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BLOCKS OF SYMMETRIC GROUPS, SEMICUSPIDAL KLR
ALGEBRAS AND ZIGZAG SCHUR-WEYL DUALITY

ANTON EVSEEV AND ALEXANDER KLESHCHEV

We record with deep sadness the passing of Anton FEuvseev on February 21, 2017.

ABSTRACT. We prove Turner’s conjecture, which describes the blocks of the
Hecke algebras of the symmetric groups up to derived equivalence as certain
explicit Turner double algebras. Turner doubles are Schur-algebra-like ‘local’
objects, which replace wreath products of Brauer tree algebras in the context
of the Broué abelian defect group conjecture for blocks of symmetric groups
with non-abelian defect groups. The main tools used in the proof are general-
ized Schur algebras corresponding to wreath products of zigzag algebras and
imaginary semicuspidal quotients of affine KLR algebras.

1. INTRODUCTION

Let H,(q) be the Hecke algebra of the symmetric groups &,, over a field F
with parameter ¢ € F*. An important special case is ¢ = 1, when H,(q) = F&,,.
Let e be the quantum characteristic of ¢. In this paper we assume that e > 0,
i.e. there exists k € Z~g such that 1 + g+ ---+ ¢*" 1 = 0, and e is the smallest
such k.

Representations of Hy,(q) for all n > 0 categorify the basic module V' (Ag) with
highest weight Ag of the affine Kac-Moody Lie algebra g = sl, (C), see for example
[A1JAollGrolK;|. In particular, each weight space V (Ag)a,—q for a in the positive
part of the root lattice is identified with the complexified Grothendieck group of
the corresponding block H,(q) of some H,(q).

The Weyl group W of g acts on the weights of V(Ag), and the orbits are
precisely Oy := W(Ag — dd) = WAy — dd for all d € Z>(, where ¢ is the null-
root. Chuang and Rouquier [CR] lift this action of W on the weights to derived
equivalences between the corresponding blocks. Therefore, all blocks H,(q) with
Ag — a € Oy for a fixed d are derived equivalent.

Moreover, for every d € Z>op, Rouquier [R;] and Chuang and Kessar |[CK]
identify special representatives Ag — a € Oy for which the corresponding blocks
H,(q) have a particularly nice structure. These blocks are known as RoCK blocks.
Thus for any n, every block of Hy,(q) is derived equivalent to a RoCK block.

Let Hy(q) be a RoCK block. Turner [Tui} Tug, Tus| developed a theory of
double algebras and conjectured that H,(q) is Morita equivalent to an appro-
priate double |[Tu;, Conjecture 165]. The aim of this paper is to prove Turner’s
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2 ANTON EVSEEV AND ALEXANDER KLESHCHEV

Conjecture. In fact, we prove a slightly more general result stated in terms of
cyclotomic KLR algebras over Z.

To state the result precisely, we now recap Turner’s theory as developed in
[EK]. Let @ be a type A._1 quiver, and let Py be the quotient of the path
algebra Z(@) by all paths of length 2. As a Z-module, Py has an obvious basis
whose elements are identified with the vertices and the edges of (). We view
Pg as a Z-superalgebra with F 5 being the span of the vertices and Py 1 being
the span of the edges. We denote by z € {0,1} the degree of a homogeneous
element x of any superalgebra. Let n € Z~(, and consider the matrix superalgebra
X = M, (Pg).

For every d € Z>¢ we have a superalgebra structure on X ®d induced by that
on X. So @5 X® is a superalgebra, with the product on each summand X ®4

being as above, and zy = 0 for z € X® and y € X®f with d # f. In fact,
@dzo X®4 i even a superbialgebra with the coproduct

A X% B X% @ x®UD),

0<f<d
Q@ @ Y (0 0@ (€@ ®E).
0<f<d
The symmetric group &4 acts on X®¢ by signed place permutations with su-
peralgebra automorphisms, so the set of fixed points Inv? X := (X®d) Sd is a
subsuperalgebra of X®¢ and InvX := eadzo Inv? X is a subsuperbialgebra of
@dzo xod.

There is a superbialgebra structure on (Inv X)* := @dzo(Ian X)* which is
dual to that on InvX. We also have an Inv X-bimodule structure on (InvX)*
defined by

(@) = x(én), € -x)(n) =z@g)  (§neInvX, € (InvX)").

The Turner double is the superalgebra DX := Inv X ®(Inv X )* with the product
defined, using Sweedler’s notation for the coproduct A, by

) oy =D (-1 00 @ (2 - ne)(Eq) - )

for all homogeneous &,n € Inv X and z,y € (Inv X)*. We have a decomposition
DX =@~ D?X as a direct sum of superalgebras, where

D'X = P Inv/ X @ (1nv'/ X)*
0<f<d

is a direct sum of Z-supermodules. Each superalgebra D¢X is symmetric.

The superalgebra Py is Z-graded with all vertices of ) being in degree 0 and all
edges in degree 1. This induces gradings on M,,(Pg) and Inv X = Inv M,(Pg) in
the natural way. We view each (Inv? X)* as a graded Z-module, with the grading
induced from Inv?X shifted by 2d, i.e. for z € (Inv? X)* we have degz =
m if and only if z is zero on all graded components of Inv? X other than the
(2d — m)th component. Then D?X is a Z-graded superalgebra concentrated in
degrees 0,1, ...,2d. In fact, this grading is a refinement of the superstructure on
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DX, in the sense that (D?X)g is the sum of even graded components of DX
and (D?X)j is the sum of odd graded components. From now on, we forget the
superstructure on D?X and view

Dg(n,d) := DX
simply as a graded Z-algebra.
As before, let H,(q) be a RoCK block, with Ag—a € Oy4. The precise conditions

that o must satisfy in order for this to be the case are stated in Let R0 be
the corresponding cyclotomic KLR algebra, which has a natural grading, see

Theorem A. Ifn > d, then the Z-algebras R0 and Dg(n,d) are graded Morita
equivalent.

For any graded Z-algebra A, define Ap := A ®z F. The F-algebra RQSF is
isomorphic to the RoCK block H,(q) of a Hecke algebra, see [BK;Ra|. Applying
this result and the aforementioned theorem of Chuang-Rouquier, one deduces the
following from Theorem [A}

Corollary B. If n > d, then:

(i) The RoCK block H(q) is Morita equivalent to Dg(n,d)y.
(ii) For every B with Ag — B € Oy, the algebra Hg(q) is derived equivalent to

Alperin’s Weight Conjecture |Al] predicts an equality between the number
of simple modules of an arbitrary block of a finite group and the number of
‘weights’ defined in terms of normalisers of local p-subgroups. In the case of
blocks with abelian defect group, the conjecture of Broué [Br| lifts Alperin’s
Weight Conjecture to the categorical level, but no such categorical conjecture is
known for blocks of arbitrary finite groups with non-abelian defect groups.

An important step in the proof of Broué’s conjecture for symmetric groups is
the theorem [CK] asserting that, if ¢ = 1 and d < charF, then there is a Morita
equivalence between the RoCK block H, (1) and the wreath product algebra
H5(1)®¢ x FS,. Corollary [B| shows that, for an arbitrary block of a symmetric
group, the corresponding double Dg(n,d)r is a ‘local’ object that can replace
H5(1)®4 x F&, in the context of Broué’s conjecture.

In fact, the wreath product Hs(q)®? x F&, has a Z-form (R5°)%¢ x Z.&, that
is closely related to Dg(n,d). Denote by Z the zigzag algebra of type A._1 over
Z, and consider the wreath product Wy := Z%% x Z&,, see §3.1 Then Z is
Morita equivalent to R2°, and more generally Wy is (graded) Morita equivalent

to (R£°)®d X F&y, see the proof of Proposition On the other hand, the
double Dg(n, d) can be identified with a subalgebra of a generalized Schur algebra
SZ(n,d), and there is a Schur-Weyl duality between S%(n,d) and Wy, see
In particular, for a certain explicit idempotent &, € Dg(n,d), we have

£.Dg(n, d)éy = £,5%(n, d)E, = Wy,

Thus, the idempotent truncation &,Dg(n, d)&,, is Morita equivalent to R?O XFG,.
If d < charF or charF = 0, the double Dg(n, d)r is Morita equivalent to

€uDq(n, d)réy = (R33)®" % F&4 = Hy(q)®" x F&S,,
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see Proposition When d > charF > 0, the algebra Dg(n,d)r has more
isomorphism classes of simple modules than &,Dg(n,d)ré,. As was predicted
in |Tuy), Conjecture 82] and proved in [Ev], a certain explicit idempotent trun-
cation of the RoCK block H,(q) is Morita equivalent to Hs(q)®? x FGy in all
cases. Corollary (1) strengthens this result, replacing the idempotent truncation
by the whole RoCK block Hy(q).

We now outline the proof of Theorem [A] and the contents of the paper. Sec-
tion [2| contains some general definitions and notation. In Section (3|, we review
necessary definitions and results from [EK]|. In particular, we introduce the
zigzag algebra Z and the wreath product Wy. An important role is played by the
(right) colored permutation Wy-modules M) ., which are parametrized by colored
compositions (A, ¢). Here, A is a composition of d and ¢ is a tuple consisting of
elements of {1,...,e — 1} that assigns a ‘color’ to each part of A\. In fact, the
proof of Theorem [A| uses only colored compositions with n(e — 1) parts of the
form (), %), where ¢ is given by , but it is more natural to work with more
general colored compositions. We define the generalized Schur algebra S%(n, d)
as the endomorphism algebra of the direct sum of the appropriate W -modules
M), oo and review results identifying the Turner double Dg(n,d) as an explicit
Z-subalgebra of S%(n,d).

Section [4 begins with the definition and standard properties of the KLR alge-
bras Ry and their cyclotomic quotients Rg“. In & we define the semicuspidal
algebra C’d5 as an explicit quotient of Rgs. In we consider parabolic subalge-
bras of Cys.

In we recall the definition of a RoCK block RA0 and construct a natural
homomorphism 2: édg — Rg\o. The quotient C, 4 := édg / ker Q is isomorphic to
an idempotent truncation of RQO, which is later shown to be Morita equivalent to
RQO. We note that C, 4 is finitely generated as a Z-module, but C’d5 is not. The
arguments of rely on results connecting cyclotomic KLR algebras with the
combinatorics of standard tableaux and abaci, which are reviewed and developed
in §45.115.3

In §6.1 we define the Gelfand-Graev idempotent v € Rys for every colored
composition (), ¢) of d and an ‘uncolored’ idempotent 4 € Rgs5. The latter may
be viewed as a KLR counterpart of &, € S%(n,d). The following two results are
key to the proof of Theorem [A}

(i) There is an explicit algebra isomorphism Wy — v*C, 47 (see Theo-

rem §9).

(ii) If ¥*C, 47" is identified with Wy via the isomorphism in (i), then there
is an explicit isomorphism M) = 'y’\7cCp,d’y“ of right Wy-modules (see

Theorem [8.15)).

The isomorphism (i) is a slight generalization of the main result of [Ev] and is
constructed in § using a homomorphism [KMjs| from Wy to 7“Cysv“. In
order to prove (ii), we first show that 7’\7cCp7d7w and M) . have the same rank
as free Z-modules, see Corollary This relies on combinatorial results about
RoCK blocks proved in §§6.2{6.41 Secondly, in §47.3|[7.4] we prove several results

on the structure of ¥»Cys7y*. In particular, we find an explicit element that
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generates fy)"cé'd(;’yw as a right 7wé’d57w—module, see Corollary We use this
element to construct a homomorphism from M) . to VA’CCA'd(w“’ and ultimately to
prove (ii).

In §8.3) we define the algebra E(n,d) as the endomorphism algebra of the
direct sum of (graded shifts of) certain projective left C, g-modules dey’\’c.
Using the right Wy;-modules 7)"CCp7d7w and the isomorphism (ii), we construct a
natural homomorphism ®: E(n,d) — S%(n,d). Finally, using the identification
of the Turner double Dg(n,d) as a subalgebra of S%(n,d) stated in Section
as well as results about the semicuspidal algebra proved in Section [7, we show
that @ is injective with image exactly Dg(n,d), so that E(n,d) = Dg(n,d) (see
Theorem .

A priori, it follows from our constructions that F(n,d) is Morita equivalent
to an idempotent truncation of the RoCK block RA0. In §8.4] we prove that
E(n,d) = Dg(n,d) is (graded) Morita equivalent to R20 by showing that the
scalar extensions of Dg(n,d) and RA® to any algebraically closed field have the
same number of simple modules.

2. PRELIMINARIES
For any m,n € Z, we define the (possibly empty) segment
[m,n] :={l€eZ]|m<I1l<n}

Let [,m,n € Z>o and I be a set. For any i € I and tuples i = (i1,...,%) € I,
j = (jlavjm) € Im, we set

. . . .. . .. . 1 . . . 1
i" =iy, ,0) €1, 45 = (i1, yi1, 015y Jm) € LT i =g 4 € I
n n
We write i1 ...4; instead of (i1,...,%;) when there is no possibility of confusion.

2.1. Partitions and compositions. Fix n € Z+¢ and d € Z>o,. We denote
by A(n) the set of compositions A = (A1,...,A,) with A1,..., A\, € Z>p. For
A € A(n) we write |A| := A1 4+ -+ + A\, and set

A(n,d) == {x € A(n) | |\ = d}.

If m € Z>o, we define mA := (mAq,...,mA,) € A(n).

Let S be an arbitrary finite set. We define A%(n,d) to be the set of tuples
A = (A\D);es of compositions in A(n) such that Yics IAD| = d.

We denote by & the set of all partitions. For A = (A1,..., \,) € & we write
(A) :=max{k | Ay >0} and |[A| := A1 + -+ + A\p. We set

P(d):={re P |\ =d}.

We do not assume that the parts A; of the partition A are positive, and we identify
a partition (\1,..., \;,) with any partition (A1, ..., A, 0,...,0).

We define the set of S-multipartitions 2° as the set of tuples A = ()\(i))ies
of partitions. For A € 29, we set [A| := Y, .q IAD| and 29(d) .= {X € 29|
|A| = d}. The only multipartition in 92%(0) is denoted by @.



6 ANTON EVSEEV AND ALEXANDER KLESHCHEV

We set NS := Z~g x Zwo x S and refer to the elements of N as nodes. When
S has one element, we identify N® with N := Z<g x Zsg. If A = ()\(z))ies e »°
is an S-multipartition, its Young diagram, which we often identify with X\, is

IA] := {(r,s,3) € N | s < AW},

If (r,s,i) € N, we say that (r,s 4 1,i) is the right neighbor of (r,s,i) and
(r+1,s,4) is the bottom neighbor of (r,s,i). Define a partial order < on N° as
follows: (r,s,i) < (r/,s',i') if and only if i = ¢/, r < 7’/ and s < §'. Given a
multipartition A € £2°, a function T: [A] — Zw is said to be weakly increasing
if whenever u < v are in [A] we have T(u) < T(v). If u,v € N¥ and neither v < v
nor v < u, then we say that u and v are independent. Two subsets U,V C N° are
said to be independent if every element of U is independent from every element
of V. We say that a subset U C NS is conver if whenever u < v < w are in N°
and u,w € U, we have v € U.

A skew partition is a pair (A, u) of partitions such that [u] C [A]. We denote
it by A\ p and set |\ p| :=|A| — |p]. We identify A\ @ with .

2.2. Symmetric groups and parabolic subgroups. Let d € Z>q. We denote
by &4 the symmetric group on {1,...,d} and set s, := (r,r +1) € &y for
r=1,...,d — 1 to be the elementary transpositions. For every n € Z-¢y and
A= (A1,..., ) € A(n,d), we have the standard parabolic subgroup

6)\:26)\1X--~X6,\n§6d.

Moreover, for an ordered set S = {1,...,1} and X = (AW, ..., XD) € AS(n,d),
we define the parabolic subgroup

G =6,0) x--x G0 <Gy

Ifge &gand g = s, ... sy, is a reduced decomposition of g, i.e. a decomposition
as a product of elementary transpositions with [ smallest possible, then we define
£(g) := 1 and refer to [ as the length of g. For any A, u € A(n,d), we denote by
9* the set of the minimal length coset representatives for G4/&), by *& the set
of the minimal length coset representatives for &,\&, and by 19> the set of the
minimal length coset representatives for 6,\&4/6,.

2.3. Algebras and modules. In this paper we mostly work over the ground
ring Z. Occasionally, we use the prime fields F, and their algebraic closures ]Fp.

All gradings in this paper are Z-gradings. Let ¢ be an indeterminate. Given a
graded free Z-module V = @2:1 Zwy, with homogeneous generators vy, we write
dim, V' for the graded rank of V, ie. dimyV := ZI:L:1 qdegn) ¢ Z[q, ¢~ '] and
dimV := k. Throughout, V" denotes the nth graded component of V for any
n € Z. Given m € Z, let qu denote the module obtained by shifting the grading
on V up by m, i.e. ( TV)™ = V™. We use the notation V=" =P, ., V™.
For any m € Z, we set [m] := (qm —q¢ ™) /(q—q7') € Zlg,q Y. If m € Z>g, we
define [m]' := [/, [k].

Let A be a (Z-)graded algebra. All A-modules are assumed to be graded. Let
A-mod denote the category of all finitely generated (graded) A-modules, with
morphisms being degree-preserving module homomorphisms. Given A-modules V
and W, we denote by hom 4 (V, W) the space of morphisms in A-mod. For any m €
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Z, define Hom 4 (V, W)™ := hompg (¢™V, W). This is the space of homomorphisms
that are homogeneous of degree m. Set

Hom 4 (V, W) := @ Hom4 (V, W)™
me”Z

In particular, End4 (V) := Hom4(V, V) is a graded algebra. All homomorphisms
between graded algebras are assumed to be degree-preserving. We have the grad-
ing shift functor ¢: A-mod — A-mod, V — ¢V.

Given an A-module V' and a commutative ring k, we denote by Ay := A ®z k
the (graded) algebra obtained by scalar extension, and by Vi := V ®z k the
corresponding Ag-module. If B = A/K is the quotient of A by an ideal B and
x € A, we denote an element x + K of B simply by x when there is no possibility
of confusion.

If k is a field and A is a finite-dimensional graded k-algebra, we denote by ¢(A)
the number of irreducible graded A-modules up to isomorphism and degree shift.

3. ZIGZAG ALGEBRAS, WREATH PRODUCTS AND TURNER DOUBLES

Throughout the paper, we fix e € Z>s.

3.1. Zigzag algebras and wreath products. Let @) be a type A._; quiver
with vertex set

J:={1,...,e—1}. (3.1)
We will use the zigzag algebra Z of type Ae—1, defined in [HK] as follows. First

assume that e > 2. Let Q be the quiver with vertex set J and an arrow a*7 from
j to k for all ordered pairs (k,j) € J? such that |k — j| = 1:

22,1 23,2 .43 ,e—3,e—2 Le—l,e—2
10 2@ 3@ @c—2 ®c—1

21,2 22,3 234 e—3,e—2 je—2e—1

Then Z is the path algebra 7Q, generated by length 0 paths e; for j € J and
length 1 paths a*7, subject to the following relations:

(i) All paths of length three or greater are zero.
(ii) All paths of length two that are not cycles are zero.
(iii) All cycles of length 2 based at the same vertex are equal.

The algebra Z inherits the path length grading from ZQ. If e = 2, we define
Z := Z[c]/(c?), where c is an indeterminate in degree 2.

If k,j € J, we say that k and j are neighbors if |k — j| = 1. If e > 2, for every
vertex j € J pick its neighbor k and denote cU) := al*akJ. The relations in Z
imply that ¢\ is independent of choice of k. Define ¢ := > jed c(). Then in all
cases Z has a basis

Bz :={a"J | k € J, j is a neighbor of k} U{c™e; | j € J, m € {0,1}}, (3.2)

and
dim, Z = (e — 1)(1 + ¢*) + 2(e — 2)q. (3.3)



8 ANTON EVSEEV AND ALEXANDER KLESHCHEV

Moreover, using , we see that for any j € J
4 fl<ji<e—1,
dime;Z =3 ifje{l,e—1}and e > 2, (3.4)
2 ifj=1ande=2.
We will also consider the graded wreath products
Wy = 7% x 7S, (3.5)
with Z&, concentrated in degree 0. (Note that, unlike [EK], we do not consider
any superstructures here.) As usual, we identify Z®? and Z&, with the subalge-
bras 2% ® 1g , and 1£®d ® 764 of Wy, respectively. The multiplication in Wy is
then uniquely determined by the additional requirement that
g T ® - ®ag)g =20 @ DXy (3.6)
for g € 64 and z1,...,24 € Z. Given z € Z and 1 < a < d, we denote
2o =18 - ®10z1®---®1c 7%,
with z in the ath position. We have the idempotents
eji=e, ®---®e, €Z¥CW,; (jeJY.
Fix n € Z~y. We define the set of colored compositions
A (n, d) == A(n,d) x J". (3.7)
Let (\,¢) € A (n,d) with A\ = (A1,...,\,) and ¢ = (c1,...,¢,). We define the
idempotent
ere =M @ @edtn € 7% (3.8)
and the parabolic subalgebra
Wie=erc®ZG) C e\ Waere.

Note that ey . is the identity element of W) ., so W) . is a (usually non-unital)
subalgebra of Wy, isomorphic to the group algebra Z&,.
We assign signs (; to the elements j € J according to the following rule:

| +1 ifjis odd,
G = { —1 if j is even. (3.9)
Consider the function €y : &y — {£1} C Z defined by

Exelgt, .- gn) = {fl(gl) - -Cfflg") (3.10)

for all (g1,...,9n) € Gy, X -+ X 6y, = 6. We define the c-alternating right
module alty . = Z- 1) . over W), . with the action on the basis element 1 . given

by
e (e2ec®9g) =ercl@lre (g€ 6),).
We have identified Z®% and Z&, as subalgebras of Wy, so we can also view e Ae
as an element of Wy. Then W) . = ey o(ZG))ey  and ey Wy is naturally a left
W) e-module. We now define the colored permutation module
M)\,c = a1t>\7c ®W)\,c e,\chd. (3.11)

This is a right Wy-module with generator my . := 1) c ® ey c.



BLOCKS OF SYMMETRIC GROUPS AND SEMICUSPIDAL KLR ALGEBRAS 9

Lemma 3.12. For each j € J, setd; := Zlgrgn, g Ar. Then the module M)
is Z-free, with

. ditde—r g2 5—5d;
dim M) , = ‘Gd.G,\’?) 44-5=2" Zf€>2,
7 |Gy : Gy 24 ife=2.
Proof. This follows from (3.4)) and [EK, Lemma 5.21]. O

3.2. Turner doubles and generalized Schur algebras. Let n € Z-y and
de Zzo. Set

i=1,...,e—=1)"=(,...,e—1,1,...,e—1,...,1,...,e—1) € J®V  (3.13)
We have a bijection
A (n,d) =5 Aln(e —1),d),
e— 1 e—1 e—
A= (AW ey A A D ey,
In this subsection, we use this bijection to translate the results of [EK] §7.2] into
the present notation.
For any A € A(n(e —1),d), we define
M == M, .
Let
M(n,d) = & M (3.14)
AeA(n(e—1),d)
Following [EK], we consider the generalized Schur algebra
S%(n,d) := Endy, (M (n,d)).
Since the algebra Wy is non-negatively graded, so are the modules M?. Since
M? has the degree zero generator

m)‘ = m)\,co

as a Wz-module, it follows that the algebra S%(n,d) is non-negatively graded.
For A € A(n(e — 1),d), let £, € S%(n,d) be the projection onto the direct
summand M?* of M(n,d) along the decomposition . We always identify
£,5%(n, d)é\ with Homyy, (M?*, M*) in the obvious way.
Let A€ A((n—1)(e—1),d —1). For j € J, we define

N o= (0,...,0,1,0,...,0,A1,..., )\(nfl)(efl)) € A(n(e —1),d),

e—1 entries

where 1 is in the jth position. Let z € e;Ze;, for some j,k € J. By [EK, Lemma
7.5], there exists a unique endomorphism i*(z) € S#(n,d) with

Y, e Nk
iMz):r mHt m 1] i = )\ ’
0 otherwise.

Moreover, by [EK| Lemma 7.6], we have a (non-unital) injective algebra homo-
morphism
1Y Z > Sh(nyd), 2 Y il (ejzep). (3.15)
g.keJ
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Define T%(n, d) to be the subalgebra of S%(n,d) generated by the set
S%(n,d)° U U iMN2).
AEA((n—1)(e—1),d—1)
Theorem 3.16. [EK| Theorem 7.7] Suppose that n > d. There is a graded
algebra isomorphism Dg(n,d) — T%(n,d).

Theorem 3.17. |EK| Theorem 6.6], Suppose that n > d. If A is a subalgebra
of §%(n,d) such that T#(n,d) C A C S*(n,d) and Ay, is a symmetric F,-algebra
for every prime p, then A = T%(n,d).

4. KLR ALGEBRAS
4.1. Lie-theoretic notation. Let
I:=7/eZ=H{0,...,e—1}.
We consider the quiver of type Agl_)l with vertex set I and a directed edge i — j
whenever j =i+ 1. The corresponding Cartan matriz (c;j); jer is defined by

2 ifi=j,
L) 0 A
Y =1 ifi— jori< 7,
9 ifi= .

Following [Ka|, we fix a realization of the Cartan matrix (c;;); jer with the
simple roots {c; | i € I}, the fundamental dominant weights {A; | i € I}, the
normalized invariant form (-,-) such that

(Oél',Oéj) = Cij, (Alaa]) = 51_7 (,La.] € I)a
the root system &, the set of positive roots ¢, and the null-root
d:=apg+ar+- -+ a1 € &4. (4.1)

Let Q4 := @,c; Z>o0a;. For 6 € Q4 let ht(6) be the height of 0, i.e. ht(0) is the
sum of the coefficients when 6 is expanded in terms of the simple roots «;. For
any m € Z>o, the symmetric group &,,, acts from the left on the set I™ by place
permutations. If ¢ =iy ...4,, € I"™ then its weight is |¢| == a;, + - + @, € Q4.
Then the &,,-orbits on I™ are the sets

I’ :={ieI™||i| =6}

parametrized by all 8 € Q4 of height m.

We always identify J = {1,...,e — 1} with the subset I\ {0} of I, cf. (3.1).
Let C’ be the type A.—; Cartan matrix corresponding to .J, and let ¥, C & be
the corresponding positive part of the finite root system. We define

<I>fr‘S ={-B+nd|B e, necls}and <I>i‘5 ={B+nd|B e, nels}

Set #5° := 7% U {6} and &7’ := #7° LU {5}. Note that &, = & U &', where
# = {nd | n € Zso} and & = 87° L1 &7°.
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4.2. Basics on KLR algebras. Let § € Q4 be of height m. Following [KL,Rs],
the KLR algebra (of type Agl_)l) is the unital Z-algebra Ry generated by the

elements {1;|i € I°YU{y1, ..., ym }U{t1, ..., %m_1}, subject only to the following
relations:

Lilj = d: 414 >ieroli =1; (4.2)
yr]-z' = 1iy7"; 7/}7"11 = 181«7:1/}7”; (43)
YrYs = YslYr; (4.4)
wrys = yswr if s 75 r, T+ 1; (45)
Urps = Psihy if ’T — S| > 1; (46)
Uryri1ls = (Yrr + 65y iy ) i (4.7)
Yr1¥rli = (Vryr + Gy iy ) a5 (4.8)
0 if 4, = tp41,
1; if 4pyq # i, i £ 1,
Wil =1 (Y1 — )l if 4 — iy, (4.9)
(y'r‘ y’l’—l—l) lf 7:1" <— i?“-‘rl;
(yr-i-l )( yr‘-‘rl)li if i, & Lri1;
(¢T+1¢r¢r+l + 1)173 i dpgo =4 = irg,
(¢T+1¢rwr+l - 1)1i if It = by < Gp41,
Yrhr 11y = (¢r+1¢r¢r+1 = 2Yr+1 (4.10)
+yr + yr+2)1i if Z‘7‘—‘,-2 =i, = Z‘7‘—1—17
Yr1rPrialy otherwise.

The cyclotomic KLR algebra Ré\o is the quotient of Ry by the two-sided ideal

Ié\o generated by the elements yfil’o 1; for all 4 = (i1,...,iq) € I?. We have the
natural projection map
mo: Rp—»R5° = Ry /I)°. (4.11)
The algebras Ry and RQO have Z-gradings determined by setting 1; to be of
degree 0, y, of degree 2, and ¢,.1; of degree —c;, ; ,, for all admissible r and 2.
Fork € [ = Z/eZ and i = (i1, ...,i,) € ", we set i7% := (i1 +k,...,in+K) €
I"™. Then for any d € Z~q, there is an automorphism
rot,: Rgs — Rys, 1; — 1i+n, Yr > Yp, Ps — Py (4.12)

for all admissible %, r, s.

Fixing a preferred reduced decomposition w = s, ...s,, for each element w €
S, we define the elements 1y, := ¥, ... %, € Ry. In general, 1, depends on
the choice of a preferred reduced decomposition of w.

Theorem 4.13. |[KL| Theorem 2.5], |Ro, Theorem 3.7] Let 6 € Q4+ and m =
ht(0). Then

{Ywyy" - YL | w € G, k.. ki € Lo, i€ 17}
s a Z-basis of Ry.
As a special case of [KK| Remark 4.20], we have
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Theorem 4.14. Let 6 € Q. Then the Z-module Rgo is free of finite rank.
By |SVV, Proposition 3.10] (see also [We, Remark 3.19]), we have

Theorem 4.15. Let 0 € Q. Then for any field k, the algebra Rgf( 18 symmetric.
More precisely, Ré\(ﬂl admits a symmetrizing form of degree (Ag — 6, Ao — 0).

4.3. Parabolic subalgebras. For 6;,...,0, € Q+ and § = 01+ --+0,, we have

the idempotent
Lo,,...0. = Z Liw -

iMerdr . i egor

to,,..0,° Ro, @ --- @ Ry, — 1g, 9, Rolo, 0, (4.16)
whose image is the parabolic subalgebra
Ry, .6, C1lo,,. 0. Rele,,. 6, C Ro.
Denoting by 14 the identity element in Ry, we have
Loy,...0, == to,,..0.(lg, @---®1p,). (4.17)

Note that we always identify Ry, ® --- ® Ry, with Ry, ¢, via g, . g,
We have the corresponding induction and restriction functors

Indgh_n?gr: Rgl,_n?gr-mod — Ryp-mod, W Rglghn_,gr ®R91 W,

,,,,, O
ReSgl,m’gri Rg—mod — Rgl,m’gr—mod, U+— 1917“"9TU.

Let Wi € Rg,-mod, ..., W, € Ry -mod. We define
Wio---oW, :=1Indg, o Wi K- - KW,

We refer to the elements of I? as words. Given W € Rp-mod and i € 1Y, we say
that 1 is a word of W if 1;W # 0. If every 1;W is free of finite rank as a Z-module,
we define the formal character of W as chy W = >, _ o (dim, 1;W)i € Z[g, ¢~ 1]-1°.

Given a composition A € A(r,m) and words i e i) e M) a word
i€ I™ is called a shuffle of sV, ... i) if 4 =g- (i(l) . ..i(T)) for some g € 2°.
By [KL, Lemma 2.20], an element ¢ € I"™ is a word of Wj o --- o W, if and only
if ¢ is a shuffle of words sV, ..., (") where ¢(®) is a word of W, for s = 1,...,r.

We will need the following weak version of the Mackey Theorem for KLR
algebras, see |[Ev, Proposition 3.7] or the proof of [KL, Proposition 2.18]:

Lemma 4.18. Let 64,...,0,,0],...,0; € Q4 satisfy 4 +---+60, =0, +--- +
0, =: 6. Define m = ht(f), A := (ht(01),...,ht(0,)) € A(r,m), and N :=
(ht(67),...,ht(6;)) € A(t,m). Then

lg,,..0,Rolor o0 = > Roy 0,YwRer 0
wergN

With the notation as in the beginning of the subsection, we have the parabolic
subalgebra

Rglo,,er = ﬂ-H(Rela"':aT‘) g Rgo
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Let 6,7 € Q4. We have a natural embedding (p,,: Rg — Rp,,  +— tgn(x ® 1;).
The map g4, o Cp,, factors through the quotient Ré\o to give the natural unital
algebra homomorphism

Com: RY® — Ry®. (4.19)

4.4. Divided power idempotents. Fix ¢ € I. Let m € Z>o and denote by
wo the longest element of &,,. The algebra R, is known to be the nil-Hecke
algebra and has an idempotent 1;im) 1= ¥y, [[1e, y5 !, cf. [KL|. The fact that
1,(my is an idempotent follows immediately from the equality

Liom) Ywo = Yup (4.20)
noted in [KL, §2.2].

Lemma 4.21. For any x € Ry, there existsy € Zlyi, . .., ym| such that 1oz =
Y y-

Proof. By Theorem we can write ([T, y5™ )z = 3, cq,, Yuy(w) for some

S

y(w) € Z[yla”'aym]' So 1i(m>x = 77Z)wo(l_[glzl yg_l)x = ZwEGm ¢wo¢wy(w) =
Yoy (1). O

Let 6 € Q4. We define IgiV to be the set of all expressions of the form
(Z'gml), ce ,is«mT)) with mq,...,m, € L>0, 11,0 €1 and myoy, +- -+ mpay, =

0. We refer to such expressions as divided power words. Analogously to the words,
for Kk € I = Z/eZ and a divided power word ¢ = (igml), ey ing)), we define the
divided power word

it = (4 5) ™, (i R) ).

We identify I? with the subset of Igiv which consists of all expressions as above
with all m; = 1. We use the same notation for concatenation of divided power
words as for concatenation of words.

Fix i = (i(™),...,i(™)) € 1% . We have the divided power idempotent

]-i = Lm1o<i1,...,mTair (125’"11) ® e ® 17/$‘MT>) € R@

Define 4! := [my]' - - - [m,]" and

(@) ==Y mp(mg —1)/2. (4.22)
k=1

Set
Ti= (i1, ity iy ip) €10, (4.23)
with i repeated my times. Note that 1,1; = 1;1. = 1..

Lemma 4.24. [KL| §2.5] Let U (resp. W) be a left (resp. right) Rg-module, free

of finite rank as a Z-module. For i € Igiv’ we have

dimg (1;U) = i!q<i>dimq (1;U) and dimg (W1;) = i!q_<i>dimq (W1;).
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4.5. Semicuspidal modules. Let d, f € Z>g. A word ¢ € I is called separated
if whenever 4 = jk for j € I? and k € I", it follows that 6 is a sum of positive
roots in éj—L‘s and 7 is a sum of positive roots in éié. We denote by Isfi‘sp the set of
all separated words in I%. An Rgs-module is (imaginary) semicuspidal if all of

its words are separated. Note that a shuffle of separated words is separated, so:

Lemma 4.25. If U € Rgs-mod and W € Rjys-mod are semicuspidal modules,
then U oW € R4 p)s-mod is semicuspidal.

Set lngep = Zield(g\ldg 1;. The (imaginary) semicuspidal algebra is defined as
sep

Cus = Ras/RasLnsepRas- (4.26)

The category of finitely generated semicuspidal Rgs-modules is equivalent to the
category Cys-mod. A word i € I is called semicuspidal if the idempotent 1; is
non-zero in Cys. Denote by Ig? the set of all semicuspidal words. Then, setting
Lnse i= D 4e pao\ ds L, we have Cys = Rys /RaslnscRas. By definition, we always
have I% C Isde‘sp, but this containment may be strict, see Example below.

Everything in this subsection so far makes sense over any ground ring. In
particular the notion of a semicuspidal module over Rgsr is defined for any field
F. We now explain the classification of the semicuspidal irreducible Rgs5 p-modules
for an arbitrary field F.

We begin with the case d = 1, in which case the semicuspidal irreducible Rgs -
modules are parametrized by the elements of J = {1,...,e — 1} = I\ {0}. More
precisely, let j € J. We denote by I%J the set of all words in I° of the form
Okj where k is an arbitrary shuffle of the words (1,2,...,7 — 1) and (e — 1,e —
2,...,j+1). Let Ls ; be the graded Z-module with basis {v; | i € %7} where all
basis elements have degree 0. By [KR) Theorem 3.4], there is a unique structure
of a graded Rs-module on Ls; such that

Vg i if sp4 € 109,
1jvi = (51:7‘7"1),,:7 YrVi = 07 wr’l}i = { OST’L lf ST,I: € I&j (427)
s

for all admissible 4, 5, 7. All the words in I%7 are separated, so the module Ls;
is semicuspidal, which implies that 1% C Iséc.
For example,
' ={(0,e—1,e—2,...,1)} and I°*'={(0,1,...,e—1)},
so Ls1 and Ls.—; have Z-rank 1. On the other hand, for e > 3, the module
Lse—o has Z-rank e — 2, since
%72 = {(0,1,...,re—1,r+1,r+2,...,e—2) | 0<r <e—2}.
For a composition d = (dy,...,de—1) € Ale — 1,d), consider the semicuspidal
Rgs-module V4 .= Lg‘i1 0---0 Lgdee_‘ll.

Theorem 4.28. Let F be an arbitrary field. There is an assignment X — L(X)

which maps every element A € 27 (d) to a semicuspidal irreducible R g5 p-module
L(\) such that

(i) {LA) | X € 2/(d)} is a complete and irredundant set of irreducible
semicuspidal Rgs5p-modules;
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(11) Let d = (dl, ce ,defl) € A(e —1, d) and
27(d) = {x=W, ... XDy e 2 () | |1AD| = d; for all j € J}.
Then {L(A) | XA € 27(d)} is the set of composition factors of V2.

Proof. This is essentially contained in [K2] and [KM;], but we provide some de-
tails for the reader’s convenience. In this proof, we drop the subscript F from our
notation. Fix n € Z>4. Let j € J, m € Z>p, and v € A(n,m). In [KM;| §1.4],
certain submodules Z7 C L§"' are constructed. Let Z; := @%A(n’m) Z; and
Fm,j = Ras/Anng;(Z;). In [KM;, Theorems 4 and 6] a complete and irredun-
dant family {L;(\) | A € Z(m)} of irreducible .7}, j-modules is constructed and
it is proved that Z; is a projective generator for .7, ;, hence every L;(\) appears
as a composition factor of Z;. But Z; is a direct sum of submodules of ngf‘ and
one of the summands is Lg"" itself. So every L;j(\) appears as a composition
factor of Lg"!.

Now, for A € 27(d), we consider the Rgs-module L(A) := Li(AM)o--- o
Le_1 (A1), By [Ks, Theorem 5.10], this module is semicuspidal and irreducible,
and {L(X) | A € 27(d)} is a complete and irredundant set of irreducible semi-
cuspidal Rgsr-modules, proving (i). Now (ii) follows from the description of the

composition factors of each L;i:j in the previous paragraph. O

Corollary 4.29. The set I% is exactly the set of all shuffles of words i(l), i@
such, that each ¥ e Ujes 1%,

Proof. 1f 4 is a shuffle of words i, .3 such that 4% € [%a fora =1, ...,d,
then 4 is a word of the semicuspidal module Ls ; 0---0Ls ;,, 5017 € Isdc‘s. Conversely,
let 2 € Isdc‘s. By definition, 1; is non-zero in Cys. Since 1; is an idempotent, it
follows that 1; 5 := 1; ® 1f is non-zero in CA’d(;,F for some field F. Hence there is an
irreducible semicuspidal Rgsp-module L such that 1; 7L # 0. By Theorem [4.28]
the word 4 is a shuffle of words ¢\, ..., (9 such that each ¢(% € |—|jeJ %, 0O

Example 4.30. Let ¢ =5 and d = 2. Then the word 0012342341 is in I | but
is not in I by Corollary

4.6. Induction and restriction of semicuspidal modules. Throughout the
subsection we fix d € Z>g, n € Zsp and A = (A1,...,A,) € A(n,d). Denote
Rys := Rx5,... 0,6 C© Ras.
Let 1,5 denote the identity element of Rys. Define the semicuspidal parabolic
subalgebra R R
Cxs € 1x5Cas1xs

to be the image of R)s under the natural projection Rd(;—»éd(;. Whereas the
parabolic subalgebra R)s has been identified with Ry s ® --- ® Ry, s via the
embedding ¢),5... 1,5, it is not clear a priori that CA',\(g = C'Alg R ® C’Ang. This
will be proved in Lemma [£.33]

We call an Ry 5®---® R, s-module W semicuspidal if (1,0)®---®1,0))W =0
whenever i(l), ey i are not all separated. This is equivalent to the property
that W factors through the natural quotient CA',\I(;@- . -®CA',\n5 of Ry,s®---®@Ry, 5.
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Lemma 4.31. We have:
(i) If W is a semicuspidal Rqs-module, then Resy, s, A, sW is a semicuspidal
Ry 6 @ ® Ry, s-module.
(i) If sV e M9 . i e MO and i1 ™ e I8 then we have that
i e o i) e o,
Proof. This is known and can be proved combinatorially using Corollary [£.29] We
sketch a representation-theoretic proof for the reader’s convenience. Clearly (i)
and (ii) are equivalent, and hence it suffices to prove (i) with scalars extended to C

in the case where W is irreducible. This follows for example from [McN|, Theorem
14.6]. O

-(1) . . . .
Lemma 4.32. If i) e e ™ e I2n0 | then there is an isomorphism of
Rgs-modules
Casl;n) ;0 — Cayslym 0+ 0 Cxslym,s
Ly ;o = 1Ins. 25 @10 ® - @ 1m.

Proof. Since Cy;61,1) 0 -+ 0 Cy, 51, is semicuspidal, we can consider it as a
Cys-module. So there exists a homomorphism as in the lemma. To construct
the inverse homomorphism, use adjointness of induction and restriction together

with Lemma [4.31|1). O

Lemma 4.33. The natural map Ry ® -+ ® RAng‘—>Rd5—»C‘d5 factors through
C’A15® ®C’>\ s and induces an zsomorphzsm CA15® ®C>\n5 = CM Moreover,
Cuslas is a free right Chg-module with basis {thy | w € DY,

Proof. That the map factors through C MR- ® C '\, follows from Lemmam
For the remammg claims, let us consider the Rd5 module W := C)\l(; 0---0 CAn .

By Lemma 4.25, the module W factors through C’d(g. On the other hand by the
Basis Theorem for Rgs, we can decompose W = @ ,cger Yuwlirs ® Cri5 ®

- ® OAng as a Z-module, with each summand being naturally isomorphic to
Cr5 ®---®Cy,5 as a Z-module. The lemma follows. O

In view of the lemma we identify C’A15 R ® CA',\n(; with CA',\(g. Then:

Corollary 4.34. Suppose that for each v =1,...,n we have a C'Arg-module Wi
Then there is a natural isomorphism of semicuspidal Rg5-modules

Wio-oW, = Caslrs @¢ , (W1 R - RW,),
Ul QW R - @wy — Ulys QW R -+ Q W,
where u € édg is the image of u € Rys under the natural projection Rdg—»é’dg.

From now on we identify the induced modules as in the corollary.

5. ABACI, TABLEAUX AND ROCK BLOCKS

5.1. Abaci. We will use the abacus notation for partitions, see [JK| Section 2.7].
Recall that we have fixed a number e € Z>9 and I = Z/eZ. When convenient
we identify I with the subset {0,1,...,e — 1} C Z. We define the abacus A® :=
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Zx>o x I. For i € I, the subset R; := Z>o x {i} C A® is referred to as the (ith)
runner of A°.
Let A be a partition, and fix an integer N > ¢()), so that we can write A =

(A, ,An). Let
AvA) ={ M +N—-Fk|k=1,...,N} C Z>o. (5.1)
The abacus display of X is
AG(N) :=A{(t,i) e A® et +ie Anv(N)}.

The elements of A% (A) are called the beads of A%(X), and the elements of
A\ A% () are called the non-beads of A3 ().

We have the total order < on A® defined by the condition that (¢,4) < (g, j) if
and only if et +i < eq+ j. If (¢,i) < (g,7), we say that (t,4) precedes (q,j) and
(q,7) succeeds (t,i). For any r € Z~q, we say that a bead (¢,7) of A% (\) is the
bead with number r in A% (N) if exactly r — 1 beads of A%(A) succeed (¢,1), and
we say that a non-bead (t,7) of A%;()) is the non-bead with number r in A5 (N) if
exactly 7 — 1 non-beads of A%/(A) precede (t,1).

It is easy to see that the bead (t,4) with number r of A% (\) satisfies et +i =
N + A\, — r. Moreover, if (N, \},...) is the conjugate partition to A, then the
non-bead (t,i) with number s of A% (\) satisfies et +i = N — X\, + s — 1. Using
these observations, it is easy to prove the following well-known fact:

Lemma 5.2. Let A € & and (r,s) € N. Then (r,s) € [A] if and only if the bead
with number r succeeds the non-bead with number s in Af(A).

For A € &, we write b;j(\) := |AS(A) NR;| for i € I. The e-core of X is the

partition core(\) defined by
AN (core(N)) = {(t,i) e A®|iel, 0<t<bi(N)}.

Recall the notation (5.1). The e-quotient of A is defined as the multipartition
quot () = (A\D);e; € 2! such that for every i € I, the partition A is deter-
mined from Abi(A)(A(i)) = A% (A) NR;, where we have identified R; with Z>(. The
e-quotient of A depends on the residue of N modulo e and changes by a ‘cyclic
permutation’ of the components A(Y) when this residue changes. So the e-weight
of A, defined as wt(A) := | quot ()|, does not depend on N.

Note that A = core(A) if and only quot 5 (A) = &, in which case A is said to be
an e-core. For any e-core p and d € Z>g, we set

Py ={A e P |core(A) =p}, Ppa:={re€ P, |wt(\) =d}.

The following is easy to check and well known:
Lemma 5.3. The map A — quot()) is a bijection from 2,4 to 21(d).

The (e-)residue of a node (r,s) € Nis res(r,s) :==s—r+eZ € I =Z/eZ. For
i € I, we say that (r,s) is an i-node if its residue is i. For A € &, we define

cont() := Z Qres(u) € Q+-
u€A]

Lemma 5.4. [JK| Theorem 2.7.41] Let p be an e-core, d € Z>q, and A\ € 2.
Then cont(X\) = cont(p) + do if and only if X € P, 4.
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5.2. Tableaux. Let v be a partition. A node u € N is called an addable node for
vifu ¢ [v] and [v] U{u} is the Young diagram of a partition, and w is called a
removable node of v if u € [v] and [v] \ {u} is the Young diagram of a partition.
For i € I, we denote by Add(v,i) (resp. Rem(v, 1)) the set of all addable (resp.
removable) i-nodes for v. We say that a node (r,s) is above a node (r/,s") if
r < r’. Given a node v € N and a finite subset U C N, denote by a(v,U) the
number of elements of U which are above v.
Let 2 € I and U be a set of removable i-nodes of v. Define

du(w)= > alU)- > a(U)

veEAdd(v,i) vERem(v,i)\U
Let A\ p be a skew partition, and 6 = cont(A \ p) == >~ cap\[] Qres(u) € @+

Fix ¢ = (igml), . (mr)) € IS . An i-standard tableau of shape \ \ u is a map
t: [A]\ [u] — {1,...,r} such that

(i) t(u) < t(u’) whenever u, v’ € [A]\ [u] and u < u/;

(ii) for all k =1,...,7 and u € t~1(k), we have resu = iy;

(iii) for all k = 1,...,r, we have [t71(k)| = my.
We denote the set of all ¢-standard tableaux of shape A\ p by Std(A\ p,2). If
t € Std(A\ p, %), we define

deg(t Zdt s (M (LK) U Tul).

Note that deg(t) depends on A and g, not just on the set [A]\ [u]. If i € I and
1 = &, then the notion of an ¢-standard tableau is the same as the usual notion
of a standard tableau with residue sequence ¢ as in [BKW] §3.2], and the notion
of the degree agrees with the one from [BKW| §3.5]. If ¢ € I’ for some 1 # 6,
then we set Std(A \ p, %) := @. We denote

StdA\p) = ||  Std(A\ p,d)
geJcont(A\p)
Let ¢ = (1 gml), o ,ismr)) E!giv and 7 € I? be as in 1) Given t € Std(\ \
K, %), a tableau s € Std(\ \ y, ) is called a refinement of t if

el (k) = s ([m 4 mp + 1 ma 4+ my)
forall k=1,...,7. Let £ C Std(\\ u, ) denote the set of all refinements of t.
Lemma 5.5. For any t € Std(\ \ u, 1), we have Y ; q8(®) = 4lgdee(®),

Proof. The lemma is easily reduced to the case r = 1. In that case, let s € ¢
be the tableau such that for u,v € [A] \ [u] the node u is above v if and only if
s(u) < s(v), in other words we assign the numbers 1,...,m := my to the nodes
of A\ p from top to bottom. Then deg(s) = deg(t) + m(m — 1)/2. We have
t = {ws | w € &,,}, where ws is the tableau defined by (ws)(u) = w(s(u)). In
view of [BK'W, Proposition 3.13], we have deg(ws) = deg(s) —2¢(w), where £(w)
is the length of w € &4. So

queg(s) _ qdeg(t)+m(m—1)/2 Z q—%(w) _ [m]!qdeg(t)’

SG‘E weem
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where the last equality comes from the well-known formula for the Poincaré poly-
nomial of the symmetric group [Hu, §3.15]. O

5.3. Dimensions and core algebras. Recall the notation (4.22). The following
is a variation of a known result:

Theorem 5.6. For any 0 € Q4+ and i,j € Igiv, the Z-module 1,-Rg°1j 1s free of
graded rank
dimg (LRY1L;) = @0 3 glesleyests)
HEP

seStd(u,)
teStd(p.g)

In particular, the idempotent 1; is non-zero in Ré‘o if and only if Std(u,t) # @
for some p € Z.

Proof. The freeness statement follows from Theorem Extending scalars to
C and using [BKj, Theorem 4.20] yields the graded rank formula in the case
when 4, j € I?, and the general case then follows from Lemmas and (|

Recall the notation ¢(A) for an algebra A from
Theorem 5.7. Let k be a field, p be an e-core and d € Z>y. Then

A
E(Rcc?nt(p)er(S,k) = "@J(d)‘
Proof. By [KK| Theorem 6.2] or [LV|, Theorem 7.5], the number K(ngnt(pwd&k) is

equal to the dimension of the weight space V' (Ao)a,—cont(p)—ds for the integrable

highest weight module V' (Ag) over the Kac-Moody algebra g of type ASJI. It

is well known that this dimension is equal to |227(d)|, see e.g. [Ka, (13.11.5)]
or [LLT) Sections 4,5]. O

Let p be an e-core. We pick an extremal word (i{*,...,i%) € 1) for the
left regular module Ré\oont(p)’ see [Ko|, §2.8]. In particular, i # ix11 for 1 <k <.

Let i = (i\"), ..., i)y e 15m),

Lemma 5.8. Let p be an e-core and @ € Idc?ft(p) be chosen as above. Then
there is an isomorphism of graded Z-algebras R?oont(p) = EndZ(Ré\(?m(p)li), where
T € Ré\;]nt(p) gets mapped to the left multiplication by x.

Proof. We clearly have a homomorphism ¢: Ré\(?m(p) — EndZ(Ré\(?nt(p)li) as in

the statement. In view of Theorem to prove that ¢ is an isomorphism, it
suffices to prove its scalar extension @y is an isomorphism for any algebraically

closed field k. By Theorem the algebra Ré\o‘)nt(p) ;. has only one irreducible

module L up to isomorphism and degree shift. Considering the composition
series of the left regular module over Rho we see that ¢ is an extremal

cont(p),k’
weight for L, hence by [Ko, Lemma 2.8], the space 1;L is 1-dimensional. It
follows that Hom _a, (Ré\oont(p)]k]'i’L) & 1;L is 1-dimensional, so Ré\fm(p) L

cont(p),k
Ao

is the projective cover of L. We claim that in fact R ( 1; = L. This
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is known for k = C since R is a simple algebra: indeed, by |BKj|

ont(p),C
it is a defect zero block of an Iwahorl Hecke algebra at an eth root of unity.

A Ao ~ A . . .
Hence Homeoom(p)c(RC‘?nt(/’) ,Rcont(p)cl ) &1 Rcoont( )(cli is 1-dimensional.

This proves that 1; RCO t(p )1 has rank 1 as a Z-module, whence 1; RAo conty( 1; =
nt(p),k
A Ao ~
Hom RO, k(Rcé’nt(p) 1; Rcont(p) i 1i) has dimension 1. Hence, Rcont(p) wli &L
We deduce that Rco‘)nt( )k is a simple algebra and ¢y is an isomorphism. ([

Recall the map (p,, from (4.19).

Lemma 5.9. If p is an e-core and d € Z>(, then the map

. pA
Ceont(p),5* oty = Leont(0),d6 Rt p) 45 Leont(0).do
18 injective.
Proof. By Theorem 4 it suﬂices to prove that the scalar extension of the map

to C is injective. By Lemma Ré\oom (0),C is a simple algebra, so it is enough

to show that 1cong(p), dﬁRcont( )+ dalcont (0),ds 7 0. The last fact follows easily from
Theorem [B.6 O

5.4. RoCK blocks. Let p be an e-core and d € Z>1. Following [Tu,}, Definition
52], we say that p is a d-Rouquier core if there exists an integer N > ¢(p) such
that for all ¢ = 0,...,e — 2, the abacus display A% (p) has at least d — 1 more
beads on runner ¢ + 1 than on runner ¢. In this case,

k:=—N+eZ cZjel

is well-defined and is called the residue of p.
If p is a d-Rouquier core, we refer to the cyclotomic KLR algebra R0
as a RoCK block.

cont(p)+dd

Remark 5.10. The term RoCK comes from the names of Rouquier [R;], Chuang
and Kessar [CK|. We refer to the algebra Rcont( Jd
notation as in Section l the block Heong(p)+as(q) of an Iwahori-Hecke algebra is
cont(p)+d5.F> 5€€ IBK;,R2]. Note however that the
analogous isomorphism in general does not make sense over Z. Moreover, if k is a
field such that e = mchar k for some m € Z~1, the algebra ng is not in general
isomorphic to a block of a Hecke algebra.

s as a block since, with

isomorphic to the F-algebra Rho

We now review and develop some results from [Ev, Section 4]. Throughout
the subsection, we fix d € Z~g and a d-Rouquier core p of residue x. We then set

a = cont(p) +dd € Q4.
Let
Q: Rys — Rcom( 1a50 & Ta(teont(p),a5 (Leont(p) ® TOR(2))),
cf. (4.11)), (4.12) and (4.16]). Note that Q is an algebra homomorphism.
Lemma 5.11. Let i € I%, and j € I? be such that Std(p,j) # @. If 1J(z+n) is
then 1 € Ié?. In particular, Q) factors through Cus.

Nnon-zero in Rcont( )+do?
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Proof. This follows from [Ev, Lemma 4.6] thanks to Theorem and Corol-

lary O
In view of the lemma, from now on, we will consider €2 as a homomorphism
A A
Q:Cy5 — Rcoont(p),dé‘ (5.12)

Lemma 5.13. Let o be a partition such that [o] € [p]. Then the number of
nodes of residue k in [p] \ [o] is less than (|p| — |o|)/e.

Proof. In this proof we use abacus displays with N beads, where N is greater
than the number of parts in all the partitions involved and N + eZ = —k. Recall
from that for 7 € &2, we denote b;(7) := |AYG(7) NR;|. For 0 <1 < e, we
denote b>(7) := Zf;ll bi(7). Recall also the fundamental dominant weights A;
from Let 0 < m < e be the integer such that m + eZ = —k.

For any 7 € &, we claim that

e—1

e(Ag,cont(7)) — || = (e - DN _2 (e =m)m _ Z b>i(7). (5.14)
=1

Indeed, it is straightforward to check that both sides are 0 when 7 = &, since
bo(D) ="+ =bp-1(8) =bp(@)+1="---=b._1(&) + 1. Furthermore, adding a
box of residue ¢ € I to 7 changes both sides by e — 1 if i = x and by —1 if i # K
(for the right-hand side, consult |[Evl Lemma 4.2]). The claim is proved.

Let 1 € {0,...,e—1} and b = b;(p). Suppose for a contradiction that b>;(c) >
b>1(p). As p is a Rouquier core, A% (p) contains the rectangle [0,b—1] x [[,e —1],
whence

[ AR (0) N (Zzp x [le = 1])| > [AN(p) N (Z2p x [l e = 1])],
and it follows that |Anx(0) N Zspe| > |An(p) N Z>pe|. This is a contradiction
to the hypothesis [o] C [p]. Hence, b>i(0) < b>i(p) for all [ € {0,...,e — 1}.
Moreover, the inequality must be strict for at least one [ € {1,...,e — 1}, for
otherwise we have b; (o) = b;(p) for all i € I, and so p = core(o), contradicting the

hypothesis [o]] € [p]. Hence, using (5.14)), we deduce that e(A,, cont(o)) — |o| >
e(Ag, cont(p)) — |p|, which implies the lemma. O

Recall that throughout the subsection a = cont(p) 4 dé is such that R0 is a
RoCK block.

A
Lemma 5.15. We have 1cont(p)7d5fo\0 Leont(p),ds = Rct)(]nt(p%dé.

Ao
cont(p),dd

gether with the elements v, for w € (hde) Pleldel) \ 11} Thus, it will suffice
to show that 1cong(p),as¥wleont(p),ds = 0 in R2o for each such w. If not, then

Lir((iry+m)Puwlj(g+ey # 0 for some 4,3 € 1°°"P) such that Std(p, 5),Std(p,j’) are

non-empty, and some %, € Ig:‘s, see Theorem and Lemma In this case
w(F (i) = 5'((I')™F). Moreover, w = [[}%,(|p| — m +1,|p| +t) for some m > 0,
and therefore the last m entries of 3’ are i1 +k, . . ., i,, + /. Since 4 is semicuspidal,
the number of entries « in the tuple (i1 + &, ..., iy, + k) is at least m/e. But by

Lemma this means that Std(p, j') = &, a contradiction. O

Proof. By Lemma |4.18 lcont(p),d(SRgOlcont(p),dﬁ is generated by R to-
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By Lemmas [5.9 and [5.15] there is a natural unital algebra embedding
Ao
Ccont(p ds- Rcont( ) - Rcont(p) ds — 1cont( )dﬁRa 1cont(p),d6-

We always identify R with a subalgebra of RAo ),do via this embedding.

cont(p) cont(p

We consider the centralizer of Rcoont( ) in RM

Zya =2  (RM ).

Rcont(p) dé cont(p)

cont(p ),dé'

Lemma 5.16. We have an algebra isomorphism RMo ® Z,4q =y RAo

cont(p) cont(p),dd

given by a ® b +— ab.
Proof. This follows from Lemma using |Ev, Proposition 4.10] (whose proof

goes through over Z). O
Recalling , we denote
Cpa = C’dg/ker Q. (5.17)
We have the induced embedding 2 Cha— RCOnt (0),d8 . By Theorem |4.14, Ré\(fnt(p) ds

is Z-free, so
Lemma 5.18. The Z-module C,, 4 is free of finite rank.
Lemma 5.19. We have 2,4 = Q(de).

Proof. 1t is clear from the definitions that Q(C,4) = Q(éd(;) CZ,4 Conversely,

let z € Z,45. We can write x = Z:’il a;b; for some aq,...,a, € Rcsnt(p) and
bi,...,by, € Q(édg) = Q(C,q), and we may assume that ai,...,am are linearly
independent with a; = 1. By Lemma z=by, 50z € QC,a). O

In view of Lemma [5.16] we deduce:

Corollary 5.20. We have:
(i) The map Q: Cpq — 2,4 is an algebra isomorphism
(i) There is an algebra isomorphism R™ @ Cpa — RM0

" cont(p)
a®b— al)(b).
Remark 5.21. By Lemma the algebra RAO #(p) is isomorphic to a graded ma-
trix algebra. Consider the homogeneous matrix unit F 1 in R Ao

CR .

ont(p) = ~ “cont(p),dd

By Corollary [5.20, we have C), 4 = E; 1Rcont(p) 4sF1,1. So by Lemma |5.15) we
have C, 4 = El,llcont(p),ddRa El,llcont(p),dé- Note that e := Eq 1 1cont(p),as 18 an

cont(p),dd gwen by

idempotent in R4, so C, 4 = eRA% is an idempotent truncation of RA.

The definition of C, 4, Lemma and Corollary make sense and can be
proved over an arbitrary unital commutative ring k, so the algebra C, 4 defined
over k is isomorphic to the idempotent truncation

(e® )R (e® 1) = (eR)e) @k 2 C .

Corollary 5.22. For any fieldk, the algebra C,, 4\ is symmetric. More precisely,
it admits a symmetrizing form of degree —2d.
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Proof. By Remark C),q is an idempotent truncation of R20. By [SY], Theo-
rem IV.4.1], an idempotent truncation of a symmetric algebra is symmetric, with
a symmetrizing form obtained by restriction. So it suffices to prove that Rg(]’k is
symmetric with a symmetrizing form of degree —2d. But this follows from The-
orem and an easy Lie-theoretic computation, see [K;, Lemma 11.1.4]. O

6. DIMENSIONS

Throughout the section we fix d € Z~q, a d-Rouquier core p of residue x, and
n € Zso. We also fix an integer N > |p|+ de such that N +eZ = —k and assume
in this section that all abaci have N beads, cf.

The main goal of this section is to compute dimensions of certain idempotent
truncations of the algebras C, 4. The idempotents we use here are the so-called
Gelfand-Graev idempotents first considered in [KMj|.

6.1. Gelfand-Graev idempotents. Recall from §4.5|that for all j € J, we have
defined special Rs-modules Ls ; with chy Ls; = > .5, ¢. From now on, for every
j € J, we fix an arbitrary word

V= (lj1,. .. L) € 1%, (6.1)
Consider the divided power words
V(d) =0, el (e (6.2)

Recall the notation (3.7) and let (A, ¢) € A% (n,d). We set
I\ €) =1 (\).. . 17 (\,) e T
Now, we define the Gelfand-Graev idempotent v and the integer ay as follows:

M= Tine) € Ras, (6.3)

y
ay:=—{(\e)=—e> MM —1)/2, (6.4)

cf. In the special case n = 1, A = (d), ¢ = (j), we also use the notation

We set
w:=(1,...,1) € A(d,d), (6.6)
7= 4P € LusRaslus. (6.7)
beJd
Lemma 6.8. For any (A, c),(V,c) € A®(n,d), we have
dimq(,}/)\,cde,}/\’,c’) = ¢ Z qdeg(t)+deg(t’)' (69)
Mef@p,d

teStd(p\p, L(A,e)T")
t’GStd(,u\p, l()\’,cl)+“)
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Proof. Tt follows from Lemma Theorem and Corollary that
dimq(RAO )dimq(v’\’cde'y)‘/’c/) =

cont(p)
_ oy Z glos(t)+deg(t)), (6.10)

lu‘eyp,dz j’j/elcont(p)
cestd(u, 3 () )
t/eStd(u, j(LN ) T))

For each p € &, 4and j € I cont(p) " in view of Lemma we have a bijection
Std(, 5(I(A, €)™)) = Std(p, 3) x Std(u\ p,I(A, €)™"), t > (to, 1)
where to = t|f,) and ti(u) = t(u) — |p| for all u € [u] \ [p]. Moreover, by
definition, deg(t) = deg(tp) + deg(t1). Hence, the right-hand side of (6.10) is

equal to the right-hand side of multiplied by

Z gles(to)+deg(tg) dimq(Ré\oOnt(p))’

to,t(EStd(p)

and the result follows after dividing both sides of (6.10]) by dimq(RA0 )). O

cont(p

The main aim of the rest of this section is to determine the rank of the free
Z-module Y¢C, 4* for any (A, ¢) € A (n,d), see Corollaries and

6.2. Colored tableaux. A horizontal strip is a convex subset U of N such that
whenever (r,s) # (k,1) are in U we have s # [. A wvertical strip is a convex subset
U of N such that whenever (r,s) # (k,[) are in U we have r # k.

Recalling the notation of for any i € I, weset N = Z-gxZ-ox{i} C N,
Identifying N’ with N, we have a notion of what it means for a subset of N/ to
be a horizontal or vertical strip. Given j € J, we say that a subset U of N! is a
j-bend if the following conditions are satisfied:

(i) U ¢ NTI=1 NI,
(i) U NN“=1 is a horizontal strip in N©¥~1 and U NN’ is a vertical strip
in N7+,

Now let u € 21(d). Given (A, ¢) € A (n,d), we denote by CT(; A, ¢) the set
of all weakly increasing maps T: [u] — {1,...,n} such that forall r =1,...,n
the set T-1(r) is a c-bend and |[T~!(r)] = A.. We refer to the elements of
CT(u; A, c) as the colored tableaux of shape p and type (X, c).

Colored tableaux will play the role of a combinatorial intermediary connecting
the standard tableaux appearing in Lemma and the explicit expression for
dim 'y’\’cCp,dfy‘” appearing on the right hand side of the formula in Corollary

6.3. Counting standard tableaux in terms of colored tableaux. Given
0<i<eandu€ ZxZ, we call the image of [(i + 1,17 1)] under the
translation of Z x Z sending (1,1) to u the e-hook with vertex w and arm length
1, or simply an e-hook.

Recall the abacus notation from §5.11 For any i € I, let b; = b;(p), bs; =
Z;;}H bj and bo; = Z};E b;. Since p is d-Rouquier, we have b1 > b; +d — 1
fort=0,...,e —2, and hence, for all ¢+ < j in I,

b>i—b>j > (bi—i-d—l)(j—i), (6.11)
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bej —bei < (bj —d+1)(j — ). (6.12)
Given (r,s,i) € NI, define the integers

x(rys,i):=r—(e—i—1)(b; =7+ 8) + b>,
y(r,s,i) :=s+i(bj —r+s) — by.
Define
H(r,s,i) CZ x Z

be the e-hook with arm length i and vertex (z(r,s,i),y(r,s,i)). The following
lemma is a refinement of |[CK| Lemma 4] and [Ev, Lemma 4.3].

Lemma 6.13. Let p € &, 4 and p = quot(p). Then

[l =Tl U || Hw.

u€u]

Moreover, every H(u) with u € [u] has vertex of residue k.

Proof. 1t is easy to check that y(r,s,i) — z(r,s,i) = —N (mod e), so the second
statement holds.

For the first statement, there is nothing to prove when || = 0, so we assume
that |p| > 1 and choose (7, s,7) € [p] such that [u] \ {(r,s,7)} = [v] for some
v e 21(d—1). Arguing by induction on d, we may assume that the lemma holds
for the partition v € &, 41 determined from quot(r) = v, so it is enough to
show that [u] \ [v] = H(r, s, 7).

Let w = (..., ple=) and v = (0©,... v D). Then [p@]\ [vV] =
{(r,s)} and [u] = [vW] for all j € I\ {i}. We have

AN (1) = (Ax () \ {(a —1,1)}) U{(a,i)} (6.14)

for some a € Z~q. In view of Lemma A% (1) has b; —r beads and s non-beads
belonging to the runner R; and preceding (a, i), so a = b;—r+s. By [CK, Lemma
4(1)], we have

A () D [0,a—1] x [i +1,e—1], (6.15)
A% (1) N (Zsa % [0, — 1)) = 2. (6.16)

In particular, each of (a — 1,i + 1),...,(a — 1,e — 1) is a bead of A% (u), and

each of (a,0),...,(a,i — 1) is a non-bead of A% (x). By (6.14) and Lemma
it follows that [u] \ [v] is an e-hook with arm length i and vertex (z,y) where x

is the number of the bead (a,7) and y is the number of the non-bead (a — 1,17)

of A% (i), cf. the proof of [CK| Lemma 4(2)]. Using (6.15), (6.16) and the fact
that there are » — 1 beads of A% (1) on R; succeeding (a, i), we obtain

x=r+bs;—ale—i—1)=x(r s,i).
Similarly, y = s +ia — b<; = y(r, s,1). O

Corollary 6.17. Let 0 < f < d, and p € P, 4, v € P, s be partitions with the
e-quotients p, v respectively. Then [v] C [u] if and only if [v] C [u].



26 ANTON EVSEEV AND ALEXANDER KLESHCHEV

Proof. The if-part follows from Lemma [6.13] For the only-if-part, we apply in-
duction on d — f, the case d = f being obvious. Let d— f > 0. If [v] € [p], then
there is a node (7, s,7) € [u] \ [v] such that [v]U{(r,s,7)} = [quot(A)] for some
A€ P,pe1. Then [A] = [v] UH(r,s,i) C [u] by Lemma By induction,
[quot(A)] C [u], which is a contradiction. O

Lemma 6.18. For any j € J, the set of standard U -tableauz whose shape is a
partition consists of exactly two elements, t and s, where

(a) t has shape (j,1°77), with t(e — j 4+ 1,1) = e, and deg(t) = 0.

(b) s has shape (j + 1,177 with s(1,5 + 1) = e, and deg(s) = 1.

Proof. By Lemma the shape of any standard tableau in question must be an
element of &5 1, and the rest is easy to see. O

The graded dimension of C, 4 for d = 1 can be easily computed:

Lemma 6.19. For any k,j € J, we have:
1+¢* ifk=j,
dimg (1;:Cp11) = ¢ g if k and j are neighbors,
0 otherwise.
Proof. By Lemma [6.8 we have

dimg (16Cp11y) = Z gaes(t)+des(t’)
Megp,l
veStd(u\p, (1))
t/eStd(u\p, (1))
Let p € #,1. By Lemma the set [u] \ [p] is an e-hook with a vertex v of
residue x. Let i be the arm length of this e-hook and v = (i+1,1¢7*~1). Denoting
by 7 the translation of Z x Z which maps (1,1) to v, we have a bijection

Std(p \ p, (1F)%) =5 Std(v, IF)

given by t ~ s where s(u) = t(r(u)) for all v € [v] (and similarly for ).
Moreover, we have deg(s) = deg(t) by [Ev, (4.10)]. Hence,

dimg (1,:Cp11y) = Z gles(e)Hdea(s))

where the sum is over all y € Py 1 and all pairs (s, s’) € Std(u,1¥) x Std(u, I%).
The result now follows by Lemma [6.18 (]

Let H be an e-hook with arm length ¢ and vertex (z,y) € Z X Z, and let
G be another e-hook. We refer to the node (x,y + i) as the hand of H and to
(r+e—i—1,y) as the foot of H. We call G a right extension of H if the foot of
G is the right neighbor of the hand of H. We call G a bottom extension of H if
the hand of G is the bottom neighbor of the foot of H. The following is deduced
from the definition of H(r, s,4) by an easy calculation:

Lemma 6.20. Let (r,s,i) € N.

(i) The hook H(r,s + 1,i) is a right extension of H(r, s,1).
(ii) The hook H(r + 1, s,1) is a bottom extension of H(r,s,1).
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Lemma 6.21. Let pu € 21(d). If nodes (r,s,i),(k,1,j) € [u] are independent,
then H(r, s,i) and H(k,l,j) are independent.

Proof. First, suppose that ¢ # j. Without loss of generality, i < j. Since |u| = d,
we have k + s < d. Also, bj —b; > d — 1 as p is d-Rouquier. We have
y(k,Lj) —y(r,s,i) =1 —s)+i(bj —k+1—-bij+r—s5)+(j—1)(bj —k+1)
— (b<j — b<i)
>1—s+ibj—bi+2—k—s)+(j—i)(—k+1+d—1)
>1+i4+d—Fk—s
> 141,

where we have used (6.12)) for the second step. Hence, the vertex of H(k,, )
has a greater second coordinate than the hand of H(r, s,7). A similar calculation

using (6.11]) shows that
l’(?",S,i) - Q;(kala]) >e _ja
hence the vertex of H(r, s,4) has first coordinate greater than that of the foot of
H(k,1,7). Thus, H(r,s,i) and H(k,[, j) are independent.
Now let ¢ = j. Without loss of generality, £ < r and [ > s. We have

y(k,l,i) —y(r,s,i) =l —s)+i(l—k+r—s)>1+2i > 1+,

x(r,s,9) —x(k,l,i)=(r—k)+(e—i—1)(r—s+1—k)>e—1,
and it follows again that H(r, s,7) and H(k,, j) are independent. O

Recall from that for every j € J, we have fixed a word I/ = (Lins - lje) €
I%3. Define the map ¢q: J x I — {1,...,e} by the condition that Liqa) =1 for
allje Jandiel. Let p€ #,4and 0 < f <d. Suppose that v € &, 4_; is a
partition with [v] C [u]. Note that cont(u \ v) = fé. For any j € J, define the
function

towg [\ V] — {1, .. e}, u— q(j,res(u) — k).

For the notation I/(f) = (lj(.,fl), e lj(.fe)) el ({i‘i in the following lemma see ||

Lemma 6.22. Let j € J and p € P, 4 with e-quotient . Let 0 < f < d and
v € P, 4y with e-quotient v satisfy [v] C [u]. Then

4 P %) if [] \ [v] is not a j-bend;
st P ™) ={ (o) ] i oo

Proof. Since lj1,...,lj € I are all distinct, any element of Std(p \ v, P(f)tr)
must assign ¢(j,7 — k) to every node of residue i, i.e. such an element must be
£\, So it suffices to prove the following:

Claim. We have t,,,,; € Std(uu \ v, ¥ (f)**) if and only if [u] \ [v] is a j-bend.

For the claim, by Lemma and Corollary we have v C p and [u] \
[v] = Uuegup g H(w)- Suppose that €, ; € Std(u\ v, ! (f)™*). Then, for every
u € [p] \ [v], the restriction €\, ;[H() is (1) **-standard. By Lemmas [6.18

and we deduce that [u] \ [v] C N7J=1 U N7, Suppose for contradiction
that ([u] \ [~]) "N’ is not a vertical strip. Then (r, s, ), (r,s+1,5) € [u] \ [V]
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for some r, s. Let u be the hand of H(r, s, j) and v be the foot of H(r,s+1, j). By
Lemma[6.20(i), the node v is the right neighbor of u. By Lemmal6.1§|(b), we have
tuw,;(u) = e > t,\,,;(v), which contradicts the standardness of t,, ;. Hence,
([re] \ [¥]) " N%J is a vertical strip. A similar argument, using Lemmas (ii)
and a), shows that ([u] \ [~]) N N/“~1 is a horizontal strip.

Conversely, suppose that [u] \ [v] is a j-bend. By Lemmas and
[u] \ [v] is a disjoint union of independent sets of two types: (1) consecutive right
extensions of hooks with arm length j — 1; (2) consecutive bottom extensions of
hooks with arm length j. In fact, we may assume that either [u] \ [¢] is of type
(1) or [u] \ [¥] is of type (2). If [u] \ [¢] is of type (1), i.e. [i] \ [~] is a union
HiU- - -UH,, of hooks with arm length j—1, then by Lemma@(a), tuwi(v) =e
for any v which is a foot of H, for a =1,...,m. So t,,, ; is standard if tu\y,j|Ha
is standard for all a. Hence we may assume that m = 1. But in this case t,,,,; is
easily seen to be standard using Lemma (a) one more time. The case where
[1] \ [v] is of type (2) is similar. O

Recall the set A®!(n,d) of colored compositions defined by (3.7) and the set
CT(p; A, €) of colored tableaux of shape p and type (A, ¢) from §6.2)

Corollary 6.23. Let i € P, 4, p = quot(u) and (A, ¢) € A°(n,d). Then
Std(p\ o, LN, €)9)] = [CT(ps A, )]
Proof. Recall that I(\,¢) =1 (A1) ... 1 (A1)l (\n). We have
(Ap) . 1T () = LN, )
for N'=(M\1,...,A\p—1) and ¢ = (c1,...,¢p—1). Then
Std(u\ p,l(A )™= Y [Std(r \ p (N, €)T)]IStd (i \ v, 1 (A))]-
lPICIVIClr]

If [Std(v \ p,L(N,c)TF)| # 0, then cont(v) = cont(p) + (d — \,)d, whence by
Lemma we have v € &, 4_»,. Arguing by induction on n, for such v we have
[Std(v\ p, LN, &)™) = [CT(; X, )],

where v = quot(v). Moreover, by Lemma we have

IStd (1 \ v, 17 (An))| = { 1 if [p] \ [¥] is a ep-bend,

0 otherwise.
The result follows. O

6.4. Counting colored tableaux. In view of Lemma [6.8 and Corollary [6.23]
we can understand the dimensions of y»¢C, 4y for (), ¢), (N, ¢) € A®(n,d)
by counting appropriate colored tableaux. The first main goal of this subsection
is a formula for |CT(u; A, €)|.

Recall that J = {1,...,e — 1} = I\ {0}. For j € J, we define

Inc(j) =={j,j -1} C 1.

Remark 6.24. The notation Inc(j) is motivated by the following considera-
tions. The irreducible semicuspidal s r-modules are exactly the irreducible R -

modules which factor through Rg\%, see |[Ko, Lemma 5.1]. The algebra RQIOF is a
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Brauer tree algebra of type A, with vertices I and edges in natural bijection with
J, so that Inc(j) is just the set of vertices incident to the edge j.

Let Char := P,y ZIrr(&;) be the Z-module of all formal Z-linear combina-

tions of irreducible characters of &, for ¢ = 0,1,.... We have the inner product
(,-) on Char such that on each summand it is the standard inner product on
(generalized) characters and ZIrr(&;) is orthogonal to ZIrr(S,,) for ¢ # u. Let

Char! := ® Char,
i€l
with the induced inner product. For every p = (0, ... ,,u(efl)) € 2! we define

MO

XHi=x ®-'-®x“(6_1) € Char!,

where x* denotes the irreducible character of &; corresponding to the partition
we 2(t).

Let S,T be finite sets and m,l € Z~g. We denote by M(S,T) the set of all
matrices A = (as)sester With non-negative integer entries. Given A € M(S,T),
we set

as(A) = Zasﬂg (s €9),

teT

Bi(A) = asy  (teT).

seS

We write M(m,T) := M([1,m],T), M(S,m) := M(S,[1,m]), etc. Given p €
A(m) and X € A(l), we define

wM(m,T) :={A e M(m,T) | a.(A) = pr for all r € [1,m]},

M(S,m), ={A e M(S,m) | B(A) = p, for all r € [1,m]},

AM(m, 1), = aM(m, 1) " M(m,1),.

Let (), ¢) € A°!(n,d). We define
oM, I) :={A = (ar;) € \M(n,I) | a;; = 0if i & Inc(c,)} (6.25)
Let A = (ar;i) € (»,c)M(n,I). For each i € I, define the parabolic subgroup
Gai:=6q,; X X6, ,; <6 a

and the induced character

) . Sg, (Sc i §C i
A= de’i”iA) (sgnalfgl M- Xsgng )7

An, g

where, for a € Z>o and j € J, we interpret sgngj " as the trivial character of &,
when j # i and as the sign character of &, when j = i. Then set

XA — XA,O R ® XA,e—l c CharI,

= ST A

AG(/\J_‘)M(TL,I)
Lemma 6.26. Let u € 21(d) and (\,c) € A®(n,d). Then
CT (s A e)f = (XM, xH).
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Proof. We apply induction on n = 1,2,..., the induction base being immediate
from the definitions. Let n > 1. Set N = (A1,...,A\p—1) € A(n — 1) and ¢ =
(c1,- -5 cn-1). We denote ((x,),(c,))M(L, 1) by (n, ) M(1,I). For a matrix A" €

/
,eyM(n —1,1) and a one-row matrix B € (5, .,)M(1, 1) we denote by <é>
(Le)M(n, I) the vertical concatenation of A" and B. Then

A
(/\’,c’)M(n —1,I) x (An,Cn)M(LI) - (,\,C)M(H,I), (AlaB) s <B>

S

is a bijection. Denoting the entries of B € (), ,)M(1,I) by b;, we have by

transitivity of induction

(Ae) 6s;(4) Al Ocn i
X - Z ® CERVURS X' Semy, )
AlE()\/’ /)M(n 1 I) iel
BE(xn,,cn)M(1,D)

The proof is concluded by the following computation:

12 ()‘70) — /—L(Z) 3 6/31(‘4) A/,i 6cn,i
<X ’X > o Z H< 6,3 (A’)b X &Sgnbb
AIE(A/’ nyM(n—1,I) el
BE(ap,en)M(L,I)

. @O Ay Sep,i
= ) L1 05.ca) oy reses X XA B sgnyn )
A/€<>\/’CI)M(T’L—1,I) IEI
BG(,\nan)M(l,I)

= > > TToe

AIEO\/YC/)M(TL—I,I) vCp el

BE(n, emyM(LI) |1 |=[vD|=b;, Viel
’ p\v is a cp- bend

>\/7 !
= > > (¢, xX)
BE()\n’cn)M(l,I) ] V_QH
|| =D |=b;, Viel
p\v is a ¢p-bend

> S TN,

BG()\n’cn)M(l,I) ] V_QH
||| |=b;, Viel
p\v is a ¢p-bend

= > ICT(v; X, )]

vCp
p\v is a cp-bend

= [CT(; A, ),

where the second equality holds by Frobenius reciprocity, the third equality comes
from the Littlewood-Richardson rule, the fifth equality holds by the inductive

assumption and the remaining equalities are clear.

Let b € J? so that (w,b) € A(d,d), cf. (6.6). Recalling (6.25), we set
M(I,d) () :={B € M(I,d) | B € (, phyM(d, 1)}

O
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Define the set
(oM, 1,d) oy = {(A, B) € () M(n, ) M(L d) ) | Bi(4) = ai(B) Vi € I},
Lemma 6.27. For any (), c) € A (n,d), we have
(9, b)) = Z H 165,(a) : Sail-
(A,B)€(x.e)M(n,1,d) (o ) i€
Proof. Denoting by regg, the regular character of &, we have

<x“’°),x(“’b)>=< >oooxh > XB>

A€\, e)M(n,I) B€,,pyM(d,I)

= Z H<XA’ia reg@ﬁi(3)>’

AE(AVC)M(H,I) el
BE(w’b)M(d,I)

which implies the lemma since

A :
Aji _ X)) = (6,4 if B;(A) = B;(B),
X ’reg65i<3)> N { 0 otherwise

for any 7 € I. (]
For (\,¢) € A®(n,d) and (w,b) € A®!(d,d) as above, we define the set
AeyM(n, d)(w of tuples (T°,...,7¢"!) such that

1) T ( 7n78) € M(n,d) for all i € I;
) Tef1 S )\./\/l(n d)w,
) o= O unless i € Inc(c,) N Inc(bs).

(
(2
(3
Lemma 6.28. For any (\,c) € A (n,d) and (w,b) € A®°(d, d), we have
|y M (1, d) by = > [1185.4) : ©ail-

(A,B)E(r,eyM(n,1,d) (o by t€T

Proof. Consider the map
0: \e) (na d)(w,b) — M(TL,I) X M(I7d)

defined as follows. Given T = (T°,...,T°7") € () o M(n,d)(,p), we set §(T) =
(A,B) where A = (a,;) € M(n,I) and B = (b;s) € M(I,d) are given by
ar; = a.(T%) and bis = Bs(T?). Clearly, the image of @ is contained in
(A,C)M(n’ I, d) (w,b)"

Let (A,B) € (neyM(n,I,d)(p). Then the preimage 67'(A, B) consists of
all tuples (T9,...,7¢7!) of matrices in M(n,d) such that a,(T%) = a,; and
Bs(T") = b; s for all i € I, r € [1,n] and s € [1,d]. So, denoting

Si={T e M(n,d) | ar(T) = ari, Bs(T) =b;s for all r € [1,n], s € [1,d]}
for any i € I, we have [0~ (A, B)| = [T;c; 1Sil-

To compute |S;| for a fixed i € I, let X = {s € [1,d] | bjs = 1}, so that

|X| = a;(B) = Bi(A). Then the set of partitions of X into a disjoint union of
subsets X, r € [1,n], with |X,| = a,; for each r, is in bijection with the set S;:
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a bijection is given by assigning to each such partition X = | |"_; X, the matrix
T = (t,s) given by

1 ifse X,,
tr,s = .
0 otherwise.

Therefore, |S;| = |&g,(a) : ©4,i|, proving the lemma. O
Theorem 6.29. For any (\,¢) € A®(n,d) and b € J?, we have

dim (v4Cp.7*) = [0 M(1, d) 1) -
Proof. We have

dim(vCpr®?) = 37 [Std(u\ o, (A, €)7F) [Std(1\ p, 1w, b))
Meyp,d
= > ICT(; A\ o) |ICT (5w, b))
ne21(d)
= > ) (WP )
pe21(d)
- (X(/\vc)7x(w7b)>

= o M(n, d) @ p)l;

where the first equality comes from Lemma the second equality uses Corol-
lary and Lemmal[5.3] the third equality uses Lemma[6.26] the fourth equality
holds since the elements x* form an orthonormal basis of Char!, and the final
equality comes from Lemmas [6.27] and O

Corollary 6.30. Let (\,¢) € A®(n,d). For all j € J, set

di= > A

1<r<n
cr=J

Then

e—2 ;. .
dim(yeC, 7) = § 1927 S 3jl+d€_l pom ife>2,
’ |64 : 6,27 if e =2.

Proof. In this paragraph we fix b € J9. Let Y} be the set of all maps ¢: [1,d] —
[1,n] x I such that

(1) [~ t({r} x I)| = A\, for all » € [1,n);

(2) for all s € [1,d], if p(s) = (r,i), then i € Inc(c,) N Inc(bs).
Observe that there is a bijection f: (y )M (n,d) ) — Yp such that f(T)(s) is
the unique (r,i) € [1,n] x I such that t. = 1, if we write T = (7°,...,7¢7")
with 7% = (t. ,).

Now, let Y := {(¢,b) | b€ J¢ ¢ € Y3}. By Theorem and (6.7), we have

dim(y¢C, 4v*) = |Y|. Let W be the set of all set partitions [1,d] = Llret,ng 2
such that |Q,| = A, for all r. Note that |WW| =[S, : G,|.
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We define the map £: Y — W by setting £(p, b) to be the partition [1,d] =
Ure[l,n] o Y({r} x I). To complete the proof, we fix a set partition Q: [1,d] =
|_|T€[17n] Q, in W and compute [¢71(Q)|. Given j € J, set

Inc?(5) :={(3,1) € I x J | i € Inc(§) N Inc(l)}.

Note that
{(] )7(j7j+1)7(j_17j)7(j_17j_1)} if1<j<e_17
Inc2(-)_ {(1 )7( ) )1(071)} if j=1ande > 2,
D= {(e=1,e—1),(e—2,e—1),(e—2,e—2)} ifj=e—1ande>?2
{(0,1),(1,1)} if j=1ande=2.

Note that £€71(Q) consists of all pairs (p, b) where ¢: [1,d] — [1,n] x I and
b € J? are such that for any r € J x [1,n] and any s € Q, we have ¢(s) = (r,1)
with (i,bs) € Inc®(c,). So

lE7HQ)| = H H lInc®(c,)| = H“nc (j )‘dj

re[l,n] s€Qr jeJ
] gditden 4253 4 ife> 2,
| 2% if e =2,
and the corollary follows. O

Recall the algebra Wy and the right Wg-modules M) . defined in §3.1} Com-
bining Lemma and Corollary [6.30] we obtain:

Corollary 6.31. For all (A, ¢) € A (n, d), we have dim(y¢C,, 47*) = dim M) ..
Corollary 6.32. We have dim(y“C, 47*) = d!(4e — 6)¢ = dim W,.

Proof. This can be derived from the algebra isomorphism in [Ev, Theorem 3.4].
We give a more direct proof for the reader’s convenience. By , we have
dimZ = 4e — 6, and the second equality follows. For any ¢ € J% and j € J, set
di(c) == |{r € [1,d] | ¢, = j}|. For e > 2, we compute:

dim(y“C\av”) = Z dim(y*¢C,.a7v")
ceJd
=d! Z 3d1(0)+d671(c)4d2(c)+~~-+de,2(c)
ceJd
= d!(3 +4(e —3) +3)% = d!(4e — 6)°,

where the second equality is due to Corollary For e = 2, the same compu-
tation yields dim(y“C, g7*) = d!2¢ = d!(4e — 6)%. O

7. THE SEMICUSPIDAL ALGEBRA

As usual, d € Z~ is fixed. Recall the semicuspidal algebra C’d5 from & In
this section we prove some results on the structure of C'y5. These results are used
in Section (8| to study the quotient C, 4 of Cys in the context of a RoCK block,

of. (BT
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7.1. Preliminary results on the semicuspidal algebra. We have the para-
bolic subalgebra

Cos 2C5®---@C5 C Cys
with the identity element 1,5, cf. Lemma [4.33]

Lemma 7.1. We have:

(i) The algebra 1osCuaslus is non-negatively graded.
(i) 1wsCi5 lws = LwsCasCoy = 1usCaslusCy .

Proof. (i) follows from [Ev, Lemma 6.9(iii)]. The second equality in (ii) is obvious
and the first one follows from [Ev, Lemma 6.9(i)(ii)]. O

For j = (j1,...,Jq) € J¢, we define
ej = 1lj1mljd € Rys. (7.2)

In particular, for j € J, we interpret e; as 1;;. In fact, the idempotent e; is also

known as ¥4, cf. (6.6)), (6.7). So we have v = D ey )
Following [KM3|, we consider the Rs-modules As; := Cse; for every j € J.

Note that Rs and hence Cg is non-negatively graded. Recalling the modules
Ls; with basis {v; | ¢ € I*} from the following is immediate from [KMs)
Proposition 5.13]:

Lemma 7.3. Let j € J. Then As; is non-negatively graded and there is an
isomorphism of Rs-modules

A5/ = Ly, e+ A5 = vy
Lemma 7.4. For any j € J%, we have an isomorphism of Rgs-modules
C’dgej = Asjpo--0Asj, 65— lysRej, ®--- X ej,.
Proof. This follows from Lemma [£.32] O
Let 5 € J%. We consider the following submodule of the C’dg—module C’d5ej:
Nj = Cas(CZ)es. (7.5)
Lemma 7.6. For any j € J%, we have an isomorphism of Rgs-modules
Casej/Nj = Lsj, 0---0Lsj,, €5+ Nj = lus @ v, @ - @ vy

Proof. By Lemmas and [7.4] there is a surjective Rgs-module homomor-
phism as in the statement of the lemma. That the homomorphism is injective

follows from Lemmas and again. O
Lemma 7.7. If j € J%, then ejé’gaej = Ze;.

Proof. Clearly, it suffices to prove the lemma in the case d = 1. For any word
in i € I°, the entries iy, ...,4. are distinct. Hence, by Theorem we have
ejRse; = Zlyi, ..., yelej, and the lemma follows. O
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7.2. Some explicit elements of vwédgyw. Let As := P
Lemma [7.4] we have an isomorphism

A3 = Cupn” (7.8)

of left Cys-modules. More precisely, we can explicitly identity Agd with CA’dm‘“ SO
that the element 1,5®e;, ®---®e;, of the natural direct summand As j, 0---0As 5,

jeJ As ;. In view of

of Agd corresponds to e; = e;7* € C’dmw for all 5 = (j1,...,54) € J% So
79 Cys7* is naturally identified with End (AOd)Op The algebra End (AOd) is
described in [KM3| as an affine zigzag algebm of rank d, so we can relnterpret this
as a description of fwad(;'y We now define some explicit elements of ’y“Cd(;’y
which correspond (up to an antiautomorphism and signs) to the elements of
Endédé(Agd) with the same names introduced in [KMs, §6.1].
For neighbors k, j € J, we define wy, ; € &, to be the unique permutation such
that wkdlj =1F. Set
ak’j = wwkvjej S ég.
Further, define
ej = Zej S ég, (79)
jeJ
and set R R
= (1 —ye)eg € Cs, z:=1yiey € Cy.
Recall that, in view of Lemma we have identified the parabolic subalgebra
Cw(; - Cd5 with 05 R & C5 For t=1,...,dand z € ég, we define

Ty —e?t 1®x®e®d teém;géd(;.

In particular we have the elements ¢, 2, at € wmw.
Recall the algebra Wy and the signs (i, ..., .—1 defined by (3.5) and (3.9).
Let 1 <t < d. Consider the product of transpositions
te
w= I] (wa+e)esu (7.10)
a=(t—1)e+1
and let w = w; € Gg.. We set
o= ) €T @ (<t — O Gr)(er ® €) ® €5 € 40y (7.11)
j,keJ

Note that the sign here is opposite to the one in [KMj3|, which is technically more
convenient for us, but does not affect the result below.

Theorem 7.12. We have:
(i) There is an injective algebra homomorphism ©: Wy — ywé’dng with

ej e, Sy Fu, D[] = £(cej),  aW[H] = +al

foralljeJ% 1<u<d,1<t<d, and all admissible k,j € J, where
the signs depend on k and j.

(ii) For each a € {0,1}, the map O restricts to a Z-module isomorphism of
graded components W§ — v~ Cosy.

(iii) The algebra v Cys7” is generated by O(Wy) together with y1v*.
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Proof. Part (i) follows from |[KMs, Theorem 6.16] together with the fact that
alkaki = +ce; for all neighbors k,j € J, as observed in [KMj, Theorem 5.24].
Parts (ii) and (iii) follow from |[KMgj, Theorem 6.16] and the easy facts that
the affine zigzag algebra is non-negatively graded and is generated by the finite
zigzag algebra isomorphic to W; and a homogeneous element z; of degree 2,
see [KM3, §4.2]. O

Considering scalar extensions to a field k, we also have the following result.
Here and in the sequel, we denote 7* := 1 ® 1 € Cys,

Lemma 7.13. Let k be a field with chark = 0 or chark > d. The left Cysy-
module C’da’k'y“’ s a projective generator for the algebra CA'd(;,k.

Proof. By [KMaj|, Lemma 6.22], the CA’d(;’k—module Agd ®zk = (As @7 k)°? is a

projective generator. By (|7.8]), we have Agd Rz k = C’da’k'y“, and the lemma
follows. O

7.3. Imaginary tensor spaces. Let j € J. Following [KM;,|, we refer to
Ty = Lg%

as the imaginary tensor space of color j. In |[KM;, (4.2.9)], an action of the
symmetric group &4 on Ty ; with Rgs-endomorphisms is defined as follows:

(lus @ v53Y) - 5t = (Gtwy + L) lus @ 0" (1<t <d).
Comparing with , we see that
(lus @ V5 - 50 = =¢jf @ v (7.14)
As in [KM;, §5.2], we define
Zgj={velyj|lv-g= (—1)5(9)11 for all g € &4}.
Recall the Gelfand-Graev idempotent v%/ from .
Lemma 7.15. [KM;, Lemma 6.4.1(ii)] We have Zy; = Rasv%Ty;.

More generally, fix (A, ¢) € A%!(n, d) for some n € Z~g. Define the semicuspi-
dal Rgs-module
The:=T\,c, 0 0Ty

n,Cn *

By the n = 1 case considered above, we have the right action of G, x---x &), =
GyonTy, . X---XT), .. with Rys-endomorphisms. By functoriality of induction,
this induces a right action of & on T) . with Rj5-endomorphisms. Define

Zye ={veETc|v-g= (—1)£(9)v for all g € G, }.
Recall the idempotent ¥¢ from , and note that y»¢ = 41 ;.
Lemma 7.16. We have Z) . = Ras(vM¢ ® (Tay o0 X BTN, )
Proof. By Lemma [7.15, we have
{veTy BB, o |v-g=(=1)"9 forall g € S}
= Ry sV T o B R Ry, 67 T -
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Moreover, for each w € 2¢*, we have an isomorphism of Z-modules
TAlycl IX T Ig T>\nycn i) ¢w ® T>\1701 x e IX TAnvcn’ V= ww ® v,

which is equivariant with respect to the right action of &y. Therefore,

)\ Any n
Dre= D buw® Ry 7"y 0 K- R Ry 7 Ty,
wEPeEN

= Rdé')’)\’c & (T)\1,c1 K- K TArMCn)?

as required. O

Define the idempotent

Erc = eci‘l...c;\z“ € édg (7.17)
and the C’dg—module
T)\,c = CA'd(;e,\#. (7.18)
Recalling the notation , define the left Czs-module
Niei=Np o, = CasC2er e C The. (7.19)

By Lemma [7.6] we have an isomorphism of left Rjs-modules
Trhe — Tre/Naes lus ® U%I ®--® Uf?f” = exe + Nye. (7.20)

Let ©: Wy — *yw(f’dgfy‘” be the algebra homomorphism of Theorem Re-
calling the element ey . € W, defined by (3.8), note that by Theorem [7.12(i) we
have

@(e)“C) = €).c- (7.21)

Recall the function €) . from (3.10]). Define the left Cs-submodule

Zye ={vEThe | vO(g) —ere(g)v € Naeforall g€ &)} CThe  (7.22)
Lemma 7.23. For every g € G, we have ey O(g) = O(g)exc-

Proof. Since we have ey .g = gey . in Wy, the lemma follows from (7.21]). O
Lemma 7.24. We have Z;HC = CA'd(s’y)"CCA‘Me)\,C + Ny c.

Proof. Throughout the proof, we identify T . with T)\,C /Ny, via the isomorphism

(7.20), so
I @ Ty ep M- KTy, ., = (Crsere + Nae)/Nie

and we have a right action of &) on TA%C /N,c. The space Z, . of signed invariants

under this action becomes a Cys-submodule of T}HC/N Ac; and by Lemma
we have

Zre = (Casy™Crserc + Nae)/Nae-
Let 1 <t < d satisfy s; € &y, and moreover, let g € [1,n] be defined by the
condition that s; lies in the &) _-component of &y. By (7.14), we have

(e)\,c + N/\,c) © St = _chftez\,c + N)\,c~
Let v = vey € T,\,C. Then
(v+ Nae) -5t = —Ce,vPten e + Nae = =, vO(st)exc + Nae
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= —ch’Ue,\’c@(St) + N)\,c = _chv@(st) + N/\,cy
using Lemma [7.23] for the third equality. So for any g € &), we have
(_1)6(9) (U + N)\,c) g = 5)\,0(9)1}@(9) + N)\,c-
In particular, Ny .O(g) € Ny for all g € &,. It follows that Z)HC is the preimage
of Z) . under the canonical projection T)\,C —» TXC/NA’C. So
Zye = Cas7™Crsere + Ny
by the first paragraph of the proof. O

7.4. The structure of VA’CCA'd(w“’. In view of 1' to ¢ € Igiv we associate
1+ € I?. Throughout this subsection we drop the hats and usually write 4 for 2.

For example, 1/(d) is written simply as 7 (d).

Let hg € &4 be defined by hy((t — 1)e+q) = (¢—1)d+tforallt=1,...,d
and ¢ = 1,...,e. In other words, hy is the shortest element of &4 such that
ha((V)4) = 17(d) for all j € J. Let wpq € Seq be the longest element of S(ae),
ie. wyg((¢g—1d+t)=(¢—1)d+d+1—tforallg=1,...,eand t=1,...,d.
Let j € J and note that e;a = ]_(lj)d. We set

Uqj = ’ll]wo’dwhdejd c C’d5.
More generally, fix n € Z~q and (), ¢) € A®!(n, d). Recalling , we define
hy = (hxyy---yha,) € Gery X o+ X Gen, = Gex < Seq,
wo,x = (Wo x5 -+ Won,) € Gepy X -0 X Gy, = Gy < Gey,
Unc = Yuwg \Yhy e
= Uy o @ D UN, e, €COns @ @ Ch s = Crs € Cus,
where we have used the identification from Lemma

Example 7.25. If e = 3, then J = {1,2} and the only choice of the words
is ' =021 € I° and 1> = 012 € 9. 1In this case, if d = 4, n = 5, \ =
(3,0,1,0,0) € A(5,4) and ¢ = (2,1,1,1,2) € J5 then in terms of Khovanov-
Lauda diagrams [KL, §2.1] we have

o o o 1 1 1 2 2 2 0 2 1

UN,c =

0o 1 2 0 1 2 0 1 2 0 2 1

In view of (4.20]) we get:

Lemma 7.26. We have uy . € 'y)"CCA'd(;eA,C.

Recall the integer a) defined by (6.4)). The following is easily deduced from
the definitions:
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Lemma 7.27. The element uy . € C’dg is homogeneous of degree ay.

Lemma 7.28. Let j € J and i = ARG for some i, € ‘I‘S. If
g€ @) (e is such that gi =1 (d), then g = hyq and iD= =@ =y

Proof. If 4 € I°, the letters of 4 are distinct. The result follows from this obser-
vation together with the definition of (d) gl (]

Given A € A(n,d), define the composition
Aehi= (05, 008) € A(ne, de).

Define the block permutation group By = &4 as the subgroup of &g4. generated
by the involutions wy, ..., wy_1 defined by ([7.10]).

Lemma 7.29. Let iV,... i@ € I3 and i = iV .. 4D, If g € Mg s
such that gi = (A, ¢) for some ¢ € J", then g = h)b for some b € By such that
U(g) = L(hx) + £(D).

Proof. We apply the induction on n, the case n = 1 being Lemma Let
n > 1. By the inductive hypothesis, we may assume that ), > 0. Note that
I\ e) =1UN, )l (\,), where X = (A\1,..., \p—1) and & = (c1,...,¢p—1). Let
1 = (Iy,...,1) so that I°*(A\,) = (I3",...,1>). We know that I = 0 and
igt) =0fort=1,...,d, see Corollary Note that the positions (d — \,)e + ¢
for g =1,...,\, in l(\, ¢) correspond to the first A, positions in I*(\,), and so
they are occupied with Os. So there exist 1 < ay,...,ay, < dsuch that g sends the
first position of the word (%) to the gth position of 1°*(\,), i.e. g((ag—1)e+1) =
(d—Ap)e+qforg=1,...,\,. Since g € ’\{6}9, we have a; < --- < ay,. Since
g € @(ed), it sends the remaining positions in the words ¢(®), ... (%) to the
remaining positions of 1“*(\,), i.e. to the last A\,(e — 1) positions of (A, ¢). It
follows that 4(®) = ... = (@) = jen,

Let &' € By be the block permutation which moves the blocks (%), ... (%n)
to the end in the same order and preserves the order of the remaining blocks.
Let ¢ = g(v')~!. We claim that £(g") = ¢(g) — £(V'). To prove this, it suffices to
show that g(r) > g(s) for all 1 < r < s < ed such that ¥'(r) > b'(s), which is
clear since for any such r, s, the element r is in one of the blocks corresponding
to 4@ ... i(a*n), whereas s is not.

We have ¢’ € *? 2D Indeed, it is obvious that ¢’ € 29, and ¢’ € *' 2
because g = ¢V’ € *'' 2 and €(g) = £(g") 4+ £(b). Moreover, ¢ € &(4_x,)erner SO
the result follows by the inductive assumption. U

Lemma 7.30. For anyy € Zly1, ..., Yde| there exists y' € Zly, ..., Yge] such that
Line)¥¥n, = Line)¥ny'-

Proof. This follows from the observation that the Khovanov-Lauda diagram |KLj,
§2.1] of Li(n,e)¥n, does not have any crossings of two strings with the same label

and the relations (4.7)), (4.8]). O
Lemma 7.31. For any (\, ¢) € A (n,d), we have:

(1) YMCuaslus = ureCaslus = un.er” Caslus;
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(i1) YM*Chslws = U eClus-

Proof. By Lemma [7.26]
uxe7* Caslus = urcCaslus € 7V Caslus,

so for (i) it only remains to prove the inclusion VA’CC'd51w5 - uApfy“’CA'd(;lw(;.
Moreover, for (ii) we may assume that n = 1 and prove only that %7 Cuasles C
’udd‘éw(g.

The word I(), ¢) € I is the concatenation of ne words of the form (i%) € 5%
for various ¢« € I and s € Z>¢. We denote the corresponding integer multiples

sa; € Q4 of simple roots by 0y, ..., 0, listed in the order of concatenation, i.e.
Oc(t—1)+q = Mau,, , forallt =1,... ., nand ¢=1,...,¢, cf. (6.1). By Lemmam

we have
19,00 Casluws = Z Ro, .0, %gCus
ge)\{e}@(ed>

C’w(;)—bimodules, SO

Aed — A, A
VWCaslws = D>, Y Ray,.0,.%9Cus-
ge)\{e}_@(ed)

as (Rg,,. 0

ne’

Consider an element g € M) guch that the summand

U:= ’7)\7CR91,...,0newgéw5

on the right hand side is non-zero. Then there exists 4 € 1% such that gi = I(), c)
and 1;1,5 # 0 in éwg, whence i = i ... 4D for some i(l), e ,i(d) € Igc. Hence,
by Lemma [7.29] we have g = hyb for some b € By. Moreover, in the case when
n = 1, needed for part (ii), we have b = 1 by Lemma We may assume that
preferred reduced decompositions for the elements of G4 are chosen in such a

way that ¥y = ¥y,1p, 50 U = v Ry, g, ¥n, VsClus.
Let P C Ry5 be the subalgebra generated by y1,...,¥yg. Then

U =R, ... .00, U6Cls
= VY Pon, $Cls
= VMY s Wy PYsClus
= uxe7 Py Cls,

where we have used Lemma for the second equality, Lemma for the third
equality, the definition of u) . and Lemma for the fourth equality. Part (i)

now follows since u>\7c7‘*’P¢bC'w5 C u,\,c’ywéd(;lm;, whereas part (ii) follows since
1p, = 1 in the case n = 1 and PC,5 = C,s. O

Multiplying the equality in Lemma [7.31|i) by 7* on the right, we obtain
MOy = ux, ey Cgsy”. In particular:

Corollary 7.32. As a right ywédm‘”-module, WA’CCA'dmw is generated by uy c.

Note that by Lemmas and and Corollary we have 'y)"CCA’d(;fyw C
Ci;“. Recall the left Cgs-modules N; defined by (7.5]).
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Lemma 7.33. For any (\,¢) € A (n,d) and j € J%, we have y»¢N; C CA’;;“.

Proof. Recall that uy . = uy 7v*. We have

A~ ~

YVN; = yMCas(Co)es = uncCas(CL)ej = uncercCas(CLY)e;,

w w
where the second equality comes from Lemma [7.31)(i) since 1,5 is the identity
element of C_ s, and the last equality holds by Lemma Now ey Caslys is

non-negatively graded by Lemma (i), and deg(uy) = ay by Lemma SO
the lemma follows. (]

Recalling 1’ and the homomorphism © from Theorem define the Cys-
submodule

Z/\c ={ve T)\,c | vO(g) = exrc(g)v for all g € &5} C T,\7c.
Clearly, ZA)\7C C Z~/\70, cf. (7.22)).
Lemma 7.34. We have uy . € ZA)HC.

Proof. By Lemma and the definition of u) ., we have uy . € 'yA’CCA’)\geA,C.
Hence, by Lemma we get uy e € Zy . Soforany g € &), we have u) O(g)—

exe(g)ure € 'y)"CNA’C. By Lemma u),cO(9) —€xe(g)un,c is homogeneous of
degree ay. But fy’\’cNf\”C =0 by Lemma 50 uxcO(9) —ere(g)ure =0. O

Lemma 7.35. Let (A c),(u,b) € A (n,d). Ifv € *y”’bZAA’c is a homogeneous
element of degree a,,, then v = xuy . for some x € ’y“’bé’d(;’y)"c.

Proof. By Lemma we have v € Wﬂ’bédgvA’cC‘AgeA,c—i—'y“’bN/\,c. By Lemma
’y“’be\Lf:: =0,s0v € 'y“’bé'd(;'y’\’cé’,\ge)\’c. Hence, by Lemma (ii), we have
v E 7“’bCA'd5u,\,cC'w(;e,\7c. We know that Owg is non-negatively graded, so we
have v = vy + v for some homogeneous elements v; € 7“’bCA'd5u,\7cCA'BJe,\,C and
vy € 7“’bCA'd5u,\7cCAZ§)e>\7c, with deg(vi) = deg(v2) = deg(v) = a,. By defini-
tion of N ¢, we have vg € fy“’bNA,c, whence vy = 0 by Lemma On the
other hand, by Lemma we have u,\,cé’gaeAyc = Zu)¢, SOV = V1 € 7“’bé’d5uA,c,
and the result follows by Lemma [7.26 O

8. ROCK BLOCKS AND GENERALIZED SCHUR ALGEBRAS
As in we fix d € Z~¢ and a d-Rouquier core p of residue x.

8.1. Identifying Wy with +“C, 4v*. Recall from (5.17) that we have the nat-
ural surjection
II: Cp,d — Cd(g/ ker Q = Cde.
This yields the surjections
i 7Casv” = 1 Cpar”s Tae: vMCasy =M Coar (81)

for (A, ¢) € A®(n,d). For any z € Cy;, we often denote by z its image II(z) in
Ch.a-
We define the algebra homomorphism

Ei=1l,00: Wy —=“Cpav” (8.2)
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where ©: Wy — % p b,dY" is as in Theorem Our aim is to prove that = is
an isomorphism by generalizing the arguments of [Ev}, Section 7], where a similar
statement is proved over a field containing an element of quantum characteristic
e (this means that the field contains an element ¢ with 14+¢+---+¢°~! = 0 and
e is minimal such). We begin with the case where d = 1, when W = Z.

Lemma 8.3. For d =1 and each a € {0,1}, the map = restricts to a Z-module
isomorphism of graded components Z% — Y Cov”.

Proof. By Theorem (ii), © restricts to an isomorphism Z% — ’y‘*’CA”lfy‘*’,
whence = restricts to a surjection Z* — 7“03717“’. Moreover, by 1} and
Lemmas and we have that Z¢ and v~ Cf 17* are free Z-modules of the
same rank, which completes the proof. U

Lemma 8.4. Letd=1 and j € J. Then C’g,lej = Z(y1 — ye)e;j.

Proof. By Lemmas and |6.19, the Z-module Cg’lej = engylej is free of rank

1. It suffices to prove that y := (y1 — ye)e; ® 1 generates C§717kej over any field k,
i.e. that y # 0 for any field k, cf. Remark This is proved in [Ev, Proposition
7.2] for any field k containing an element of quantum characteristic e, in particular
for e = 2. So we may assume that e > 2. By Corollary the algebra C), 1 i
has a symmetrizing form F' of degree —2. Since e > 2, the element j has a
neighbor £ € J. In the rest of the proof, we write z :=2®1 € C,, 1 | for x € C, 1.
Recalling the elements of Cj introduced in note that a*J # 0 in C;’Lk by

Lemma So there must exist an element z € C} 1) such that F (zakT) # 0.

p7 .
Using Theorem and Lemma again, we may assume that z = Z(a’*), and
hence (y1 — ye)e; = £=(ce;) = £E(a*ak7) = £al*ahd £ 0. O

Now we return to the case when d € Zsq is arbitrary. By Lemma we
have an embedding

1:Cs = Cus, x> 2@ La—1)s € Cs C’(d,l)g = C’g,(d,l)g C Cys. (8.5)
In view of Theorem i), for any j € J, we have
O(ej[1]) = w(ej)- (8.6)
Corollary 8.7. The element y17v“ € C, 4 belongs to the image of Z.
Proof. We have the (non-unital) algebra homomorphisms 2 : Cs — Ré\oont(p) 45
and Qg: Cys — Ré\oont(p) ds defined as in . Recall the algebra homomorphism

— . pA A A
Q= Ccont(p)—HS, (d-1)é - Rcoont(p)—i—5 - Rcoont(p)—f—é, (d—1)o < Rcoont(p)+d5

defined by . It follows easily from the definitions that (o = Qgou: C5 —
RC()Dnt(p)+d6’ whence ¢(ker Q1) C ker Q.
Let j € J. Identifying Cs ® C(g_1)s with Cs 4_1)s € Cys as usual, we have in
éd5:
y1ej @ Lg_1ys = t(y1e;) € U(Z(y1 — ye)ej + ker )
=Z(y1 — Ye)ej @ L(g-1)5 + t(ker 1)
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C Z(y1 — ye)ej & 1(d_1)5 + ker Qy,
where we have used Lemma [8.4] for the first inclusion. Multiplying by v, we get

7 =Y (e ® L-na)r™ € ) (Zly1 — e ® g1y + ker Qg

jedJ jedJ
=Y +0(c[1]ej[1]) + ker g, (8.8)

jeJ
where the last equality holds by Theorem [7.12fi) and (8.6). Now the lemma
follows on applying II. O

Theorem 8.9. The map =: Wy — v“C, 4v* is an isomorphism of graded alge-
bras.

Proof. By Theorem (iii), the algebra 7“C), v is generated by Z(Wy) to-
gether with the element y;7“. But y17* € Z(Wy) by Corollary so = is
surjective. By Corollary the algebras Wy and v*C), 4v* are Z-free of the
same rank, and the result follows. O

Lemma 8.10. Let k be a field with chark = 0 or chark > d. The left module
CraxY” is a projective generator for the algebra C)p .

Proof. As C, qxy” is projective, it is enough to show that for every simple
Cpax-module L we have v“L = Homg, ,.(Cpaxy”, L) # 0. But L may also

be viewed as a simple C’d&k—module via the natural surjection CA’d(;’k - Cpdk-
By Lemma the module Cgysy® is a projective generator for Cysy, whence
YL = Homédék(Cd(;,k*y‘”, L) #0. O

Corollary 8.11. The C, g-module C,, 4v* is faithful.

Proof. By Lemma the algebra C), 4 is Z-free, so it is enough to show that the
C).a,0-module C) g 0v* is faithful. By Lemma this module is a projective
generator for C), 4, and the result follows. O

8.2. Identifying 7}¢Cy57* with My .. Let n € Z-¢ and (A, ¢) € A®!(n,d). By
Theorem the right ’y‘“é’d(;’y“’—module ’y)"cé’d(;*y“’ becomes a right W;-module
via the map ©. Moreover, by Theorem the right v*C), 4v*-module 7/\’°Cp7dfy”
becomes a right Wi-module via the map =. In other words:
vz = v0(2) (v € AMCys7”, 2 € Wy), (8.12)
vz = vE(2) (v e ’y’\’Cprd’y“’, z € Wy). (8.13)
It is clear from the definitions that II .: yAch'dgyw — 'y)“cC’Wﬂw is a surjective

homomorphism of Wi-modules.
Recall the colored permutation Wy-module M) . with generator my . = 1) ®

exc defined by (3-11)) and the element uy . € YMCysy* introduced in
Lemma 8.14. There is a degree-preserving Wa-module homomorphism

. - >\7 A
0)\,c- M)\,c —q aA'V ch(S’Yw, Mi,c F7 U)e-
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Proof. By (7.21) and Lemma we have uy O(exe) = Urcere = Ure. By
Lemma for any g € & we have u) O(g) = ) ¢(9)ure. Using Lemma
we deduce that there is a degree-preserving W .-module homomorphism alty . —

q_“”y)"cédmw, 1) = uy,. This map induces a Wy-module homomorphism ) .
as in the statement of the lemma. O

From now on, we write uy ¢ := II) c(uxc) € Cpq-

Theorem 8.15. For any (A, ¢) € A (n,d), there is an isomorphism of graded
Wa-modules:
et M)\,c — q—aA,yA,cde,yw’ Myc > Upc

Proof. Let 0. be as in Lemma We have a homomorphism of W;-modules
e ‘= H)\,c o 9)\,c3 M)\,c — qia/\'YNCCp,d’ywa Mrec = U c-

By Corollary the right v*C), 4v*-module q_aky’\’cC’pd'y“’ is generated by
Uy,e. Using Theorem we conclude that 7, . is surjective. By Corollary
the Z-modules M) . and q*“A’y)"Cprd*yw are free of the same (ungraded) rank,
and the theorem follows. O

8.3. The algebra E(n,d) and the double Dg(n,d). Fix n € Z~g. Recall the
tuple ¢® € J*¢=1_ the modules M* = M), o and the algebra S%(n,d) from
Let A € A(n(e —1),d). Define the idempotent

fA — ,}/)\,CO‘
Recall the integer
n(e—1)

a) = —e Z >\t(>\t - 1)/2 = deg(u)\,co)7
t=1

see and Lemma In the sequel, we abbreviate

U\ = U\ 0, UN = Uy e, €)= €) 0, €)= €) 0, E)IZE) 0,

O =050t M* = g~ fACasy™,  ny =y e0: MY 5 7 fAC, 7,
where 0y o is the homomorphism of Lemma@ and 7y co is the isomorphism of

Theorem
Define the left C, ;-module

P(n,d) = @B  ¢*Cpaf
AeA(n(e—1),d)
and the algebra
E(n,d) := Endc, ,(I'(n, d))°. (8.16)
Let A\, € A(n(e — 1),d). We identify the (graded) Z-module ¢®~% frC,, 4f*
with the Z-submodule of E(n,d) consisting of the endomorphisms that send the
summand ¢**C), 4 f* to ¢**C) 4 f* and send the other summands to zero. Specif-

ically, an element x € ¢®»~% frC), 4 f* corresponds to the homomorphism given
by the right multiplication:

qChaft — q‘”C’pde, V= V.
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Thus,

End) = @ ¢ frCoaf (8.17)

ApeA(n(e—1))
Let x € q“r““f“def)‘. Recalling the right Wy-module structure , we

have a Wi-module homomorphism

q f)‘vadv‘” = q " frC, 4", v .
Identifying ¢~ fAC, 4v* with M* and ¢~ % frC, qy® with M# via the isomor-
phisms of Theorem we obtain an element ®(z) € Homy, (M?*, M*). In
other words,

O(z): M — MH, v»—w];l(xm(v)) (v e M™).

Recall from that Homyy, (M?*, M*) is identified with &,5%(n,d)¢y. The as-
signments  — ®(z) for all A\, u € A(n(e—1)) and all x € g™ ~% f1C, ;f* extend
uniquely to a Z-linear map

®: E(n,d) — S%(n,d).

Lemma 8.18. The map ®: E(n,d) — S%(n,d) is a homomorphism of graded
algebras.

Proof. That ® is a homomorphism of ungraded algebras follows easily from the
definitions. Let x € ¢®»~% frC), 4 f* be a homogeneous element for some A,y €
A(n(e — 1),d). Then, by definitions, ®(x): m* — m#z for some homogeneous
z € Wy such that zuy = u,2(2) in ¢~ f*C) 47*. Hence, ®(z) is homogeneous
of degree
deg(2) = deg(E(2)) = deg(x) — (ax — ay) + deg(tin) — deg(w,) = deg(z),

where the last equality is due to Lemma O
Corollary 8.19. The algebra homomorphism ®: E(n,d) — S%(n,d) is injective.

Proof. If not, then there exist \,u € A(n(e —1),d) and 0 # z € f*C,4f such
that xf’\vade = 0, whence 2C, 47 = 0. But this is impossible by Corol-
lary O
Lemma 8.20. We have ®(E(n,d)) 2 S%(n,d)°.

Proof. Suppose that A\, € A(n(e — 1),d) and h € Homy, (M*, M#)°. Then
there exists z € W9 such that h(m*) = m#z. Hence, mFzey = m*z and mtzg =

ex(g)mtz for all g € &). By Lemma (8.12) and (7.21)), it follows that the

element
v = 0x(mHz) = u,0(z) € ¢~ fFCysy*

has degree zero and satisfies v = vey and vO(g) = ex(g)v for all g € &). By
Lemma there exists & € f*Cysf> such that v = zuy. Applying the sur-
jection II to this equality and writing z := TI(z) € q‘”_“ﬂf“Cp,df)‘, we have
u,=(z) = zuy, cf. 82). But ) = ny(m?) and 4,E(z) = n,(m*2), so the map
®(z) sends m* to mtz. Thus, ®(Z) = h, so h € ®(E(n,d)). The lemma fol-
lows. U

Recall the algebra homomorphisms i*: Z — S%(n, d) from (3.15)).
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Lemma 8.21. For any A € A((n—1)(e—1),d—1), we have i*(Z) C ®(E(n,d)).
Proof. Let z € ejZe;, for some k,j € J. Recall the embedding ¢: C’5 — C’dg

from (8.5). It follows from Theorem [7.12{(i) and that there exists = € e;Csey
such that ©(z[1]) = «(x). Note that

Usr = €k D U) € Cs® é(d—l)é = é&,(d—l)& C Cys,
and u;; is desAcribedAs'imilarly. HeAr}ce, L(&f)u;\k = us,u(z) = u;,;0(2[1]). Writing
z=TM((z)) N = M) € f’\JCp,df)‘k, we have

Tl = Uy, T = ug; = (2(1)),

whence
_ NG _ _ NG _ o _ _ —_ NJ
@) m™) = i Eng () = 17 i) = 0} (g, E11) = mV 1]
= iM2)(m).
So ®(z) = i*(2), and the lemma follows. O

Lemma 8.22. For every field k, the k-algebra E(n,d)y is symmetric.

Proof. By Corollary the algebra C), 4 is symmetric. It follows from (8.16)
that E(n,d)x = Endc, ,, (['(n, d)k)°P. Since I'(n, d)y is a projective C 4 x-module,
the lemma follows by [SY| Proposition IV.4.4]. O

Recall the subalgebra T%(n,d) C S%(n,d) from
Theorem 8.23. Suppose that n > d. Then we have an isomorphism of graded
algebras ®: E(n,d) — T*(n,d).

Proof. By Lemma and Corollary the map ®: E(n,d) — S%(n,d) is
an injective homomorphism of graded algebras, so F(n,d) = ®(E(n,d)). By
Lemmas and we have T%(n,d) C ®(F(n,d)). By Lemma for
every prime p, the algebra ®(E(n,d)) ®z F, is symmetric. An application of

Theorem [3.17] completes the proof. O
Corollary 8.24. Let n > d. Then E(n,d) = Dg(n,d).
Proof. This follows from Theorems [3.16 and [8:23] O

Example 8.25. Recall the idempotents &, € S%(n,d) defined in for any
A € A(n(e—1),d). It follows from the definitions that for all A\, u € A(n(e—1),d),
the homomorphism ® maps the component ¢**~% frC, 4 f* of the decomposi-
tion of E(n,d) into the component &,5%(n(e—1),d)¢, = Homy, (M, M*)
of S%(n,d). In this example, we consider the case when e = 2, d = 2, n = 2 and
A = (2,0), and we identify ®(f*C, 4f) as an explicit subalgebra of Endyy, (M?).

Let z1, 29 € Endyy, (M ’\) be the endomorphisms defined by the properties that
z1(m?) = mA(c[1] + c[2]) and 2o(m?) = m*c[1]c[2]. Then {1 := &y, 1,22} is
a Z-basis of the commutative algebra Endyy, (M?), and 1?2 = 219, T172 = 0.
Moreover, it is easy to see as in [EK, Example 4.28] that £,7%(n,d)¢y is the
Z-span of {1, x1,2x2}, so ExT%(n, d)€y is isomorphic to the truncated polynomial
algebra Z[z]/(2%), with 21 corresponding to z. Thus, Theorem asserts, in
particular, that <I>(f>‘Cp7df>‘) = 71 @ Zx1 ® 2Zzo. This assertion can also be
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verified by direct calculations using (1) the defining relations of the affine zigzag
algebra 10101C2s10101, see [KMg, Definition 4.4]; and (2) the fact that y17* =
y1lo101 = a(y1 — y2)loi01 in Cp for some a € Z, see (8.8).

8.4. Morita equivalences. Let A and B be graded Z-algebras. A graded functor
A-mod — B-mod is a functor F equipped with an isomorphism between ¢ o F
and F oq. A graded functor F is a graded equivalence if it is an equivalence
of categories (in the usual sense). The graded algebras A and B are graded
Morita equivalent if there is a graded equivalence between A-mod and B-mod.
As noted for example in [LVV] §I1.5.3] the graded analogue of Morita theory
holds. In particular, A is graded Morita equivalent to B if and only if there
exists a graded projective left A-module P which is a projective generator and
such that B = End4(P)°P.
For a graded algebra A, recall the notation ¢(A4) from

Lemma 8.26. Let A be a graded Z-algebra which is finitely generated as a Z-
module, and let € € A° be an idempotent. Suppose that for every prime p we have
U(Ag,) = (e ® 1)Ag (e ® 1)). Then the algebras A and eAe are graded Morita

equivalent.

Proof. We write e .= e® 1 € AFP for each prime p. It suffices to show that the
left A-module Ae is a projective generator for A or, equivalently, that AcA = A.
Assume that AeA # A. Then there exists a prime p such that AI-FpaAFp =+ A]F‘p-
If L is a composition factor of Ag /Ag eAf , then eL = 0, which contradicts the
assumption that {(Ag ) = {(cAf ), for example by |G} Theorem 6.2(g)]. O

Let A € A(n(e — 1),d). It follows from the definitions in that I(\, c?)
is obtained from I(\,c°) by replacing each subword of the form ™ that is not
preceded by or followed by i with i(™). Therefore, for any X, u € A(n(e — 1),d),
we either have f* = f* or fAf#* = f*f* = 0. We have an equivalence relation
on A(n(e — 1),d), with A being equivalent to p if and only if f» = f*. Let
X C A(n(e —1),d) be a set of representatives of equivalence classes. Define

f=>Y fecCua
AEX

Then f? = f is a homogeneous idempotent.
Lemma 8.27. The algebra E(n,d) is graded Morita equivalent to fC,qf.

Proof. Consider the left fC, qf-module
ffnd)y= @ ¢ fCoaf™
AeA(n(e—1),d)

There is a surjective fC,, 4f-module homomorphism fI'(n,d) — fC, qf which is
the identity on the summands fC), 4 f* for A € X and zero on the other sum-

mands. Hence, fT'(n,d) is a projective generator for fC,4f. It is easy to see
that E(n,d) = Endyc, ,7(fT'(n,d))°P, since for all A, u € A(n(e — 1),d) we have

Homyc, (4 [ Cpaf*, ¢ FCpaf™) = ¢ [ [Cpaf* = ¢ [1Cp .
The lemma follows by graded Morita theory. O
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Write o = cont(p) + dd, so that R0 is the RoCK block of For any
m, h € Z>q, we denote by S(m,h) the usual Schur algebra over Z, as in [G].

Theorem 8.28. Suppose that n > d. Then the Z-algebras RQO and Dg(n,d) are
graded Morita equivalent.
Proof. By Remark there is a homogeneous idempotent e € RQO such that
Cra & eRéOe. Hence, by Lemma there exists a homogeneous idempotent
e € R such that F(n,d) is graded Morita equivalent to eR20¢. By Corol-
lary we have E(n,d) = Dg(n,d), so eRo¢ is graded Morita equivalent to
Dg(n,d). So it suffices to show that e RA%¢ is graded Morita equivalent to RA°.
Let p be a prime, and write ¢ := e ® 1 € Rg% . By the first paragraph,
wp
the algebras 5R2°]F e and Dg(n, d)IF,, are graded Morita equivalent. In particu-
- p
lar, €(6R23—Fp5) = {(Dg(n,d)s,). By Lemma 8.26} it remains to show only that
A
(RN, ) = U(Dg(n, d)g,).
Since the algebra Dg(n, d)pr is non-negatively graded, we have ¢(Dg(n, d)]?p) =
0 .
¢(Dg(n, d)pr)‘ By [EK| (7.2) and Lemma 7.3] together with Theorem

Dg(n,d)® = & S(n,d1) @+ @ S(n,de—1).
(d1y.omrde—1)EN(e—1,d)
By |G} Theorem 3.5(a)], for all h < n we have ((S(n, h)z,) = |2 (h)|. 1t follows
that {(Dg(n,d)F,) = |227(d)|. On the other hand, by Theorem we have
E(R;\%p) = |227(d)|, and the proof is complete. O

Thus, we have proved Theorem[A] In conclusion, we consider the case where we
work over a field of sufficiently large characteristic, cf. the discussion in Section

Proposition 8.29. Suppose that n > d and k is a field with chark = 0 or
chark > d. Then the RoCK block Rg(fk, the Turner double Dg(n,d)x and the
wreath products Wy and (Rf;\ﬂ%)@d x kS, are all graded Morita equivalent to each
other.

Proof. We write z := x®1 € Ay for any algebra A and any z € A. By (the proof
of) Theorem the algebras Rg?k, Cy.ax and Dg(n,d), are graded Morita
equivalent. By Lemma the module C) 47v* is a projective generator for
Ch.ax, 80 Oy g is graded Morita equivalent to
Endc, ;. (Cpax7”) = 7 Coaxt” = Wik
where the second isomorphism comes from Theorem Recall the idempotent
ey from (|7.9)). By the d = 1 case of Lemma the module R?H‘){ej is a projective
generator for Rgﬂog. Hence, setting ¢ := ¢5%, we have that ((Rgxﬂi)@d x kSy)¢ is
a projective generator for (R52)%? x kG4, So (R32)®? x kS, is graded Morita
equivalent to
SR 1 kS = (esRyfes)® xkSq & (Zy)® % kSq = W,

where for the second isomorphism we use the fact that e JR?H(ie J = Zg, see [KM3,
Theorem 5.24]. O
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INDEX OF NOTATION

1; standard idempotent if ¢ € I?

1; divided power idempotent if 7 € Igiv

Cus (imaginary) semicuspidal algebra

ng parabolic subalgebra of Cys

Cha algebra Morita equivalent to RoCK block Ré\g)nt(p)’ d
CT(m; A\, e) colored tableaux of shape p and type (), ¢).

1) null-root

e fixed element of Z>9; quantum characteristic

exc indempotent in Wy; identity of the parabolic Wy . C Wy
exc idempotent in Cys

€j idempotent in Rgs

Exe sign function on &)

F (arbitrary) ground field

3 root system of type Agl_)l

yMe Gelfand-Graev idempotent

I Z/eZ ={0,...,e — 1}; vertices of Dynkin diagram Aél_)l
1% 1 d@iv words of weight 6; divided power words of weight 6
1% semicuspidal words

it non-unital algebra homomorphism Z — S%(n, d)

J {1,...,e — 1} identified with a subset of I

K residue of Rouquier core p

Ls; special cuspidal Rs-modules

[A] Young diagram of a (multi)partition A

A(n,d) compositions of d with n parts

Al (n, d) colored compositions

AS(n,d) S-multicompositions of d with n parts

4 fixed word appearing in the character of Ly ;
l(\c) special words used to define Gelfand-Graev idempotents
M)y ¢ colored permutation module over Wy

P; P(n) partitions; partitions of n

Py Py partitions with core p; partitions with core p and weight d
PS S-multipartitions

P25(d) S-multipartitions of d

Q+ non-negative part of the root lattice

Ry; Ré\o KLR algebra; cyclotomic KLR algebra

S%(n,d) generalized Schur algebra

G, symmetric group on n letters

Std(A\ p,%) i-standard tableaux of shape A\ p

Ty imaginary tensor space Ty, ¢, 0--- 0Ty, ¢,

T%(n,d) algebra isomorphic to Turner double Dg(n,d)

Uy,e special element of édg

Wy wreath product algebra Z®? x Z&,

G signs corresponding to j € J

Z zigzag algebra with standard elements a/**, c(9), e;

Zxec sign invariants in T} .

)
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