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New derivative bounds for the rational quadratic Bézier paths are obtained, both for
particular weight vectors and for classes of equivalent parametrisations. A comprehensive
analysis of our bounds against existing bounds is made.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let V = {(v0, v1, v2): vi ∈ Rd} and Ω = {(w0, w1, w2): wi ∈ R+}, where d is a natural number and R+ = {x ∈ R: x > 0}.
The rational quadratic Bézier path with vertices v ∈ V and weights w ∈ Ω may be written as σ [v, w] where

σ [v, w](t) = w0(1 − t)2 v0 + 2w1t(1 − t)v1 + w2t2 v2

w0(1 − t)2 + 2w1t(1 − t) + w2t2

for t ∈ [0,1]. In terms of derivative bounds, most previous work, and that of this paper, is concerned with uniform bounds
on σ ′[v, w] of the tensor product form∣∣σ ′[v, w](t)∣∣ � 2�τ (v)Φ(w), (1)

for all (v, w) ∈ V × Ω and t ∈ [0,1]. Here, �1(v) = max0� j�1 |v j − v j+1|, �2(v) = max0�i, j�2 |vi − v j | and τ ∈ {1,2}.
A fundamental problem is to obtain such bounds with the weight function Φ : Ω → R+ as small as possible. We shall refer
to (1) as a pointwise bound.

For a given pair (v, w) ∈ V × Ω it is natural to determine the invariant bound 2�τ (v)Φ̃(w), associated with the point-
wise bound 2�τ (v)Φ(w), where

Φ̃(w) = min
{
Φ(w̃): w̃ ∼ w

}
.

Here, w̃ ∼ w if there exists λ ∈ R+ such that

w̃ = diag
(
1, λ,λ2)w = (

w0, λw1, λ
2 w2

)
. (2)

✩ This paper has been recommended for acceptance by J. Peters.
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It is well known that the paths σ [v, w] and σ [v, w̃] parametrise the same curve if w̃ ∼ w . Writing

I(w) = w1

(w0 w2)1/2

we have I(w̃) = I(w) whenever w̃ ∼ w , and I therefore parametrises the space of equivalence classes.
The purpose of this paper is to obtain new pointwise and invariant bounds for quadratic Bézier paths. Importantly, we

also compare our bounds with existing bounds in a comprehensive way, clarifying the merits of each approach that has
been taken, with a view to new developments in higher degree cases.

Derivative bounds for the rational Bézier paths were first obtained in Floater (1992); this work inspired a number of
recent papers in which improvements on the bounds were sought (see Wang et al., 1997 for corresponding results for the
rectangular Bézier surface patches). Improved bounds for Bézier paths were obtained by Hermann (1999), for the important
quadratic and cubic cases and when τ = 1. Hermann’s approach is to employ a Möbius transformation, to normalise the
path form, and capitalise on the induced symmetry to efficiently analyse the maximum value of the derivative of the
normalised form using elementary calculus. Several authors have made use of an alternative, more algebraic, approach of
degree-elevation and convexity, possibly combined with the de Casteljau algorithm. Such an approach was used in Selimovic
(2005) for paths of arbitrary degree and τ ∈ {1,2}. Selimovic’s bounds were improved upon by Zhang and Ma (2006), for
degree less than seven when τ = 1, and for arbitrary degree when τ = 2.

In certain cases, we provide definitive comparisons of pointwise bounds. In particular, we shall prove that the pointwise
bounds obtained by Zhang and Ma, for the quadratic case and τ ∈ {1,2}, are improved upon by our bounds obtained by
degree-elevating to the quartic case (the lowest possible degree). We also show that Hermann’s pointwise bound is superior
to the bound given by Zhang and Ma in the quadratic case when τ = 1. See the forthcoming Theorems 4.1 and 4.3. In
most cases, however, it is not possible to find a simple characterisation of the weight space where one pointwise bound is
superior to another – but in several such cases, we provide a definitive comparison of the associated invariant bounds. To
summarise in an over-simplified manner, we shall see that the invariant bounds obtained from Hermann’s approach are not
easy to lower using the algebraic arguments mentioned above; see Theorems 4.2 and 4.4 for some precise statements. In
order to be in a position to make such comparisons, we follow the approach of Hermann to obtain a new pointwise bound
for the quadratic case when τ = 2 (see Theorem 2.1). It is also necessary to provide a theorem which establishes the full
scope of the degree-elevation and convexity approach; in Section 3, we prove such a general theorem which confirms that
bounds obtained from degree-elevating and convexity improve as the degree increases, as one would expect. This general
result is applied in the quadratic case; furthermore, we obtain the associated invariant bounds when the degree is elevated
to four and five, albeit for “small” values of the invariant I in the latter case; see Theorem 3.3. This is a pertinent case to
consider because all existing bounds analysed in this paper are “sharp” for “large” values of the invariant I. In Section 4 we
make this precise and moreover conclude that the invariant bounds arising from Hermann’s approach are essentially sharp
as the invariant I approaches zero; these observations are also novel.

2. Bounds from Hermann’s approach

A direct computation yields

1

2
σ ′[v, w](t) = w0 w1(1 − t)2(v1 − v0) + w0 w2t(1 − t)(v2 − v0) + w1 w2t2(v2 − v1)

(w0(1 − t)2 + 2w1t(1 − t) + w2t2)2
. (3)

For μ ∈ R+ let Mμ : [0,1] → [0,1] denote the Möbius transformation

Mμ(t) = (
μ + (1 − μ)t

)−1
t.

Then σ [v, w](Mμ(t)) = σ [v, w̃](t) where w̃ = (w0,μ
−1 w1,μ

−2 w2) ∼ w . Choosing μ = (w2/w0)
1/2 and homogeneity has

the effect of normalising the weight w �→ (1, I(w),1). Using (3) and the triangle inequality we find that

|σ ′[v, w̃](t)|
2�τ (v)

� I(w)(1 − t)2 + (3 − τ )t(1 − t) + I(w)t2

((1 − t)2 + 2I(w)t(1 − t) + t2)2
. (4)

The effect of this symmetrisation of the weight is that one may now easily compute exactly the maximum value over [0,1]
of the rational function on the right-hand side of (4). Indeed, we may immediately restrict our attention to t ∈ [0, 1

2 ] by
invariance under t �→ 1 − t , and furthermore

I(w)(1 − t)2 + (3 − τ )t(1 − t) + I(w)t2

((1 − t)2 + 2I(w)t(1 − t) + t2)2
= I(w)(1 − 2s) + (3 − τ )s

(1 − 2s + 2I(w)s)2
,

where s = t(1 − t) ∈ [0, 1
4 ]. It is precisely this reduction in the degree of the variable that permits a straightforward exact

computation of the maximum value. Elementary considerations using calculus show that

max
s∈[0,1/4]

∣∣∣∣I(w)(1 − 2s) + (3 − τ )s

(1 − 2s + 2I(w)s)2

∣∣∣∣ = Hτ

(
I(w)

)
, (5)
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where H1(I) = max{I,2(1 + I)−1} and

H2(I) =

⎧⎪⎨
⎪⎩

(1 + 2I)(1 + I)−2 for I ∈ (0, C0),
1
8 (1 − 2I)2(I − 1)−1(1 − 2I2)−1 for I ∈ [C0, C1],
I for I ∈ (C1,∞).

Here, C0 = 1
12 (1 + √

73 ), C1 = 1
4 (1 + √

5 ) and note that 0 < C0 < C1 < 1. Setting

Θτ (w) = Hτ

(
I(w)

)
max

{(
w2

w0

) 1
2

,

(
w0

w2

) 1
2
}
,

via the chain rule, we have shown the following, due to Hermann (1999) when τ = 1 using the above, and a new pointwise
bound when τ = 2.

Theorem 2.1. For each (v, w) ∈ V × Ω , τ ∈ {1,2} and t ∈ [0,1],∣∣σ ′[v, w](t)∣∣ � 2�τ (v)Θτ (w).

It is clear from (5) that Θ2(w) � Θ1(w) for each w ∈ Ω . Thus, our new bound in Theorem 2.1 for τ = 2 is a strict
improvement on what one obtains from the τ = 1 bound obtained by Hermann combined with the triviality �1(v) � �2(v).
An obvious advantage of the above approach, where a Möbius mapping is used to transform an arbitrary w ∈ Ω into a
weight vector whose components are functions of the invariant I(w), is that the corresponding invariant bound is trivial to
compute. In the case of the pointwise bounds in Theorem 2.1, we have Θ̃τ (w) = Hτ (I(w)) since, trivially,

min
λ∈R+ max

{
λ

(
w2

w0

) 1
2

, λ−1
(

w0

w2

) 1
2
}

= 1

which is attained at λ = (w0/w2)
1/2. As we shall see in the sequel, the invariant bounds Θ̃1 and Θ̃2 are not easy to

lower.1

3. New bounds from degree-elevation and convexity

If n ∈ N and α j, β j ∈ R+ for each 0 � j � n, then we have the following convexity inequality∑n
j=0 α j∑n
j=0 β j

� max
0� j�n

α j

β j
, (6)

which has been used by a number of authors in obtaining certain pointwise bounds. We use (6) in our subsequent theorem,
which verifies the expected fact that the bounds obtained by degree-elevation improve as the degree increases. Although
the focus of the current paper is the quadratic case, we state our result in general since we have not been able to find this
in the literature. We use the notation B(n)

j (t) = (1 − t)n− jt j and adopt the convention that
(n

j

) = 0 for j < 0 and j > n.

Theorem 3.1. Suppose a0, . . . ,a�,b0, . . . ,bm ∈ R+ , where �,m ∈ N. Then, for each n ∈ N with n � max{�,m},∑�
j=0 a j B(�)

j (t)∑m
j=0 b j B(m)

j (t)
=

∑n
j=0 α

(n)
j B(n)

j (t)∑n
j=0 β

(n)
j B(n)

j (t)
� max

0� j�n

{
α

(n)
j

β
(n)
j

}
, (7)

where, for each 0 � j � n, α
(n)
j = ∑�

k=0

(n−�
j−k

)
ak and β

(n)
j = ∑m

k=0

(n−m
j−k

)
bk. Furthermore, the sequence (Φn)n�max{�,m} given by

Φn = max0� j�n{α(n)
j /β

(n)
j } is non-increasing and hence convergent.

Proof. The formulae for α
(n)
j and β

(n)
j are well known and the bound in (7) follows from (6). To see that (Φn) is non-

increasing, first note that α
(n+1)
0 /β

(n+1)
0 = α

(n)
0 /β

(n)
0 and α

(n+1)
n+1 /β

(n+1)
n+1 = α

(n)
n /β

(n)
n . Now fix 1 � j � n. Then

α
(n+1)
j =

�∑
k=0

(
n + 1 − �

j − k

)
ak =

�∑
k=0

(
n − �

j − k

)
ak +

�∑
k=0

(
n − �

j − k − 1

)
ak

1 Of course, there is the potential cost of estimating the maximum value of a product of functions by the product of the maximum values of each
function. This provides scope for improvement for “small” values of I(w).
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and similarly

β
(n+1)
j =

m∑
k=0

(
n − m

j − k

)
bk +

m∑
k=0

(
n − m

j − k − 1

)
bk.

Using (6) it follows that

α
(n+1)
j

β
(n+1)
j

� max

{ ∑�
k=0

(n−�
j−k

)
ak∑m

k=0

(n−m
j−k

)
bk

,

∑�
k=0

( n−�
j−k−1

)
ak∑m

k=0

( n−m
j−k−1

)
bk

}
= max

{
α

(n)
j

β
(n)
j

,
α

(n)
j−1

β
(n)
j−1

}
� Φn.

Taking a maximum over j, it follows that Φn+1 � Φn as claimed. �
Using (3), the triangle inequality and Theorem 3.1 we obtain new pointwise bounds. In particular, with (�,m) = (2,4),

and the inputs

(a0,a1,a2) = (
w0 w1, (3 − τ )w0 w2, w1 w2

)
(8)

and

(b0,b1,b2,b3,b4) = (
w2

0,4w0 w1,4w2
1 + 2w0 w2,4w1 w2, w2

2

)
,

we obtain the following decreasing sequences of pointwise bounds.

Theorem 3.2. For each (v, w) ∈ V × Ω , τ ∈ {1,2}, t ∈ [0,1] and n � 4,∣∣σ ′[v, w](t)∣∣ � 2�τ (v)Φτ,n(w),

where Φτ,n(w) is equal to

max
0� j�n

(n−2
j

)
w0 w1 + (3 − τ )

(n−2
j−1

)
w0 w2 + (n−2

j−2

)
w1 w2(n−4

j

)
w2

0 + 4
(n−4

j−1

)
w0 w1 + 2

(n−4
j−2

)
(2w2

1 + w0 w2) + 4
(n−4

j−3

)
w1 w2 + (n−4

j−4

)
w2

2

and satisfies Φτ,n+1(w) � Φτ,n(w).

The decreasing sequences of bounds, of Theorems 3.1 and 3.2, provide a means of investigating the limits of the degree-
elevation approach to the determination of bounds. However, for reasons that will become clear, we consider the cases
n ∈ {4,5} separately and derive the corresponding invariant bounds (for “small” values of the invariant I(w) only in the
latter case) which are new.

Theorem 3.3. For each w ∈ Ω , τ ∈ {1,2},

Φ̃τ ,4(w) = max

{
I(w),

3 − τ + 2I(w)

4I(w)
,

3 − τ + I(w)

1 + 2I(w)2

}

and, for I(w)2 < 1
6 (5 − 3τ + √

9τ 2 − 48τ + 70 ),

Φ̃τ ,5(w) = max

{
I(w),

3 − τ + 3I(w)

1 + 4I(w)
,

3(3 − τ ) + 4I(w)

2 + 4I(w) + 4I(w)2

}
.

Proof. For n ∈ {4,5}, 0 � j � n, x0, x1 ∈ R+ and λ ∈ R+ , let φτ,n, j(x0, x1, λ) be given by(n−2
j

) 1
λx1

+ (3 − τ )
(n−2

j−1

) + (n−2
j−2

)
λx0(n−4

j

) 1
λ2x0x1

+ 4
(n−4

j−1

) 1
λx1

+ 2
(n−4

j−2

)
(2 x0

x1
+ 1) + 4

(n−4
j−3

)
λx0 + (n−4

j−4

)
λ2x0x1

. (9)

Since Φτ,n(w̃) = max0� j�n φτ,n, j(
w1
w0

, w2
w1

, λ), where w̃ = (w0, λw1, λ
2 w2), we wish to calculate

min
λ∈R+ max

0� j�n
φτ,n, j(x0, x1, λ). (10)

Note that we have the following useful symmetry property

φτ,n, j(x0, x1, λ) = φτ,n,n− j

(
1

x1
,

1

x0
,

1

λ

)
. (11)
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Moreover, when λ = (x0x1)
−1/2 we have φτ,n, j(x0, x1, λ) = φτ,n,n− j(x0, x1, λ). It is easy to prove that for any x0, x1 ∈ R+ ,

φτ,n, j(x0, x1, ·) is increasing for j ∈ {0,1}, or equivalently using (11), φτ,n, j(x0, x1, ·) is decreasing for j ∈ {n,n−1}. Therefore,
if j ∈ {0,1} then

max
{
φτ,n, j(x0, x1, λ),φτ ,n,n− j(x0, x1, λ)

}
is decreasing for λ ∈ (0, (x0x1)

−1/2) and increasing for λ ∈ ((x0x1)
−1/2,∞). When n = 4, the remaining function

φτ,4,2(x0, x1, λ) is also decreasing for λ ∈ (0, (x0x1)
−1/2) and increasing for λ ∈ ((x0x1)

−1/2,∞). The claimed expression
for Φ̃τ ,4 follows. When n = 5, the restriction x0

x1
< 1

6 (5 − 3τ + √
9τ 2 − 48τ + 70 ) implies φτ,5,2(x0, x1, ·) is increasing, and

consequently φτ,5,3(x0, x1, ·) is decreasing. The claimed formula for Φ̃τ ,5 now follows as above for n = 4. �
The proof above demonstrates that for n ∈ {4,5} the quantity in (10) is attained at λ = (x0x1)

−1/2. However for n � 6
this is not necessarily the case because of the following.

Proposition 3.4. Suppose w ∈ Ω , τ ∈ {1,2} and n is an even integer greater than or equal to 6. Then there exists a neighbourhood Nτ ,n
of zero such that whenever I(w) ∈ Nτ ,n the mapping λ �→ Φτ,n(w0, λw1, λ

2 w2) is not minimised at λ = (w2/w0)
1/2 .

We do not give a full proof of Proposition 3.4 here and simply indicate why it is true. Firstly, as in the above, let
φτ,n, j(x0, x1, λ) be given by the expression in (9). A direct argument using calculus shows that φτ,n,n/2(x0, x1, λ) has a global
maximum, as function of λ, which is uniquely attained at λ = (x0x1)

−1/2, provided that n � 6 and x0/x1 is sufficiently small.
Now for each j, with x0 = w1/w0 and x1 = w2/w1, we have that φτ,n, j(x0, x1,

1
(x0x1)1/2 ) is equal to(n−2

j

)
I(w) + (3 − τ )

(n−2
j−1

) + (n−2
j−2

)
I(w)(n−4

j

) + 4
(n−4

j−1

)
I(w) + 2

(n−4
j−2

)
(2I(w)2 + 1) + 4

(n−4
j−3

)
I(w) + (n−4

j−4

) .

If I(w) ∈ Nτ ,n is sufficiently small, by continuity and since

max
0� j�n

[(
n − 4

j

)
+ 2

(
n − 4

j − 2

)
+

(
n − 4

j − 4

)]−1(n − 2

j − 1

)
is uniquely attained at j = n/2, it follows that φτ,n, j(x0, x1,

1
(x0x1)1/2 ) is uniquely maximised when j = n/2. Since

Φτ,n
(

w0, λw1, λ
2 w2

) = max
0� j�n

φτ,n, j(x0, x1, λ)

it follows, again by continuity, that this cannot be minimised when λ = (x0x1)
−1/2, as claimed.

We remark that when the invariant I(w) is “large” (i.e. the complementary case to Proposition 3.4), all of the invariant
bounds considered in this paper cannot be improved as we demonstrate at the end of the subsequent section.

4. A comparison and evaluation of bounds

We begin with τ = 1 and note that, for each (v, w) ∈ V × Ω and t ∈ [0,1], the bound |σ ′[v, w](t)| � 2�1(v)Λ1(w) was
proved in Zhang and Ma (2006), where2 Λ1(w) = max{ w0

w1
,

w1
w2

,
w1
w0

,
w2
w1

}. The following theorem shows that the pointwise
bounds Θ1 (due to Hermann) and Φ1,4 (of Theorem 3.2) are superior to Λ1.

Theorem 4.1. If w ∈ Ω then Θ1(w) � Λ1(w) and Φ1,4(w) � Λ1(w).

Before offering some remarks and proof of this, we also note the following comparison of the invariant bounds deter-
mined by Θ1, Φ1,4, Φ1,5 and Λ1.

Theorem 4.2. If w ∈ Ω then Λ̃1(w) = max{I(w), I(w)−1}, and

Θ̃1(w) � Φ̃1,4(w) � Λ̃1(w).

If, in addition I(w)2 < 1
6 (2 + √

31 ), then we have

Θ̃1(w) � Φ̃1,5(w) � Φ̃1,4(w) � Λ̃1(w).

Given Theorem 4.1 it is natural to compare Θ1 and Φ1,4 (and, of course, Φ1,n for n � 5 in light of Theorem 3.2). We
note that it is possible to find weights w ∈ Ω for which Φ1,4(w) < Θ1(w), however, a full characterisation of such weights

2 The commonly used notation in the literature for Λ1(w) is max{ω,ω−1}, where ω = maxi
wi

wi+1
; this notation is misleading because the two quantities

are different.
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is not easy to describe. We also remark that Theorem 4.2 highlights that the invariant bounds are significantly easier to
compare. As I(w) approaches zero, notice that the invariant bounds Λ̃1(w) and Φ̃1,4(w) blow up to infinity. Elevating the
degree once more removes this singularity from the invariant bound – as is evident from the expression for Φ̃1,5(w) in
Theorem 3.3.

Proof of Theorem 4.1. Observe that

Λ1(w) = max
{
I(w), I(w)−1}max

{(
w2

w0

) 1
2

,

(
w0

w2

) 1
2
}
,

and since 2(1 + I)−1 � I−1 for I ∈ (0,1], it follows that Θ1(w) � Λ1(w). To see that Φ1,4(w) � Λ1(w), note that

Φ1,4(w) = max

{
w1

w0
,

w1

w2
,

1

2

(
1 + w2

w1

)
,

1

2

(
1 + w0

w1

)
,

w0 w1 + 4w0 w2 + w1 w2

4w2
1 + 2w0 w2

}

and so it clearly suffices to check that

w0 w1 + 4w0 w2 + w1 w2

4w2
1 + 2w0 w2

� max

{
w0

w1
,

w1

w2
,

w1

w0
,

w2

w1

}
.

Equivalently, by setting x0 = w1/w0 and x1 = w2/w1, we show that

1

x1
+ 4 + x0 � 2

(
2

x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,

1

x1

}
(12)

for all x0, x1 ∈ R+ . Note that (12) is obvious when x0 � x1. When 1 � x0 � x1 we have

1

x1
+ 4 + x0 � 5 + x0 � 4x0 + 2x1 = 2

(
2

x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,

1

x1

}
and using the symmetry (x0, x1) �→ (1/x1,1/x0) it follows that (12) holds for x0 � x1 � 1 as well. For the remaining case
x0 � 1 � x1, first assume x1 � 1/x0. Since x0 + 1/x0 � 2 it follows that

1

x1
+ 4 + x0 � 1

x1
+

(
3

x1
+ 2

x0

)
= 2

(
2

x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,

1

x1

}
.

Similarly, when x1 � 1/x0 we use x1 + 1/x1 � 2 to obtain

1

x1
+ 4 + x0 � (3x0 + 2x1) + x0 = 2

(
2

x0

x1
+ 1

)
max

{
x0, x1,

1

x0
,

1

x1

}
,

which completes our proof of (12). �
Proof of Theorem 4.2. It is straightforward to check that

min
λ∈R+ max

{
λx0, λx1, (λx0)

−1, (λx1)
−1} = max

{(
x0

x1

) 1
2

,

(
x1

x0

) 1
2
}

which is attained when λ = (x0x1)
−1/2. Consequently we obtain the claimed formula for Λ̃1(w) by taking x0 = w1/w0 and

x1 = w2/w1. By Theorems 3.2 and 4.1, it remains to show that Θ̃1(w) � Φ̃1,5(w) whenever I(w) < 1; that is,

2

1 + I
� max

{
2 + 3I

1 + 4I
,

3 + 2I

1 + 2I + 2I2

}

whenever I < 1. This follows because the quadratic I �→ 2I2 − I − 1 is negative for I ∈ (0,1). �
We conclude this section with some comparisons regarding the case τ = 2. The best pointwise bounds appear to be due

to Zhang and Ma (2006), who followed a number of authors in using the de Casteljau algorithm for rational Bézier curves,
due to Farin (1983). In the quadratic case, the bound in Zhang and Ma (2006) follows from∣∣σ ′[v, w](t)∣∣ � 2�2(v)

(w0(1 − t) + w1t)(w1(1 − t) + w2t)

(w0(1 − t)2 + 2w1t(1 − t) + w2t2)2
. (13)

In particular, considering separately the cases

w1(1 − t) + w2t � w0(1 − t) + w1t and w1(1 − t) + w2t � w0(1 − t) + w1t (14)
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and using Theorem 3.1, one obtains |σ ′[v, w](t)| � 2�2(v)Λ2(w), which is due to Zhang and Ma (2006). Here, Λ2(w) =
max{ w1

w0
, w1

w2
, 1

2 (1 + w2
w1

), 1
2 (1 + w0

w1
)}. We note that a better bound is easily obtained by slightly modifying the above ar-

gument. In particular, bypassing considerations like (14), and using Theorem 3.1 on the right-hand side of (13) already
improves the result in Zhang and Ma (2006). However, this may be bettered still; from this approach, the input coefficient
vector for the numerator would be(

w0 w1, w0 w2 + w2
1, w1 w2

)
which has first and third components equal, and second component greater than, the respective components of the input
in (8) which led to Theorem 3.2 (the denominators are, of course, the same). We conclude that the approach based on the
de Casteljau algorithm in Zhang and Ma (2006) does not appear to yield better results than Theorem 3.2. In particular, we
have shown the following.

Theorem 4.3. For each w ∈ Ω , Φ2,4(w) � Λ2(w).

We remark that Λ2(w) (and hence Φ2,n(w) for each n � 4) beats the bound Θ2(w), of Theorem 2.1, for weights w in
a non-trivial, but difficult to describe, subset of Ω . At the level of the invariant bounds, the picture is clearer and we have
the following analogue of Theorem 4.2.

Theorem 4.4. Let w ∈ Ω . Then Λ̃2(w) = max{I(w), 1
2 (1 + I(w)−1)} and

Θ̃2(w) � Φ̃2,4(w) � Λ̃2(w).

If, in addition I(w)2 < 1
6 (

√
10 − 1), then we have

Θ̃2(w) � Φ̃2,5(w) � Φ̃2,4(w) � Λ̃2(w).

Proof. One can compute Λ̃2 in a similar way that we computed Λ̃1 in the proof of Theorem 4.2; we omit the details.
Next, straightforward considerations yield Θ̃2(w) = Φ̃2,4(w) = I(w) whenever I(w) ∈ [C1,∞). For I(w) ∈ (0, C0], we have
Θ̃2(w) � Φ̃2,4(w) since (2I + 1)(1 + I)−2 � 1

2 + 1
4 I−1 for all I ∈ (0,1). Finally, for I ∈ (C0, C1) we have 1

8 (2I − 1)2(1 −
I)−1(2I2 −1)−1 � 1

2 + 1
4 I−1 because the quartic I �→ −8I4 +12I2 −3I−2 is positive on (C0, C1). Therefore Θ̃2(w) � Φ̃2,4(w)

whenever I(w) ∈ (C0, C1), and consequently for all weights. It remains to show that whenever I(w)2 < 1
6 (

√
10−1) we have

Θ̃2(w) � Φ̃2,5(w). One can easily check that for such weights w ,

Θ̃2(w) = 1 + 2I(w)

(1 + I(w))2
and Φ̃2,5(w) = 3 + 4I(w)

2 + 4I(w) + 4I(w)2

in which case the desired inequality holds because the cubic I �→ 4I3 + I2 − 2I − 1 is negative for I > 0 with I2 <
1
6 (

√
10 − 1). �

We note that invariant bounds have also been obtained in Zheng (2005) which correspond to the uniform pointwise
bounds |σ ′[v, w](t)| � 2�τ (v)Υτ (w), where Υτ (w) = (maxi wi/min j w j)

3−τ , obtained by Floater (1992). Zheng proved
that Υ̃τ (w) = max{I(w)3−τ , I(w)τ−3}. These invariant bounds are out-performed by the Zhang and Ma bounds, Λ̃τ (w),
τ ∈ {1,2}, and hence by all other invariant bounds of their respective type considered in this paper. Zheng (2005) also con-
sidered the invariant bounds from the general degree bounds obtained in Floater (1992), however, except for the quadratic
case, Zheng does not provide an explicit formula for these invariant bounds. We point out that in Bez and Bez (2012b) we
establish certain invariant bounds which are explicit and improve upon Zheng’s bounds in the general degree case.

We conclude this section by providing certain sharpness considerations in the case τ = 1. Analogous conclusions are
possible when τ = 2; we leave the details to the reader. Observe that we always have |σ ′[v, w](0)| = 2 w1

w0
|v1 − v0| and

|σ ′[v, w](1)| = 2 w1
w2

|v2 − v1|, so if |v1 − v0| = |v2 − v1| then

max
t∈[0,1]

∣∣σ ′[v, w](t)∣∣ � 2�1(v)
w1

min{w0, w2} . (15)

When I(w) � 1 each of the upper bounds Θ1(w), Φ1,n(w), Λ1(w) coincides with w1
min{w0,w2} , which shows sharpness in

this pointwise sense. Moreover, w1
min{w0,w2} � I(w) and therefore, by (15), for weights with I(w) � 1, the invariant bounds

Θ̃1(w), Φ̃1,n(w), Λ̃1(w) coinciding with I(w), are sharp. Importantly, the invariant bound Θ̃1(w) is also sharp at I(w) = 0;
to show this we require the following lemma.

Lemma 4.5. We have mina∈(0,∞) maxt∈[0,1] φ(a, t) = 1, where

φ(a, t) = at(1 − t)
(
(1 − t)2 + at2)−2

.
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Proof. Use ∂ jφ to denote the jth partial derivative of φ for j ∈ {1,2}. For each a > 0 there exists a unique point t(a) ∈ (0,1)

such that ∂2φ(a, t(a)) = 0. Note that t(1) = 1
2 , a �→ t(a) is decreasing and maxt∈[0,1] φ(a, t) = φ(a, t(a)). Thus, it suffices to

prove that mina∈(0,∞) φ(a, t(a)) = φ(1, t(1)). This follows from the mean value theorem and the fact that ∂1φ(a, t(a)) is
positive for a > 1 and negative for a < 1. �

At I(w) = 0 we3 have w = (w0,0, w2). If v is such that v1 − v0 and v2 − v1 are parallel unit vectors, then �1(v) = 1
and the invariant bound Θ̃1(w) gives minw̃∼w maxt∈[0,1] |σ ′[v, w](t)| � 4. Writing a = w2/w0 we have from (3) that

∣∣σ ′[v, w](t)∣∣ = 2at(1 − t)

((1 − t)2 + at2)2
|v2 − v0| = 4at(1 − t)

((1 − t)2 + at2)2
,

and from Lemma 4.5 it follows that minw̃∼w maxt∈[0,1] |σ ′[v, w](t)| = 4, which occurs at w̃ = (1,0,1). Hence Θ̃1(w) is
sharp at I(w) = 0.

5. Conclusions

In this paper, we have established clear and comprehensive comparisons of both pointwise and invariant bounds for
quadratic rational Bézier paths. A new bound Θ2 is derived, following the approach in Hermann (1999); moreover, we
demonstrated that the invariant bounds Θ̃1 and Θ̃2 are currently the best known and are difficult to beat using the approach
of degree raising and convexity. This is because after the initial normalisation of the weights, the arguments leading to the
bounds Θ1 and Θ2 cannot possibly be improved. However, in the cubic case, after an initial normalisation of the weights,
the argument in Hermann (1999) is less tight. Indeed, in significant regions of the invariant space, we have shown that the
associated invariant bound arising from

max

{
w0

w1
,

w1

w2
,

w2

w3
,

w1

w0
,

w2

w1
,

w3

w2

}
(which comes from a degree-elevation and convexity argument) is smaller than that obtained from Hermann’s cubic bound
(see Bez and Bez, 2012a). This highlights the potential for obtaining further improvements on the invariant bounds for
rational Bézier paths of degree 3 and above using degree-elevation and convexity; progress in this direction has already
been made in Bez and Bez (2012b).
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