control96.  512 

OSA and acromegaly 513 

Many cross-sectional studies showed that OSA is highly prevalent in patients with active acromegaly 514 

(45-80%)231, with an average prevalence of 69% in PSG-based studies 232. Although lowering GH/IGF-1 515 

improves OSA, up to 40% ( range 21-58%231) of those with controlled acromegaly have persistent OSA 516 

that required evaluation and the consideration of CPAP233, 234. “Although clinicians seem to be aware 517 

of the links between acromegaly and OSA (as shown by a survey in Italy), only few patients undergo 518 

PSG in clinical practice235. 519 

In addition, OSA contributed to the adverse outcomes of acromegaly, despite that there were no 520 

differences in GH or IGF-1 levels between patients with OSA + acromegaly vs. acromegaly alone236. 521 

The presence of impaired glucose tolerance or T2D was higher in patients with acromegaly and OSA 522 

vs. acromegaly only (n: 10/17 vs. 5/19)236; although this was not adjusted for obesity. In addition, OSA 523 

contributed to insulin resistance in patients with acromegaly, which improved by CPAP in a RCT237. 524 

Furthermore, OSA might play an important role in other acromegaly-related comorbidities such as 525 

hypertension and heart failure/cardiomyopathy238.  526 

As a result of the high prevalence of OSA and its impact on acromegaly-related comorbidities, the 527 

2014 Endocrine Society Clinical Practice Guideline for acromegaly recommended evaluating all 528 

patients for OSA234. In addition, the guidelines recommended that patients with severe pharyngeal 529 

thickness and OSA should be treated with somatostatin receptor ligands preoperatively to reduce the 530 

OSA-related surgical risks234.  531 

 532 

On the other hand, a recent study of 507 patients with OSA showed that 10 patients (1.97%) had 533 

elevated IGF-1 levels, of which 9 patients suppressed GH levels on OGTT giving an acromegaly 534 

prevalence of 0.2% (1/507)239. These findings suggest that screening for acromegaly in OSA should not 535 

be routinely performed. However, if in addition to OSA, there are other features of acromegaly or 536 

acromegaly-associated conditions (such as T2D, debilitating arthritis, carpal tunnel syndrome, 537 

hyperhidrosis, and hypertension), then measurement of IGF-1 levels is recommended as per the 538 

Endocrine Society Clinical Practice Guideline for acromegaly239. Finally, although we have focused 539 

Formatted: Not Highlight

Field Code Changed

Formatted: Not Highlight



here on OSA, central sleep apnoea (SA) can also occur in the context of acromegaly240, but far less 540 

common than OSA236. 541 

 542 

The mechanisms leading to the high prevalence of OSA in patients with acromegaly are summarised 543 

in Figure 7 231, 234, 240-254 .  544 

The impact of Acromegaly treatment on OSA: 545 

Considering that OSA is driven by the excess of GH/IGF-1 in patients with acromegaly, it is not 546 

surprising that treating acromegaly can improve OSA but it is also common for OSA to persist or even 547 

worsen after acromegaly is brought under control234. In a small study of 6 patients with SA syndrome 548 

(obstructive or central with EDS) and acromegaly, trans-sphenoidal adenomectomy resulted in 549 

resolution of the SA syndrome in all patients regardless of whether acromegaly was cured or not255. In 550 

another study of 24 patients with acromegaly (20 with OSA)  who had remission following trans-551 

sphenoidal surgery; at 1 month post-surgery, the tongue area declined while the airway volume 552 

increased significantly, accompanied with improved OSA256. The prevalence of severe OSA was 553 

reduced from 45.8% to 28% by 6 months with significant improvements in AHI but the average AHI 554 

remained in the moderate OSA range 256. Similar results were observed in patients with acromegaly 555 

following treatment with somatostatin analogues 246, 249, 257-260 and pegvisomant 261, 262.  556 

The above-mentioned studies clearly show that curing acromegaly or significant improvements in 557 

GH/IGF-1 levels can improve OSA, but many patients with acromegaly have persistent moderate to 558 

severe OSA that might require CPAP. In fact, OSA might occur in patients with acromegaly following 559 

achieving normal IGF-1 levels even when OSA was not present at baseline as shown by Chemla et al 560 

(OSA cured in 57%, new OSA that was not present at baseline 22%)263. Similarly, Castellani et al. 561 

showed that AHI  increased in 55.5% of patients with acromegaly after complete/ partial biochemical 562 

control (either after surgery, radiotherapy, and/or medical therapy)231. OSA persistence following 563 

acromegaly treatment is probably due to multiple factors including increased BMI and/ or irreversible 564 

craniofacial-skeletal deformities/fibrosis231. Hence, OSA evaluation is needed post acromegaly 565 

treatment regardless of the normalisation of GH/IGF-1 264. 566 

 567 

OSA in adults with GH deficiency (GHD): 568 

OSA is much less examined in GHD in comparison to acromegaly. OSA is very common in adults with 569 

GHD  with a prevalence of 63%; which is mainly due to the increased obesity either due to GHD or 570 

hypothalamic obesity as a result of surgical or radiotherapy treatment delivered to the underlying 571 

pituitary or hypothalamic pathology 265. 572 
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GH replacement and OSA: 573 

GH replacement in patients with GHD might improve OSA due to a reduction in adiposity (strong 574 

lipolytic properties of GH266, 267) or it could worsen OSA if the replacement was excessive. The studies 575 

in the literature show a mixed picture. In a small study of 5 men who received GH replacement 576 

(median dose 2 U/day; median serum IGF-I 351 mcg/l) for 1-2 years post pituitary surgery GHD, 577 

showed that 6 months after stopping GH treatment the median obstructive AHI decreased 578 

significantly from 4.4 to 0.1 (P = 0.03) whereas the central AHI increased from 6.3 to 14.6 (P = 0.03); 579 

suggesting that GH replacement worsened the OSA but improved central SA 268. However, another 580 

study of 19 patients with GHD showed that GH replacement for 6 months had no impact on AHI (pre 581 

vs post treatment: 28.2/h vs. 28/h), regardless of baseline OSA status265. Still, in a large observational 582 

longitudinal study of GH-treated (n = 1988) and untreated (n = 442) patients with GHD showed that 583 

after a mean follow up of 2.3 years the sleep apnoea incidence was greater in the group that received 584 

GH replacement (3.3% vs 0.9%, p<0.05), despite that the GH treated vs. untreated groups had similar 585 

BMI at baseline and the GH-treated group were younger 269.However, the GH-treated group had 586 

higher baseline IGF-1 levels (108 ± 61 vs. 90 ± 51 mcg/l, p <0.001) and serum IGFBP-3 levels (2.4 ± 0.9 587 

vs. 2.1 ± 1.0 mcg/l, p<.001)269. In a 12-month double blind RCT of 40 men with obesity and 588 

dysglycaemia who were randomised to either GH or placebo; GH treatment increased IGF-1 from 589 

168±72 to 292±117 mcg/L, the AHI from 31±20 to 43±25 and the ODI from 18±14 to 29±21 (all p 590 

values ≤ 0.001)270. Interestingly, GH treatment in this study increased neck transverse diameter, 591 

circumference, and total cross-sectional area, while reduced abdominal visceral adipose tissue (based 592 

on CT)270. 593 

 594 

Hence, more data is required to assess the impact of GH replacement on pre-existing OSA and the 595 

development of new OSA. However, GH replacement might result in the development or worsening 596 

of pre-existing OSA via increasing IGF-1 levels or via affecting adipose tissue distribution (increasing 597 

neck circumference). 598 

 599 

OSA in Prader -Willi syndrome 600 

Children and patients with Prader-Willi syndrome (PWS) are also at high risk of having OSA 601 

(prevalence: 1:10,000- 25,000 live children), and as a result screening for OSA in this population has 602 

been recommended 271. The high prevalence of OSA in patients with PWS is likely to be multifactorial 603 

due to GH deficiency, increased viscosity of upper airways secretions, craniofacial abnormalities with 604 

small airways, upper airways muscles hypotonia and secondary alveolar hypoventilation (obesity and 605 

scoliosis causing lung volume restriction) all leading to airway collapsibility 271.  606 
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The impact of GH replacement on OSA in children with PWS is debatable. Salvatoni et al. showed that 607 

short-term treatment with rhGH (6 weeks) did not worsen the AHI and there was no difference in 608 

AHI between the treatment and control group at baseline or study-end272. Nonetheless, in this 609 

study, the AHI increased (i.e. OSA worsened) in 50% of the cases following GH replacement272. 610 

Similar results were shown in another study suggesting that the AHI worsen in a subgroup of 611 

patients following GH replacement over the short run273; which in part could be due to the 612 

development of adenotonsillar hyperthophy following GH treatment273. However, longer term follow-613 

up (2 years) showed that GH replacement did not worsen AHI during the follow up except in those 614 

who worsened shortly after GH initiation 274, 275. As a result, the 2013 consensus guidelines considered 615 

untreated severe obstructive sleep apnea as an exclusion criteria for rhGH initiation, till the patient is 616 

treated with CPAP276, 277. This is particularly important considering that sudden death early in the 617 

course of GH replacement in patients with PWS, associated with sleep disordered breathing/OSA, 618 

have been reported in the literature278-280. 619 

 620 

OSA & hypothalamic-pituitary-thyroid (HPT) axis  621 

OSA in patients with hypothyroidism 622 

A recent systematic review of 1 observational and 5 interventional studies (501 patients in their 4th-623 

5th decade of life) found that 25-50% of patients with overt hypothyroidism (OH) had nocturnal 624 

breathing abnormalities (snoring, choking, apnoea periods); which improved with levothyroxine 4 625 

(LT4) treatment281. In one study, 30% of patients with recently diagnosed OH had evidence of OSA 626 

(AHI ≥ 5 based on PSG), and LT4 improved the AHI (from a median of 14.3 (7.4–33.6)  to 2.1 (0.8–627 

4.6))282 . In addition, in the later study LT4 treatment improved hypoxaemia and sleep architecture 628 

(TpO2 sat<90%c:  14% (2.2–19.9) vs 0.2% (0–1.7), p<0.05;  SWS%:  18.4 (7.2–25.2) vs 28.2 (15–33.4), 629 

p<0.05)282. This suggests that hypothyroidism can lead to/worsen OSA which improves with LT4 630 

treatment. However, larger studies including RCTs are needed before confirming this relationship. 631 

There is lack of good quality data regarding the relationship between OSA and subclinical 632 

hypothyroidism (SH); one small observational study (n=108) showed that 53% of patients with 633 

untreated SH had OSA (based on PSG)283. However, these results are likely to represent selection bias 634 

as the prevalence of OSA in healthy controls with normal thyroid functions was higher (75%) than 635 

that in patients with untreated SH despite that SH patients were heavier and the patients recruited 636 

from the respiratory department 283. Hence, currently we cannot be certain about the relationship 637 

between OSA and SH.  638 
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Hypothyroidism in patients with OSA 639 

While studies are not consistent, overall there is no evidence that hypothyroidism is more common in 640 

patients with OSA compared to patients without OSA284, 285. A recent study also supported this 641 

conclusion as it showed that the prevalence of raised TSH in 813 patients with severe OSA was 4.7% 642 

which is similar to the general population286. Some studies showed that the prevalence of SH was 643 

higher in OSA vs. control, but these studies have potential selection bias as the population was 644 

recruited from sleep clinics and the control group was younger and leaner287-289. Other studies did 645 

not show a high prevalence of SH in patients with OSA290.  In a study of 245 euthyroid patients with 646 

suspected OSA, the prevalence of Hashimoto’s thyroiditis was 32.2% in patients without OSA vs. 647 

46.8% in patients with OSA (based on PSG) (p=0.03) 291. The prevalence of Hashimoto’s increased with 648 

worsening severity of OSA291. 649 

Mechanisms linking OSA and thyroid disorders:  650 

Hypothyroidism can lead to the development or worsening of OSA via multiple mechanisms 651 

summarized in Figure 8 232, 281, 282, 284, 291-300.   652 

OSA and non-thyroidal illness syndrome (NTIS) 653 

A recent cross-sectional study showed that patients with moderate to severe OSA (n=125) had a 654 

higher prevalence of NTIS (defined as normal TSH and low FT3) compared to controls (n=60) (10.4% 655 

vs. 0%), but the control group was lean and there were more men in the OSA group301. Within the 656 

OSA group, patients with NTIS had worse nocturnal hypoxemia compared to patients without NTIS 301. 657 

This suggests that IH could play a role in the high prevalence of NTIS  in patients with OSA, possibly 658 

via down-regulation of deidodinase 1 and enhancing deiodinase 3 inactivating T3 and T4302. In 659 

addition, oxidative stress and low grade inflammation, resulting from OSA, can also contribute to the 660 

association between OSA and NTIS303, 304. CPAP for 5 months has been shown to improve FT3 levels in 661 

patients with NTIS supporting the notion that OSA might lead to NTIS, but this study was not 662 

controlled 301. However, it is important the clinicians take into account the possibility of NTIS when 663 

interpreting thyroid function results in patients with OSA.   664 

In summary, sleep apnoea and thyroid specialists need to have a low threshold to test for thyroid 665 

disorders if indicated clinically. In addition, OSA can be associated with NTIS and clinicians 666 

interpreting the thyroid function results need to take the presence of OSA into consideration. 667 

However, cohort studies with well-matched control groups and RCTs are needed to enable us to 668 

understand the complex relationship between OSA and HPT axis and the impact of treating one or the 669 

other.  670 



OSA & the Hypothalamic-Pituitary-Gonadal (HPG) axis 671 

The interaction between sex hormones and OSA was initially brought to attention by the consistently 672 

reported a higher prevalence of OSA in men vs. women. This relationship was further emphasized by 673 

several observations including that testosterone replacement in men worsens/ increases the risk of 674 

having OSA, the prevalence of OSA in postmenopausal women was higher than in premenopausal 675 

women; hormone-replacement therapy reduced the risk of OSA in postmenopausal women and oral 676 

contraceptives were associated with lowered OSA risk in women with polycystic ovarian syndrome 677 

(PCOS)65, 305. 678 

In Men 679 

OSA is associated with hypogonadotropic hypogonadism due to altered gonadotropin synthesis and 680 

release306. In a cross-sectional analysis of a prospective study of healthy older men (n=1312, ≥65years 681 

old), lower testosterone levels (based on quartiles) were associated with significantly less SWS, higher 682 

AHI (based on PSG) and more sleep time spent with O2 sat<90% after adjustment for age and race307. 683 

However, adjustment for BMI made these associations non-significant307. Other studies showed that 684 

patients with OSA had lower area under the curve and mean levels for LH (24.9 ±  10.2 IU/l h vs. 43.4 685 

±  9.5 IU/l, P < 0.005) and testosterone (67.2 ± 11.5 nmol/l vs. 113.3 ± 26.8 nmol/l, p=0.003) 686 

compared to healthy controls, but the control group was leaner numerically 308. Similar findings were 687 

found in other studies 309-311. 688 

Testosterone replacement and OSA 689 

Patients receiving testosterone replacement are at increased risk of developing OSA. In a cohort 690 

study, 3422 of US military service members, aged 40-64 years, who were free of OSA at baseline and 691 

received testosterone replacement, were matched based on age and comorbidities to men who did 692 

not receive testosterone treatment312. The absolute 2-year risk of incident OSA was greater in 693 

patients that received testosterone replacement vs those who did not (16.5% (95% CI: 15.1–18.1) vs 694 

12.7% (95% CI: 11.4–14.2), p<0.001)312. Interestingly, the increased risk of OSA was greater for those 695 

who used injectable vs topical testosterone312. This is also supported by a small RCT in which healthy 696 

ambulatory men aged > 60 years were randomised to receive three injections of weekly 697 

intramuscular testosterone esters (500 mg, 250 mg, and 250 mg) or matching oil-based placebo and 698 

then crossed over to the other treatment after 8-week washout. Testosterone replacement in this 699 

RCT resulted in worsening RDI (approximately by 7 events per hour), mainly during non-rapid eye 700 

movement  (NREM) sleep, and worsened nocturnal hyoxaemia measures; while placebo had minimal 701 

effects on RDI and hypoxia parameters 313. Several other studies suggested a link between 702 

testosterone replacement and incident or worsening OSA314-317. As a result, the Endocrine Society 703 



clinical practice guidelines recommended against the use of testosterone replacement in men with 704 

untreated severe OSA318. It is unclear whether different methods of testosterone replacement have a 705 

differential impact on the risk of developing or worsening OSA due to the variations in the 706 

pharmacokinetics profiles of these agents. 707 

The effects of testosterone can be time-limited as shown in a RCT of 67 men who received 708 

hypocaloric diet and were randomised to intramuscular injections of 1000 mg testosterone 709 

undecanoate or placebo 319, in which testosterone replacement worsened the ODI by 10.3 events/h 710 

(95%CI, 0·8–19·8 events/h; P = 0·03) and on nocturnal hypoxaemia at 7 weeks but not at 18 weeks319. 711 

This time dependent effects might be as a result of time dependent changes in hyperoxic ventilatory 712 

recruitment threshold following testosterone replacement320.   713 

Mechanisms 714 

Low testosterone in men can lead to loss of muscle mass and increased visceral adiposity, which can 715 

contribute to the increased/worsening OSA in men with hypogonadism321, 322. It is unclear how 716 

testosterone replacement leads to OSA, but postulated mechanisms include altered ventilator 717 

responses such as increased response to hypoxaemia (leading to CO2 levels below apnea threshold), 718 

reduced sensitivity to hypercapnia, or anabolic effects (leading to UA narrowing) and an effect on the 719 

neuromuscular control of UA323, 324. However, these mechanisms are not well proven with multiple 720 

studies showing conflicting results. In one interesting mechanistic study, androgen blockade with 721 

flutamide did not influence chemo-responsiveness to hypoxia/ hypercapnia325.   722 

In addition, OSA can impact the HPG axis via several mechanisms including IH, sleep fragmentation 723 

and obesity306, 310, 326. Testosterone levels peak during REM (fewer REM sleep episodes and REM sleep 724 

latency are related to lower testosterone concentrations323), hence the disruption of sleep 725 

architecture in OSA (loss of REM) might explain the link between OSA and low testosterone193.   726 

The impact of OSA treatment on the HPG axis: 727 

CPAP effects on the HPG axis in men remains controversial with a limited number of studies in the 728 

literature. A meta-analysis in 2014 found only 2 RCTs and 5 observational studies with a total sample 729 

size of 232 men showing the paucity of available data327. In this meta-analysis, an average of 6 730 

months of CPAP treatment had no effects on testosterone levels despite good CPAP compliance 731 

(standardized mean difference (SMD) = -0.14, 95%CI: -0.63 to 0.34)327. CPAP also had no effects on 732 

free testosterone or SHBG levels327.  733 

 734 

Summary of the trials assessing the impact of OSA treatment (CPAP and surgical) on HPG axis can be 735 

found in Table 1 (195, 205, 328-335). The 2 RCTs showed no effect of CPAP on testosterone levels, but the 736 

study participants did not have hypogonadism at baseline and the CPAP duration was short. The 737 



uncontrolled studies mostly showed no effects of CPAP on testosterone levels except 2 studies, that 738 

showed that CPAP increased testosterone levels (Table 1). In one of these studies, the increase in 739 

total testosterone was associated with increased SHBG which suggest that the impact of free 740 

testosterone was rather limited. In the other study, patients had hypogonadism at baseline and CPAP 741 

improved testosterone levels along with LH, but the impact on SHBG was not reported (Table 1). 742 

Hence, the impact of CPAP on HPG axis in men remains unclear but future trials need to consider the 743 

potential difference in response between men with and without hypogonadism and need to ensure 744 

adequate CPAP treatment duration and the impact on free testosterone. 745 

It is Important to note that CPAP might still have beneficial impacts on scores for sexual and erection 746 

function despite the lack of impact of hormonal measurements332, 333. However, in two RCTs sildenafil 747 

was superior to CPAP in regards to ED336, 337. 748 

 749 

In women 750 

OSA impact on the HPG axis in women is less well studied compared to men. Based on animal studies 751 

sex hormones can influence breathing not only via androgens but also via the effects of progesterone 752 

and estradiol on CB and the brainstem338. In addition, lack of progesterone receptor in rodent led to 753 

reduced hypoxic ventilator response339 and lower UA resistance was found in the luteal phase in 754 

healthy premenopausal women with the peak in progesterone secretion340. On the other hand, OSA 755 

has a negative effect on female sex hormones and on sexual function and is associated with PCOs. 756 

In a cohort of 53 women (24-72 years old), AHI>10/hr was associated with lower morning levels of 17-757 

OH-progesterone, progesterone and estradiol341. However, hormone replacement therapy (HRT) in 758 

post-menopausal women was associated with lower prevalence of moderate to severe OSA 759 

prevalence compared to women not taking HRT and less time spent in oxygen saturations < 90%, 760 

particularly in women who received combined estrogen-progesterone vs. estrogen alone 342. The 761 

impact of CPAP on the HPG axis in women remains to be explored in large studies, and since one 762 

small uncontrolled study showed no effect330 RCTs in this area are needed. 763 

Similar to men, OSA has been associated with sexual dysfunction (FSFI score: desire, arousal, 764 

lubrication, orgasm, satisfaction, and pain) in pre- and post- menopausal women compared to 765 

matched controls 343, 344 345. Unlike in men, evidence for CPAP impact on sexual dysfunction in women 766 

is lacking346. In this review we did not discuss the impact of OSA on pregnancy. 767 

OSA & Polycystic Ovarian Syndrome (PCOS)     768 

OSA is highly prevalent in women of reproductive age with PCOS. A recent systematic review and 769 

meta-analysis from our group ( 15 studies, n=568) showed that 36.1% (95% CI: 22.4-51.0) of women 770 



with PCOS had OSA regardless of the PCOS definition used347. In addition, OSA prevalence was 771 

significantly higher in obese women with PCOS compared to lean (OR: 3.96, 95%CI: 1.29-12.13) and in 772 

adult women compared to adolescents, both of which are expected since obesity and age are main 773 

risk factors of OSA, and thus PCOS precedes OSA development347. However, in this meta-analysis 774 

there was significant heterogeneity among studies, most studies came from the USA in women with 775 

obesity (class II) and there is a high level of selection bias since controls came from general 776 

population while exposed cohorts were recruited from specialised clinics347. It is plausible that in 777 

some cases the OSA could precede PCOS development as detailed in a recent study showing that 1/3 778 

of adolescent girls with PCOS had previous tonsillar enlargement/ tonsillectomy 348.  779 

It is also interesting that although androgens are considered to impact OSA pathogenesis, 780 

contributing to the higher OSA prevalence in women with PCOS, three studies showed that women 781 

with PCOS and increased androgens did not have higher prevalence of OSA compared to controls, and 782 

the relationship between OSA severity and hyper-androgonaemia were not consistent across the 783 

studies347. This could be due to the low circulating androgen levels in women with PCOS compared to 784 

men. 785 

In another meta-analysis from our group comparing women with PCOS and OSA vs women with PCOS 786 

only showed that the earlier group had higher BMI (mean difference: 6.01 kg/m2, 95% CI: 4.69-7.33), 787 

waist circumference (MD: 10.93 cm, 95% CI: 8.03-13.83), IR (HOMA-IR: MD=2.23, 95% CI: 1.41-3.06; 788 

I2=0%), systolic BP (10.8 mmHg 95%CI 6.21 – 15.39), diastolic BP (4.63 mmHg 95%CI 1.06 – 8.21), 789 

impaired glucose tolerance (2 hour plasma glucose on OGTT: MD=2.23, 95%: 0.67-2.11, I2=0%) and 790 

worse lipids profile (higher total cholesterol, LDL, and triglycerides and lower HDL) compared to the 791 

alter group349. The androgen levels were not different between the two groups but hirsutism was 792 

worse in the OSA group349. However, these studies included were relatively small, at high risk of 793 

selection bias, and did not account for important potential confounders such as obesity349. 794 

Several mechanisms link PCOS to OSA as summarised in Figure 9350.  795 

OSA & Bone metabolism 796 

Although cross-sectional studies assessing the relationship between OSA and bone mass density 797 

(BMD) showed conflicting results351-354; longitudinal studies showed an increased risk of osteoporosis 798 

in patients with OSA355, 356. In a large retrospective cohort study of 1377 patients with newly 799 

diagnosed OSA and 22655 matched controls (age, sex and index date), the risk of osteoporosis was 800 

greater in patients with OSA vs. control in both men and women (incidence rate: 2.52/1000 person-801 

years vs. 1.00/1000 person-years, adjusted HR 2.74, 95% CI: 1.69-4.44) over the 6-year follow-up355. 802 



The HR in this study was adjusted for: age, gender, diabetes status, obesity, CVD risk factors, CKD, 803 

CVD, gout, and social demographics.  804 

Consistent with the increased risk of osteoporosis in patients with OSA, several studies suggested that 805 

OSA might increase the risk of fractures, although these studies examined conditions that are related 806 

to OSA rather than OSA per se. In a study of 2911 men older than 67 years-old, men who spent ≥ 10% 807 

of their sleep time with O2 saturations < 90% had increased risk of incident non-spinal fractures 808 

compared to men spent < 1% of sleep time with O2 saturation < 90% over 7 years follow-up (adjusted 809 

relative hazards 1.42, 95% CI 0.94- 2.15, p=0.047)357. In the same study, the relative risk of having  ≥ 1 810 

fall was also higher in the group with nocturnal hypoxaemia (relative risk 1.25, 95%CI 1.04 – 1.51)357. 811 

Another longitudinal study that followed up 8101 women aged 69 years or older for 6 years found 812 

that self-reported daily napping was associated with increased risk of incident hip fractures compared 813 

to women who did not nap daily (age-adjusted HR: 1.29, 95%CI 1.02-1.65; fully-adjusted HR 1.33, 814 

95%CI 0.99-1.78) and similar to the previous study there was an increased risk of falls in women who 815 

napped daily 358. In a recent cohort study women (n=3220) and men (n=2969) aged 40 years and 816 

older, severe snoring (a common OSA symptom) was associated with increased risk of fractures over 817 

10 years follow up in women (adjusted HR: 1.68, 95% CI: 1.16-2.43, p=0.006), with similar non-818 

significant trend in men359. 819 

Consistent with the increased risk of osteoporosis and fractures in patients with OSA, bone resorption 820 

markers (such as serum C-terminal telopeptide of type I collagen CTX) has been shown to be higher in 821 

patients with OSA compared to controls in men and the AHI was independently associated with 822 

urinary CTX independently of age, BMI and other variables352, 360. Furthermore, CPAP for 3 months 823 

lowered the creatinine adjusted urinary CTX levels significantly (211±107 vs. 128±59 824 

μg/mmol/creatinine; p<0.01)360. 825 

Several mechanisms might explain the impact of OSA on bone turnover, bone density and fractures 826 

risk summarized in Figure 10  361-373. 827 

 828 

Summary and conclusion:  829 

 830 

In this review we have demonstrated that there are multiple bi-directional interactions between OSA 831 

and the endocrine system although the observed relationships varied depending on the endocrine 832 

system examined. The impact of OSA on the endocrine system was mostly mediated by intermittent 833 

hypoxaemia, sympathetic activation, the elevated blood pressure and the increased inflammation 834 
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and oxidative stress. While the impact of the endocrine system on OSA was mostly mediated via 835 

increased upper body adiposity, narrowing of the upper airways, weakening of upper airway muscles, 836 

changes to chemosensitivity and ventilatory drive as well as autonomic dysfunction.   837 

Our review also shows that there are multiple knowledge gaps in the field at a mechanistic level and 838 

also due to the lack of well-designed cohort and interventional studies in many areas. This is further 839 

complicated by the difficulty in achieving good compliance with CPAP in clinical studies, the diurnal 840 

nature of the endocrine system and the interaction between OSA and other sleep disorders such as 841 

short sleep duration and misalignment in the circadian rhythm. In particular, our review found the 842 

following need to be explored in future studies due to either no, minimal, or inconsistent evidence 843 

currently available:  the impact of OSA and CPAP on weight, the impact of Diabetes treatment on OSA 844 

as well as the impact of OSA on diabetes-related outcomes, the impact of primary aldosteronism 845 

treatment on OSA, the effects of OSA on the HPA axis and the natural history of OSA and its response 846 

to treatment in patients with Cushing’s syndrome, the long term impact of GH replacement on OSA as 847 

well as central SA, the impact of thyroxine replacement on OSA in patients with hypothyroidism, the 848 

relationship between OSA and subclinical hypothyroidism,  the impact of long term testosterone 849 

replacement and the different methods of replacement on OSA, the impact of OSA and CPAP in 850 

women with PCOS and men with hypogonadism, and the impact of CPAP on bone metabolism. 851 

Finally, clinicians treating patients with endocrine conditions should not assume that OSA would 852 

recover by curing the underlying endocrine disorder (such as Cushing’s, acromegaly or 853 

hypothyroidism) and that OSA status need to be clarified by formal testing following the successful 854 

treatment of the endocrine condition. Furthermore, clinicians, surgeons and anesthetists involved in 855 

the treatment of the endocrine conditions that are associated with OSA need to be aware of this 856 

association and treat the OSA in order to improve the safety of the general anaesthesia and surgical 857 

procedures. 858 
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Figures-Legends & text: 1994 

 1995 

Figure 1: Hypnograms and sleep stages of a healthy individual (top) and a patient with OSA (bottom). 1996 

Please note how the patient with OSA has disrupted sleep architecture with loss of REM and SWS.  1997 

REM: Rapid Eye Movement; SWS: Slow Wave Sleep 1998 

 1999 
 2000 
Figure 2: OSA & Obesity Interplay. A. The potential mechanisms linking obesity to obstructive sleep 2001 

apnoea. B. The potential impact of obstructive sleep apnoea and its treatment on weight and the 2002 

underlying mechanisms. Red boxes are the mechanisms of OSA that might lead to weight gain; Dark 2003 



blue boxes are the mechanisms of possible weight loss in OSA.  2004 

UA: Upper Airways; TNF-A: Tumour Necrosis Factor- Alpha; IL-6: Interleukin-6; CNS: Central Nervous 2005 

System; EDS: Excessive Daytime Sleepiness; CPAP: Continuous Positive Airway Pressure 2006 

 2007 
Obesity can lead to increased UA collapsibility via increased parapharyngeal fat deposition, UA 2008 

narrowing, intramuscular fatty deposits leading to reduced UA muscles activity and increased UA 2009 

muscle fatigability, and reduced lung volume resulting in reduced tracheal caudal traction
19-27

. In 2010 

addition, the low lung volume in obesity can lead to hypoxaemia and ventilatory instability in the 2011 

presence of increased whole body oxygen demand due to obesity (high loop gain) 
28

. Obesity is also 2012 

associated with leptin resistance, which could inhibit the respiratory drive as leptin is a respiratory 2013 

stimulant 
23, 29-31

. Furthermore, visceral adiposity can affect the neural respiratory control and the 2014 

responsiveness of the chemoreceptors, through neurohormonal and inflammatory mechanisms (such 2015 

as (TNF)-a, and IL-6)
26, 30, 32

, but OSA itself can further worsen inflammation and possibly oxidative 2016 

stress, therefore, leading to a vicious cycle
23, 26, 33

. 2017 

 2018 
Figure 3: The potential bi-directional relationship and the underlying mechanisms 2019 

between obstructive sleep apnoea and Type 2 Diabetes.  SWS: Slow-wave-sleep; CB: Carotid 2020 

body; FFA: Free fatty acid; ROS: Reactive oxygen species; NAFLD: Non-Alcoholic Liver Disease; 2021 

HPA: Hypothalamic Pituitary Adrenal Axis; T2D: Type 2 Diabetes 2022 

 2023 
IH and sleep disruption result in increased oxidative stress and inflammation leading to IR an β- cell 2024 

dysfunction. In addition, OSA can impact multiple hormones that can lead to dysglycaemia including: 2025 

via activation of the Hypothalamus-pituitary- adrenal (HPA) axis, changes in the Growth hormone 2026 

(GH)/IGF axis, hyperaldosteronism (via hypokalaemia, increased oxidative stress and inflammation), 2027 

increased ghrelin, increased leptin and reduced adiponectin
40, 48, 90-95

. Interestingly, CPAP treatment 2028 

can interrupt most of the above mentioned pathways which might explain the favourable effects of 2029 

CPAP on IR
96

. However, the impact of CPAP on leptin and adiponectin has not been consistent 2030 

between the different studies
97-101

. Furthermore, patients with OSA (due to recurrent microarousals, 2031 

the loss of SWS and the IH
59

 )  have increased sympathetic activity which can contribute to the 2032 

increased IR 
30, 102

. Several factors contribute to the sympathetic overactivation in OSA including the 2033 

recurrent microarousals, the loss of SWS and the IH
59

. The IH, via oxidative stress and its impact on 2034 

HIF signaling, results in carotid body chemosensory reflex and hence to increased sympathetic activity 2035 

103

, that is reversible by CPAP
104, 105

. Another mechanism that links OSA to dysglycaemia is the 2036 
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increased risk of Non-alcoholic fatty liver disease (NAFLD) and progression to steatosis in those 2037 

patients, due to ectopic fat accumulation and hepatic inflammation, with subsequent effects on 2038 

insulin sensitivity
106, 107

. A recent meta-analysis of nine cohort studies showed that OSA was a 2039 

predictor of the development and progression of NAFLD (based on liver enzymes and histology)
107

.    2040 

  2041 
 2042 

On the other hand, dysglycaemia could lead to OSA. One plausible mechanism in patients with pre-2043 

diabetes or diabetes is autonomic neuropathy, which might impact on UA innervation
6

, ventilatory 2044 

drive and central respiratory responses to hypercapnia
109, 110

. In addition, T2D is associated with 2045 

reduced pulmonary volumes  (forced vital capacity FVC, Forced Expiratory Volume in the first second 2046 

FEV1 and vital capacity VC) and functions compared to healthy individuals which could affect UA 2047 

stability
111-121 

. A meta-analysis of cross-sectional studies showed that diabetes is associated with a 2048 

modest but significant impairment of pulmonary function (in restrictive pattern)
122

  and diffusion 2049 

capacity for carbon monoxide
112, 113, 122, 123

. The impact of T2D on the lungs seems to be related to the 2050 

severity of hyperglycaemia independently of obesity and smoking
123

; which raises the possibility that 2051 

improvements in glycaemic control might have a favourable impact on OSA but this needs to be 2052 

examined. Furthermore, treatment intensification in patients with T2D is often associated with 2053 

weight gain
124

, which could lead to the development or worsening of OSA 
10, 125

. Other independent 2054 

predictors of incident witnessed apneas such as HOMA-IR, hypertriglyceridaemia, and smoking are 2055 

also common in patients with T2D and thus can have a negative impact on OSA
6, 108

.  2056 

 2057 
Figure 4: A. Mechanisms relating obstructive sleep apnoea to cardiovascular disease (A) 2058 

and microvascular complications Adapted from  Jullian-Desayes et al. with permission (B) in 2059 

patients with Type 2 diabetes. Adapted from Tahrani et al. with permission. CRP: C-reactive 2060 

protein; IH: intermittent hypoxia; NO: nitric oxide; NOx: total nitrate and nitrite; OSA: obstructive 2061 

sleep apnea; PKC: protein kinase C; AGE: advanced glycation end product; PARP: poly ADP ribose 2062 

polymerase; AR: aldose reductase; GAPDH: glyceraldehyde 3-phosphate dehydrogenase. 2063 

Fig. 4.A. Obstructive sleep apnea and its cardiometabolic consequences.. Adapted from Kohler et al., 2064 

2010 and Lavie et al., 2009 
140

 . IH, oxidative stress and inflammation play a key role in OSA and the 2065 

development of associated cardiometabolic morbidities. Oxidative stress induces inflammation, while 2066 

increased proinflammatory cytokines, adhesion molecules and procoagulant activities can exacerbate 2067 

oxidative stress. This vicious circle leads to cardiovascular morbidity. Sympathetic overactivity and the 2068 
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decrease in NO induced by oxidative stress lead to hypertension. Both hypertension and 2069 

inflammation promote endothelial dysfunction responsible for atherosclerosis, which in turn can also 2070 

exacerbate oxidative stress
 140

. In addition, intrathoracic pressure swings and the increase in 2071 

transmural pressure gradients over vessel walls could also contribute to the endothelial dysfunction 2072 

observed in OSA. Recurrent arousals also activate the sympathetic nervous system and thus lead to 2073 

endothelial dysfunction
 140

 .  2074 

Fig. 4.B. Both OSA and hyperglycaemia share similar molecular consequences including oxidative 2075 

stress, PKC activation and AGE production. Our own work has shown that patients with OSA and type 2076 

2 diabetes have increased oxidative and nitrosative stress increased PARP activation and impaired 2077 

microvascular function compared with patients with type 2 diabetes only
141

.  2078 

 2079 

Figure 5: The potential bi-directional relationship between obstructive sleep apnoea and 2080 

Hyperaldosteronism and the plausible linking mechanisms. IH: Intermittent hypoxia; RAAS: 2081 

Renin-angiotensin-aldosterone system; RH: resistant hypertension;  PA: primary aldosteronism;  2082 

MR: mineralocorticoid receptors. 2083 

 2084 

In rodent studies, IH promoted angiotensin I and AT1 expression, increased the activation of the 2085 

carotid body by Angiotensin II and resulted in increased renin and aldosterone levels leading to 2086 

increased BP
169, 170,159

. In addition, oxidative stress has been shown to increase the activation of the 2087 

mineralocorticoid receptors (MR) in rodent models
171

. Whether OSA is associated with renin 2088 

activations remains to be explored by further better designed studies of larger sample size as the 2089 

current studies show a non-significant trend.  2090 

The plausible mechanisms for the increased risk of OSA in patients with hyperaldosteronism are is 2091 

plausible due to the increased sodium and fluid retention resulting in UA oedema, increased UA 2092 

resistance and collapse
159, 176-178

. This might have been worsened further by increases in neck 2093 

circumference and oedema due to fluid displacement during recumbency overnight particularly in 2094 

patients with RH
159, 178

, which is supported by a study showing a reduction in neck circumference with 2095 

improvements in AHI after treatment of PA with either MR antagonist or adrenalectomy
172

.  2096 

 2097 

Figure 6: OSA & HPA axis dysregulation A. Possible underlying mechanisms  linking OSA to 2098 

HPA axis dysregulation  B. Possible mechanisms linking hypercortisolism with OSA development  2099 

CRH: Corticotropin Releasing Hormone, ACTH: Adrenocorticotropic hormone 2100 

 2101 

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight



Figure 7: OSA & GH/IGF axis. A. Possible underlying mechanisms for OSA leading to GH/IGF 2102 

axis dysregulation. B. Possible mechanisms linking GH excess (red arrows) and GH deficiency 2103 

(blue arrows) with OSA development. 2104 

The main causal mechanisms linking acromegaly to OSA are related to the anatomical changes that 2105 

occur as a result of GH excess leading to narrower and more collapsible UAs. Patients with 2106 

acromegaly have vertical growth of the mandible, which leads to pharyngeal obstruction due to the 2107 

retroposition of the tongue base with caudal displacement of the hyoid
225

. In addition, soft tissue 2108 

thickening/swelling, secondary to increased glycosaminoglycan deposition, collagen and tissue 2109 

oedema, and macroglossia contribute to the compromise of UAs in patients with acromegaly
226-234

. 2110 

This is supported by a study using MRI and nasopharyngoscopy that showed the tongue base and 2111 

uvula to be the main site of UA obstruction in patients with OSA and acromegaly
216

. In addition, the 2112 

uvula diameter correlated to the severity of the UA collapse and tongue measurements correlated to 2113 

the AHI and IGF-1 levels
216, 230

. The weakness of UA muscles (sternohyoid muscle) also contributes to 2114 

the increased risk of UA collapsibility in patients with acromegaly
235

. Other factors include 2115 

hypothyroidism, large goiters (detailed later)
219, 236, 237

, insulin resistance and dysglycaemia
219, 224, 238

.   2116 

 2117 

Figure 8: Mechanisms linking OSA and Hypothyroidism 2118 

Hypothyroidism can lead to increased UA collapsibility due to soft tissue swelling (in tongue, neck, 2119 

and pharynx) caused by mucopolysaccharides infiltration (myxoedema in the more severe form) 
256

. 2120 

In support of this mechanism, LT4 treatment reduced soft tissue swelling and improved AHI, 2121 

nocturnal hypoxaemia and sleep architecture in an uncontrolled study
254

.  Goitre (regardless of 2122 

thyroid status) can cause UA obstruction and collapse 
256, 263

. It causes narrowing of the UA by direct 2123 

mechanical obstruction, especially in supine position, and by increasing laryngeal oedema due to 2124 

reduced venous return; both of which can be resolved following thyroidectomy or LT4 in some 2125 

cases
256, 264-266

. Hypothyroidism (especially when severe) can also result in blunted ventilatory drive 2126 

and impaired chemosensors’ response to hypoxia/ hypercapnia in animal and human studies 
256

. This 2127 

is possibly due to decreased dopamine receptor (D1) expression in the brain stem and the CB in 2128 

rodents with hypothyroidism
267

, and can be reversed with LT4 treatment
256

. 2129 

Impaired UA dilator muscle function in hypothyroidism, due to altered myosin heavy chain expression 2130 

in rodent studies and neuropathy in humans, has also been reported 
217, 268

. Furthermore, the 2131 

diaphragm has been shown to be weaker in rodents and human studies in hypothyroidism, which 2132 



result in a reduction in lung volumes contributing to OSA development/worsening 
253, 256, 269

. The 2133 

diaphragm weakness can be improved by LT4 treatment
253

. Finally, obesity could be potentially 2134 

another link between OH and OSA as studies have shown that patients with OH are about 5-7kg 2135 

heavier compared to euthyroid matched-controlled
270

. However, this weight-increase in OH seems to 2136 

be related to expanded water compartment rather than fat mass. In addition, LT4 treatment causes 2137 

weight loss by reducing lean mass rather than fat mass (based on DXA)
271, 272

.    2138 

 2139 

 2140 

Figure 9: Obstructive Sleep Apnoea and Polycystic Ovary Syndrome; clinical interactions 2141 

and underlying pathophysiology.  Adapted from  Kahal et al. with permission. 2142 

Sex hormones are thought to play a role in this bidirectional relationship, as in women with PCOS 2143 

androgens excess along with lower progesterone (as a result of anovulation) can increase UA 2144 

collapsibility and/ or lead to blunted ventilator chemo-responsiveness
322

. While, IH and sleep 2145 

fragmentation can impact HPG axis and can influence GnRH and gonadotropins pulsatility, leading to 2146 

causing/ or worsening PCOS phenotype
322

. In addition, IR and dysglycamia in women with PCOS can 2147 

contribute to worsening or the development of OSA; 
322

. Obesity is common in both disorders and can 2148 

contribute to the associations between OSA and PCOS. Other common comorbidities are oxidative 2149 

stress, endothelial dysfunction and sympathetic activation all of which can lead to a vicious cycle of 2150 

OSA and PCOS entities
322

. 2151 

 2152 

Figure 10: OSA & Bone metabolism.  2153 

GH: Growth hormone, PTH: Parathormone, BMD: Bone mineral density, BRMs: Bone Resorption 2154 

Markers 2155 

As with other endocrine consequences of OSA, hypoxaemia plays an important role as has been 2156 

shown by Cauley et al and IH in human cell cultures and rodents can increase osteoclasts and inhibit 2157 

osteoblasts’ growth and differentiation via HIF transcription factor family (HIF-1a and HIF-2a) and 2158 

VEGF 
333-337

. In addition, IH can result in increased inflammation and oxidative stress that can lead to 2159 

higher risk of osteoporosis and fractures
338-340

. Other mechanisms including hyperleptinaemia and 2160 

sympathetic activation increase bone resorption and inhibit bone formation leading to bone mass 2161 

loss
341, 342

. Changes in melatonin profile could also contribute to the impact of OSA on bones, as 2162 

patients with OSA might have changed melatonin profile and lower melatonin serum levels compared 2163 

to people without OSA due to frequent nocturnal awakening and light exposure 
343

. Melatonin has 2164 
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been shown to increase bone mass density in a RCT 
344

. Furthermore, serum 25-hydroxyvitamin D was 2165 

found to be lower (: 19.34 ± 9.54 ng/ml  vs. 32.83 ± 16.93 ng/ml, p < 0.0001) and PTH levels higher (: 2166 

62.57 ± 29.97 pg/mL vs. 40.05 ± 31.12 pg/mL, p < 0.0001) in patients with OSA compared to healthy 2167 

controls
345

. CPAP for 7 nights increased 25-hydroxyvitamin D concentrations ( 19.21 ± 9.45 vs. 21.03 ± 2168 

9.50, F = 8.32, p < 0.01) but had no effect on PTH
345

. The suppression of the gonadal axis and GH in 2169 

OSA and the associated insulin resistance could also contribute to the impact of OSA on bone 2170 

metabolism 
342

. T2D in particular can have detrimental effects on bone mass and fracture risk 374-377, 2171 

and as OSA increases the risk of T2D, then T2D is a potential mechanism between OSA and bone 2172 

disease. 2173 

 2174 
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Online Supplement  

OSA overview  

OSA pathogenesis  
Although the upper airway (UA) consists of rigid, cartilaginous structures, its patency can be 

compromised along a soft segment extending from the hard palate to the larynx (the 

pharynx), which allows the UA to change shape for speech and swallowing during 

wakefulness 1-3. However, in the presence of anatomically compromised upper airways 

(UAs), as in patients with OSA, the loss of wakefulness inputs to the control of the UAs and 

chest wall muscle motor neurons during sleep, produce UAs obstruction4. The underlying 

mechanisms driving these UAs obstructions are complex and multi factorial (Figure 1 of the 

online supplement).   

Patients with OSA have narrower UAs5, 6 with enlarged surrounding soft tissues compared to 

healthy controls; thus increasing the risk of collapse during sleep (Figure 2 of the online 

supplement)7-11. During wakefulness, the UA dilator muscles (genioglossus most studied) 

activity  is increased in patients with OSA, compared to healthy controls, compensating for 

the anatomically diminished UA size; while during sleep the UA dilator muscles activity is 

greatly reduced leading to pharynx collapse and subsequently UA obstruction, particularly 

during rapid-eye-movement (REM) sleep 1, 2, 12, 13. This reduction in UAs muscle tone during 

sleep is due to a combination of central lack of respiratory drive and local inhibitory reflexes 

that respond to changes in pressure in the UAs1. The chemoreceptors are also less 

responsive to PaO2 and PaCO2 changes during sleep14, resulting in a reduced input to the 

respiratory centers in the brainstem and reduced UA dilators activity15-17. Even very small 

and transient reductions in PaCO2 can result in significant apnoea due to the changes in 

chemoreceptors activity during sleep4. The reduced UA dilator muscles activity is also due to 

reduced mechanoreceptors’ responses to changes in negative UA pressure (genioglossus 

negative pressure reflex18, 19) during REM.  

Respiratory arousal threshold (RAT) also plays an important role in the pathogenesis of OSA 

in some patients20. In response to changes in gas exchange, pH, lung volumes or UAs 

resistance, the respiratory centres in the brainstem can increase respiratory effort, which 

triggers an arousal from sleep when RAT is reached2, 21. Hence, arousals are protective as 

they increase UA muscle tone (similar to the awake state) and finally open obstructed UAs1. 

However, low RAT can have detrimental effects in patients with OSA as more frequent 



arousals can result in a disruption in sleep architecture and in restoring airflow before the 

development of adequate ventilatory drive and result in ventilatory overshoot associated 

with the sleep/wake transition leading to further obstructive episodes1, 2, 20-23.   

Another important element in OSA development is the ventilatory control stability, known as 

loop gain, which refers to the size of a “ventilatory correction” as a response to a 

“ventilatory disturbance”2, 24. Accordingly, in case of a high loop gain, small decrease in 

breathing will lead to a large correction. In the case of OSA, the loop gain appears to be 

elevated25, suggesting high responsiveness of the ventilatory system to disturbed breathing 

with a propensity to develop cyclical fluctuations in breathing output and increased response 

to arousal by hyperventilation driving PaCO2 below the apnea threshold1, 26, 27.      

There are multiple other factors that contribute further to the pathogenesis of OSA and UA 

collapsibility including low lung volume (resulting in lack of pharyngeal stretching), reduced 

UAs surface tension and UA oedema 2, 28-32.     

OSA risk factors  
Excess body weight is the main risk factor for OSA33. Weight gain of 10% is associated with a 

6-fold higher risk of moderate to severe OSA development34. Similarly, 9% weight loss in 

patients with obesity and OSA results in 47% reduction in apneas frequency35 and 60% 

reduction in the Apnoea- Hypopnoea index (AHI) after 17% drop in BMI36. Men have 

consistently been shown to be at a 2- to 3-fold higher risk of OSA compared to women37; 

possibly due to differences in sex hormones which will be detailed later. Multiple studies 

showed African-Americans to be at increased risk of OSA compared to White Caucasians38-40. 

Whereas, differences in the prevalence of OSA in Asians vs. white Caucasians were 

inconsistent across multiple studies38, 41, 42. The ethnic variations could be related to 

differences in UA anatomy, respiratory arousal thresholds, fat distribution, genetic and 

environmental factors37, 43-45.  Prevalence of OSA increases with increasing age33, being 2-3 

fold higher in older people (≥65y), reaching eventually a plateau after the age of 6537. Other 

risk factors include smoking, excess alcohol intake, nasal obstruction and menopause37.  

OSA clinical features  

Snoring is the most frequent OSA symptom symptom but it is not diagnostic for the disease, 

as most snorers don’t have OSA and; only 6% of patients with OSA do not report snoring46, 

but it is very frequent in general population as well46. Other clinical features include, 

witnessed apneas, nightly chocking and gasping (reflecting an arousal after an apnea event), 

insomnia, nocturia, enuresis, arousals, sweating47, excessive daytime sleepiness (EDS), and a 



variety of other daytime symptoms such as fatigue, memory loss, irritability, morning 

headaches, depression, and erectile dysfunction46, 48.   

 

OSA comorbidities and associations:  

OSA is associated with significant comorbidities such as hypertension, Type 2 diabetes, 

cardiovascular disease, mortality, road traffic accidents, chronic kidney disease amongst 

others  4, 47, 49, 50.  

OSA diagnosis and treatment:  

Multiple definitions of OSA have been used in clinical research, which contributed to some of 

the variations in outcomes of studies in patients with OSA. OSA is generally diagnosed based 

on cut offs of parameters recorded during polysomnography or polygraphy. The AHI is 

defined as the average number of apnoea and hypopnea events per hour of sleep. The 

respiratory disturbance index (RDI) is defined as the AHI plus the respiratory-effort related 

arousals. The oxygen desaturation index (ODI) is the average number of oxygen desaturation 

per hour of sleep. The American Academy of Sleep Medicine (AASM) recommendations 

regarding OSA diagnosis and the criteria used to define apnoea and hypopneas are detailed 

here 51, 52.   

Polysomnography remains the gold-standard for diagnosing OSA, although multiple portable 

devices have also been considered appropriate if adequate channels are recorded according 

to the latest AASM guidelines52. Sleep staging is desirable but not always considered 

essential. CPAP is the gold standard treatment for patients with moderate to severe OSA in 

addition to weight loss in patients with obesity48, 53, 54. Intra oral devices can be used in mild 

OSA and more recently upper airway stimulation can also be used in certain patients groups 

55, 56.   

Literature  
  

1. Eckert DJ & Malhotra A. Pathophysiology of adult obstructive sleep apnea. Proc Am 

Thorac Soc 2008 5 144-153.  

2. Edwards BA, Eckert DJ & Jordan AS. Obstructive sleep apnoea pathogenesis from 
mild to severe: Is it all the same? Respirology 2017 22 33-42.  

3. Remmers JE, deGroot WJ, Sauerland EK & Anch AM. Pathogenesis of upper airway 
occlusion during sleep. J Appl Physiol Respir Environ Exerc Physiol 1978 44 931-938.  



4. Dempsey JA, Veasey SC, Morgan BJ & O'Donnell CP. Pathophysiology of sleep apnea. 

Physiol Rev 2010 90 47-112.  

5. Neelapu BC, Kharbanda OP, Sardana HK, Balachandran R, Sardana V, Kapoor P, 

Gupta A & Vasamsetti S. Craniofacial and upper airway morphology in adult 

obstructive sleep apnea patients: A systematic review and meta-analysis of 

cephalometric studies. Sleep Med Rev 2017 31 79-90.  

6. Togeiro SM, Chaves CM, Jr., Palombini L, Tufik S, Hora F & Nery LE. Evaluation of the 

upper airway in obstructive sleep apnoea. Indian J Med Res 2010 131 230-235.  

7. Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R, Maislin G & 

Pack AI. Identification of upper airway anatomic risk factors for obstructive sleep 

apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 2003 
168 522-530.  

8. Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H, Torigian DA, Pack AI & 

Schwab RJ. Tongue fat and its relationship to obstructive sleep apnea. Sleep 2014 37 

1639-1648.  

9. Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman EA & Pack AI. Upper airway 

and soft tissue anatomy in normal subjects and patients with sleep-disordered 
breathing. Significance of the lateral pharyngeal walls. Am J Respir Crit Care Med 

1995 152 1673-1689.  

10. Ciscar MA, Juan G, Martinez V, Ramon M, Lloret T, Minguez J, Armengot M, Marin J 

& Basterra J. Magnetic resonance imaging of the pharynx in OSA patients and 
healthy subjects. Eur Respir J 2001 17 79-86.  

11. Isono S, Remmers JE, Tanaka A, Sho Y, Sato J & Nishino T. Anatomy of pharynx in 

patients with obstructive sleep apnea and in normal subjects. J Appl Physiol (1985) 

1997 82 1319-1326.  

12. Mezzanotte WS, Tangel DJ & White DP. Waking genioglossal electromyogram in 

sleep apnea patients versus normal controls (a neuromuscular compensatory 

mechanism). J Clin Invest 1992 89 1571-1579.  

13. Mezzanotte WS, Tangel DJ & White DP. Influence of sleep onset on upper-airway 
muscle activity in apnea patients versus normal controls. Am J Respir Crit Care Med 

1996 153 1880-1887.  

14. Krimsky WR & Leiter JC. Physiology of breathing and respiratory control during sleep. 

Semin Respir Crit Care Med 2005 26 5-12.  

15. Berthon-Jones M & Sullivan CE. Ventilation and arousal responses to hypercapnia in 

normal sleeping humans. J Appl Physiol Respir Environ Exerc Physiol 1984 57 59-67.  

16. Douglas NJ, White DP, Weil JV, Pickett CK, Martin RJ, Hudgel DW & Zwillich CW. 

Hypoxic ventilatory response decreases during sleep in normal men. Am Rev Respir 
Dis 1982 125 286-289.  

17. Hedemark LL & Kronenberg RS. Ventilatory and heart rate responses to hypoxia and 
hypercapnia during sleep in adults. J Appl Physiol Respir Environ Exerc Physiol 1982 

53 307-312.  

18. Pillar G, Fogel RB, Malhotra A, Beauregard J, Edwards JK, Shea SA & White DP. 

Genioglossal inspiratory activation: central respiratory vs mechanoreceptive 

influences. Respir Physiol 2001 127 23-38.  

19. Horner RL, Innes JA, Murphy K & Guz A. Evidence for reflex upper airway dilator 
muscle activation by sudden negative airway pressure in man. J Physiol 1991 436 

1529.  

20. Tahrani AA. Ethnic differences in the pathogenesis of obstructive sleep apnoea: 

Exploring non-anatomical factors. Respirology 2017 22 847-848.  



21. Jordan AS, O'Donoghue FJ, Cori JM & Trinder J. Physiology of Arousal in Obstructive 

Sleep Apnea and Potential Impacts for Sedative Treatment. Am J Respir Crit Care 

Med 2017 196 814-821.  

22. Eckert DJ & Younes MK. Arousal from sleep: implications for obstructive sleep apnea 

pathogenesis and treatment. J Appl Physiol (1985) 2014 116 302-313.  

23. Ratnavadivel R, Chau N, Stadler D, Yeo A, McEvoy RD & Catcheside PG. Marked 
reduction in obstructive sleep apnea severity in slow wave sleep. J Clin Sleep Med 

2009 5 519-524.  

24. Khoo MC, Kronauer RE, Strohl KP & Slutsky AS. Factors inducing periodic breathing in 

humans: a general model. J Appl Physiol Respir Environ Exerc Physiol 1982 53 

644659.  

25. Salloum A, Rowley JA, Mateika JH, Chowdhuri S, Omran Q & Badr MS. Increased 
propensity for central apnea in patients with obstructive sleep apnea: effect of nasal 

continuous positive airway pressure. Am J Respir Crit Care Med 2010 181 189-193.  

26. Wellman A, Jordan AS, Malhotra A, Fogel RB, Katz ES, Schory K, Edwards JK & White 

DP. Ventilatory control and airway anatomy in obstructive sleep apnea. Am J Respir 

Crit Care Med 2004 170 1225-1232.  

27. Younes M, Ostrowski M, Thompson W, Leslie C & Shewchuk W. Chemical control 

stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2001 
163 1181-1190.  

28. Jordan AS, White DP, Owens RL, Eckert DJ, Rahangdale S, Yim-Yeh S & Malhotra A. 

The effect of increased genioglossus activity and end-expiratory lung volume on 

pharyngeal collapse. J Appl Physiol (1985) 2010 109 469-475.  

29. Squier SB, Patil SP, Schneider H, Kirkness JP, Smith PL & Schwartz AR. Effect of 

endexpiratory lung volume on upper airway collapsibility in sleeping men and 

women. J Appl Physiol (1985) 2010 109 977-985.  

30. Kirkness JP, Madronio M, Stavrinou R, Wheatley JR & Amis TC. Relationship between 
surface tension of upper airway lining liquid and upper airway collapsibility during 

sleep in obstructive sleep apnea hypopnea syndrome. J Appl Physiol (1985) 2003 95 
1761-1766.  

31. Jokic R, Klimaszewski A, Mink J & Fitzpatrick MF. Surface tension forces in sleep 

apnea: the role of a soft tissue lubricant: a randomized double-blind, 

placebocontrolled trial. Am J Respir Crit Care Med 1998 157 1522-1525.  

32. White LH & Bradley TD. Role of nocturnal rostral fluid shift in the pathogenesis of 

obstructive and central sleep apnoea. J Physiol 2013 591 1179-1193.  

33. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, Hamilton 

GS & Dharmage SC. Prevalence of obstructive sleep apnea in the general population: 
A systematic review. Sleep Med Rev 2017 34 70-81.  

34. Peppard PE, Young T, Palta M, Dempsey J & Skatrud J. Longitudinal study of 
moderate weight change and sleep-disordered breathing. Jama 2000 284 30153021.  

35. Smith PL, Gold AR, Meyers DA, Haponik EF & Bleecker ER. Weight loss in mildly to 
moderately obese patients with obstructive sleep apnea. Ann Intern Med 1985 103 

850-855.  

36. Schwartz AR, Gold AR, Schubert N, Stryzak A, Wise RA, Permutt S & Smith PL. Effect 

of weight loss on upper airway collapsibility in obstructive sleep apnea. Am Rev 
Respir Dis 1991 144 494-498.  

37. Young T, Skatrud J & Peppard PE. Risk factors for obstructive sleep apnea in adults. 
Jama 2004 291 2013-2016.  



38. Young T, Peppard PE & Gottlieb DJ. Epidemiology of obstructive sleep apnea: a 
population health perspective. Am J Respir Crit Care Med 2002 165 1217-1239.  

39. Ancoli-Israel S, Klauber MR, Stepnowsky C, Estline E, Chinn A & Fell R. 

Sleepdisordered breathing in African-American elderly. Am J Respir Crit Care Med 

1995 152 1946-1949.  

40. Redline S. Epidemiology of Sleep-Disordered Breathing. Semin Respir Crit Care Med 

1998 9 113-122.  

41. Amin A, Ali A, Altaf QA, Piya MK, Barnett AH, Raymond NT & Tahrani AA. Prevalence 

and Associations of Obstructive Sleep Apnea in South Asians and White Europeans 

with Type 2 Diabetes: A Cross-Sectional Study. J Clin Sleep Med 2017 13 583-589.  

42. Ip MS, Lam B, Lauder IJ, Tsang KW, Chung KF, Mok YW & Lam WK. A community 

study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. 

Chest 2001 119 62-69.  

43. Sakakibara H, Tong M, Matsushita K, Hirata M, Konishi Y & Suetsugu S.  

Cephalometric abnormalities in non-obese and obese patients with obstructive sleep 

apnoea. Eur Respir J 1999 13 403-410.  

44. Li KK, Kushida C, Powell NB, Riley RW & Guilleminault C. Obstructive sleep apnea 

syndrome: a comparison between Far-East Asian and white men. Laryngoscope 2000 
110 1689-1693.  

45. Lee RWW, Sutherland K, Sands SA, Edwards BA, Chan TO, S SSN, Hui DS & Cistulli PA. 

Differences in respiratory arousal threshold in Caucasian and Chinese patients with 

obstructive sleep apnoea. Respirology 2017 22 1015-1021.  

46. McNicholas WT. Diagnosis of obstructive sleep apnea in adults. Proc Am Thorac Soc 

2008 5 154-160.  

47. Tahrani AA. Obstructive sleep apnoea in diabetes: Does it matter? Diab Vasc Dis Res 

2017 14 454-462.  

48. Epstein et al. Clinical guideline for the evaluation, management and long-term care 

of obstructive sleep apnea in adults. J Clin Sleep Med 2009 5 263-276.  

49. Tahrani AA, Ali A & Stevens MJ. Obstructive sleep apnoea and diabetes: an update. 

Curr Opin Pulm Med 2013 19 631-638.  

50. Tahrani AA. Obstructive sleep apnoea and vascular disease in patients with type 2 

diabetes. Eur Endocrinology 2015 11 581-590.  

51. Berry  et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM 

Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep 

Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin 

Sleep Med 2012 8 597-619.  

52. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K & Harrod CG. 

Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: 
An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med 

2017 13 479-504.  

53. Ashrafian H, Toma T, Rowland SP, Harling L, Tan A, Efthimiou E, Darzi A & Athanasiou  

T. Bariatric Surgery or Non-Surgical Weight Loss for Obstructive Sleep Apnoea? A 

Systematic Review and Comparison of Meta-analyses. Obes Surg 2015 25 12391250.  

54. Hudgel DW. Critical review: CPAP and weight management of obstructive sleep 

apnea cardiovascular co-morbidities. Sleep Med Rev 2016.  

55. Vanderveken OM, Beyers J, Op de Beeck S, Dieltjens M, Willemen M, Verbraecken 

JA, De Backer WA & Van de Heyning PH. Development of a Clinical Pathway and 

Technical Aspects of Upper Airway Stimulation Therapy for Obstructive Sleep Apnea. 
Front Neurosci 2017 11 523.  



56. Sharples LD, Clutterbuck-James AL, Glover MJ, Bennett MS, Chadwick R, Pittman MA 

& Quinnell TG. Meta-analysis of randomised controlled trials of oral mandibular 

advancement devices and continuous positive airway pressure for obstructive sleep 
apnoea-hypopnoea. Sleep Med Rev 2016 27 108-124.  

  

Figures for the online supplement  
  

Figure 1: Summary of the pathogenesis of obstructive sleep apnoea (OSA). Pcrit: Critical 

closing pressure (The pressure inside the airway at which the airway collapses); PaCO2: Partial 

pressure of Carbon dioxide in arterial blood   

Ref: Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of Sleep Apnea. 

Physiol Rev 90: 47–112, 2010; doi:10.1152/physrev.00043.2008 (Permission needed)  

  

  

Figure 2: Upper airways size in patients with OSA and healthy individuals (top); and the 

 impact of sleep on upper airways size in a healthy individual (bottom).     

 

A: midsagittal magnetic resonance image (MRI) in a normal subject (left) and in a patient 
with severe OSA (right). Highlighted are the four upper airway regions (nasopharynx, 
retropalatal region, retroglossal region, hypopharynx) and upper airway soft tissue (soft 
palate, tongue, fat) and craniofacial structures (mandible). Fat deposits are shown in white 
on the MRI. Note that in the apneic patient: a) the upper airway is smaller, in both the 
retropalatal and retroglossal region; b) the soft palate is longer and tongue size is larger; and 
c) the quantity of subcutaneous fat is greater. B: state dependence of upper airway size in a 
normal subject as assessed via three-dimensional reconstructions of MRI images. Images 
represent averages taken over several respiratory cycles during eupneic breathing in sleep 
and wakefulness. Airway volume during NREM sleep is smaller in the retropalatal (RP) 
region, not in the retroglossal (RG) region. Such images show the marked effect of sleep, per 
se, on the loss of upper airway muscle dilator tone and also show that the upper airway does 
not narrow as a homogeneous tube during sleep.   
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