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Abstract
GPR61 is an orphan receptor that belongs to Class A of G-
protein-coupled receptors. It has been reported that GPR61 
has a constitutive activity and couples to Gαs. In the present 
study, we characterized GPR61 function and ligand binding 
by experimental and molecular docking studies. We demon-
strated that heterologous expression of GPR61 in HEK293 
cells enhanced the cAMP synthesis response to forskolin, 
whereas the basal cAMP synthesis was unaffected. 5-(Nony-
loxy)tryptamine inhibited forskolin-stimulated cAMP produc-
tion in GPR61-expressing HEK293 cells. These studies high-
light that the intrinsic activity of this receptor is only measur-
able following its synergy with Gαs. © 2019 S. Karger AG, Basel

Introduction

G-protein-coupled receptors (GPCRs) are the largest 
family of cell surface receptors. They are also the most 
common targets (ca. 34%) for FDA-approved drugs [1]. 
However, despite the arising interest, > 150 GPCRs re-
main “orphan”; that is with no endogenous ligand discov-
ered to date, and 81 of these orphan receptors belong to 
the Class A GPCRs [2]. GPR61 (other names: GPCR3, 
Biogenic amine receptor-like G-protein-coupled recep-
tor, BALGR) is an orphan receptor, which sequence was 
first identified in 2001 [3]. GPR61 is expressed in various 
tissues including adrenal gland, hippocampus, and leuko-
cytes including proinflammatory Th17 cells [4–6]. Phar-
macological targeting of GPR61 should be explored ex-
plored in greater detail since, for example, this receptor 
has been reported to be relevant in metabolism as GPR61-
deficient mice developed obesity [7]. 
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At a structural level, GPR61 has the conserved tyrosine 
toggle switch NPxxY and CWxP motifs, which are in-
volved in the receptor activation in the Class A GPCRs [8]. 
However, the receptor lacks the conserved aspartic acid in 
the transmembrane domain 6 (D6.30 in Ballesteros-Wein-
stein nomenclature system [9]) that forms a classical “ion-
ic lock” with R3.50 keeping GPCRs in an inactive state 
(Fig. 1a) [10]. The lack of this motif suggests a potential 
constitutive activity of the receptor and in support of this 
basal activity of a GPR61-Gαs construct was increased in 
comparison to other receptors [11]. Furthermore, 5-(non-
yloxy)tryptamine (5-[nonyloxy]-1H-indole-3-ethana-
mine, 5-NOT) has been described as a low-affinity inverse 
agonist of the GPR61 receptor [10]. A subsequent paper 
from the same group demonstrated that a minor trunca-
tion in the N-terminus of GPR61 and a V19A mutation 
reduced the constitutive activity in the same GPR61-Gαs 
(35S)GTPφS functional model [12]. It was concluded that 
the N-terminal region of the receptor might auto-activate 

it. The latest study partly supports this finding [13], yet a 
different one demonstrates that GPR61 is not a constitu-
tively active receptor [14]. Another study has been con-
ducted that described that some brain-expressed GPCRs, 
including GPR61, may be targets for plasmalogens [15].

Since the intrinsic activity of GPR61 is debatable and 
no further proofs have been shown that would confirm 
that 5-NOT is indeed an inverse agonist, in our article, we 
aimed to investigate 5-NOT-dependent and potential in-
trinsic activity of GPR61 in cAMP accumulation assay. 
This study was accompanied by in silico study on a 
GPR61-binding site.

Experimental

Cell Culture and Cloning
HEK293 stably expressing His-myc-GPR61 and control cells 

have been generated and characterized previously [6]. The cells  
were maintained in complete Dulbecco’s Modified Eagle’s Medi-
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Fig. 1. a GPR61 structure with conserved and important residues/
motifs shown highlighted: D(E)RY in TM3; W3.50, P4.50, CWxP in 
TM6; and NPxxY in TM7. GPR61 has G2826.30 in place of D6.30. b 
Myc-immunoreactivity in HEK293 cells stably expressing His-

myc-tagged GPR61. GPR61 is expressed both as a monomer and a 
dimer, Lanes: 1 = HEK293 control cells, 2 and 3 = HEK293 stably 
overexpressing His-myc-tagged GPR61.
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um (Sigma-Aldrich) supplemented with 10% (v/v) fetal bovine se-
rum (Sigma-Aldrich) and 1% (v/v) penicillin/streptomycin (Sigma 
Aldrich, 100 units/mL penicillin and 0.1 mg/mL streptomycin). 

SDS/PAGE and Western Blotting
Cells were lysed in 25 mmol/L Tris (pH = 7.4) and resuspended 

in an equal volume of 2× radioimmunoprecipitation assay buffer 
and appropriate volume of 2× urea sample buffer. No > 30 µg of 
protein was loaded and run on 4–20% Tris/glycine gels. Proteins 
were transferred onto PVDF membranes, which were then blocked 
in 10% nonfat milk for 2 h at room temperature. Membranes were 
incubated in 1: 3,000 anti-myc (Cell Signaling Technology) or 1: 

3,000 anti-GAPDH (Abcam, Cambridge, UK) in 5% nonfat milk 
overnight at 4  ° C. Membranes were incubated subsequently in an-
ti-mouse or anti-rabbit HRP-linked secondary antibody (Cell Sig-
naling Technology) in 5% nonfat milk in wash buffer at room tem-
perature for 2 h. The membrane was subsequently exposed to film 
and developed. Alternatively, the membrane was developed using 
ChemiDoc MP system imager (Bio-Rad). 

cAMP Accumulation Assay
cAMP accumulation in the cells was measured using Alpha-

Screen kit (Perkin Elmer) according to the manufacturer’s instruc-
tions. Briefly, HEK293 cells stably overexpressing His-myc-tagged 
GPR61 were seeded at 105 cells/well in a flat-bottom 96-well plate 
and incubated overnight at 37  ° C. On the next day, the medium was 
removed, and the cells were carefully washed twice in 200 µL of 
stimulation buffer. Cells were incubated in the stimulation buffer 
for 20 min at 37  ° C. In the next step, drugs were added, and the cells 
were incubated for 20 min at 37  ° C. Adenylyl cyclase activator for-
skolin (1.0 µmol/L, Sigma-Aldrich) was then added, and the cells 
were stimulated for 10 min at 37  ° C. Subsequently, the supernatants 
were removed, and the cells were lysed for 20 min in 1× immuno-
assay buffer. Subsequently, 5.0 µL of cell lysate was transferred to 
appropriate wells of OptiPlate 384-well plate (PerkinElmer). Ac-
ceptor beads were prepared at 1: 25 dilution in the stimulation buf-
fer and 5.0 µL of this beads suspension was added to lysate and left 
to incubate for 30 min in the dark at room temperature. In a sepa-
rate tube mix of biotin-cAMP 1: 240 and streptavidin-donor beads 
1: 150 was prepared and left to incubate for 30 min in the dark. Af-
ter 30 min, 15 µL of biotin-cAMP and streptavidin-donor beads 
suspension was added. The plate was left for 4 h in the dark at room 
temperature before being read on PHERAstar FS HTS microplate 
reader (BMG LABTECH) using AlphaScreen module. 

Homology Modeling
The homology model of inactive GPR61 was generated using 

the high-resolution structure of dopamine D4 receptor as a tem-
plate (PDB ID: 5WIU, structural identity ∼28%) [16]. The se-
quence of GPR61 (UniProt ID: Q9BZJ8) was aligned with that of 
D4R (UniProt ID: P21917) with ClustalX2 [17]. The N- and C-
termini were excluded, and the alignment was manually edited to 
ensure the proper alignment of transmembrane domains. One 
hundred homology models of the GPR61 receptor were generated 
with MODELLER 9.19 [18], and the representative one was se-
lected based on DOPE score.

Molecular Docking
Docking of 5-NOT was performed in AutoDock Vina [19] us-

ing default settings except for num_modes (20) and exhaustive-

ness (100). Protein and ligands protonation states were set for pH 
7.4 with PROPKA [20] and Avogadro [21], respectively. The size 
of the binding box was set to 30 × 30 × 30 Å3. The docking results 
were analyzed using LigPlot + [22] and PyMOL (The PyMOL Mo-
lecular Graphics System, version 2.0 Schrödinger, LLC).

Statistics and Data Analysis
The statistical analysis and curve fitting were done using Prism 

6 (GraphPad). Throughout the manuscript, data are expressed as 
a mean ± SEM of n independent experiments (biological repli-
cates). The Mann-Whitney test was used to test for significant dif-
ferences between 2 groups, and Kruskal-Wallis test with Dunn’s 
post hoc analysis was used to test for significant differences be-
tween > 2 groups when n ≥ 3, **, ## p < 0.01, *, # p < 0.05.

Results and Discussion

In the present study, we use the HEK293 cells stably 
expressing His-myc-GPR61 (Fig. 1b) that have been pre-
viously characterized by us [6]. The data presented in Fig-
ure 2a reveal that the control HEK293 cells and HEK293 
cells stably expressing the GPR61 receptor (HEK-GPR61) 
display similar basal cAMP levels. Differences in cAMP 
levels between the 2 cell lines, however, were only evident 
following stimulation with forskolin (Fig. 2a) arguing for 
receptor’s synergistic action with gαs subunit.

The potential of 5-NOT (Fig. 2b) to act as a low-affin-
ity GPR61 ligand was confirmed. Thus, 5-NOT signifi-
cantly inhibited the forskolin-stimulated cAMP synthesis 
within HEK-GPR61 cells (Fig. 2c), consistent with previ-
ous pharmacological studies and predictions where 
5-NOT acts as an inverse agonist of GPR61 and that 
GPR61 couples to Gαs as a cognate G protein. What is 
more, 5-NOT did not reduce forskolin-induced cAMP 
levels in the control cells, arguing for the specificity of this 
compound as a GPR61 ligand (Fig. 2d). Forskolin used at 
a lower concentration of 1 µmol/L did not elicit measur-
able differences in cAMP levels in control HEK cells, 
therefore, it was used at 10 µmol/L, concentration which 
is consistent with previously published reports on similar 
applications [23]. In our assay, 5-NOT did not signifi-
cantly reduce forskolin-induced cAMP in the control 
cells. The application of forskolin at higher concentra-
tions (e.g., 100 µmol/L) was not possible because of a high 
final DMSO concentration (1%). 

In our model, as mentioned before, we have not been 
able to confirm the higher basal activity of the receptor, 
as opposed to the most recent study that has reported 
such a phenomenon [13]. However, our data, to some ex-
tent, support the results of the older paper [14]. The rea-
sons for those differences are debatable, but in both cited 
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papers, different assays were performed, and transiently 
transfected cells were used to measure the intrinsic activ-
ity of GPR61. It has to be noted that receptor levels have 
great impact on its basal activity and ligand-induced sig-
naling. What is more, it is well-known that stably trans-
fected cell system will behave differently to a transiently 
transfected one, especially in the signaling readouts. Last-
ly, we cannot exclude the GPR61 heterodimerization ef-
fect on the presented ligand-bound GPR61 mediated cel-
lular responses [6].

We have also attempted to evaluate the binding of 
5-NOT to GPR61 by molecular docking (GPR61 model 
was based on the dopamine receptor D4 structure, Fig. 3a). 
To analyze the docking results, we used the lowest-energy 
binding pose of 5-NOT in the predicted receptor binding 

pocket (AutoDock Vina calculated energy: –8.0 kcal/moL, 
Kd = 1.35 µmol/L; Fig.  3b). The long nonpolar tail of 
5-NOT can directly interact with side chains of amino ac-
ids of TM5 via hydrophobic interactions. Also, the pose of 
5-NOT in the binding pocket supports hydrogen bond 
formation with neighboring L932.57, C195 in ECL2 and 
Y3036.51 (Fig. 3b). 

Conclusion

In conclusion, the results presented here reveal that 
GPR61 does not have an increased basal activity, but its 
overexpression promotes a higher cellular response – 
cAMP accumulation – to forskolin. We also confirm that 
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Fig. 2. a cAMP accumulation in HEK293 cells. Forskolin (1 µmol/L) 
induces a significant increase in cAMP production in the cells sta-
bly overexpressing GPR61, n = 4. b Structure of 5-NOT; a putative 
ligand of GPR61. c 5-NOT is a low-affinity inverse agonist of 
GPR61, n = 6. d Higher concentration of forskolin (10 µmol/L) is 
required to induce cAMP production in the control cells. 5-NOT 

(100 µmol/L) does not have an impact on cAMP levels in these 
cells; HEK-GPR61 cells were used for comparison to demonstrate 
a visible difference in response to 10 µmol/L forskolin, n = 3; * dif-
ferences between forskolin- and vehicle-treated samples, # differ-
ences between forskolin only and forskolin + 5-NOT-treated sam-
ples. 
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5-NOT is a low-affinity inverse agonist. Additionally, we 
demonstrate that 5-NOT could bind in the intra-TM or-
thosteric binding site of GPR61. We have previously 
shown that GPR61 is highly expressed in Th17 cells, and 
given that, under certain conditions, it can have a high 
intrinsic activity – the development of inverse agonist tar-
geting this GPCR is desirable [6]. We consider that our 
findings may contribute to the process of GPR61 deor-
phanization.
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