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ABSTRACT: The need for efficient, tailor-made catalysts has inspired chemists to design 

synthetic macromolecular architectures for selective catalysis. To this purpose, we report herein 

the synthesis and in-depth characterization of Ag(I)-crosslinked single-chain nanoparticles 

(SCNPs) and demonstrate their application as catalysts. Specifically, a copolymer of styrenic 

benzimidazolium chloride was synthesized as a linear precursor via RAFT polymerisation. 

Metalation of the benzimidazolium moieties by Ag(I) resulted in the intramolecular cross-

linking of single chains via the formation of Ag-NHC (silver-N-heterocyclic carbene) linkages 

under dilute conditions. The successful formation of well-defined, robust SCNPs was evidenced 

by size-exclusion chromatography, dynamic light scattering, nuclear magnetic resonance, and 

transmission electron microscopy. Finally, we demonstrate that our Ag-SCNPs can be used as 

NHC pre-catalysts, by firstly indirectly evidencing the formation of the corresponding unfolded 

NHC-CS2 polybetaine and then organocatalysing a benzoin condensation reaction.  

INTRODUCTION Stable N-heterocyclic carbenes (NHCs) have become an fascinating area 

of research since their discovery by Arduengo in 1991.[1] Specifically, their peculiar electronic 

and steric properties make them powerful ligands of transition metals,[2–6] while their inherent 

nucleophilicity[7] and Brønsted-basicity[8] account for their efficient performance as 



 2 

organocatalysts for both molecular[9] and macromolecular transformations.[10–12] To 

overcome their air and moisture sensitivity, a variety of masked NHCs, including NHC-CO2 

adducts, NHC-2-alkoxy adducts or NHC-Ag have been developed.[11–17] Interestingly, silver 

complexes represent a versatile class of labile NHC metal complexes because of the relative 

weakness of the C2-Ag bond.[18] The most popular route to obtain Ag(I)-NHC compounds uses 

Ag2O, allowing the direct conversion of imidazolium salts (ionic liquids; ILs) into the 

corresponding metal complexes by transmetalation reaction. Thus, in comparison to the 

approaches used to produce Zn- and Sn-NHC complexes,[19] the free carbenes do not interfere 

with the synthesis of Ag(I)-NHC, allowing to achieve good yields using standard laboratory 

techniques.[6,11,13,20,21]  

Moreover, thanks to the easy accessibility and high versatility of NHCs, several functionalized 

architectures can be achieved from Ag(I)-NHC complexes for different  applications, such as 

antibacterial agents [18,22] or catalysis.[23–26] In particular, a promising synthetic strategy 

inspired by nature has emerged to prepare unimolecular versatile nano-objects referred to as 

single-chain nanoparticles (SCNPs).[27–31] Indeed, these folded/collapsed soft nanostructures 

have gained increasing attention for the development of functional materials in the fields of 

nanomedicine, protein mimicry, and catalysis.[30–34] In the catalysis field, the design of 

supported organometallic catalysts aims to emulate the unique features of (metallo)enzymes, 

such as structural complexity, compartmentalized functions, and site isolation.[33,35–39] 

Previous work in the area has typically focused on the formation of SCNPs by hydrogen or 

covalent bonding between supported orthogonal functions.[34] More recently, coordination 

chemistry, where metals act as cross-linkers inducing the single-chain particle formation, has 

been developed.[33,40–44,44] Surprisingly, the ability of Ag to trigger the single-chain folding 

of catalytically active SCNPs remains unexploited despite the potential of Ag(I)-NHC 

complexes to generate free NHCs and undergo transmetalation.[30] 

Herein, we report for the first time the formation of Ag-SCNPs obtained by cross-linking 

benzimidazolium moieties using Ag(I) as metalation agent. Upon heating, the free carbene can 

be released from the Ag-NHC precursors, thus enabling free NHC to catalyse the benzoin 

condensation in THF. The generation of NHC-CS2 betaine resulting from the reaction between 

Ag-SCNPs and CS2 provided indirect evidence of free NHC formation upon thermal-triggered 

unfolding of SCNPs. Therefore, our Ag-SCNPs combine the unique properties of Ag-NHC 

complexes with the SCNP technology to create versatile and functional nanoparticles for 

catalytic applications.  
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Scheme 1. Folding of a single-chain polymer into a nanoparticle structure via addition of a metal ion 

source (i.e. Ag2O). These SCNPs are then employed as sources of free NHC upon thermal 

decomposition of the organometallic Ag-NHC bond in the nanoreactor to form an active catalyst species. 

 

EXPERIMENTAL 

Materials 

Methanol, benzimidazole (˃95%), 4-vinylbenzyl chloride (90%), ethyl bromide (99%), 2-

cyano-2-propyl benzodithioate (˃97%), potassium hydroxide (pellets), and benzyl chloride (97 

%) were obtained from Aldrich and used as received. Dichloromethane (99.7%), carbon 

disulfide (CS2), 2-Cyano-2-propyl dodecyl trithiocarbonate and (CTA) lithium 

bis(trifluoromethane)sulfonylimide (LiTFSI) were obtained from Aldrich and used as received. 

Azobis(2-methylpropionitrile) (AIBN, 99%) was received from Aldrich and was purified by 

recrystallization (2x) from methanol. The synthesis of 4-vinylbenzylethylbenzimidazolium 

chloride (1) was performed as previously described.[45–48] The synthesis of 1,3-dibenzyl-1H-

benzimidazol-3-ium chloride was performed as described elsewhere.[49,50] Tetrahydrofuran 

(THF) was distilled over Na/benzophenone. Styrene and benzaldehyde were dried over CaH2 

and distilled prior to use. All synthesized polymers were purified by dialysis against methanol 

using “Standard Grade Regenerated Cellulose Dialysis Membranes (Spectra/Por6) Pre-wetted 

RC tubing” (SpectrumLab) with a molecular weight cut off (MWCO) of 3.5 kDa. All polymers 

were azeotropically dried using previously distilled THF before performing catalysis. 

Polymerization, catalyst loadings, and catalysis experiments were carried out by the syringe 

technique under dry argon in baked glass tubes equipped with a two-way stopcock.  

Characterisation  

Ag2O
CH2Cl2 r.t.

THF , 80  C
-2AgCl
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1H, 13C and 19F NMR spectra were recorded on a Bruker AC-400 spectrometer in appropriate 

deuterated solvents. All 13C measurements were performed at 298 K on a Bruker Avance III 

400 spectrometer operating at 400, 376.5 and 100 MHz and equipped with a 5 mm Bruker 

multinuclear direct cryo-probe. Dimethyl formamide (10 mM ammonium tetrafluoroborate) 

soluble polymers were first solubilized in concentrations of 1 mg mL-1, and their masses were 

determined by size exclusion chromatography (SEC) in DMF at 20 °C using refractometric (RI) 

detector (Varian) and polystyrene calibration as standards. Analyses were performed using a 

three-column set of TSK gel TOSOH (G4000, G3000, G2000 with pore sizes 20, 75, and 200 

Å, respectively, connected in series). Hydrodynamic diameters (Dh) and size distributions of 

SCNPs were determined by dynamic light scattering (DLS) on a Malvern Zetasizer Nano ZS 

operating at 20 °C with a 4 Mw He-Ne 633 nm laser module. Samples were filtered through a 

0.22 µm PTFE filter prior to measurement, and quartz cuvettes were used. Measurements were 

made at a detection angle of 173° (back scattering), and the data were analysed with Malvern 

DTS 6.20 software, using the multiple narrow modes setting. All measurements were performed 

in triplicate, with 10 runs per measurement. TEM analyses were performed on a JEOL 2011 

(LaB6) microscope operating at 200 KeV, equipped with a GATAN UltraScan 1000 digital 

camera. Conventional bright field conditions were lacey carbon-coated copper grids (Agar 

Scientific, 400 mesh, S116-4). SCNP solutions were diluted to 1 mg mL-1 in MeOH before 4 

µL of each sample were drop-deposited onto the graphene oxide coated grids and allowed to 

air dry. Subsequent staining was applied using uranyl acetate (1 mg mL-1, 7 µL) to enhance the 

contrast.[51] Images were analyzed using Image J software, and 50 particles were measured to 

produce a mean and standard deviation for the particle size (Dav).  

Synthesis 

Additional experimental procedures for synthesis and characterization, including SEC traces 

and DLS are further detailed in the Electronic Supporting Information (ESI). All 1H, 13C, and 

19F NMR spectra are also included.  

Synthesis of copolymeric linear precursor 2.  

2-Cyano-2-propyl dodecyl trithiocarbonate (60 mg, 0.17 mmol), styrene (3.1 mL, 30 mmol) 4-

vinylbenzylethylbenzimidazolium chloride 1 (1.57 g, 5.21 mmol), AIBN (27 mg, 0.17 mmol) 

were dissolved in dry methanol in a 10 mL glass tube. The solution was degassed by five 

successive freeze-pump cycles and stirred for 16 h at 80 °C. The as-obtained copolymer (2) was 

purified by dialysis against methanol (3.5 kDa MWCO) and obtained as a pink powder (yield: 
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51%, 2.05 g). 1H NMR (400MHz; 298 K; DMSO-d6): 10.7-10.1 (br, 1H, N-CH=N), 8.2-6.1 (br, 

32.8H, Ar-H), 5.9-5.5 (br, 2H, Ar-CH2-N), 4.6-4.4 (br, 2H, N-CH2-CH3), 2.1-0.9 (br, 27.5H, 

backbone: CH and CH2, CH2-CH3) (Fig. S1); 13C NMR (100.7 MHz; 298 K; DMSO-d6): 146.7, 

142.3, 132.9, 129.1-126.6, 114.1, 62.9, 50.8, 42.6, 14.3 (Fig. S2). SEC analysis: Mn = 18,000 g 

mol-1, Mw = 21,600 g mol-1, ĐM = 1.2 

 

Synthesis of SCNP 3 

Linear copolymer 2 (350 mg; 0.44 mmol referred to benzimidazolium) was dissolved in 350 

mL of dry dichloromethane at a concentration of 1 mg mL-1 in a 1 L round bottom flask. Then, 

Ag2O (60 mg; 0.26 mmol) was added by previously preparing a dispersion in dichloromethane 

in order to ease the dropwise addition into the flask. Molecular sieves (4 Å) were added in order 

to trap the generated water, shifting the equilibrium towards the bis-NHC-Ag moiety. The red 

colored solution was stirred for 72 h, during which time the solution turned transparent, and 

filtered twice to remove the excess of Ag2O. The solvent was finally removed under reduced 

pressure, and 3 was obtained as a viscous liquid (yield: 82%, 322.1 mg). 1H NMR (400 MHz; 

298 K; DMSO-d6) = 8.2-6.0 (br, 34.1, Ar-H), 5.9-5.4 (br, 2H, Ar-CH2-N), 4.6-4.3 (br, 2H, N-

CH2-CH3), 2.2-0.9 (br, backbone: CH and CH2, CH2-CH3) (Fig. S3); 13C NMR (100.7 MHz; 

298 K; DMSO-d6): 188.8, 147.3, 134.0, 129.9-123.7, 113.5, 52.8, 47.7, 44.1, 17.9 (Fig. S4). 

SEC analysis: Mn = 17,600 g mol-1, Mw = 21,100 g mol-1, ĐM = 1.2 

 

Synthesis of SCNP 4 

SCNP 3 (150 mg; 0.19 mmol) was solubilized in a glass flask containing 35 mL of methanol 

and 80 mg (0.29 mmol) of LiTFSI previously dissolved in 35 mL methanol. The solution was 

stirred at rt (room temperature) until SCNP 4 precipitated. The precipitate was then washed 

with methanol (5 mL x 2) (yield: 48%, 77.8 mg).1H NMR (400 MHz; 298 K; DMSO-d6) = 8.3-

6.0 (m, broad, Ar-H), 6.0-5.5 (s, broad, Ar-CH2-N), 4.9-4.4 (d, broad, N-CH2-CH3), 2.3-0.9 (m, 

broad, backbone: CH and CH2, CH2-CH3) (Fig. S5); 13C NMR (100.7 MHz; 298 K; DMSO-

d6): 179.8, 145.5, 132.3, 129.9-123.7, 121.5, 119.1, 112.4, 51.9, 43.8, 41.2, 17.8 (Fig. S6); 19F 

NMR (376.5 MHz; 298 K; DMSO-d6): -79.9 (Fig. S7). SEC analysis: Mn = 17,300 g mol-1, Mw 

= 20,700 g mol-1, ĐM = 1.2 
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Synthesis of copolymer 5 

SCNP 3 (30 mg; 0.04 mmol) was solubilized in dry THF (1 mL) in a glass tube and CS2 (0.3 

mL; 2.6 mmol) was added at rt under argon. The colorless solution was stirred at 80 ºC for 24 

h, during which time a color change to red was observed, indicative of NHC-CS2 formation. 

After cooling, the excess of CS2 and solvent were removed under reduced pressure, obtaining 

5 as a viscous liquid (yield: >95%, 27.3 mg). 1H NMR (400 MHz; 298 K; DMSO-d6) = 8.2-6.1 

(m, broad, Ar-H), 5.9-5.5 (s, broad, Ar-CH2-N), 4.8-4.4 (d, broad, N-CH2-CH3), 2.5-0.9 (m, 

broad, backbone: CH and CH2, CH2-CH3) (Fig. S8); 13C NMR (100.7 MHz; 298 K; DMSO-

d6): 219.9, 151.8, 145.4, 131.3-124.6, 112.8, 48.2, 43.2, 14.8 (Fig. S9).   

General procedure for benzoin condensation reaction 

In a typical experiment, 10 mol% of catalyst (61 mg; 0.07 mmol) was suspended in dry THF (3 

mL; catalyst concentration 20 mg mL-1) in a 10 mL Schlenk tube, to which 0.07 mL of 

benzaldehyde (0.7 mmol) was added under argon. The reaction mixture was stirred for 24 h at 

80 ºC. The mixture was allowed to cool down to rt, and an aliquot was withdrawn for 1H NMR 

spectroscopy characteritzation. Benzoin conversion was determined by 1H NMR spectroscopy 

in DMSO-d6 by comparing the integral value of the aldehyde signal of benzaldehyde (s,1 H, 10 

ppm) with the one of the –CH- benzoin signal (s, 1H, 6 ppm) (Fig. S10). For the experiments 

with variable quantity of catalyst, the volume of solvent and substrate were kept constant.  

 

RESULTS AND DISCUSSION 

Synthesis of Catalytically-Active SCNP 

The 4-vinylbenzylethylbenzimidazolium chloride (1) ionic liquid monomer was prepared 

following a two-step synthesis (Scheme 2), as previously reported in the literature.[45–48] A 

random copolymer of monomer 1 and styrene units was then obtained via reversible addition-

fragmentation chain-transfer (RAFT) polymerisation, using 2-cyano-2-propyl dodecyl 

trithiocarbonate as chain transfer agent (CTA) and azobisisobutyronitrile (AIBN) as radical 

source in methanol to yield copolymer 2. The monomer conversion was quantified via 1H NMR 

spectroscopy by following the disappearance of the C(H) signals of styrene and 1, as well as 

the broadening of CHimi in the polymer. Moreover, the consumption of styrene and 1 in similar 

ratio indicates that the imidazolium functional groups were homogenously distributed 

throughout the chains. The final structure of 2 corresponded to a styrene/benzimidazolium ratio 
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of ~5, as confirmed by 1H NMR spectroscopy (Fig. S1), which was selected to increase the 

solubility of 2 and its derivatives (i.e. 3, 4 and  5) in relatively apolar solvents, such as THF. 

 

Scheme 2. Synthesis of copolymer 2 via RAFT polymerization of styrene and 1 in methanol. The 

subsequent addition of Ag2O results in the formation of 3 as SCNPs. Further anion exchange was 

performed by inserting a non-coordinating anion (NTf2
-) into 3 to confer less dynamic behavior (4). 

 

In contrast to previous works where the preparation of imidazolium-based SCNPs involved 

harsh reaction conditions[45] and tedious purification steps,[52] our approach affords robust 

NHC-loaded SCNPs under relatively mild conditions. The controlled intramolecular formation 

of SCNPs (4) was achieved by simply adding Ag2O to a solution of copolymer 3 (1 mg.mL-1) 

in dichloromethane at rt. Trapping the produced H2O with molecular sieves (4 Å) afforded a 

better yield of 3.[26] Interestingly, the insolubility of Ag2O in dichloromethane provided a 

means of monitoring the reaction progress by observing its gradual disappearance, as a 

consequence of its incorporation in the copolymer structure. The folding of 2 was thus 

monitored through the disappearance of the C2H signal corresponding to the benzimidazolium 

( = 10.2 ppm), as well as the broadening of the N-ethyl signals ( = 4.55 ppm) by 1H NMR 

spectroscopy (Fig. 1A). After 72 h, full conversion to the Ag-NHC moieties ( = 10.7-10.1) 

was also confirmed by 13C NMR spectroscopy with the complete disappearance of the C2H 

signal from benzimidazolium at  = 146.7 ppm, and the observation of a new signal at  = 188.8 

ppm corresponding to C-Ag (Fig. 2 and S4). In addition, SEC characterization was used to 

further confirm the folding of 2 into well-defined SCNPs (3). Specifically, in comparison to 2 
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(Mn = 18,000 g mol-1, ĐM = 1.2), the SEC trace of 3 shifted towards a smaller apparent molecular 

weight (Fig. 1B, Mn = 17,600 g mol-1, ĐM = 1.2), which is indicative of the formation of a more 

compact structure with a smaller hydrodynamic radius, compared to the linear polymer. While 

the reduction in molecular weight is low, we note that rather than the 35% increase that would 

be expected by addition of the AgCl salts, a reduction of ~2.5% is instead observed. As a 

consequence of the poor solubility of 2 in THF (with added salt for SEC analysis), it was not 

possible to directly compare the apparent molecular weight in the same solvent as catalysis is 

performed. Finally, mean hydrodynamic diameters of 4.5 ± 0.4 nm (number-weighted size 

distribution) and 4.8 ± 0.7 nm (volume-weighted size distribution at a concentration of 1 mg 

mL-1 of polymer sample) were determined by DLS for 3 (Fig. S11), in excellent agreement with 

the size (ca. 5 ± 1.5 nm) observed by transmission electron microscopy (TEM) (Fig. 1C). The 

change in hydrodynamic diameter is also observed with linear polymer 2 displaying Dh = 9.2  

± 2.1 nm. We note however that the same trend was not confirmed for the volume-weighted 

size distribution as a consequence of a significant contribution from aggregated species at ca. 

100 nm (Fig. S13).  

In order to confirm the thermolability of the Ag-NHC crosslinking bridges present in 3, the 

variation in size distribution of the SCNPs with temperature was monitored by DLS analysis. 

Interestingly, while at 1 mg.mL-1, a minimal change in size with temperature was observed, at 

5 mg.mL-1, the size of SCNPs 3 increased notably, from 15 nm to 70 nm, at ~ 40 ºC (Fig.1D), 

likely as a consequence of intermolecular rearrangements into larger aggregates after 

disassembly.[20] In fact, the silver-carbene bond, which is the weakest among the noble metals 

(i.e. gold > copper > silver), is subjected to dynamic exchange, especially when the steric 

hindrance is less pronounced.[6] Furthermore, in Ag-NHC complexes, both the nature of the 

azolium anion and the solvent also play an important role in the bond strength, as coordinating 

anions, such as halides (e.g. Cl-, Br-, I-), form stronger hydrogen bonds compared to non-

coordinating anions (e.g. BF4
-, NTf2

-).[53–55] However, halides usually facilitate the dynamic 

exchange in the resulting complexes via their reversible binding to the silver center, whereas 

non-coordinating anions prevent such dynamic behavior, which leads exclusively to the 

formation of cationic bis(NHC) complexes, i.e. crosslinked SCNPs.[6] Hence, such dynamic 

exchange behavior allows halide Ag-NHC complexes to generate free NHCs by thermolysis. 

Conversely, the enhanced stability of Ag-NHC complexes with non-coordinating anions 

prevents such dynamic process.[6,56] 
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Figure 1. A) Ag-NHC complexation reaction monitored by 1H NMR spectroscopy (400 MHz; 298 K; 

DMSO-d6) at different time points (t0 = blue line, 24 h = red line, 72 h = green line). B) SEC curves (in 

DMF with 10 mM NH4BF4) of 2 (red line), 3 (blue line) and 4 (black line) using RI detector polystyrene 
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standard. C) TEM micrograph of SCNPs 4 (scale bar = 50 nm). D) Hydrodynamic mean diameter of 

SCNPs 4 (blue line volume distribution; red line number distribution) using multi-temperature DLS 

analysis from 20 ºC to 80 ºC in THF (Conc. 5 mg mL-1). 

 

In addition to 3 which is stabilized by coordinatingAgCl2
- anions, the more stable Ag-NHC 

complex 4 bearing non-coordinating NTf2
- anions, was prepared by applying a mild anion-

exchange to 3 using an excess of LiNTf2 salt that provided an efficient driving force to displace 

Cl-, precipitating AgCl as a byproduct. SEC analysis of the resulting polymer showed a decrease 

in apparent molecular weight (Fig. 1B, Mn = 17,300 g mol-1, ĐM = 1.2) which is most likely a 

consequence of the strong preference of the NTf2
— containing SCNPs to be retained as a dimeric 

NHCAg complex and hence presenting a more compact hydrodynamic volume during analysis.   

 

NHC-mediated benzoin condensation reaction 

Before investigating 3 as a catalyst for the carbene-mediated benzoin condensation 

reaction,[57,58] we first examined whether active carbene species could be generated upon 

thermal decomposition of the poly(bis-NHC)-silver complex in 3. For that purpose, 3 was 

heated at 80 ºC in THF in the presence of carbon disulfide (CS2; Scheme 3). After 24 h, the 

solution turned red-brown, which was indicative of the formation of copolybetaine 5, as it was 

further confirmed by 13C NMR spectroscopy ( = 151.8 and 219.9 ppm corresponding to C2(imi) 

and CS2
- respectively; Fig. 2).[20,21]  

 

Scheme 3. Application of SCNPs 3 as a catalytic platform (B) for the benzoin condensation reaction by 

exposing active NHC upon heating (C) Indirect evidence of the formation of active NHC intermediate 

(A).  

  

 

Active NHC

C) Organocatalysis: 
Benzoin Condensation

A) Active NHC: 
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B) Ag-NHC SCNP
Precatalyst
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Figure 2. 13C NMR spectra (100.7 MHz; 298 K; DMSO-d6) of 2 (blue), SCNP 3 (red), SCNP 4 (green), 

and copolybetaine 5 (yellow).  

Since the benzoin condensation is specifically catalyzed by carbenes,[57,58] 3 was evaluated 

as pre-catalyst for this reaction (Scheme 3). Firstly, we tested the catalyst system at ambient 

temperature which displayed no activity and hence confirms that no NHC catalyst (SCNP 3) 

was delivered at room temperature (Run 1; Table 1). Therefore, although the thermolysis of 

Ag-bis(NHC) complexes can occur at temperatures as low as 40 ºC,[20] the temperature was 

set at 80 ºC to increase the release of free NHCs. As summarized in Table 1, the conversion 

increased from 13 to 32% by increasing the catalyst loading from 1 to 10 mol%, under otherwise 

identical conditions (i.e. THF at 80 ºC for 24 h; Runs 2-4). However, increasing the reaction 

time up to 48 h (Run 5) did not afford any improvement, suggesting the likely decomposition 

of the catalyst at this temperature for longer than 24 h, as previously reported.[6] This premature 

deactivation also prevented the recycling of SCNP 3, as no catalytic activity was observed in 

the subsequent run (6). 

In order to introduce a control system, a small molecule model with benzylic N-substituents on 

the NHC moieties, 6, (see ESI) was used to catalyze the benzoin condensation reaction under 

similar conditions (Runs 7-9). This experiment showed higher catalytic activity, reaching up to 

51% conversion of benzaldehyde after 24 h, probably because of the easier access to the 

catalytic site (Run 7). Similarly, no further increase in conversion was observed after 48 h (Run 

8), while the non-recyclability of the molecular model became further evident in the subsequent 

run (9). It has to be acknowledged however, that both Ag-(bis)NHC based molecular and 
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macromolecular systems show lower catalytic performance for this reaction compared to our 

previously reported masked-NHC based SCNPs.[47,52] 

Finally, in good agreement with our initial hypothesis, the presence of non-coordinating 

counteranions (i.e. NTf2
-) in 4 hindered the formation of active carbenes, precluding the 

formation of active catalytic species and thus preventing the synthesis of benzoin (Run 10). 

Hence, the nature of the counteranion significantly influences the robustness and thermolability 

of Ag-SCNPs to deliver catalytically active NHC in a suitable environment, hence highlighting 

the potential to employ the anion exchange reaction as a successful strategy to switch on and 

off the catalytic activity of this system.  

Table 1. Condensation reaction of benzaldehyde under different conditions using Ag-NHC SCNPs and 

a small molecule model as catalysts.  

Run Catalyst Loading 

mol (%)a 

Cycle Solvent Temperature 

(ºC) 

Time 

(h) 

Conv 

(%)b 

1 SCNP 3 10 1 THFc 80 24 0 

2 SCNP 3 1 1 THF 80 24 13 

3 SCNP 3 5 1 THF 80 24 21 

4 SCNP 3 10d 1 THF 80 24 32 

5 SCNP 3 10 1 THF 80 48 32 

6 SCNP 3 10 2e THF 80 24 0 

7 6f 10 1 THF 80 24 51 

8 6 10 1 THF 80 48 51 

9 6 10 2g THF 80 24 0 

10 SCNP 4 10 1 THF 80 24 0 

a Mol% calculated relative to the benzimidazolium moieties; b conversion was calculated by 1H NMR spectroscopy 

(Fig. S10); c THF was dried over Na/Benzophenone before distillation; d  a 20 mg mL-1concentration of catalyst 

was used as reference; e 3 purified by dialysis against MeOH; f synthesis and characterization of the molecular 

model used in this reaction is included in the ESI. ; g molecular catalyst was recovered by precipitation into cold 

MeOH. 

 

CONCLUSIONS 

The formation of SCNPs crosslinked by Ag-NHC bridges has been achieved for the first time. 

Ag was used as metalation agent to trigger the folding of a linear styrene-benzimidazolium 
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copolymer into 5 nm SCNPs under relatively mild conditions. These nanoreactors were able to 

respond to external increase in temperature and unfold to release free NHC, which was then 

able to catalyse the benzoin condensation reaction in the same pot, although in modest yield. 

Furthermore, by simply changing the counterion, the catalytic activity can be switched off. In 

conclusion, Ag-NHC SCNPs can be envisaged as a valuable nanoplatform for transmetalation 

reactions. 
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