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Abstract 23 
 24 

We investigated the serum concentrations of two brominated flame retardants (BFRs) – 25 

polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD) –in 59 26 

women aged between 23 and 42 from the United Kingdom. We also collected demographic 27 

data, including age, bodyweight and height in order to test for associations with BFR levels. 28 

Temporal and global differences were also assessed using previously published data. 29 

HBCDD was detected in 68% of samples with a mean concentration of 2.2 ng/g lipid (range 30 

= <0.3 – 13 ng/g lipid). The dominant stereoisomer was α-HBCDD with an average 31 

contribution of 82% (0-100%) towards ΣHBCDD, was followed by γ-HBCDD (average 32 

contribution = 17%). PBDEs were detected in 95% of samples with a mean ∑PBDE (sum of 33 

BDEs -28, -47, -99, -100, -153, -154 and -183) concentration of 2.4 ng/g lipid (range = <0.4 – 34 

15 ng/g lipid). BDEs -153 and -47 were the dominant congeners, contributing an average of 35 

40% and 37% respectively, to the average ΣPBDE congener profile.  36 

Data from this study suggests that HBCDD levels decrease with age, it also suggests a 37 

positive association between bodyweight and HBCDD levels, which likewise requires a 38 

large-scale study to confirm this. The data also show that 10 years after their European ban, 39 

PBDE body burden has begun to decrease in the UK. Whilst it is too early to draw any firm 40 

conclusions for HBCDDs, they appear to be following a similar pattern to PBDEs, with levels 41 

decreasing by a factor of >2.5 since 2010. Whilst the human body burden appear to be 42 

decreasing, both PBDEs and HBCDD are still consistently detected in human serum, despite 43 

legislative action limiting their production and use. This highlights the need to continuously 44 

assess human exposure and the effectiveness of policy aimed at reducing exposure.    45 



1.0 Introduction 46 

Hexabromocyclododecane (HBCDD) and polybrominated diphenyl ethers (PBDEs) have 47 

been used extensively worldwide as brominated flame retardants (BFRs) in a wide variety of 48 

commercial, domestic and industrial applications.  There are three commercial PBDE 49 

formulations – Penta-, Octa- and DecaBDE. The main PBDE applications include electrical 50 

and electronic equipment (EEE - such as TVs, PCs and small domestic appliances) (European 51 

Commission, 2011), soft furnishings (e.g. sofas, mattresses, pillows and curtains) (United 52 

Nations Environment Programme (UNEP), 2010) and in polyurethane foam (PUF) seat 53 

fillings used in automobiles (European Chemicals Bureau, 2000). The primary use of 54 

HBCDD is to flame retard expanded and extruded polystyrene (EPS/XPS) used in building 55 

insulation foam (European Chemicals Agency, 2009). As of 2001 (the last reliable figures 56 

publicly available), Europe accounted for 2 %, 16 %, 14 % and 57 % of the annual global 57 

demand for Penta-, Octa-, DecaBDE and HBCDD respectively (Bromine Science and 58 

Environmental Forum (BSEF), 2003). 59 

 60 

Both PBDEs and HBCDD are lipophilic and resistant to metabolism allowing them to 61 

bioaccumulate in the liver and other fatty tissues. They have long half-lives in humans of 62 

approximately 664 – 2380 days and 64 days for PBDEs and HBCDD, respectively (Geyer et 63 

al., 2004), and have been associated with adverse health effects in humans.. For example, 64 

PBDEs are thought to disrupt levels of sex hormones, including luteinising hormone and 65 

follicle stimulating hormone in men (Meeker et al., 2009), in addition to other toxic effects 66 

including disruption to the liver, kidneys and thyroid gland; neurodevelopmental deficits 67 

including inhibited foetal and infant development; and various cancers (Costa, 2008). 68 

Furthermore, in vitro studies have demonstrated that doses as low as 5µM can induce 69 

oxidative stress and disrupt steroidogenesis, with high level PBDE exposure resulting in 70 



pregnancy failure (Lefevre et al., 2016).  Exposure to the Penta-BDE formulation can activate 71 

the aryl hydrocarbon (Ah) –receptor (Gu et al., 2012), cause a reduction in hepatic vitamin A 72 

levels, impair neurodevelopment, and induce carcinogenesis (D'Silva et al., 2004, Hornung et 73 

al., 1996). Similarly, the OctaBDE formulation causes developmental toxicity, whilst the 74 

DecaBDE formulation is believed to be the least toxic as it contains higher molecular weight 75 

congeners that have relatively decreased cell membrane permeability, and are more readily 76 

metabolised (D'Silva et al., 2004, Chevrier et al., 2013). However, it is also believed that 77 

higher brominated congeners (such as BDE-209, which makes up >95% of the Deca-BDE 78 

formulation (La Guardia et al., 2006)) can be broken down by physical and biological 79 

processes to form lower brominated PBDE congeners that are found readily in Penta- and 80 

Octa-BDE formulations (D'Silva et al., 2004). Data on human health effects of HBCDD 81 

exposure is limited - Eggesbø et al., 2011 reported that it does not appear to have an effect on 82 

the human thyroid (Eggesbø et al., 2011). However,  Dorosh et al. (2011) suggested its 83 

potential endocrine disrupting ability by altering oestrogenic activity.. Further, Genskow et 84 

al. (2015) has suggested that HBCDD exposure damages dopaminergic neurons, with 85 

consequences for neurological and endocrine system function, and there is evidence for 86 

reduced birthweight and significant adverse neurodevelopment, including impaired motor 87 

skills and increased anxiety levels in rodent models (Maurice et al., 2015). 88 

 89 

Concerns over the toxicity of these BFRs led to bans on Penta- and Octa-BDE technical 90 

products within Europe in 2003, and globally in 2009 under the UNEP Stockholm 91 

Convention (SC) (Stockholm Convention, 2009). Significant restrictions were placed on the 92 

DecaBDE technical product in 2008 (Deffree, 2008), and it was included in the SC in 2017 93 

(Chemical Watch, 2017), alongside HBCDD in 2013 (Health and Environment Alliance, 94 

2013). Whilst these bans will eventually lead to reduced exposure, they only prevent the new 95 



manufacture and new use of these chemicals, meaning that BFRs will still be incorporated 96 

into products already on the market, and currently in circulation. Both PBDEs and HBCDDs 97 

are still regularly found in various indoor microenvironments across the world (Sahlstrom et 98 

al., 2015, Johnson et al., 2013, Ni and Zeng, 2013, Harrad and Abdallah, 2015), meaning that 99 

humans will continue to be exposed to them for the foreseeable future. Given that exposure to 100 

these chemicals can lead to a plethora of toxic health effects, it is vital that they are 101 

continually monitored in general populations across the globe.  102 

 103 

The aims of this study are to provide the first data on HBCDD exposure in the UK population 104 

using human sera, and to provide updated assessment of human exposure to PBDEs and 105 

HBCDDs in reproductive-aged women in the UK. The relationship between these BFRs and 106 

various demographics (weight, body mass index (BMI), and age) will also be assessed to gain 107 

insight into any potential health effects caused by target compounds. We include a temporal 108 

assessment of HBCDD and PBDE body burdens in the UK, and a comparison of UK body 109 

burdens with available data from other cross-sectional populations, globally.  110 

 111 

2.0 Materials & Methods 112 

2.1 Sample Collection and Preparation 113 

This prospective cohort study was performed within the Hull IVF Unit, UK in 2014, 114 

following approval by The Yorkshire and The Humber NRES ethical committee, UK 115 

(approval number 02/03/043). A total of 59 women were recruited into the study, whose 116 

baseline characteristics are shown in Table 1. Inclusion criteria were age 20-45 years, BMI 117 

≤35 and undergoing in vitro fertilisation. Patients with known immunological disease, 118 

diabetes, renal or liver insufficiency, acute or chronic infections, or inflammatory diseases 119 

were excluded from the study.  120 



 121 

A fasting blood sample was collected on day 21 of the luteal phase of the cycle, and prior to 122 

commencing IVF treatment. Samples were centrifuged, aliquoted, and stored at -80 °C. 123 

Samples were shipped on dry ice to The Queensland Alliance for Environmental Health 124 

Sciences at The University of Queensland, Australia for further analysis. 125 

 126 

2.2 Lipid Analyses of Samples 127 

Serum (300µL) was analysed for cholesterol (TC) and triglycerides (TG) by Sullivan 128 

Nicolaides Pathology (SNP), Australia. Total lipid (TL) concentration (mg/dL) was 129 

calculated using the following equation (Phillips et al., 1989). 130 

𝑇𝑇𝑇𝑇 = 2.27.𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 62.3 

 131 

2.3 Sample Extraction & Clean-up 132 

Five mL of serum was aliquoted into a 50 mL polypropylene centrifuge tube. Samples were 133 

spiked with 5 ng each of internal standards (13C12-labelled BDEs -28, -47, -99, -100, -153, -134 

154, -183, 13C12-labelled α-, β- and γ-HBCDD). Samples were vortexed for approximately 1 135 

minute and left to stand for 30 minutes. 6 mL acetonitrile, 3 mL milliQ, 5 g anhydrous 136 

MgSO4 and 1 g NaCl were added along with a ceramic homogenizer. Samples were manually 137 

shaken for 1 minute prior to centrifuging at 4500 RPM for 8 minutes at 10 °C. The 138 

supernatant layer was collected and transferred to a glass tube. The extract was evaporated to 139 

near-dryness on a hot plate using a gentle stream of nitrogen and reconstituted in 140 

approximately 1 mL hexane. 1 mL >98% concentrated sulfuric acid was added and the 141 

sample was vortexed for at least 30 seconds. The aqueous and organic layers were left to 142 

separate overnight at <4 °C. The supernatant layer was transferred directly onto a silica solid 143 

phase extraction cartridge (Supelco LC-Si 3mL/500 mg), preconditioned with 6 mL 144 



dichloromethane, followed by 6 mL hexane. The sample was allowed to load onto the 145 

cartridge gravimetrically. Target compounds were eluted into a glass tube using 6 mL 146 

hexane, followed by 8 mL dichloromethane at approximately 2 mL/min. The sample was 147 

evaporated to near-dryness and reconstituted in 100 µL iso-octane containing 2.5 ng 13C12-148 

PCB-141 and 13C12-TBBPA as recovery standards. After analysis for PBDEs by high 149 

resolution gas chromatography coupled with high resolution mass spectrometry 150 

(HRGC/HRMS) extracts were solvent exchanged into 100 µL methanol and analysed for 151 

HBCDD via liquid chromatography tandem mass spectrometry (LC-MS/MS). 152 

 153 

2.4 Instrumental Analysis 154 

For PBDE analysis by HRGC/HRMS,a Thermofisher TRACE 1300 gas chomatograph was 155 

coupled to a Thermofisher DFS mass spectrometer. The injector was operated in splitless 156 

mode with separation achieved on an Agilent DB-5ms column (30 m length x 0.25 mm in 157 

diameter x 0.25 µm film thickness). Experiments were conducted in MID mode at 10,000 158 

resolution (10% valley definition). The inlet, transfer line and source were held at 250 ºC, 159 

280 ºC and 280 ºC respectively. The flow rate was maintained at 1.0 mL/min. Details of 160 

acquisition ions for PBDEs are outlined in the supporting information (SI, (Tables S1 and S2 161 

respectively). 162 

 163 

HBCDDs (α-, β- and γ-) were measured in serum samples using an AB/Sciex API 5500Q 164 

mass spectrometer (AB/Sciex, Concord, Ontario, Canada) coupled to a Shimadzu Nexera 165 

HPLC system (Shimadzu Corp., Kyoto, Japan). The mass spectrometer (MS) was operated in 166 

multiple reaction monitoring mode using negative electrospray ionisation. A volume of 5 µL 167 

was injected. Separation was achieved using a Kinetex XB C18, 50 x 2.0 mm 1.7 µm column 168 

(Phenomenex, Torrance CA) using a mobile phase gradient of 85% methanol, ramping up to 169 



100% methanol over 6 min and then holding for 4 min at a flow rate of 0.3 mL/min. Full MS 170 

parameters have been provided previously (Drage et al., 2017). 171 

 172 

2.5 Quality Control 173 

A blank sample was extracted as every 6th sample (n=10), alternating between 5 mL of 174 

MilliQ water (n=5) and 5 mL bovine calf serum (n=5). If a target compound was detected in 175 

a blank at less than 5% of measured sample concentration, then no correction occurred; if 176 

blank concentration was 5–25% of measured sample concentration, the blank concentration 177 

was subtracted from that of the sample.  178 

 179 

In the absence of a certified QC sample, method precision and accuracy were determined 180 

using bovine serum (5mL, n=5) fortified with target compounds. 30 µL of a solution 181 

containing 2 ng/mL of all target compounds in methanol was added to each aliquot, which 182 

was then vortexed for 1 minute and left at <4 °C overnight. Good accuracy and precision was 183 

found for all target analytes with average recoveries between 80-120% and a relative standard 184 

deviation <15% (Table S2).  185 

 186 

Internal standard recoveries of 13C-labelled HBCDDs were estimated by expressing their 187 

ratio with 13C12-TBBPA in the samples as a percentage of the same ratio in a non-extracted 188 

side-spike (NESS). The recoveries of the remaining internal standards was calculated using 189 

their ratio with 13C12-PCB-141. Average recoveries ranged from 59% (13C12-BDE-28) to 84 190 

% (13C12-BDE-154). Details of recoveries of all internal standards are provided in the SI 191 

(Table S3).  192 

 193 

2.6 Statistical Analysis 194 



For the purposes of calculations of averages and all statistical testing where a compound was 195 

below the limit of quantification (LOQ), values were set to half the limit of detection (LOD). 196 

All statistical tests were computed using Microsoft Excel 2010 and SPSS for Windows 197 

version 22.0. 198 

 199 

3.0 Results & Discussion 200 

This study reports the first data for HBCDD in human serum from the UK. Sum of α-, β-, and 201 

γ-HBCDD (ΣHBCDD) was detected in 40 out of 59 samples at a concentration range of <0.3 202 

– 13 ng/g lipid. The average concentration measured was 2.2 ng/g lipid, the geometric mean 203 

was 0.75 ng/g lipid and the median was 1.8 ng/g lipid (Table 2).  204 

 205 

The dominant stereoisomer was α-HBCDD with an average contribution of 82% (0-100%) 206 

towards ΣHBCDD, was followed by γ-HBCDD (average contribution = 17%). β-HBCDD 207 

was only detected in one sample where it contributed 25% to a ΣHBCDD concentration of 11 208 

ng/g lipid. This stereoisomer pattern in human sera is consistent with previous studies from 209 

Australia (Drage et al., 2017), India (Devanathan et al., 2012), Sweden (Weiss et al., 2006), 210 

Canada (Ryan et al., 2006) and Japan (Kakimoto et al., 2008). The dominance of α-HBCDD 211 

in human and other biotic samples is likely due to more effective transformation of β- and γ- 212 

HBCDD to α-HBCDD through increased metabolic rate, combined with preferential 213 

accumulation of the α-stereoisomer (Fonnum and Mariussen, 2009). 214 

 215 

PBDEs were detected in measurable concentrations in 56 out of 59 samples with a ΣPBDE 216 

(sum of BDEs -28, 47, -99, -100, -153, -154 and -183) concentration range of <0.4 – 15 ng/g 217 

lipid. The average concentration was 2.4 ng/g lipid, the geometric mean was 1.4 ng/g lipid 218 

and the median was 1.9 ng/g lipid (Table 3). BDEs -153 and -47 were the dominant 219 



congeners, contributing an average of 40% and 37% respectively, to the average ΣPBDE 220 

congener profile. The remaining PBDE content came from BDEs -100, -99 and -28 with 221 

average contributions of 12%, 8.5% and 2.6% respectively. BDEs -154 and -183 were not 222 

detected in any of the samples. The dominance of BDEs -47 and -153 in human serum is 223 

consistent with much of the previous literature including previous measurements of serum 224 

from the UK, USA (Sjödin et al., 2004, Sjödin et al., 2008), Japan (Akutsu et al., 2008), 225 

Greece (Kalantzi et al., 2011), Romania (Dirtu et al., 2006) and France (Brasseur et al., 226 

2014). 227 

3.1 Demographic trends: Age, Weight and BMI 228 

Despite the narrow age range of participants (23-42 years), Figure 1 suggests that there is a 229 

decrease in HBCDD levels with age (R2 = 0.105). However, a linear regression analysis 230 

shows this to be insignificant (p = 0.08). There were no observed associations between PBDE 231 

levels of participants and their age. This may be due to the limited sample size and age range 232 

of participants in the study. Previous studies have demonstrated higher levels of PBDEs in 233 

children and infants (Toms et al. 2009), however this study only investigated mothers of 234 

child-bearing age. 235 

A linear regression suggested a weak positive association between HBCDD levels and 236 

bodyweight of the participant (R2 = 0.075, p = 0.036; Figure S1a). However, when corrected 237 

for height by using BMI instead of weight (Figure S1b), this association was no longer 238 

significant (R2 = 0.057, p = 0.068). There were no observed associations between bodyweight 239 

or BMI and PBDE levels in participants from this study. 240 

3.2 Temporal Trends: Exposure in the United Kingdom 241 

Data on human exposure to HBCDDs in the UK is scarce, with only two previous studies 242 

measuring breast milk concentrations from samples collected between 2008 and 2011 243 

(Harrad and Abdallah, 2015, Abdallah and Harrad, 2011), and prior to legislative ban. 244 



Median ΣHBCDD concentrations from this study (1.8 ng/g lipid, 2014) were significantly  245 

lower (ANOVA, p<0.0001) than samples from 2008-2010 and 2010-2011 (3.8  and 5.2 ng/g 246 

lipid, respectively) (Abdallah and Harrad, 2011, Harrad and Abdallah, 2015). A recent study 247 

of breastmilk from 10 women in UK collected in 2014-2015 by Tao et al. (2017) reported 248 

similar HBCDD levels as the serum measures in our study (median: 2.9 ng/g lipid, range: 0.7-249 

7.1 ng/g lipid) (Figure 2). This is suggestive of a temporal trend to decreasing HBCDD 250 

exposure in UK women. While there is some precedent for comparing serum and breast milk 251 

biomarker concentrations as indicative of overall body burden, the samples were collected 252 

over a relatively short period of time (2008 to 2015, across the 4 different studies), for a 253 

comprehensive temporal assessment of exposure. Furthermore, HBCDDs were only subject 254 

to legislative bans in 2013 – one year before samples were collected for this study (Health 255 

and Environment Alliance, 2013), meaning that it is too early to assess the impact of 256 

legislative action on HBCDD exposures in the UK population.  257 

 258 

The range of ΣPBDE concentrations in this study are similar to those found in Newcastle-259 

Upon-Tyne, UK in the same year (1.0-16 ng/g lipid (Bramwell et al., 2014)) and from 260 

Birmingham in 2010, 2010-11 and 2014-15 (Abdallah and Harrad, 2014, Harrad and 261 

Abdallah, 2015, Tao et al., 2017). Median ∑PBDE concentrations are approximately 3 times 262 

lower than those found in serum (5.6 ng/g lipid (Thomas et al., 2006)) and breast milk (6.3 263 

ng/g lipid (Kalantzi et al., 2004))  collected from Lancaster and London from 2001 to 2003 264 

(Figure 3). This would suggest PBDE levels have fallen since the 2004 bans of Penta- and 265 

Octa- BDE in the EU (Birnbaum and Staskal, 2004). However, breastmilk samples collected 266 

in 2014-15 by Tao et al. (2017) contradict this finding with median concentrations of 5.8 ng/g 267 

lipid. This is likely due to small sample size (n=10), and high variability both between-268 

individuals, and between geographical regions of the UK.  However, it is pertinent to note 269 



that in our study, there was a 95% detection rate of PBDEs in UK human serum 8 years after 270 

these bans, and Tao et al. (2017) had a 100% detection rate in human milk more than a 271 

decade later. This demonstrates that UK populations are still continuously exposed to PBDEs 272 

despite legislative bans, and further action may be required to reduce body burden at the 273 

population level. Similar temporal declines over a period of 10 years have also been 274 

suggested for HBCDDs in Australia (Drage et al., 2017), (Toms et al., 2012), and Canada 275 

(Ryan and Rawn, 2014), however both compounds are still regularly detected in humans 276 

highlighting the need for constant monitoing of their concentrations in humans and the 277 

environment. 278 

 279 

3.3 Comparison with global biomonitoring data 280 

Literature of serum measures of HBCDD is scarce, however there are a number of studies 281 

reporting HBCDDs in milk from various countries (Table 1). The average concentration of 282 

HBCDDs from this study (2.2 ng/g lipid) is at the lower end of the range of concentrations 283 

found across the world (not detected – 43 ng/g lipid) and half the average concentration 284 

worldwide (4.6 ng/g lipid). Concentrations were similar to breast milk collected in Canada in 285 

1992-2005 (Ryan and Rawn, 2014) and serum from Belgium in 2007 (Roosens et al. 2009), 286 

whilst they were 3-10 times higher than milk collected from the Philippines in 2008 287 

(Malarvannan et al. 2013b), and India in 2009 (Devanathan et al. 2012). Furthermore, 288 

Sahlström et al. (2014) did not detect HBCDD in any serum collected from 48 individuals in 289 

Sweden between 2009 and 2010. Average HBCDD concentrations in serum collected in 290 

South Korea from 2009-2010 (Kim and Oh, 2014) was approximately 4 times higher than 291 

serum from this study, whilst milk collected in Spain from 2006-2007 was almost 20 times 292 

higher (Eljarrat et al 2009).  293 

 294 



Human biomonitoring studies for PBDEs are more prevalent in the literature than for 295 

HBCDDs. The mean ∑PBDE (2.4 ng/g lipid) concentration from this study was at the lower 296 

end of the range of ∑PBDE levels measured between 2009 and 2015 internationally (Table 297 

2), but similar to (lipid normalised) ∑PBDE concentrations of breastmilk and serum from 298 

other regions of the UK ((Bramwell et al., 2014, Tao et al., 2017, Harrad and Abdallah, 299 

2015), Norway (Cequier et al., 2015), Denmark  (Vorkamp et al., 2014), and some regions of 300 

China (Wu et al., 2017, Wang et al., 2016). Serum levels of ∑PBDEs in this study were 301 

approximately 2.5 times higher than breastmilk from Sweden (Darnerud et al., 2015), but 302 

between 3 and 20 times lower than serum collected across USA (Watkins et al., 2011, Butt et 303 

al., 2016, Makey et al., 2014, Zota et al., 2013, Hurley et al., 2017). Furthermore, serum from 304 

6 individuals in Laizhou Bay, China, with no known occupational exposure were  up to 300 305 

times higher than from this study (Wang et al., 2014). 306 

 307 

Major strengths of this study include relatively large sample size (59) as well as the the 308 

pairing of BFR body burdens with demographic data such as age, weight and height. A 309 

potential weakness of the  study is the fact that all participants were undergoing in vitro 310 

fertilisation. However, this was overcome by the fact that they were an otherwise normal 311 

population, and patients with any known conditions were excluded from the study, making it 312 

an otherwise normal population. 313 

 314 

4.0 Conclusions 315 

Here we present data confirming that reproductive aged women from the UK continue to be 316 

exposed to both HBCDDs and PBDEs. Data from this study suggests that HBCDD levels 317 

decrease with age, however further sampling of a wider age range would be required to 318 

further investigate this. It also suggests a positive association between bodyweight and 319 



HBCDD levels, which likewise requires a large-scale study to confirm this. The data suggests 320 

that 10 years after their European ban, PBDE body burden has begun to decrease in the UK. 321 

Whilst it is too early draw any firm conclusions for HBCDDs, they appear to be following a 322 

similar pattern to PBDEs, with levels decreasing by a factor of >2.5 since 2010, a trend that 323 

has also been observed in Australia. Whilst human body burdens appear to be decreasing, 324 

both PBDEs and HBCDD are still consistently detected in human serum, despite legislative 325 

action limiting their production and use, and highlighting the need to continuously assess 326 

human exposure and the effectiveness of policy aimed at reducing exposure.   327 
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Figures and Tables 626 

Table 1: Summary population characteristics 627 

  Number of participants 59 
Age (years) 32 

23-42 
Height (cm) 165 

148-191 
Weight (kg) 70 

(50-108) 
BMI 
Normal (18.5-24.9) 
Overweight (25-29.9) 
Obese (30-34.9) 

  
22 
32 
5 

Pregnancy status 
Nulliparous 
Primiparas 
Miscarried/terminated 

  
42 
6 
11 

Smoking status 
Regular smoker 
Non-smoker 

  
6 
53 

  628 



Table 2 ∑HBCDD concentrations (ng/g lipid) in humans from this study and other studies internationally from 2002-2015 

Country Matrix n Mean Range Ref 
Europe 

     UK Serum 59 individuals 2.2 <0.3 -  12.6 This Study 
UK Milk 10 individuals 3.2 0.7 - 7.1 Tao et al. (2017) 

UK Milk 25 individuals 5.95 1 - 22 Abdallah and Harrad 
(2011) 

UK Milk 10 individuals 6.5 0.3 - 21 Harrad and Abdallah 
(2015) 

Belgium Serum 16 individuals 2.9 <0.5 - 11 Roosens et al. (2009) 

Belgium Milk 1 pooled 
sample 1.5 n/a Colles et al. (2008)  

Czech 
Republic Adipose 98 individuals 1.2 <0.5-7.5 Pulkrabova et al. (2009) 

France Milk 26 n/a <1-5 Antignac et al. (2006) 
France Adipose 26 n/a 1-3 Antignac et al. (2006) 
Greece Serum 61 individuals 3.39 0.49-39 Kalantzi et al. (2011) 
Ireland Milk 11 pools 3.5 1.7-5.9 Pratt et al. (2013) 

Netherlands Cord Serum 12 0.2 0.2-4.3 Meijer et al. (2008) 
Netherlands Serum 91 0.2 0.1-0.36 Peters (2004) 

Norway Milk 10 individuals n/a nd-0.13 Polder et al. (2008a,b) 

Norway Milk 393 
individuals 1.7 <0.2-31 Thomsen et al. (2009a) 

Norway Milk 12 individuals n/a 0.25-2 Thomsen et al. (2003) 
Norway Milk 85 individuals n/a 0.4-20 Thomsen et al. (2005) 
Norway Milk 67 Individuals n/a nd-3 Thomsen etal. (2009b) 

Norway Milk 193 
individuals 1.1 0.1-31 Eggesbø et al. (2011) 

Russia Milk 23 individuals 0.71 nd-1.67 Polder et al. (2008a) 
Russia Milk 14 individuals 0.47 nd-1.15 Polder et al. (2008a) 



Spain Milk 33 individuals 43 <LOQ-190 Eljarrat et al. (2009) 
Sweden Milk 14 pools n/a 0.1-0.6 Fangstrom et al. (2008) 

Sweden Milk 204 
individuals n/a 0.09-10 Glynn et al. (2011) 

Sweden Serum 50 individuals 0.46 <0.24-3.4 Weiss et al. (2006) 
Sweden Serum 48 individuals 0 not detected Sahlström et al. (2014) 

Asia           
India Milk 55 individuals 0.53 <0.05 - 13 Devanathan et al. (2012) 

China Milk 103 
individuals 4.29 <LOQ-78 Shi et al. (2013a) 

China Serum 42 pools 0.86 <LOQ - 7.2 Shi et al. (2013b) 
China Milk 12 individuals 2.2 <LOQ - 5.5 Shi et al. (2013b) 

Philippines Milk 33 individuals 0.86 0.13 - 3.2 Malarvannan et al. (2009) 
Philippines Milk 30 individuals 0.21 <0.01-0.91 Malarvannan et al. (2013b) 

South Korea Serum 76 individuals 8.6 <dl-166 Kim and Oh (2014) 
Vietnam Milk 9 individuals n/a 0.07 - 1.4 Tue et al. (2010) 
Vietnam Milk 4 individuals n/a 0.11 - 0.97 Tue et al. (2010) 

Africa           
South Africa Milk 28 individuals 0.55 <0.23 - 1.4 Darnerud et al. (2011) 

North America         
Canada Milk 8 3.8 0.4-19 Ryan et al. (2006) 
Canada Serum 59 pools 1 0.33 - 8.9 Rawn et al. (2014) 
Canada Milk 34 individuals 1.8 0.1-28 Ryan and Rawn (2014) 

USA Milk 9 0.5 0.2-0.9 Ryan et al. (2006) 
Oceania           

Australia Serum 63 pools 3.1 <0.5-36 Drage et al. 2017 
Australia Milk 12 pools 6.6 <LOQ - 19 Toms et al. (2012a) 
Australia Serum 40 pools 0.45 <0.1-1.9 Drage et al. 2019 

 



Table 3 ∑PBDE concentrations (ng/g lipid) in humans from this study and other studies internationally from 2009-2015 

 

Country Year Matrix n Mean Median Range Ref 
Europe 

       UK 2014 Serum 59 individuals 2.4 1.9 <0.2 - 15 This Study 
UK 2012 Serum 20 individuals N/A 2.4 1 - 16 Bramwell et al. 2014 
UK 2012 Milk 8 individuals N/A 4.8 1 - 28 Bramwell et al. 2014 

UK 2010 Milk 25 individuals 5.9 5 0.2 - 26 Abdallah & Harrad 
2014 

UK 2010-11 Milk 10 individuals 5.1 3.7 1.3 - 13 Harrad & Abdallah 
2015 

UK 2014-
2015 Milk 10 individuals 6.5 5.8 1.7 - 14 Tao et al. 2017 

Denmark 2011 Serum 100 
individuals 7.7 7.7 <LOQ - 

18 Vorkamp et al. 2014 

Norway 2012 Serum 46 individuals 3.6 2.3 0.1 - 23 Cequier et al. 2015 

Sweden 2010 Milk 3 pools 0.73 0.77 0.58 - 
0.84 Darnerud et al. 2015 

Asia 
       China 2011 Serum 12 pools 190 N/A 80-780 Wang et al. 2014 

China 2012 Serum 6 individuals N/A 13 4.3 - 42 Chen et al. (2014) 
China 2013 Serum 10 pools 25 26 13 - 41 Li et al. 2017 
China 2014 Serum 32 individuals 7.8 5.6 1.1 - 39 Wang et al. 2016 
China 2014 Serum 9 individuals 5.6 N/A 0.42 - 27 Wu et al. 2017 

North America 
       USA 2009 Serum 31 individuals 28 N/A 3.5 - 350 Watkins et al. 2011 

USA 2008-
2010 Serum 43 individuals 28 N/A 0.71 - 

250 Butt et al. 2016 



USA 2010-
2011 Serum 52 individuals 6.2 N/A 0.25 - 97 Makey et al. 2014 

USA 2011-
2012 Serum 36 individuals 52 N/A N/A Zota et al. 2013 

USA 2011-
2015 Serum 1253 

individuals 23 N/A N/A Hurley et al. 2017 



Figure 1 Individual Concentrations (ng/g lipid) of (a) ΣHBCDD and (b) ΣPBDEs vs their age (years) 
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Figure 2 Temporal variation of mean HBCDD concentrations of serum and breast milk from UK women. Error bar denotes maximum 

concentration. 
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Figure 3 Temporal variation of mean PBDE concentrations of serum from UK adults from this study and previous studies. Error bar 

denotes maxium concentration. 
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