The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing

Miramini, Saeed; Fegan, Katie; Green, Naomi; Espino, Daniel; Zhang, Lihai; Thomas-Seale, Lauren

DOI: 10.1016/j.jmbbm.2019.103544

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):

Download date: 19. Aug. 2021
The Status and Challenges of Replicating the Mechanical Properties of Connective Tissues using Additive Manufacturing

Saeed Miramini (Corresponding author)
Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
Email: s.miramini@unimelb.edu.au
Tel: +(613) 83449696; Fax: +(613) 83444616;

Katie L. Fegan
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Email: K.Fegan@pgr.bham.ac.uk

Naomi C. Green
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Email: N.C.Green@bham.ac.uk

Daniel M. Espino
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Email: D.M.Espino@bham.ac.uk

Lihai Zhang
Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia
Email: lihzhang@unimelb.edu.au

Lauren E. J. Thomas-Seale
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
Email: L.E.J.Thomas-Seale@bham.ac.uk
Abstract

The ability to fabricate complex structures via precise and heterogeneous deposition of biomaterials makes additive manufacturing (AM) a leading technology in the creation of implants and tissue engineered scaffolds. Connective tissues (CTs) remain attractive targets for manufacturing due to their “simple” tissue compositions that, in theory, are replicable through choice of biomaterial(s) and implant microarchitecture. Nevertheless, characterisation of the mechanical and biological functions of 3D printed constructs with respect to their host tissues is often limited and remains a restriction towards their translation into clinical practice. This review aims to provide an update on the current status of AM to mimic the mechanical properties of CTs, with focus on arterial tissue, articular cartilage and bone, from the perspective of printing platforms, biomaterial properties, and topological design. Furthermore, the grand challenges associated with the AM of CT replacements and their subsequent regulatory requirements are discussed to aid further development of reliable and effective implants.

Keywords: 3D Printing; Biomaterial Characterisation; Design; Tissue Engineering Scaffolds; Implants; Bioprinting

1. Introduction

The application of additive manufacturing (AM), also known as 3D printing, has become increasingly attractive in the medical implant industry. Fabrication of implants and tissue substitutes using AM offers several advantages over traditional, top-down tissue engineered scaffolds, such as precise patient-specific and optimised microarchitecture design, composite and bioprinting capability, relatively faster fabrication, and increased cost efficiency. This is particularly important in the production of small-scale products such as patient-specific implants. However, there are several challenges involved in the fabrication of tissue substitutes using AM. Tissue is a complex biological composite and it is imperative that AM constructs mimic the tissue 3D microarchitecture and microenvironment to convey the native function.

Of the four primary classes of tissue, connective tissue (CT) is the simplest tissue to 3D print. Unlike epithelial, nerve and muscle tissue, CTs are characterised by a vast volume of extracellular matrix (ECM) and a relatively low number of cells (Ombregt, 2013). This property gives rise to two main functions. Firstly, the ECM, a dynamic network of collagen and elastin fibrils embedded within an amorphous interfibrillar matrix known as ground substance, provides the body with both form and support through distribution of mechanical stresses. Secondly, the ground substance serves as a transportation route for CT cells. The activities of CT cells rely on mechanotransduction, the concept of converting mechanical stimuli to elicit a biological response, to function (Orr et al., 2006; Tomasek et al., 2002; Zhang et al., 2017a). Graft failure due to compliance mismatch between synthetic implants and host tissue is well documented (Inoguchi et al., 2006; Mitchell and Niklason, 2003; Yoder and
Therefore, AM biomaterials must mimic the mechanical properties of healthy CT if they are to facilitate cellular activities.

CT is classified according to the composition of the ECM (Stecco, 2014). Consequently, three major subgroups are defined: (1) CT proper (loose CT, dense CT), (2) specialised CT (cartilage, bone, adipose), and (3) fluid CT (blood, lymphatic). For the purpose of this review, fluid CT shall be excluded. The mechanical and biological requirements of CT replacements differ widely according to the tissue of interest, and this is reflected in the most representative choice of AM biomaterial. Here, the following case study tissues shall be used: arterial (coronary, aorta, and femoral), articular cartilage, and bone (cortical and cancellous).

In assessing the most “representative” choice of biomaterial, the function of the implant is considered. Implants may be non-biodegradable, serving as permanent CT supports or replacements, or biodegradable, acting as temporary scaffolds for CT regeneration and reconstruction. Both permanent and biodegradable implants are discussed in this review. In both cases, the mechanical biocompatibility of the implant with respect to the tissue of interest is critical. This has, to some degree, been summarised in recent reviews. For instance, Mazza and Ehret (2015) reviewed the deformation behaviour of soft tissue replacements, with focus on prosthetic meshes for hernia and pelvic repair, in tandem with macro- and microscale deformation of native tissue. However, a similar review has not been conducted for 3D printed tissue replacements, where printing platform and geometric design additionally influence the mechanical performance of the implant. Furthermore, whilst the mechanical characterisation of AM polymer parts has been discussed at length by Dizon et al. (2018), mechanical characterisation of 3D printed biomaterials remains in its infancy. As the volume of literature surrounding AM in CT engineering increases, the need for a review of the AM platforms and biomaterials available for CT replacement, and the testing methods used to characterise mechanical biocompatibility, becomes evident.

This review therefore aims to provide the following: (1) an overview of the biomechanics of CT, compiling quantitative data on the mechanical characterisation of arterial, articular cartilage and bone tissue; and (2) a summary of the current status of mechanical and structural characterisation of AM biomaterials with respect to (1). Specifically, the impact of biocompatibility and printability of biomaterials, as well as the topological design constraints afforded by AM, is explored. In addition, a commentary on the commercialisation and regulatory issues surrounding AM devices is provided. In doing so, this paper shall identify key limitations of existing AM processes and highlight the future opportunities that AM offers to replicate materials which exhibit the properties of CT more accurately.

2. Compatible AM Platforms for Connective Tissue Replacement

Regardless of the biomaterial used, AM involves three main stages (Dawood et al., 2015). Firstly, the macro- and microarchitecture of the tissue replacement is designed using CAD-CAM/FEM software, based on the patient specific data and the characteristic requirements of the tissue. Next, the tissue replacement is printed layer-by-layer using a suitable AM platform and biomaterial. Finally, the 3D printed material is post-processed and prepared for implantation. As summarised in Table 1, several AM techniques exist for tissue engineering depending on the type and nature of the biomaterial and whether stem cells
(bioinks) are incorporated into the scaffold. This section briefly summarises different AM techniques for tissue engineering applications. Specifically, their benefits, drawbacks, and challenges with respect to replicating CT is discussed.

2.1 Material Extrusion Techniques (MET)

Fused Deposition Modelling (FDM)

As the most common AM technique, fused deposition modelling (FDM) heats up a filament of a thermoplastic polymer to the semi-liquid state, extruding and depositing it in layers on a printing platform (Fig. 1.a). In this way, the layers are fused and solidified (Dawood et al., 2015). Thermoplastic polymers, including biodegradable polymers such as polylactic acid (PLA) and polycaprolactone (PCL), can be 3D printed using this technique (Cao et al., 2003; Hsu et al., 2007). Biodegradable vascular stents have been produced using these materials (Guerra et al., 2018). An advanced, high-resolution FDM printer is essential for fabrication of scaffolds with small pore size, high surface quality, and consistent mechanical properties. This method is also known as precision extruding deposition (PED) within the field of tissue engineering (Shor et al., 2009).

Due to the high temperatures required for extrusion, FDM cannot process bioinks (i.e. polymers imbedded with cells or growth factors) (Miar et al., 2018). In addition, as thermoplastic resins are intrinsically of low stiffness, printing of thermoplastic polymers using FDM has limited application in the manufacturing of load bearing constructs such as bone fracture implants. However, by incorporating a continuous fibre in the thermoplastic filament of the printer, a fibre-reinforced polymer scaffold can be constructed with enhanced stiffness and strength (Matsuzaki et al., 2016). Alternatively, particle reinforced polymer-ceramic composites can be created (Kalita et al., 2003). FDM is also suitable for producing pure bioceramics for bone grafts or dental implants through the integration of high concentrations of fine ceramic powders into a thermoplastic binder to create a powder binder filament. Following printing, the fabricated object should undergo binder removal and sintering to form a solid ceramic, similar to ceramic injection moulding processes (Chen et al., 2018).

Direct Ink Writing (DIW)

Direct ink writing (DIW), also known as robocasting, 3D plotting or microextrusion, deposits a continuous strand of viscous material onto a printer bed via a robotically controlled extrusion nozzle. Printing is normally operated at room or physiologically safe temperature and does not involve the high temperatures required in FDM. As illustrated in Fig. 1.b, material extrusion is carried out by a pneumatically or mechanically pressurized dispensing system, which enables material flow under extrusion pressure (Murphy and Atala, 2014b). Thus, the rheological properties of the printing material can greatly affect the printing process and shape of the final product. Printable materials typically have a viscosity in the range of 30 mPa/s to 6×10^7 mPa/s (Jones, 2012). Shear thinning materials are particularly suitable for DIW, as they readily flow and extrude under high shear stress through the printer nozzle and solidify after printing. The deposited material may need to be further crosslinked through chemical or photo-induced means, but this can slow down the printing process (Skardal et al., 2010).

DIW-printable materials include synthetic and natural hydrogels (Ghosh et al., 2008). Furthermore, hydrogels can be loaded with cells and printed using DIW in a technique known as 3D bioplotting. Cell viability is highly affected by printer nozzle size and extrusion pressure.
Although cell viability can be improved by increasing nozzle size and reducing extrusion pressure, printing resolution and speed is compromised. A printing resolution of 5 µm-1 mm can be achieved when printing bioinks (Murphy and Atala, 2014b). Different CTs have been fabricated using 3D bioplotting, including aortic valve (Duan et al., 2013) and articular cartilage (You et al., 2017). Microextrusion-based bioprinting has been reviewed in detail by Ozbolat and Hospodiuk (2016).

DIW can also be used for fabrication of bioceramics. In brief, extrusion of a highly viscous ceramic paste, or slurry, with small organic content is printed at room temperature. The printed object should be pyrolysed and sintered for debinding of the organic content and consolidation to form a solid ceramic (Chen et al., 2018).

Material Extrusion Techniques

(a) Fused Deposition Modelling (FDM)
(b) Direct Ink Writing (DIW)

Fig. 1. Schematic of material extrusion techniques: (a) Fused Deposition Modelling (FDM) and (b) Direct Ink Writing also known as microextrusion, robocasting or 3D plotting. Figures adapted with permission from (Stansbury and Idacavage, 2016), Elsevier and (Malda et al., 2013), John Wiley & Sons respectively.

2.2. Lithography-based AM

Stereolithography (SLA)

As one of the founding AM techniques, stereolithography (SLA) uses UV light to spatially polymerise single layers of liquid photo-crosslinkable resin. After each layer is processed and patterned, another layer of liquid resin is spread and the process is repeated (Fig. 2.a). The unpolymerised resin is then drained and removed at the end of the printing process. The printed part is post-processed in a UV oven to ensure polymerisation of the untreated parts and strengthening of the entire structure. SLA has a very small resolution (~1.2 µm) and exceptional accuracy, and is therefore capable of manufacturing objects with complex internal architecture (Zhang et al., 1999). However, due to the scarcity of biocompatible photocurable resins and weak mechanical strength of photopolymerised resins (Chia and Wu, 2015) it has limited application in CT engineering. Nevertheless, new compatible resins with improved
mechanical properties after polymerisation are being developed to overcome these limitations (Melchels et al., 2010b). SLA has been utilised in several studies to fabricate CT scaffolds from biodegradable synthetic polymers, including poly(propylene fumarate) (PPF) (Lee et al., 2007), photocrosslinkable PCL (Elomaa et al., 2011), poly(trimethylene carbonate) (PTMC) (Schüller-Ravoo et al., 2013), and poly(D,L-lactide) (PDLLA) (Melchels et al., 2010a).

In addition, SLA can be used to manufacture hydrogel-based scaffolds from photocrosslinkable hydrogels. Furthermore, photoencapsulated bioinks using SLA demonstrate improved cell concentration and homogeneity (Arcaute et al., 2010; Arcaute et al., 2006; Chan et al., 2010; Lee et al., 2008; Seck et al., 2010). To improve the mechanical strength of the fabricated scaffold, photocrosslinkable resins can be mixed with micro- or nanosized bioceramics such as hydroxyapatite (HA) (Ronca et al., 2013). It is also possible to manufacture pure bioceramic constructs by mixing a high concentration of bioceramic powder with the resin before printing (Skoog et al., 2014).

Digital Light Processing (DLP)

Analogous to SLA, digital light processing (DLP) relies on photopolymerisation for AM. However, in SLA, a robotically controlled UV laser rasters across the printer platform to crosslink the resin, whereas in DLP, the cross-sectional image of each layer is projected using a UV light projector (see Fig. 2). DLP can achieve faster printing as each layer is immediately crosslinked, but the trade-off is poorer resolution, which negatively impacts surface finish and fine features. The technique has been used to fabricate bone scaffolds from biodegradable polymers (Dean et al., 2014; Dean et al., 2012) as well as from bioceramics such as HA (Zeng et al., 2018). In addition, DLP has been used to print a bioink produced from methacrylated silk fibroin (Kim et al., 2018).

Photopolymerisation 3D Printing

(a) Stereolithography (SLA)
(b) Digital Light Processing (DLP)

![Schematic diagram of lithography-based AM: (a) Stereolithography (SLA) and (b) Digital Light Processing (DLP). Figures adapted from (Stansbury and Idacavage, 2016) with permission from Elsevier.](image-url)
2.3. Powder Bed Fusion (PBF)

In powder bed fusion (PBF) platforms, a high energy beam is used to fuse fine grains of powdered material, densely packed on the printer bed, into a desired pattern (Fig. 3). The unused powder serves as a support for the structure during printing and is subsequently recycled after the object is formed. Therefore, compared to lithography-based AM techniques, no additional support material is needed. Several PBF-based 3D printers are available and characterised by the fusion process.

Selective Laser Sintering (SLS)

Selective laser sintering (SLS) uses a high energy laser to fuse powder at the molecular level (i.e. sintering). Therefore, any material available in powder form with sintering capability is suitable for processing. This includes metals and alloys, as well as a range of polymers, ceramics, and composite materials (Kruth et al., 2003). SLS can process polymer powders with high melting points, thus SLS-fabricated polymers have superior mechanical properties (Dawood et al., 2015). The quality of the printed part is largely dependent on printing parameters such as laser power and speed, powder size and composition, and powder layer thickness (Mohamed et al., 2015). In addition, post-processing such as post sintering, heat treatment, and material infiltration is often required to further improve the mechanical properties (Yap et al., 2015).

Customised bone scaffolds are producible using SLS. Common biocompatible materials for SLS include metals such as titanium alloy (Ti–6Al–4V) and cobalt chromium molybdenum alloy (Co-Cr-Mo) as well as biocompatible polymers such as polyetheretherketone (PEEK) (Bertol et al., 2010; Elsayed et al., 2019; Vandenbroucke and Kruth, 2007). SLS can also be used to fabricate polymer-bioceramic scaffolds, in which the polymer forms the matrix and the bioceramic particles impart reinforcement and biointegration capacity (Babilotte et al., 2019). Bioceramic scaffolds are also manufactureable through the addition of low melting point polymer or glass powder to the bioceramic powder. By serving as a liquid-phase binder, the ceramic sintering process is improved (Chen et al., 2018). The polymeric/glass component is decomposed and eliminated during the laser sintering process. Meanwhile, the bioceramic particles bond and fuse (Gao et al., 2013).
Selective Laser Melting (SLM)

Selective laser melting (SLM) and electron beam melting (EBM) are one-step PBF techniques that use a high energy density laser and electron beam respectively to fully melt material powder to form a dense and homogeneous object. This technique is widely used to generate 3D printed metals with enhanced mechanical properties. Similar to SLS, the mechanical strength of SLM-fabricated metals is highly influenced by printing parameters, notably laser power, scanning speed, powder size, and powder layer thickness. Through control of these parameters, porous titanium implants with structures comparable to human cancellous bone are manufacturable (Pattanayak et al., 2011). However, the laser power must be carefully considered. While a small laser energy density results in insufficient fusion and balling effect, too large energy density leads to vaporization of metal powder. Both cases negatively impact the mechanical properties of the object (Jaber and Kovacs, 2019).

2.4. Inkjet printing

Droplet-Based Printing (DBP)

Droplet-based printing (DBP), or material jetting, is one of the most commonly used AM techniques in tissue engineering. As shown in Fig. 4.a material inkjet printers apply thermal energy or acoustic radiation to eject droplets of the printing material and deposit them
on the printing bed, layer-by-layer, thereby fabricating the 3D object. The technique can be used for printing both non-biological and biological materials. The printing material should be in semi-liquid state to form the droplets. The printed material may need to be crosslinked optically, chemically, or thermally following deposition (Khalil and Sun, 2007; Murphy et al., 2013).

DBP has been widely used for bioink printing. Nevertheless, the heat and pressure applied to the bioink during droplet ejection may influence cell viability and functionality. It has been shown that the thermal energy applied to the bioink during ejection can heat the cells up to 46 °C for 2 µs. However, no significant cell apoptosis is observed when printing is carried out at room temperature (Cui et al., 2010). Non-uniform droplet size and frequent nozzle clogging also pose issues with thermal inkjet printing. Acoustic inkjet printers, on the other hand, use piezoelectric or acoustic actuators to eject more uniformly sized droplets and avoid exposing cells to thermal stress. Nonetheless, the high pressure, shear stress, and vibration frequency experienced by the cells during ejection pose significant drawbacks to cell viability and functionality (Cui et al., 2012; Cui et al., 2010). Compared to 3D bioplotting, the cell concentration within the fabricated scaffolds using thermal inkjet printers is smaller (<10⁶ cells/mL), as high cell concentration can clog the nozzle and reduce the shear forces needed for droplet formation (Xu et al., 2005). This is not necessarily disadvantageous, as high cell concentrations used in microextrusion bioprinting can reduce cell viability and functionality following printing (Ozbolat and Hospodiuk, 2016).

Material jetting is also used for bioceramic fabrication by mixing the ceramic powder into a liquid solvent and depositing the mixture using an inkjet printer. The 3D printed part should be dried and sintered to form a solid ceramic. This technique has been used for bone tissue engineering scaffolds using different bioceramic inks (Zhang et al., 2018).

Fig. 4. Schematic of inkjet printing (a) Droplet-Based Printing (DBP) or material jetting, (b) Binder Jetting or Powder Binder Printer (PBP). Figures adapted with permission from (Malda et al., 2013), John Wiley & Sons and (Chen et al., 2018), Elsevier respectively.
Powder Binder Printers (PBP)

Binder jetting 3D printers, also known as powder binder printers (PBP), eject droplets of binder solution onto a layer of powdered material, densely packed on the printer bed, to bind the powder. After printing each layer, the printer bed is lowered, a new layer of powder is rolled, and the process is repeated to build the 3D structure (Fig. 4.b). This platform is often utilized to print non-biological materials, although biological agents and cells can potentially be deposited using this technique as the system functions at room temperature (Chia and Wu, 2015). Water is often used as a binder for tissue scaffold fabrication in PBP to avoid the need for toxic solvents (Lam et al., 2002). For instance, natural polymers (e.g. gelatin) using water solution as a binder have been printed using PBP (Katsumura et al., 2019). Synthetic polymers using organic solvents as binders have also been manufactured (Stansbury and Idacavage, 2016).

By jetting a ceramic binder on a ceramic powder packed on the printer bed, bioceramics can be produced. After printing, the object is sintered for removal of the binder and/or consolidation (Butscher et al., 2011). This technique has been widely used for bioceramic scaffold fabrications composed of HA (Seitz et al., 2005) and β-tricalcium phosphates (β-TCPs) (Ke and Bose, 2018). In addition, binder jetting can be used for AM of metal and alloy parts from metallic powder. It has been used for AM of metal partial denture framework (Mostafaei et al., 2018) and fabrication of bone scaffolds using biodegradable Fe-Mn-Ca/Mg alloys (Hong et al., 2016).

2.5 Laser Assisted Bioprinting

Laser assisted bioprinting (LAP) is a non-contact and nozzle-free material deposition system based on laser-induced forward transfer. It uses a laser-induced optical force to transfer droplets of biological material (e.g. cell encapsulated scaffolds) to a target substrate (see Fig. 5). By moving the substrate relative to the laser beam, the tissue is fabricated layer-by-layer (Odde and Renn, 1999). The biological material for printing is located on a thin film of metal coated on a transparent support, also known as ribbon. When the laser beam targets the ribbon, the metal film is locally vaporized and a jet of biological droplets is generated. These droplets are then deposited onto the target substrate (Guillotin et al., 2010).

The laser can target individual cells, transferring and depositing them to a desired location on the substrate. It has been shown that the cells remain viable and functional following LAP (Hopp et al., 2005; Odde and Renn, 1999). LAP resolution is dependent on several factors, including the laser energy density, viscosity, and thickness of the biological material coated on the ribbon (Guillotin et al., 2010). Although a very high printing resolution (100 nm-10 µm) can be achieved using this technology, it has limited application for CT engineering compared to other bioprinting methods. Preparation of the ribbon is a relatively
long process and consequently the printing process is slow (Gao et al., 2018; Murphy and Atala, 2014b; Odde and Renn, 1999).

Laser Assisted Bioprinting

Fig. 5. Laser Assisted Bioprinting. Figures adapted from (Malda et al., 2013) with permission from John Wiley & Sons
<table>
<thead>
<tr>
<th>Material Extrusion</th>
<th>3D Printing Platform</th>
<th>Biomaterial Type</th>
<th>Printing Resolution</th>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
</table>
| Fused Deposition Modelling (FDM) | • Thermoplastic polymers
 • Polymer-ceramic composites
 • Fibre-reinforced polymers
 • Bioceramics | 50-200 µm (Ngo et al., 2018) | • Low cost
 • High speed | • Low strength
 • Limited materials (biocompatible thermoplastic) |
| Direct Ink Writing (DIW) | • Synthetic and natural hydrogels
 • Bioinks
 • Bioceramics | 5 µm-1 mm (Murphy and Atala, 2014b) | • Bioprinting capability
 • Capable of printing high cell concentrations
 • Capable of processing relatively high viscosity bioinks
 • High resolution | • Limited materials (certain range of viscosity)
 • Low cell viability due to cell distortion (for bioinks)
 • High resolution comes with the cost of cell distortion
 • Relatively slow |
| Stereolithography (SLA) | • Photo-crosslinkable resin and bioinks | 10 µm (Ngo et al., 2018) | • High resolution
 • Bioprinting capability
 • High cell viability | • Limited materials (biocompatible and photo-crosslinkable)
 • High cell density affects bioinks crosslinking
 • Expensive
 • Slow |
| Lithography-based AM | Digital Light Processing (DLP) | • Photo-crosslinkable resin and bioinks | 25-50 µm (Lim et al., 2018) | • Relatively high resolution
 • High speed
 • Bioprinting capability
 • High cell viability | • Limited materials (biocompatible and photo-crosslinkable)
 • High cell density affects crosslinking of bioink |
| Selective Laser Sintering (SLS) | • Metals and alloys
 • Polymers
 • Polymer-ceramic composites
 • Bioceramics | 80-250 µm (Ngo et al., 2018) | • Controllable porosity
 • High speed
 • Good mechanical properties | • Expensive
 • Poor surface quality
 • Post-processing needed |
| Powder Bed Fusion (PBF) | Selective Laser Melting (SLM) | • Metals and alloys | 80-250 µm (Ngo et al., 2018) | • No post-processing
 • High speed
 • Dense printing
 • Superior mechanical properties | • Very expensive
 • Poor surface quality |
Inkjet Printing

<table>
<thead>
<tr>
<th>Method</th>
<th>Materials</th>
<th>Resolution</th>
<th>Bioprinting Capability</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Droplet-Based Printing</td>
<td>Synthetic and natural hydrogels, bioinks, bioceramics</td>
<td>50 µm (Murphy and Atala, 2014b)</td>
<td>Bioprinting capability, quick preparation and printing, low cost</td>
<td>Limited materials (low viscosity and should form droplets), low cell density, nozzle clogging, weak mechanical strength</td>
<td></td>
</tr>
<tr>
<td>Powder Binder Printers</td>
<td>Synthetic and natural hydrogels, bioceramics, metal and alloys</td>
<td>100-300 µm (Chia and Wu, 2015)</td>
<td>Quick preparation and printing, low cost</td>
<td>Low resolution, low strength, post-processing needed</td>
<td></td>
</tr>
<tr>
<td>Laser Assisted Bioprinting</td>
<td>Synthetic and natural hydrogels, bioinks</td>
<td>5 µm (Murphy and Atala, 2014b)</td>
<td>Nozzle-free printing, capable of printing high cell concentrations, capable of processing high viscosity bioinks</td>
<td>Time consuming preparation, expensive</td>
<td></td>
</tr>
</tbody>
</table>

3) Mechanical Characterisation of Connective Tissues

3.1 An Outline of the Mechanics of Soft Connective Tissues

The mechanical behaviour of soft CT is determined by the composition of its ECM. Briefly, proteoglycans contain a protein core and glycosaminoglycans (GAGs) side chains. As GAGs are polyanionic, they attract water via the Donnan effect (Hukins et al., 1999). The result is formation of a highly hydrated gel. This hydrated gel, or ground substance, is reinforced by collagen fibrils, which provide the main resistance to deformation within CTs. Thus, soft CTs can be categorised as fibre-reinforced composite materials, where collagen provides reinforcement to the hydrated gel. In arterial walls, elastin is also a key constituent in determining its elastic behaviour (Wang et al., 2018), in particular its return to shape rather than stiffness.

Collagen fibrils have a crimped structure when unloaded. Under initial loading, soft CTs exhibit greater extensibility as the crimp is straightened (Fratzl et al., 1998). Once straightened, loading is then resisted by extended collagen fibrils, which leads to increased tissue stiffness (i.e. reduced extensibility per load). The result is a characteristic ‘J’-shaped stress-strain (or force-displacement) relationship. Strain energy potential material models such as Ogden or Yeoh have, therefore, been used to characterise the mechanical behaviour of soft CTs (Martins et al., 2006; Misra et al., 2010). Indeed, constitutive models such as the Holzapfel-Gasser-Ogden model (Holzapfel et al., 2000) incorporate the relative contributions of fibres and matrix, including fibre orientation, in numerical models of soft CTs (Lavecchia et al., 2018).

Fibre orientation is important because collagen provides reinforcement to loading primarily along its longitudinal axis. Therefore, the method by which this resistance to deformation is achieved depends on the structuring of the tissue itself and the preferred orientation of collagen fibres (Hukins and Aspden, 1985). For example, an intervertebral disc consists of a central gel (nucleus pulposus) surrounded by layers (lamellae) containing collagen oriented at ±30°. Thus, under compression, the fluid gel places collagen under tension (White,
Articular cartilage is differently structured and is primarily exposed to compression, and also requires collagen fibres to be placed under tension so as to provide reinforcement to deformation during compressive loading (Hukins et al., 1984; Zhang et al., 2015). Collagen is aligned parallel to the surface layer at the superficial region of cartilage, perpendicular to the surface layer in its mid- and deep-zones, and with a transition layer in between (Athanasiou et al., 2013). It is a swelling pressure which places the ECM and its collagen fibres under tension (Aspden and Hukins, 1990; Hukins et al., 1984).

The structuring of collagen within soft CTs can be straightforward in places where the tissue is primarily exposed to tension. For example, chordae tendineae have collagen primarily aligned with their longitudinal axis (Millington-Sanders et al., 1998). This is also often the case for tendons and ligaments. The crimp period has been hypothesised as determining the transition from highly extensible to inextensible within such CTs, with a shorter crimp period being associated with greater extensibility (Liao and Vesely, 2003). There is also evidence that triple helical tropocollagen molecules, which compose collagen, follow entropic elasticity at low strains but energetic elasticity at larger strains (Buehler and Wong, 2007). Therefore, there is a transition to a more ordered state initially, which relates to the large extension at low strains of soft tissues. Subsequently, at a more ordered state, these tissues undergo low extension (Misof et al., 1997; Puxkandl et al., 2002).

The material properties of soft CTs depend on their rate of loading; they are viscoelastic (Burton et al., 2017; Espino et al., 2012; Sadeghi et al., 2015a). A viscoelastic material can be characterised in terms of its ability to store and dissipate energy, referred to as the storage and loss moduli respectively. This time-dependency can be used to describe phenomena such as creep, stress relaxation, and hysteresis. These characteristics correspond to continued extension of a material at constant load (creep), the reduction in stress within a material held at constant strain (stress relaxation), and the dissipation of energy during a loading-unloading cycle (hysteresis). Under dynamic loading, the stress and strain (or load and displacement) will be out of phase by a phase lag (δ). Dissipation of energy can be associated with viscous flow through a material, which for soft CTs might be associated with its fluid content; in fact, many soft tissues have poroelastic properties (Ghimire et al., 2018; Han et al., 2011; Miramini et al., 2016b; Tavakoli Nia et al., 2011; Zhang et al., 2008). However, while tissues such as articular cartilage contain around 70% water content (Armstrong and Mow, 1982; Venn, 1978; Venn and Maroudas, 1977), water bound to GAGs is not necessarily freely available to flow. This might be analogous to water in hydrogels which can be bound to polymers or trapped within voids (Meakin et al., 2003). Indeed, the stress transfer between fibre and ground substance (Goh et al., 1999; Goh et al., 2004; Goh et al., 2003) may be central to the viscoelastic behaviour rather than individual constituents independently, or exclusively, contributing to viscous and elastic behaviour (Pearson and Espino, 2013).

3.2 Material Properties of Arteries (Coronary, Femoral and the Aorta), Articular Cartilage, and Bone

Indicative material properties and failure stresses are provided for arteries (coronary, femoral, and aorta), articular cartilage, and bone in Table 2. The values provided are intended as an indicative range for which AM replacement materials may target in the first instance. However, some caveats apply, some of which are outlined below, others noted in Table 2.

A major difference between bone and soft CTs is that while collagen fibres are present to provide reinforcement under tensile loading, the ECM of bone is mineralised by HA (although impure, and poorly crystalline) (Hukins et al., 1999). The result is that it is able to support compressive loads. There is a link between bone mineral density (BMD) and its
mechanical properties (Carter and Hayes, 1977; Novitskaya et al., 2011). This may be explained by bone remodelling and Wolf’s Law (Bonfield and Clarke, 1973; Helgason et al., 2008; Novitskaya et al., 2011; Schaffler and Burr, 1988; Wachter et al., 2001). There is interest in clinical applications because of the possibility to measure BMD from clinical scans and map the local elastic modulus in 3D space (Grassi et al., 2014; Grassi et al., 2012). Potential applications to numerical models include prediction of failure propagation (Juszczyk et al., 2010) as well as prediction of cell differentiation and ossification during bone fracture healing (Ganadhiepan et al., 2019b; Miramini and Yang, 2019; Miramini et al., 2016a; Zhang et al., 2017b). Bone can be categorised as cortical and cancellous (also referred to as trabecular or spongy) (Fig. 6). Cortical bone is more densely packed and, therefore, stiffer and stronger than cancellous bone. Cortical bone lies furthest away from the neutral axis of bones and is exposed to higher stresses during loading. For both cortical and cancellous bone, there are a range of experimental parameters which influence measurements of mechanical properties, including specimen age and testing protocols (e.g. hydration, rate of testing, longitudinal or transverse test samples, etc.) (Lucas et al., 1999; Novitskaya et al., 2011). Moreover, lower elastic modulus and failure stresses are observed under tension than under compression (Keaveny and Buckley, 2006; Kopperdahl and Keaveny, 1998).

Fig. 6. Bovine knee joint subchondral bone, including a subchondral plate (SBP) and subchondral trabecular bone (STP). (a) Sample from a meniscus covered region. (b) Sample from a non-meniscus covered region of the tibial plateau. Note: Figure reproduced from (Fell et al., 2019) which is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

The instantaneous elastic modulus for articular cartilage will vary both per joint and per location within the joint (Shepherd and Seedhom, 1999). This may be an adaptive response to the stresses to which the tissue is exposed (Swann and Seedhom, 1993). Additionally, high rates of testing will result in greater values for the calculated elastic moduli (Burgin and Aspden, 2008; Lawless et al., 2017). Methods which calculate elastic moduli following equilibrium under static loading predict greater compliance (Athanasiou et al., 1991; Taylor et al., 2012). Regarding failure, an injurious stress might still classify as being within a physiological range. For instance, a stress of 4-6 MPa may be induced on the patellar surface of femur when walking up and down stairs or ramps (Seedholm et al., 1979). Vigorous activity may induce stresses in the range of 12-18 MPa (Hodge et al., 1989; Mathews and Decker, 1977). Failure of soft CTs may involve propagation of a crack (Fig. 7) along or through the tissue (Sadeghi et al., 2017; Sadeghi et al., 2018; Sadeghi et al., 2015b). This means that an
objective criterion for failure is more difficult to define as compared to a hard CT such as bone, as functionality may continue following failure.

Pressure vessels, such as arteries, contain collagen orientated so as to resist circumferential (i.e. aligned with the circumference of the artery) and longitudinal (i.e. aligned along the length of the artery) loading (Fig. 8). Arteries are typically comprised of three layers: the tunica intima, the tunica media, and the tunica adventitia (or tunica externa). The intima, in contact with the blood, is comprised of an endothelial monolayer supported by a subendothelial layer of loose CT. By contrast, the tunica media contains smooth muscle cells, and the tunica adventitia is primarily constituted of collagen and elastin (Lowe and Anderson, 1997). Coronary and femoral arteries have a similar collagen content, with coronary arteries containing the highest ratio of collagen to elastin (Fischer and Llaurado, 1966). In the coronary adventitia, longitudinal stiffness is a direct result of initial fibre alignment, with collagen fibres uniformly stretching in the loading direction (Chen et al., 2013; Karimi et al., 2016). Material properties are dependent on the orientation of the loading, with characterisation focused on circumferential and longitudinal properties (Yang et al., 2009).

Fig. 7. Crack propagation through articular cartilage, with an initial notch (c0). The numbers 0, 20 and 50 refer to the number of cycles of loading. Note: This figure has been reproduced from (Sadeghi et al., 2018), which is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Fig. 8. Porcine heart. (a) The dashed line identifies the location of the left anterior descending coronary artery. (b) The coronary artery dissected with the endothelial surface exposed. Note: This figure has been reproduced from (Burton et al., 2017), which is distributed under the terms
<table>
<thead>
<tr>
<th>CT Type</th>
<th>Elastic Modulus (or equivalent)</th>
<th>Failure Stress</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arteries</td>
<td>CORONARY: 0.09 – 10 MPa</td>
<td>CORONARY: 0.4 MPa</td>
<td>Failure stress does not necessarily mean full ‘fracture’ and more subtle signs of damage may be noticeable at below failure stress (Burton and Espino, 2019)</td>
</tr>
<tr>
<td></td>
<td>Uniaxial testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 – 10 MPa (‘high’ stress modulus)</td>
<td>Tensile strength: 0.4 MPa (Holzapfel et al., 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Freij et al., 2019; Karimi et al., 2013; Lally et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6 – 0.9 MPa (‘low’ stress modulus)</td>
<td>Intima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Freij et al., 2019)</td>
<td>0.39 MPa (Holzapfel et al., 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pressurised/inflation studies/biaxial/Equi-biaxial tests</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Claes et al., 2010; Lafond and Prince, 2004; Ozolanta et al., 1998; Van Andel et al., 2003; Veress et al., 2000; Wang et al., 2006)</td>
<td>0.45 MPa (Holzapfel et al., 2005)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.09 – 0.2 MPa (circumferential)</td>
<td>Adventitia</td>
<td>The ascending and descending aorta have different material properties</td>
</tr>
<tr>
<td></td>
<td>0.1 - 0.24 MPa (longitudinal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.008 - 0.02 MPa (low stress) (Kural et al., 2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AORTA (thoracic): 0.2 – 8 MPa</td>
<td>Ascending aorta (peak modulus)</td>
<td>AORTA (thoracic): 0.8 – 5.1 MPa</td>
<td>Longitudinal and transverse samples, rate of loading (Mohan and Melvin, 1982), animal samples or human samples, age, and testing using uniaxial or biaxial set-ups (O’Leary et al., 2014) will lead to different elastic moduli. Some of these points have been highlighted for coronary arteries, along with the difference between low and high stress characterisation (but not for aorta and femoral arteries, to avoid repetition)</td>
</tr>
<tr>
<td></td>
<td>2.0 – 8.0 MPa (Iliopoulos et al., 2009; Jarrahi et al., 2016; Vorp et al., 2003)</td>
<td>Ascending aorta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descending aorta</td>
<td>1.0-2.2 MPa (Iliopoulos et al., 2009; Jarrahi et al., 2016; Vorp et al., 2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2 – 3.8 MPa (Adham et al., 1996; Chow and Zhang, 2011; O’Leary et al., 2014; Stemper et al., 2007)</td>
<td>Descending aorta</td>
<td></td>
</tr>
<tr>
<td>FEMORAL: 0.1 – 7 MPa</td>
<td>Elastic modulus:</td>
<td>Descending aorta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1 - 2 MPa (Ahlgren et al., 2001; Alfonso et al., 2016; Benetos et al., 1993; Bergel, 1961; Hamilton et al., 2005; Kawasaki et al., 1987; MOZERSKY et al., 1972)</td>
<td>0.8 – 5.1 MPa (Adham et al., 1996; Groenink et al., 1999; Mohan and Melvin, 1982, 1983; Stemper et al., 2007)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic viscoelastic properties:</td>
<td>FEMORAL: ≥0.3 MPa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Storage modulus: 1.2 – 7 MPa (Learoyd and Taylor, 1966)</td>
<td>(Schulze-Bauer et al., 2002; Syedain et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Articular Cartilage</td>
<td>RANGE: <1 – 170 MPa</td>
<td>RANGE: 4 – 50 MPa</td>
<td>Mechanical properties of articular cartilage are dependent on the joint which it lines, as well as the location within the joint (likely determined by prevalent stress)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Knee</td>
<td>6 – 11.8 MPa (Shepherd and Seedhom, 1999)</td>
<td>>4 MPa (surface damage under dynamic loading) (Sadeghi et al., 2015b)</td>
<td></td>
</tr>
<tr>
<td>Hip</td>
<td>4.5 – 10.2 MPa (Shepherd and Seedhom, 1999)</td>
<td>8-10 MPa (under a static load) (Fick and Espino, 2011, 2012)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equilibrium & aggregate moduli = <1 MPa (Athanasiou et al., 1991; Taylor et al., 2012)</td>
<td>However pure traumatic loading might be in the range of: 10 – 50 MPa (Jeffrey and Aspden, 2006; Milentijevic et al., 2005; Milentijevic and Torzilli, 2005);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Dynamic’ modulus ≤170 MPa (Burgin and Aspden, 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic viscoelastic properties: Storage modulus = 20 MPa - 114 MPa (Lawless et al., 2017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loss modulus = 4 – 20 MPa (Lawless et al., 2017)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone</th>
<th>CORTICAL: 10 – 40 GPa</th>
<th>CORTICAL: 125 – 250 MPa</th>
<th>Differences between compressive and tensile properties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Bonfield and Clarke, 1973; Carter and Hayes, 1977; Novitskaya et al., 2011)</td>
<td>(Carter et al., 1981; Öhman et al., 2011)</td>
<td>Fibre orientation leads to heterogenous mechanical behaviour</td>
</tr>
<tr>
<td></td>
<td>CANCELLOUS: 0.4 – 18 GPa</td>
<td>CANCELLOUS: 0.3 – 30 MPa</td>
<td>Failure properties and moduli have been linked to BMD, leading to regional variations in properties (femur and vertebral body values are provide as examples)</td>
</tr>
<tr>
<td></td>
<td>(Gibson, 1985; Lucas et al., 1999; Novitskaya et al., 2011)</td>
<td>Femur = 1– 30 MPa (Perilli et al., 2008)</td>
<td>Failure stress lower for tension than compression (Keaveny and Buckley, 2006; Kopperdahl and Keaveny, 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertebræ = 0.36 – 2.34 MPa (Nazarian et al., 2006)</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic viscoelastic properties:
Storage modulus = 20 MPa - 114 MPa (Lawless et al., 2017)

Loss modulus = 4 – 20 MPa (Lawless et al., 2017)

Differences between compressive and tensile properties

Fibre orientation leads to heterogenous mechanical behaviour

Failure properties and moduli have been linked to BMD, leading to regional variations in properties (femur and vertebral body values are provide as examples)

Failure stress lower for tension than compression (Keaveny and Buckley, 2006; Kopperdahl and Keaveny, 1998)
4) Biomaterials for AM of Connective Tissues

A wide range of biocompatible, printable materials are available for use in CT engineering. Table 3 summarises additively manufacturable biomaterials suitable for CT engineering. Non-biodegradable biomaterials can be used for both long-term and permanent tissue support, or as tissue replacements. Such materials are seen in orthopaedic implants, vascular stents, and dental crowns. They serve several functions pertinent to CT, including load-bearing, void-filling, and widening and reconstruction of the body’s passageways. Biodegradable biomaterials, on the other hand, act as temporary scaffolds for promoting cell proliferation, migration, differentiation, and ultimately tissue regeneration. They can also assist drug delivery after implantation. This section summarises the critical properties of these biomaterials that significantly influence CT implant function and performance.

4.1. Biocompatibility

The biocompatibility of AM materials is pivotal for successful implantation. Biocompatibility is defined as “the ability to perform with an appropriate host response in a specific situation” (Williams, 1987). It should be noted that both biomaterial variability and host factors affect the biocompatibility of an implant (Williams, 1989). In addition, implant biocompatibility is not only affected by the intrinsic properties of the printing material, but also by fabrication process parameters (e.g. extrinsic properties such as porosity and surface characteristics) (De Maria et al., 2015). Ideally, a biomaterial should have biochemical and biophysical properties akin to the host tissue to avoid mechanical failure, undesired immune response, chronic inflammation, and allergic reaction. Furthermore, the biomaterial should promote cellular activities involved in CT function, as well as tissue integration and/or regeneration. As illustrated in Fig. 9, several interrelated components are involved in the biocompatibility characteristics of an implant, including biomaterial integration and degradation as well as structural and mechanical properties.

![Fig. 9. Summary of the parameters affecting a CT implant biocompatibility](image)
4.1.1. Biomaterial integration

Integration of the implanted biomaterial into the surrounding host tissue, i.e. biointegration, is of critical importance for its long-term viability. Biointegration is highly influenced by host foreign-body reactions such as protein adsorption and inflammation/repair response. The implant surface chemistry, nano-topography and hydrophilicity can highly affect the protein adsorption process and consequently the implant biointegration. Therefore, material composition, implant design and the fabrication process play key roles in surface function for the protein adsorption process (Serra et al., 2013). Surface functionalisation of the implant can be performed physically or chemically. Physical functionalisation modifies the surface nanomorphology and topography physically with minimal changes to the surface chemistry, whereas chemical modification changes the chemistry of the implant surface by applying a surface coating or by oxidising, nitriding or carbiding the material (Bose et al., 2018).

In addition, the balance between inflammatory and repair processes of the host tissue following biomaterial implantation, significantly impacts implant biointegration. A highly bioinert material, such as pure titanium, alumina, or ultra-high molecular weight polyethylene, has minimal interaction with the host tissue. As such, the inflammation and repair response are minimally disrupted, and minimum fibrous encapsulation occurs if the implant is tightly fixed within the host tissue. Weakly bioinert materials or loosely confined implants experience more unfavourable biointegration as they elicit persistent inflammatory stimuli, resulting in implant encapsulation by a thicker fibrous capsule. On the other hand, bioactive materials such as β-TCP and bioactive glasses promote a balanced inflammation and repair response, yielding improved angiogenesis, tissue regeneration, bonding to the implant interface and biointegration.

In addition, the porosity of a biomaterial affects its biointegration. Porous biocompatible materials allow CT penetration via the pore network, thus encouraging implant integration. Furthermore, biodegradable porous implants degrade concomitantly with CT ingrowth until the implant is fully replaced by regenerated tissue. Fibrous encapsulation and biointegration of a biodegradable implant are highly influenced by its bioactivity. While naturally derived biodegradable scaffolds (e.g. collagen- and β-TCP based) integrate well, highly bioinert biodegradable materials such as PCL stimulate formation and continuous remodelling of the fibrous capsule around the implant (Narayan, 2018; Williams, 1989).

4.1.2. Degradation characteristics

The degradation characteristics of a material are determined by the complex biochemical and biophysical environment of the host CT. Tissues contain a variety of ions, organic species (e.g. proteins), and active cells at physiological temperature. Moreover, CT is subject to physical loading, deformation and fatigue stress, all of which provide a highly susceptible environment for material degradation. Unwanted degradation of an implant not only affects its structural and mechanical performance, but also results in release of material debris which can cause adverse body reactions and post-surgical complications. This debris is difficult to remove and often results in prolonged inflammation and repair response and further complications (Williams, 1989). For example, it has been shown that the wear debris of the materials used in orthopaedic implants (e.g. polyethylene, metal, and ceramic) trigger inflammation response and can potentially result in implant loosening and failure (Philbrick et al., 2018).
Biodegradable biomaterials with controlled degradation, on the other hand, are used in regenerative medicine to provide a temporary support for cellular activities and CT regeneration. Their degradation rate, non-toxicity, and biocompatibility are the main factors affecting scaffold success. It is challenging to develop a biodegradable biomaterial that degrades at the same rate as the tissue regeneration. The degradation rate is often too fast or too slow to allow synchronised degradation and tissue regeneration (Zhang et al., 2014). Naturally derived polymers (e.g. collagen, chitosan, alginate, gelatine, keratin and silk) have superior biocompatibility and promote cellular activities, angiogenesis, and tissue regeneration. However, they possess inferior and inconsistent mechanical properties, limited control over degradation rate, and potential immunogenic response (Ige et al., 2012). Synthetic biodegradable polymers (e.g. PLA, polyglycolide (PGA), poly(lactic-co-glycolic acid) (PLGA), PCL, PPF) offer several advantages, including relative ability to tailor mechanical and degradation properties, high reproducibility, and availability. Nevertheless, they suffer from high bio-inertness and lower biocompatibility compared with natural polymers. Other biodegradable materials commonly used in bone tissue regeneration include biodegradable bioceramics such as β-TCP that offer high bioactivity and suitable mechanical properties and biodegradation rate, enhancing scaffold osteoconductivity (Martin and Bettencourt, 2018).

4.2. Printability

An ideal biomaterial for AM should allow accurate and precise printing with favourable spatiotemporal control, a material characteristic known as printability. Material printability is determined by the material’s intrinsic properties and extrinsic printing parameters. For example, materials used in powder-based 3D printers such as PBPs require specific particle size and good sphericity alongside good flowability (Mazzoli, 2013). Inkjet printing platforms such as DBP need materials with specific viscosity and rapid crosslinking capabilities. Meanwhile, microextrusion techniques such as DIW require materials with shear thinning properties. In addition, within the scope of bioink printing, other printability requirements are necessitated to ensure high cell viability after printing. For example, thermal inkjet bioprinters need bioinks with low thermal conductivity to minimise cell temperature increase during the printing process. On the other hand, microextrusion bioprinters should avoid highly viscous bioinks with low shear thinning characteristics. Otherwise, high shear stress at the nozzle during extrusion can damage the cells (Butscher et al., 2011; Gopinathan and Noh, 2018; Murphy and Atala, 2014b). Fig. 10 shows the inter-related parameters affecting printability and cell viability of hydrogels and bioinks.
Fig. 10. Parameters affecting printability and cell viability of bioinks (i.e. cell encapsulated hydrogels). Image is reprinted from (Malda et al., 2013) with permission from John Wiley & Sons.
<table>
<thead>
<tr>
<th>Biomaterial</th>
<th>Platforms</th>
<th>Applications</th>
<th>Benefits</th>
<th>Drawbacks</th>
<th>3D Printing Challenges</th>
<th>References</th>
</tr>
</thead>
</table>
| Non-biodegradable Metals | SLS, SLM, DED | • Bone fracture fixation
• Joint replacement
• Dental implants
• Vascular stent | • High strength and reliability
• Relative ductility
• Easy to 3D print | • Stress-shielding
• Weak osseointegration
• Release of wear debris
• Hypersensitivity reactions | • Finishing
• Limited Materials
• Cost
• Scalability
• Wear properties | (Gokuldoss et al., 2017; Lee et al., 2017; Mazzoli, 2013) |
| Bioceramics | FDM, DIW, SLA, DLP, SLS | • Coating of orthopaedic and dental implants
• Joint replacement | • Wear resistant
• Bioinert
• High compressive strength
• Osteoconductive
• Low friction | • Brittle
• Low tensile strength
• Low fatigue strength
• Complex fabrication technique | • Post processing is normally required | (Chen et al., 2018; Guvendiren et al., 2016) |
| Polymers | FDM, SLA, DLP, SLS | • Soft CT scaffolds (cartilage replacement and vascular grafts) | • Flexible
• Easy fabrication
• Durable | • Can deform or degrade with time
• Weak cell adhesion | • Limited materials
• Limited manufacturing methods | (Melchels et al., 2012; Stansbury and Idacavage, 2016) |
| Synthetic polymers | FDM, DIW*, SLA*, DLP*, SLS, DBP*, PBP, LAP* | • Soft CT scaffolds (cartilage replacement and vascular grafts)
• Hard CT scaffolds (bone) stabilised by fixation | • Flexible
• Easy processing
• Versatile
• High control over degradation | • Low stiffness
• Limited biocompatibility and cell affinity | • Limited materials | (Asghari et al., 2017; Guvendiren et al., 2016; Lei and Wang, 2016) |
| Biodegradable Natural polymers | DIW*, DLP*, MET, DBP*, PBP, LAP* | • High cell affinity
• Osteoinductive
• Osteoconductive
• Promotes angiogenesis
• Safe degradation byproducts | • Low stiffness
• Batch-to-batch variability
• Limited printability
• Risk of immune response | • Limited material processability and printability | | (Liu et al., 2018; Yang et al., 2018) |
| **Bioceramics** | FDM, DIW, SLA, DLP, SLS, PBP | • Hard CT scaffolds (bone) | • High stiffness
 • Osteoconductive
 • Osteoinductive
 • Post processing is normally required (Ashammakhi et al., 2019; Chen et al., 2018; Guvendiren et al., 2016; Wen et al., 2017) |
| **Hybrid/Composite Materials** | FDP, DIW, SLA, DLP, SLS, PBP | • Bioceramic-polymer composite for hard CT (bone)
 • Composite polymers for arterial tissue | • Improved mechanical properties
 • Improved biocompatibility
 • Limited materials
 • Long preparation time (Ashammakhi et al., 2019; Guvendiren et al., 2016) |
5) Structural and Mechanical Characterisation of AM Materials for Connective Tissue Replacement

Replication of the mechanical properties of host CT is of critical importance for several reasons: (1) to withstand surgical implantation (e.g. suturability of arterial grafts), (2) to withstand physiological loading conditions (e.g. compression of articular cartilage and bone), (3) to maintain the required form of the tissue (e.g. controllable radial expansion and contraction of the vascular wall), and (4) to provide the correct mechanical stimuli to influence cellular activity (i.e. mechanotransduction). In addition, the structural properties of the scaffold, such as porosity and permeability, are critically important as they affect the physiological functions of the implant (e.g. cell migration, nutrient transport) as well as its biointegration (Haghpanahi and Miramini, 2008; Miramini et al., 2017; Pilliar et al., 1975).

There are a large number of variables during AM which can affect the final mechanical and structural characteristics of the implant (Thomas-Seale et al., 2018). These variables include the printing resolution, pore size, crystallinity in the melt or extrusion process, and post-processing parameters. In addition, the intrinsic properties of the raw material prior to manufacturing, particularly the viscosity and surface tension, allow the material to be printed in the first place. They also influence the final state of the construct. In the case of AM, the geometric flexibility of the technique is so extensive that the structural stiffness is a crucial influencing factor. Table 4 summarises recent literature on the mechanical characterisation of artery, cartilage, and bone AM replacements. The mechanical properties and parameters are named as per the cited literature. It is worth mentioning that in some instances authors interchange the use of lattice, mesh and porosity to accurately describe the cited research.

5.1) Artery

The potential of cardiovascular AM for the manufacturing of synthetic arterial grafts has been summarised in recent reviews (Duan, 2017; Elomaa and Yang, 2017; Roy et al., 2018). Differences in the relative quantities and organisation of collagen and elastin in the coronary and femoral arteries and the aorta confer different global properties that must be factored into the design parameters of the biomaterial (see Table 2). Consequently, these values act as a guide to the material scientist, such that the mechanical properties of AM materials can be engineered to match host arterial tissue, in the region of interest, to determine their viability as graft materials.

The recent advancement of FDM and SLM of thermoplastic polymers has been proposed as a solution towards 3D printed, biodegradable coronary stents (Flege et al., 2013; Guerra et al., 2018). Stents are not used to directly replace CT; rather, they are permanent or non-permanent devices which provide support to the arterial wall by widening the passageway to maintain function of diseased tissue. These materials are crucial in providing radial strength and preventing recoil. Therefore, mechanical and structural characterisation of AM stents is of interest in this review.

Both PLA and PCL are hemocompatible and demonstrate a high capacity for endothelial cell adhesion (Flege et al., 2013), whilst thermoplastic polyurethane (TPU) is inert to the components of blood (Esmaeili et al., 2019). Mechanical characterisation of these polymers is mostly limited to radial expansion, recoil, and elastic modulus. Using the design flexibility afforded by AM, radial strength and stent expandability of PLA can be optimised.
through variation of strut geometry (Flege et al., 2013). A study conducted by Guerra et al. (2018) characterised the dynamic modulus of both PLA and PCL stents (Guerra et al., 2018). Whilst PLA stents exhibit a high dynamic modulus (E’ = 2.0 GPa) and low recoil ratio, PCL constructs demonstrate a lower dynamic modulus (E’ = 0.35 GPa) but a greater capacity for fibroblast adhesion and radial expansion. Composite PCL/PLA stents look to combine the elasticity of PCL with the rigidity of PLA to mirror the heterogeneity of vascular tissue (E’ = 1.39 GPa). However, it is noted that these values far exceed the storage moduli reported for native arterial tissue (as shown in Table 2). Similarly, the elastic moduli of TPU/HA composite stents surpass the elastic modulus of arterial tissue (1.68-1.53 GPa compared to 0.1-2 MPa for the femoral artery) (Esmaeili et al., 2019). Nevertheless, the tensile strength ranged from 3.1-3.7 MPa, which matches the tensile strength of the descending thoracic aorta (Adham et al., 1996; Chow and Zhang, 2011; O’Leary et al., 2014; Stemper et al., 2007).

Alternatively, bioinks may be used to directly replicate CT tissue. 3D printed hydrogel scaffolds possess significantly lower mechanical strength to vascular stents. Typical bioink materials for cardiovascular application include polysaccharides (chitosan, agarose, alginate) and proteins (gelatin and fibrin) (Roy et al., 2018). The hemocompatibility of these biomaterials is generally well reported; however, their mechanical integrity is less characterised. For example, the mechanical characterisation of additively manufactured gelatin-based stents is mostly limited to compression testing. 10% gelatin methacrylamide + 1% gellan gum gel printed on a custom-made BioExtruder bioprinter was compressed to 15% strain and displayed a Young’s modulus of 59 kPa (Melchels et al., 2014). The compressive moduli of bioprinted gelatin methacryloyl/poly(ethylene glycol)-tetra-acrylate (PEGTA) scaffolds at 10% strain ranged from 24.2-50.7 kPa (Jia et al., 2016). Gelatin/microbial transglutaminase (mTG), of interest due to its ECM-like nature, was printed into the geometry of the left coronary artery using SLA and compressed to 60% strain, yielding a compressive modulus of 5 MPa (Liu et al., 2019a).

Mechanical characterisation of arterial supports and substitutes thus far has been focused on quasi-static loading. Radial expansion and elastic moduli are most commonly reported, with a limited number of studies extending to dynamic testing. However, the mechanical properties of 3D printed stents or bioinks are rarely matched to the mechanical properties of a particular host vessel. Furthermore, the elastic modulus of the biomaterial does not reflect the nonlinearity of arterial tissue. To better mimic tissue anisotropy and thus in vivo wall performance, future studies should expand into viscoelastic characterisation and fatigue testing under repeated cyclic loading.

5.2) Cartilage

As shown in Fig. 11 Cartilage is highly heterogeneous and anisotropic (Armiento et al., 2018), with strain-stiffening behaviour (Zhang et al., 2015) and ultra-low friction coefficient at the contacting surface (Longmore and Gardner, 1975), achieved through complex lubrication mechanisms (Liao et al., 2019). It is extremely difficult to manufacture scaffolds that can replicate these variable properties using traditional techniques. The topological freedom offered by AM and the ability to print composite materials enables more structurally and mechanically biofidelic cartilage scaffolds to be produced. These tissue scaffolds can be printed with seed cells, drugs and growth factors which enable tissue regeneration (Cheng et al., 2019).
Synthetic polymers like PCL and poly(vinyl acetate) (PVA) are commonly used in cartilage scaffolds because they are biocompatible and their mechanical properties can be easily tailored (Chen et al., 2014; Cheng et al., 2019; Dong et al., 2017; Woodruff and Hutmacher, 2010). These base polymers can also be combined with natural polymers such as chitosan (Dong et al., 2017) to encourage tissue regeneration, and β-TCP (Shim et al., 2017) and HA (Du et al., 2017) to encourage bone regeneration. Natural polymers can also be combined to form hydrogel scaffolds, such as silk-fibrin/gelatin (Shi et al., 2017) and gelatin methacrylate/hyaluronic acid methacrylate (Onofrillo et al., 2018).

![Fig. 11. Several crucial aspects of cartilage tissue need to be considered for a successful AM of cartilage including spatial and orientation dependent of cartilage tissue components, cartilage poroelastic behaviour, low friction at the opposing surfaces and attachment and integration with the host tissue. Image is reprinted from (Armiento et al., 2018) with permission from Elsevier.](image)

There is limited literature on the mechanical characterisation of tissue scaffolds for cartilage regeneration. Most studies have focussed on compression testing to determine Young’s modulus and occasionally yield stress. For instance, PLA cartilage scaffolds produced using FDM were compression tested to determine the Young’s modulus. Rosenzweig et al. (2015) concluded the scaffolds were too stiff for use in tissue repair. This is typical of scaffolds produced using materials which can be printed using FDM (Shen et al., 2019). Du et al. (2017) used SLS to produce a multilayer PCL scaffold with a HA gradient increasing from articular cartilage through to subchondral bone layer. The compressive modulus and strength of the PCL/HA scaffold were reported as 8.7 MPa and 4.6 MPa respectively. One study has used dynamic mechanical analysis to determine the compressive modulus of a poly(trimethylene carbonate) (PTMC) scaffold manufactured using SLA (Schüller-Ravoo et al., 2013). Another study has explored the use of nanoidentation to investigate the elastic modulus of a silk-fibrin and gelatin hydrogel (Shi et al., 2017). To account for the anisotropic nature of the scaffold, they took repeated measurements at different locations on the sample.

Several studies have determined the mechanical properties of the bulk hydrogel material, rather than the scaffold. Elomaa et al. (2011) and Schüller-Ravoo et al. (2013)
conducted tensile tests on thin films to determine elastic modulus, yield strength, elongation at yield and toughness. Linzhong et al. (2010) conducted compression tests on cylinders of polyacrylamide (PAM) to determine the elastic modulus. However, the topology of the scaffold has an impact on its mechanical properties (Afshar et al., 2016). Therefore, determining the mechanical properties of the bulk material is not representative of how the scaffold will behave in vivo because it does not take into account anisotropic behaviour.

5.3) Bone

Reshaping the implant during surgery is not always effective to match the patient’s anatomy, particularly for complex bone and joint systems such as the temporomandibular joint. Ackland et al. (2018) developed an AM prosthesis consisting of a condylar component made of titanium-64, manufactured using SLM, and a high-density polyethylene fossa fabricated using machining techniques. This prosthesis has been successfully implanted into a patient; the joint pain level was subsequently reduced to a negligible level post-operatively (Ackland et al., 2018). 3D printed osteosynthesis plates have also been effectively used for fracture fixation in orthopaedic practice and have significantly reduced the operation time (Shuang et al., 2016). This is due to the pre-operative planning and patient specific customisation of the implant, which circumvents the need to reshape the contour of the implant during surgery.

The bulk of recent literature reported on Ti-6AL-4V and its composites describes the elastic modulus and yield strength as obtained through compression testing. A selection of studies have broached fatigue testing. Whilst Elsayed et al. (2019) report a parameter specific elastic modulus of 17.12–74.98 GPa for dense specimens (associated porosity values are available in the text), the predominant volume of literature is hugely dependent on lattice topology based around the choice of unit cell.

For large bone defects, a bone graft or biodegradable scaffold is often required to promote tissue regeneration. HA is a popular material for bone scaffolds. Liu et al. (2019b) report a compressive modulus of 15.25 MPa for lattice HA scaffolds. A number of other recent studies are focussed on integrating HA into composite scaffolds. In 2015, (Vaezi and Yang) accounted that whilst PEEK is a promising material toward the replication of the elastic modulus of cortical bone, there is no literature on its mechanical properties. In (2016), Vaezi and Yang characterised the AM of HA and moulding of PEEK into a composite, reporting a compressive modulus of 1.6–2.8 GPa.

Lee et al. (2012) studied the influence of pore architecture and stacking direction on the mechanical properties of 3D printed bone tissue engineering scaffolds with blended PCL/PLGA. The results of their study showed that the compressive modulus of the scaffolds is highly influenced by the scaffold architecture. While a compressive modulus of 178 MPa was achieved with a triangular microarchitecture, a lattice-type scaffold had a compressive modulus of 120.2 MPa. To improve the biocompatibility, osteoconductivity and degradation kinetics of PCL polymers, Shim et al. (2017) used a PCL/β-TCP blend and 3D printed bone scaffold membrane for guided bone regeneration. The 3D printed PCL and PCL/β-TCP wet membrane had a tensile modulus of 171 MPa and 213 MPa respectively.
To summarise, for scaffolds aimed at replicating the mechanical properties of bone, studies thus far have been predominately limited to mechanical characterisation by compression testing, with examples of studies which have progressed to tensile testing and fatigue testing.
<table>
<thead>
<tr>
<th>Target Tissue Scaffold Type</th>
<th>Biomaterial</th>
<th>Pre-printing Properties</th>
<th>AM Platform</th>
<th>Printing Parameters</th>
<th>Topological Design</th>
<th>Post-Processing</th>
<th>Testing Method</th>
<th>Parameters Characterised</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial Wall</td>
<td>PCL</td>
<td>N/A</td>
<td>FDM</td>
<td>Fixed</td>
<td>Lattice – Fixed Unit Cell</td>
<td>-</td>
<td>Radial Expansion</td>
<td></td>
<td>(Guerra and Ciurana, 2018)</td>
</tr>
<tr>
<td></td>
<td>PLA</td>
<td>N/A</td>
<td>FDM (Ultimaker 3 Extended FDM 3D Printer)</td>
<td>Fixed</td>
<td>Lattice – Fixed Unit Cell</td>
<td>-</td>
<td>Radial Compression</td>
<td></td>
<td>(Wu et al., 2018)</td>
</tr>
<tr>
<td></td>
<td>Composite PCL/PLA</td>
<td>N/A</td>
<td>FDM</td>
<td>Mostly fixed, except varied printing flow rate</td>
<td>Lattice – Variable Unit Cell</td>
<td>-</td>
<td>Radial Expansion</td>
<td>Dynamic Storage Modulus</td>
<td>(Guerra et al., 2018)</td>
</tr>
<tr>
<td></td>
<td>Composite TPU/HA</td>
<td>N/A</td>
<td>FDM</td>
<td>Fixed</td>
<td>Filament</td>
<td>-</td>
<td>Elastic Modulus and Tensile Strength</td>
<td></td>
<td>(Esmaeili et al., 2019)</td>
</tr>
<tr>
<td></td>
<td>GelMA/Gellan Gum</td>
<td>N/A</td>
<td>Custom-build Extrusion Bioprinter</td>
<td>Fixed</td>
<td>Solid/Porous</td>
<td>UV Radiation</td>
<td>Compressive Modulus</td>
<td></td>
<td>(Melchels et al., 2014)</td>
</tr>
<tr>
<td></td>
<td>GelMA/PEGTA</td>
<td>N/A</td>
<td>Bioprinter (Novogen MMX Bioprinter, Organovo)</td>
<td>Fixed</td>
<td>Solid/Porous</td>
<td>UV Radiation followed by immersion into EDTA</td>
<td>Compressive Modulus</td>
<td></td>
<td>(Jia et al., 2016)</td>
</tr>
<tr>
<td></td>
<td>Gelatin/mTG</td>
<td>N/A</td>
<td>SLA</td>
<td>Fixed</td>
<td>Mould, left coronary artery</td>
<td>Storage at 4 °C followed by incubation at 37 °C and</td>
<td>Compressive Modulus</td>
<td></td>
<td>(Liu et al., 2019a)</td>
</tr>
<tr>
<td>Cartilage</td>
<td>Material</td>
<td>Process</td>
<td>Type</td>
<td>Preparation Method</td>
<td>Characterization</td>
<td>Properties</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCL/HA</td>
<td>N/A</td>
<td>SLS</td>
<td>Various</td>
<td>Functionally graded, multilayer scaffold</td>
<td>Wind machine to remove microspheres</td>
<td>Compression</td>
<td>Compressive modulus and strength</td>
<td>(Du et al., 2017)</td>
<td></td>
</tr>
<tr>
<td>PLA</td>
<td>N/A</td>
<td>FDM</td>
<td>Fixed</td>
<td>Lattice - Fixed Unit Cell</td>
<td>-</td>
<td>Compression</td>
<td>Young's Modulus</td>
<td>(Rosenzweig et al., 2015)</td>
<td></td>
</tr>
<tr>
<td>Stem cell laden hydrogel (Gelatin methacrylate and Hyaluronic acid methacrylate)</td>
<td>N/A</td>
<td>In situ bioprinting</td>
<td>Fixed</td>
<td>Disc shaped scaffold</td>
<td>UV radiation</td>
<td>Atomic Force Microscopy</td>
<td>Compression modulus</td>
<td>(Onofrillo et al., 2018)</td>
<td></td>
</tr>
<tr>
<td>Silk fibrin + gelatin + stem cells</td>
<td>N/A</td>
<td>3DP</td>
<td>Fixed</td>
<td>Fixed porous scaffold design</td>
<td>-</td>
<td>Nanoindentation</td>
<td>Elastic Modulus, Reduced Modulus, Hardness</td>
<td>(Shi et al., 2017)</td>
<td></td>
</tr>
<tr>
<td>PTMC</td>
<td>N/A</td>
<td>SLA</td>
<td>Fixed</td>
<td>Fixed gyroid porous scaffold design</td>
<td>Washed with propylene carbonate and ethanol</td>
<td>Dynamic Mechanical Analysis, Tension on thin film (bulk material)</td>
<td>Compressive & Tensile Modulus, Yield Strength, Elongation at Yield Toughness</td>
<td>(Schüller-Ravoo et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>PCL</td>
<td>N/A</td>
<td>SLA</td>
<td>Fixed</td>
<td>Fixed gyroid porous scaffold design</td>
<td>Washed in acetone and isopropanol</td>
<td>Tension on thin film (bulk material)</td>
<td>Elastic Modulus, Tensile Strength, Elongation at Break</td>
<td>(Elomaa et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>PAM</td>
<td>N/A</td>
<td>SLA</td>
<td>Various</td>
<td>Solid with internal channel and 2D network structure</td>
<td>-</td>
<td>Compression (bulk material)</td>
<td>Elastic Modulus</td>
<td>(Linzhong et al., 2010)</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>Ti-6Al-4V</td>
<td>Gas atomized alloy powder, grain size 20-50µm. Recycled < 60µm</td>
<td>SLM (Concept Laser)</td>
<td>Fixed</td>
<td>Lattice – Variable Unit Cell</td>
<td>-</td>
<td>Quasi-Static Compression</td>
<td>Fatigue</td>
<td>(Burton et al., 2019)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>---</td>
<td>-------------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>SLM</td>
<td>Fixed</td>
<td>Lattice – Variable Unit Cell</td>
<td>Heat-treated</td>
<td>Compression</td>
<td>Elastic Modulus and Yield Strength</td>
<td>(Alabort et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Renishaw AM250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Alabort et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas atomized alloy powder, grain size 19-45µm</td>
<td>Variable</td>
<td>Solid/ Porous</td>
<td>-</td>
<td>Compression</td>
<td>Elastic Modulus and Ultimate Strength</td>
<td>(Elsayed et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 23, median particle size of 31.6 µm</td>
<td>Fixed</td>
<td>Functional grading of variable lattice density</td>
<td>-</td>
<td>Quasi-Static Compression</td>
<td>Modulus, Yield Stress, Maximum Stress and Plateau Stress</td>
<td>(Zhang et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extra low interstitial powder with a particle diameter range of 15–45µm</td>
<td>Fixed</td>
<td>Dog bone specimens – varying between dense and porous.</td>
<td>HIP and surface treatments</td>
<td>Tension</td>
<td>Modulus, Yield Strength, Ultimate Strength, Fatigue.</td>
<td>(Kelly et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydroxyapatite (HA)</td>
<td>HA powder (12 µm), photopolymer, and dispersant (Variable wt.)</td>
<td>Digital Light Processing (DLP)</td>
<td>Fixed</td>
<td>Lattice</td>
<td>Sintering</td>
<td>Compression</td>
<td>Modulus and Strength</td>
<td>(Liu et al., 2019b)</td>
<td></td>
</tr>
<tr>
<td>Composite Ti-6Al-4V - 5% HA</td>
<td>HA powder and plasma atomized Ti-6Al-4, with a D50 of 72 m</td>
<td>Electron Beam Melting (EBM) (Arcam S12 EBM)</td>
<td>Fixed</td>
<td>Solid and varying mesh.</td>
<td>-</td>
<td>Compression and Tension</td>
<td>Tensile Yield and Ultimate Stress, Compressive Strength, Vickers Hardness.</td>
<td>(Terrazas et al., 2019)</td>
<td></td>
</tr>
<tr>
<td>Material Combination</td>
<td>Paste/Particle</td>
<td>Modelling Method</td>
<td>Scaffold Design</td>
<td>Compression Test</td>
<td>Mechanical Properties</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite PEEK/HA</td>
<td>HA Paste</td>
<td>Fused Deposition</td>
<td>Fixed</td>
<td>Lattice – variation of filament and pore size.</td>
<td>Compression moulding of PEEK</td>
<td>Compression Modulus, Yield Strength and Ultimate Strength</td>
<td>(Vaezi et al., 2016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite PLA and carbonated HA</td>
<td>Carbonated HA particle diameter of less than 90 μm</td>
<td>FDM</td>
<td>Orientation dependent</td>
<td>Fixed porous scaffold design</td>
<td>-</td>
<td>Compression</td>
<td>Stress</td>
<td>(Oladapo et al., 2019)</td>
<td></td>
</tr>
<tr>
<td>PCL/PLGA</td>
<td>N/A</td>
<td>Multi-head FDM</td>
<td>Orientation dependent</td>
<td>Lattice, stagger, and triangle</td>
<td>-</td>
<td>Compression</td>
<td>Modulus, Yield Strength and Ultimate Strength</td>
<td>Lee et al. (2012)</td>
<td></td>
</tr>
<tr>
<td>PCL/β-TCP</td>
<td>N/A</td>
<td>Multi-head FDM</td>
<td>Fixed</td>
<td>Fixed porous membrane</td>
<td>-</td>
<td>Tensile</td>
<td>Tensile modulus</td>
<td>Shim et al. (2017)</td>
<td></td>
</tr>
</tbody>
</table>
6) Grand Challenges and Future Perspectives

Despite recent advances in the AM of CT replacements, several grand challenges remain that need to be addressed before fabrication of reliable and effective implants using AM is implementable in clinical practice.

6.1. Material Biocompatibility and Mechanical Properties

Despite remarkable achievements in developing new biomaterials for CT replacement and temporary scaffolds, there are many issues with biocompatibility and mismatching mechanical properties that need to be addressed in order to improve implant reliability and success (Liu et al., 2018; Williams, 2019). While synthetic polymers have many advantages such as fabrication flexibility, good printability, and consistent and excellent mechanical properties, they suffer from bioinertness and consequently poor biointegration. Conversely, natural polymers have superior bioactivity and biocompatibility but demonstrate poor mechanical properties, printability, and biodegradation rate control (Li and Zreiqat, 2019). Metallic biomaterials have high corrosion and fatigue resistance and superior mechanical stiffness. However, they suffer from stiffness mismatch and poor biointegration (Miramini et al., 2014). Bioactive ceramics, on the other hand, show favourable interaction with host tissue, promoting biointegration and tissue regeneration. However, they are limited to bone regeneration due to their chemical composition and mechanical properties (Li and Zreiqat, 2019).

Comparison between Table 2 and Table 4 shows the huge disparity between the mechanical properties currently achievable via AM, and those that are required to replicate arterial tissue, cartilage, and bone. The materials are typically under-engineered and lack in depth of characterisation compared to the current status of literature surrounding characterisation of CTs. In the literature reviewed, the primary characteristics tested across all types of CT replacement biomaterials is limited to elastic modulus and yield stress. These values vastly oversimplify the viscoelasticity of native CTs, where fibre orientation within the ECM leads to heterogeneous mechanical behaviour that is, at present, not replicable or not characterised in AM replacements. In some instances, the mechanical properties of the bulk biomaterial are reported. However, the mechanical properties of the bulk material do not accurately represent the anisotropy associated with scaffold topology, and should not be used to extrapolate the mechanical properties of the AM scaffold. In addition, the impact that load directionality has on mechanical characterisation is often overlooked when characterising AM implants. For CT characterisation, this load may be applied uniaxially or biaxially, longitudinally or transversally, or at varying locations within the tissue. Ideally, AM replacements should be characterised accordingly. Finally, minimal literature exists to quantify implant response under dynamic loading, over time. Fatigue, creep, stress relaxation and wear testing of AM implants, under physiological loading conditions, must be characterised before these constructs are translated into the clinic.

Improving Implant Biocompatibility using AM

The ability of high-resolution 3D printers to fabricate a customised implant geometry (e.g. porosity), surface microscopic morphology and topography, as well as their ability to control the surface chemistry through spatially controlled composite printing, offers great
potential for one-step implant fabrication processes with modified surfaces (i.e. surface functionalisation) to improve implant-tissue integration (Bose et al., 2018). Surface functionalisation of the implant can also be enhanced by incorporating inorganic particles in the implant material. Several 3D printing platforms can be employed to fabricate bioceramic-polymer composite scaffolds with the aim of functionalising the scaffold surface. For example, Kotlarz et al. (2018) fabricated a scaffold composed of PLGA, calcium carbonate, and amphiphilic polymers using FDM and showed that the surface wettability of PLGA was significantly increased by adding calcium carbonate and amphiphilic polymers to the PLGA matrix. Modification of the surface chemistry of the implant is also achievable through addition of bioactive molecules on the implant surface, such as by coating PLA-based scaffolds with covalently-bound collagen (Serra et al., 2013).

Improving the Mechanical Properties of Implants using AM

The topological freedom provided by AM enables the design of new biomaterials, which can solve particular challenges in replicating CTs. The use of Functionally Graded Biomaterials (FGBMs) has increased in recent years due to their ability to satisfy different and even diverse goals (Salimi Bani et al., 2017). In FGBMs, the composition or structure of the material is varied over the volume, resulting in variable properties throughout one component. AM allows for components to be manufactured from multiple materials at once and is often used to create a FGBM.

Bone tissue implants need to have a similar stiffness to the surrounding bone, in order to avoid stress shielding and to improve bone regeneration (Ganadhiepan et al., 2019a; Ghimire et al., 2019; Miramini et al., 2018; Zhang et al., 2013), yet they are frequently manufactured from stainless steel or titanium, which is much stiffer (Miramini et al., 2015). Many different studies have created FGBMs by varying the size of the lattice unit cell throughout the material to alter the stiffness of the scaffold in different locations (Mahbod and Asgari, 2019; Torres et al., 2016; Zhang et al., 2019). Ayatollahi et al. (2019) have proposed a 3-phase ceramic based FGBM, which uses HA, alumina or zircona, and titanium all within the same component to provide different material properties in different locations on a knee implant. The use of FGBMs is also being investigated to develop artificial blood vessels. For instance, a bioinspired numerical model has been developed with the aim to replicate the three tissue layers of the aorta by combining the elastic moduli of three polymer layers into a FGBM (Salimi Bani et al., 2017).

It is clear that FGBMs have the potential to solve some of the most prominent issues surrounding mismatching material properties for CT scaffolds. However, the material properties of a component manufactured from a FGBM will vary across the component and are dependent upon not only their bulk material properties but also their topology and the AM process used. The question therefore arises of how to fully characterise the mechanical properties of a FGBM, and how to understand the contribution that each variable makes to the resultant properties of the implant.

6.2. Design Challenges

The topological design dependence of the mechanical properties outlined in Table 4 can be predominately classified as a solid, porous, or lattice structure. This reflection demonstrates a limited approach to design in this research area. Lattice structures are designed
through choice of a unit volume (cell) which is then repeated throughout the structure. Lattice structures are commonly (but not exclusively) designed using commercial software such as Simpleware (Synopsys, 2019). Other research options have been developed that offer alternative methods towards the design of porous structures (Doubrovski et al., 2015; Vidimce et al., 2016). Yet, though software options exist design for AM, designing for additive manufacturing (DfAM) remains a constraint to the progression of AM across all industries, including biomedical applications (Thomas-Seale et al., 2018).

Key issues stem from a lack of knowledge in the propagation of AM techniques and applications. Specifically, a lack of foundation engineering knowledge in subtractive technology leads to inefficient design and lack of creativity. A huge amount of literature exists on design constraints which are dependent on the process, platform, and material parameters (Kranz et al., 2015; Meisel and Williams, 2015; Webb and Doyle, 2017). This is also reflected in the parameter dependent characterisation displayed in Table 4. Literature which focused on the constraints of topology, in itself, emphasises the limitations of AM and in doing so causes additional constraints to creativity. The review by Pradel et al. (2018) maps research literature onto a framework of product design. The study highlights the important concept of validity, where some design literature is indiscriminate about whether the outcomes of a study are process or machine specific. Therefore, caution must be exercised in assuming the mechanical properties of predefined scaffolds. In the current review, a holistic approach is taken to discuss the outcomes of literature in direct reference to the variable parameters of the original study.

Assuming the capacity of the AM platform of interest is well known and defined mechanically, what options exist to increase the creativity of scaffold design? The concept of bioinspired design is a well acknowledged avenue of creativity (Barthelat, 2015; Egan et al., 2015; French, 1994). Yet, whilst the combination of bioinspired design and AM to scaffold manufacturing has been broached in the literature (Longley et al., 2018; Magin et al., 2016), its physical application remains underutilised. Murphy and Atala (2014) define the concept of biomimicry as “the replication of biological tissues on the microscale” (Murphy and Atala, 2014a). Rosen (2007) implements this theory into the conceptual design stage of research that progresses onto the design of cellular structures (Rosen, 2007). Another emerging area of bioinspired design is the topological design of interfacing materials, which in turn allows the design of interlocking heterogeneous materials. This concept is demonstrated by Barthelat et al. who explore the computational modelling and experimental testing of the AM of bioinspired interlocking materials (Malik et al., 2017; Mirkhalaf and Barthelat, 2017).

6.3. Printability, Cell Viability, Printer Resolution and Speed

Ideally, biomaterial 3D printers should be able to reliably deliver a precise (high resolution), accurate, and reasonably quick fabrication process. In the case of bioprinting, high cell viability is also necessitated. However, at present, there are numerous challenges to overcome in order to achieve these aims. As outlined in Table 1, high resolution printers are either relatively slow or they suffer from long preparation times. For example, the bioprinting process of a small organ such as a mouse liver (with 1.3×10^8 cells per gram) take several hours (Ozbolat and Yu, 2013) while a slow bioprinting speed can negatively affect the cell viability (Derakhshanfar et al., 2018). In addition, high resolution printers are limited to specific biomaterial types. For example, photocrosslinkable substrates are a prerequisite for DLP. Furthermore, high resolution bioprinting generally requires bioinks with low cell density,
and they deliver lower cell viability after printing (Liu et al., 2018; Murphy and Atala, 2014b). On the other hand, the gelation mechanism of bioinks used in bioprinters must be cytocompatible to ensure cell viability following printing and crosslinking (Das et al., 2015).

6.4. Angiogenesis and Tissue Biomimicry

Developing functional CT replacements requires incorporation and regeneration of different tissue types, including vasculature and nerves. One of the biggest challenges in the field of bioprinting is developing functionally-vascularised tissues, in a reasonably short time frame, to ensure cell survival and in vivo biointegration for timely tissue regeneration (Jia et al., 2016; Murphy and Atala, 2014b). The capability of AM to deposit a variety of biomaterials, cells, and biomolecules in a spatially controlled manner offers a promising yet challenging approach for CT biomimicry in regenerative medicine. For example, a recent proof-of-concept study using microextrusion bioprinting demonstrated the ability to fabricate small-scale, cellularised human hearts with major blood vessels. Crucially, personalised bioink was formulated by extracting and processing human omentum tissue and mixing with reprogrammed omental cells (Noor et al., 2019). The study received global media coverage, and presents a vital step towards the manufacturing of vascularised implants. However, the vasculature developed in this work and in similar studies is still limited to large and major blood vessels. More advanced 3D printing technology is needed to print small calibre arterial tissue. More importantly, the 3D printed heart construct is far from functional and has no contraction capacity.

6.5. Commercialisation and Regulatory Issues

Medical devices must meet regulations in order to ensure their safety and efficacy. In the USA the Center for Devices and Radiological Health (CDRH) at the Food and Drug Administration (FDA) approves medical devices, and in the EU devices must meet the new Medical Device Regulations, Council Regulation 2017/745/EU (Council of the European Union, 2017) and achieve CE marking. Medical devices are classified according to the risk to a patient’s health under intended use and the level of controls necessary to ensure the safety and efficacy of the device. Within the FDA, devices are categorised as Class I, II, or III; in the EU, they are categorised as Class I, IIa, IIb, or III, with Class III having the highest level of risk and therefore regulation. Unless the use of AM presents a new question over the safety or effectiveness of a device, the FDA will typically classify it into the same class as other devices of that type, regardless of manufacturing method (Di Prima et al., 2016).

The custom nature of patient-specific devices produced using AM presents a regulatory challenge. The FDA does not usually consider patient specific devices to be custom devices, exempt under Section 520(b) of the Federal Food, Drug and Cosmetic Act (United States Congress, 2011; US Food and Drug Administration, 2014). Instead, they must follow the usual 510k pathway where they are treated as “envelope” submissions, where the entire design envelope, or the range of each variable, is approved. The EU is currently transitioning from the Medical Device Directive 93/42 (Council of the European Union, 1993) to the Medical Device Regulations 2017/745 (Council of the European Union, 2017), which all medical devices must meet by May 2020. Under the Medical Device Directive, the majority of patient-specific devices produced using AM were treated as custom-made devices, which did not have to be...
CE marked but did have to meet the relevant Annexes of the Directive and be prescribed by a medical practitioner. However, under the new Medical Device Regulations, mass-produced medical device products which are adapted to the specific requirements of a patient are excluded from the definition of a custom-made device. There is some debate about the definition of “mass produced” and how this will be interpreted, but there is a risk that some AM patient-specific devices will no longer be considered as custom-made and will be subject to the CE marking process.

AM devices must comply with the same Quality Management Systems and Good Manufacturing Practice requirements as devices manufactured in other ways. For example, the raw materials must be homogeneous, uncontaminated and traceable, and the build environment and processing parameters must be consistent between builds (Morrison et al., 2015). The location and orientation of the component on the build platform affects the mechanical properties of the component, so this must also be consistent between builds (Soe et al., 2013). AM devices usually require post-manufacture cleaning to remove support material or residual monomers. Complete removal can be difficult to achieve due to complicated geometrical features but is vital if the material is not biocompatible.

6.6 Future Perspectives

As the wider field of AM continues to expand rapidly, so too will the use of AM in the development of replacement materials for CT and tissue engineered scaffolds. In the next 5 to 10 years, new biocompatible materials and AM fabrication methods will be developed, which will open up new opportunities for implants and tissue constructs to better replicate the properties of CTs.

In the last decade, there has been a substantial advancement in the bioprinting of 3D tissue engineered scaffolds and this is expected to continue. These scaffolds can be used as disease models to understand how a disease progresses and to test potential treatment options. Traditional animal models and in-vitro cell cultures are unable to fully replicate the key characteristics of human physiology (Memic et al., 2017). Bioprinted organoids have been developed, which are 3D functional units derived from stem cells, which replicate the physiology of the full organ (Huch et al., 2017; Rowe and Daley, 2019). However, as discussed above, functional, life sized organs still require significant development before being translated into clinical practice, and it is predicted that this will not be achieved within the next ten years (Jiang et al., 2017).

As the cost of hardware reduces and software is developed which better assists design for AM (DfAM), point of care 3D printing in hospitals will increase and become more common place. Hospitals are increasing their investment in 3D printing, with some scaling up smaller labs into larger 3D printing facilities, which can serve a wider range of clinical needs. Point of care 3D printing is frequently used for patient-specific anatomical models for surgical planning, surgical guides and instruments (Christensen and Rybicki, 2017). By manufacturing them in the hospital, they can be produced faster and cheaper than if they were outsourced to a contract manufacturer, and there is also direct interaction with clinicians (Lanzarone et al., 2019). This in turn will lead to improved patient outcomes, and reduced waiting and operation times.

7) Conclusions
Connective tissue is characterised by a large amount of ECM and low number of cells. This can make the emphasis of the challenges required to replicate other tissues such as muscle, less stringent. Nevertheless, CT scaffolds must still replicate the properties of the host tissue to restore the mechanical and physiological function of the tissue. The acceleration of AM translates to rapid development of materials and platforms, however the discrepancy between the mechanical properties of CT and CT replacement via AM still remains large. The parameters and topological capacity of AM give rise to a large set of potential materials and design variables, towards the end goal of replicating in-vivo mechanical behaviour. Yet, the depth of the characterisation literature demonstrated for AM replacement CT is highly inadequate when directly compared to a summary of the literature on the mechanical characterisation of tissue, specifically for this review: arterial, cartilage and bone. Whilst new biomaterial development for AM is required, this is compounded by the requirement for more advanced characterisation. Additional options, such as design and design for materials, which utilise current materials and platforms may be considered to bridge the gap between the mechanical properties for current synthetic AM replacements and in-vivo CT.

Acknowledgement

The authors would like to thank the University of Melbourne and the University of Birmingham for their support. In addition, authors Saeed Miramini and Lihai Zhang acknowledge funding from the Australian Research Hub for Nanoscience-based Construction Material Manufacturing (ARC IH150100006). Further, author Katie L. Fegan gratefully acknowledges financial support from the EPSRC through a studentship from the Physical Sciences for Health Centre for Doctoral Training (EP/L016346/1). Author N.C. Green received funding from the EPSRC Impact Acceleration Account (EP/R11651/1) in association with the EPSRC project “Challenging the forms of bias in physical science and engineering research” (EP/1011927/1).

References

Dean, D., Wallace, J., Siblani, A., Wang, M.O., Kim, K., Mikos, A.G., Fisher, J.P., 2012. Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds: This paper highlights the main issues regarding the application of Continuous Digital Light
Processing (cDLP) for the production of highly accurate PPF scaffolds with layers as thin as 60 μm for bone tissue engineering. Virtual and physical prototyping 7, 13-24.

Hodge, W., Carlson, K., Fijan, R., Burgess, R., Riley, P., Harris, W., Mann, R., 1989. Contact pressures from an instrumented hip endoprosthesis. JBJS 71, 1378-1386.

