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Abstract
Given a typeA in homotopy type theory (HoTT), we can define the
free∞-group onA as the loop space of the suspension ofA+1. Equiv-
alently, this free higher group can be defined as a higher inductive
type F(A) with constructors unit : F(A), cons : A→ F(A) → F(A),
and conditions saying that every cons(a) is an auto-equivalence on
F(A). Assuming that A is a set (i.e. satisfies the principle of unique
identity proofs), we are interested in the question whether F(A)
is a set as well, which is very much related to an open problem
in the HoTT book [22, Ex. 8.2]. We show an approximation to the
question, namely that the fundamental groups of F(A) are trivial,
i.e. that ∥F(A)∥1 is a set.

CCS Concepts • Theory of computation→ Type theory;

Keywords homotopy type theory, higher algebraic structures,
truncation levels
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1 Introduction
An important feature of Martin-Löf type theory (MLTT) is the iden-
tity type which makes it possible to express equality inside type
theory. More precisely, ifA is a type (in any context), and x ,y : A are
terms, then IdA(x ,y) is a type whose inhabitants represent proofs
that x and y are equal. As it is common nowadays, we write x =A y
or x = y instead of IdA(x ,y), and call its elements simply equal-
ities. Homotopy type theory (HoTT) embraces the fact that x = y
may come with interesting structure. This means that, in many
cases, we do not only care about the question whether x and y are
equal, but also how or in which ways they are equal. For example,
due to Voevodsky’s univalence axiom, 2 =U 2 is equivalent to 2.
Here, 2 is the type of booleans,U is a type universe, and the two
equalities stem from the two ways in which 2 is equivalent to itself.
Another non-trivial example is base =S1 base which turns out to
be equivalent to the type of integers [17], where S1 is the “circle”
in HoTT.

A type where each such type of equalities can have at most one
inhabitant is called a set, and further said to satisfy the principle
of unique identity proofs (UIP). An example for a set is the type of
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natural numbers: 0 =N 1 is equivalent to the empty type 0, while
0 =N 0 is equivalent to the unit type 1, and so on. Many algebraic
structures can be implemented straightforwardly if we are happy
to do everything with sets; for example, [22, Def 6.11.1] defines
a set-level group to be a tuple (G, ◦,u, ·−1, . . .), where G is a set,
together with a multiplication operation ◦ : G × G → G, a unit
element u, an inversion operatorG → G , and equalities expressing
the usual laws. The book then further shows how one can construct
the free set-level group over a given set (see [22, Chp 6.11]).

More interesting and challenging is it to define higher-level
structures, not restricted to sets. Since we use HoTT (rather than,
say, set theory) as our foundation, it is natural to attempt this. For
example, it has been known for some time that externally, every
type carries the structure of an∞-groupoid [18, 24]. Internally, we
can play a trick and use the following definition, which probably
can be considered “HoTT folklore”:

Definition 1. An ∞-group is a type G which is equivalent to a
loop space. More precisely, G is a group means that we have a
connected type X and a point x : X together with an equivalence
G ≃ (x = x). If G is an ∞-group represented by (X ,x) and H is
a second ∞-group represented by (Y ,y), then a homomorphism
G →∞grp H is a pointed function (X ,x) →• (Y ,y).

In other words, an ∞-group is a type that admits a delooping.
Clearly, the unit element of this group is reflx , and composition is
given by composition of equalities. Some theory of higher groups
in homotopy type theory has very recently been developed by
Buchholtz, van Doorn and Rijke [10].

It is worth noting that Definition 1 makes use of the fact that a
suitable notion of an (untruncated) group already naturally exists in
HoTT, which is not the case for many other interesting structures.
Defining untruncated algebraic structures in general and directly is
an important open problem in HoTT. To see why this is hard, let us
start from the set-level definition (G, ◦,u, ·−1, . . .) above and remove
the condition that G is a set. The equalities which guarantee that
the multiplication is associative, the unit is neutral, and inverses
cancel, are not sufficient anymore; they would not give a well-
behaved definition of a higher group. For example, one may ask
oneself how one would prove that x ◦ (y ◦ (z ◦w)) equals ((x ◦y) ◦
z) ◦ w : there are two canonical ways, and these should coincide
(“MacLane’s pentagon”), but any such rule that we add would have
to satisfy its own coherences. It is currently unknown whether it
is possible to complete this sort of definition in a satisfactory way.
In a nutshell, the problem is that the usual definitions would, if
expressed internally in type theory, amount to infinite structures of
coherences. In classical homotopy theory, these conditions are often
organised in the form of an operad [1, 21], but a representation of
such structures that can be written down in type theory has not
been discovered so far. This is certainly not for a lack of trying;
cf. the much-discussed open problem of defining semisimplicial
types [23].

In this paper, we study the free ∞-group over a type A. It is
folklore in homotopy type theory that a suitable definition of the
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free ∞-group over A is given by the loop space of a “wedge of
A-many circles”, or put differently, the suspension Σ(A + 1). For us,
it will however be more helpful to give a more explicit construction
of this free higher group which we call F(A). We define F(A) to be
the higher inductive type (HIT) [22, Chp 6] which as constructors
has a neutral element unit : F(A) and a multiplication operation
cons : A→ F(A) → F(A), together with conditions ensuring that
each cons(a) : F(A) → F(A) is an equivalence. This definition
encodes the a priori infinite tower of coherence condition suitably
and it will turn out that it is equivalent to the loop space of Σ(A+1).

The most basic properties that one would expect from a free
higher group are easy to prove. More intriguing is the questionwhat
the free∞-group has to do with the free set-based group. Clearly,
we would want the former to be a generalisation of the latter. The
most obvious way of interpreting this is to ask whether, for a set A,
the free higher group F(A) coincides with the construction of the
set-based higher group. It turns out that the central question is the
following:

Question 2. If A is a set, is F(A) a set as well?

One reason why we believe that Question 2 is hard is that a
slight generalisation of it is a known open problem in HoTT which
has been recorded in the book (see [22, Ex. 8.2]). To be precise, the
open problem asks whether, for a set A, the suspension Σ(A) is a
1-type; our question is equivalent to asking whether Σ(A + 1) is
a 1-type. A positive answer to the open problem would imply a
positive answer to our Question 2, but we do not expect that our
question is fundamentally easier. (Recall from the book [22] that
the suspension Σ(A) is the HIT with constructors N, S : Σ(A) and
mer : A→ N = S, for “north”, “south”, “meridian”.)

The core of our paper consists of a proof of a weakened version,
a first approximation, of Question 2. Our main result can be phrased
as follows:

Theorem 3. If A is a set, then all fundamental groups of F(A) are
trivial. In other words, ∥F(A)∥1 is a set.

Our strategy to prove this is to define a simple reduction system
together with a non-recursive approximation, written N(A), to the
free ∞-group. These are both based on the usual construction of
the free monoid onA, that is, List(A). The proof of Theorem 3, with
all the tools and strategies that we need to develop, constitutes the
main part of the paper.

The reason why our strategies are not sufficient to provide a full
answer to Question 2 is that N(A) is really only an approximation.
Defining F(A) in a non-recursive way (i.e. without using some sort
of induction that quantifies over elements of F(A) itself) seems to,
as least as far as we can see, correspond exactly to expressing the
infinite coherence tower “directly”. We would not be surprised if it
turned out that Question 2 was in fact independent of “standard
HoTT” (the type theory developed in the book [22]), and if the
status of Question 2 was related to the status of semisimplicial
types. We will come back to this in the conclusions of the paper.

Setting The type theory that we consider in this paper is the
standard homotopy type theory developed in the book [22]. This
means that we have univalent universes U, function extensionality,
and higher inductive types (HITs). Regarding notation, we strive to
stay close to [22], with the exception that we write (a : A) → B(a)
instead of Π(a : A).B(a). All performed constructions will preserve

the universe level, hence there is no risk at omitting it. Uncurrying
is done implicitly, allowing us to write f (a,b) instead of f (a)(b).

Outline We give the precise definition of the free∞-group F(A) in
Section 2, together with some simple observations. The statements
in this section (apart from the definition of F(A) and its universal
property) are not important for the main part of the paper, the
proof of Theorem 3, which is given in Section 3. As a corollary of
the constructions, we get that ∥F(A)∥1 coincides with the set-based
construction of the free group, and F(A) does under the assumption
that Question 2 has a positive answer. In Section 4, we make some
concluding remarks and discuss related open problems in homotopy
type theory.

2 Free∞-Groups
2.1 Definition and First Properties
Let us start with an explicit construction of the free higher group as
a higher inductive type F(A), since this is the central concept of the
paper.We use a point constructor unit : F(A) for the neutral element,
and a constructor cons : A→ F(A) → F(A) which “multiplies” an
element of A with any other group element. We write consa :
F(A) → F(A) instead of cons(a) since, most of the time, we regard
a as a fixed variable. The trick which completes the definition in
an elegant way, due to Paolo Capriotti, is to add the condition that
consa is an equivalence for every a. This cannot be done directly
(at least not according to the usual intuitive rules for presentations
of higher inductive types), but it can be “unfolded” and expressed
via a suitable collection of constructors. Let us show the concrete
definition.

Definition 4. The free∞-group over a given typeA is the following
higher inductive type F(A):
data F(A) where
unit : F(A)

cons : A→ F(A) → F(A)

icons : A→ F(A) → F(A)

µ1 : (a : A) → (x : F(A)) → iconsa (consa (x)) = x

µ2 : (a : A) → (x : F(A)) → consa (iconsa (x)) = x

µ : (a : A) → (x : F(A)) → apcons(a)(µ1(a,x)) = µ2(a, iconsa (x))

At first glance, the above HIT appears complicated and rather
unappealing. Due to the “unfolding”, the underlying idea that we
have discussed above is somewhat hidden. The constructors unit
and cons are the standard ones that one would use to define the
type of lists over A, List(A), or, in other words, the free monoid
over A. The remaining four constructors (icons, µ1, µ2, µ) simply
say that, for every a : A, the function consa : F(A) → F(A) is
a half-adjoint equivalence as defined in [22, Chp 4]. This is the
“unfolding” mentioned before; note that we could equally well have
used other definition of equivalences, such as the “bi-invertible” or
“contractible fibre” constructions. In any case, thismeans thatwe can
think of F(A) as being fully described as a triple (unit, cons, iseq),
with iseq : (a : A) → isequiv(consa ).

To make use of the type F(A), we need to know an elimination
principle for it. This can be stated as an induction (dependent elim-
ination) principle, which is how it is done in the book [22]. More
concise, and (we would say) conceptually clearer, is the approach of
phrasing it using a universal property, in other words, a recursion



Free Higher Groups in Homotopy Type Theory Conference’17, July 2017, Washington, DC, USA

(non-dependent) elimination principle with a uniqueness property.
The equivalence between these approaches for inductive types has
been discussed by Awodey, Gambino, and Sojakova [8], for some
HITs, by Sojakova [20], and a restricted version for set-truncated
HITs can be found in [2]. For concrete HITs, such as our F(A), it is
straightforward to derive the various elimination principles from
each other. We state the universal property using the presentation
as a homotopy-initial algebras [8]:

Principle 5. We say that an F(A)-algebra structure on a type
X consists of a point u : X , a map f : A → X → X , and
a proof p : (a : A) → isequiv(f (a)). We say that the type of
F(A)-algebra morphisms between (X ,u, f ,p) and (Y ,v,д,q) con-
sists of triples (h, r , s), where h : X → Y , r : f (u) = v , and
s : h ◦ f = д ◦h. Then, the induction principle of F(A) is equivalent
to saying that (F(A), unit, cons, iseq) is homotopy initial, i.e. that for
any (X ,u, f ,p), the type of morphisms from (F(A), unit, cons, iseq)
to (X ,u, f ,p) is contractible.

We will come back to F(A)-algebras later.
An obvious question is whether F(A) really deserves to be called

the free∞-group onA. There are two points: first, we need to check
that it is a higher group in the sense of Definition 1, and second,
we have to justify the attribute free.

For the first point, note that the suspension Σ(A + 1) has an
equivalent description which can be obtained by essentially col-
lapsing the point S with the path given by the unit type: it is the
HITW(A) with a single point constructor N : W(A) and a family of
loops indexed over A, as in loops : A→ N = N, a wedge of A-many
circles. Note thatW(A) is automatically connected. A further side
remark is thatW(1) is canonically equivalent to the circle S1. We
then observe:

Lemma 6. The free∞-group F(A) is an∞-group, withW(A) as its
delooping. The canonical equivalence e : F(A) → (N =W(A) N) maps
the structure as one would expect, i.e. we have e(unit) = refl and
e(consa (x)) = loops(a) � e(x).

Note that this statement is completely independent from the rest
of the paper.

Proof. This is a relatively straightforward generalisation of the
proof that the loop space of S1 is equivalent to the type of integers.
The proof is an application of [22, Lem 8.9.1] and does not provide
much insight, which is why we choose to omit it. For a detailed
argument, one can easily adapt the proof given by Brunerie (for an
only slightly different statement) in [9, Sec 6]. □

From the above lemma, we can in particular observe that F(1) is
a presentation of the type of integers.

Next, we need to justify why we call F(A) the free higher group.
The following presentation of the argument was suggested by Paolo
Capriotti. Let us consider the following diagram:

U U• U•⊥ ⊥

+1 Σ

p1 Ω

(1)

Here,U• is the universe of pointed types. The function (+1) : U →
U• maps a type X to (X + 1, inr(⋆)), while projection p1 simply
forgets the point. As in [22, Chp 6.5], we regard the suspension as
a function Σ : U• →U•, mapping (X ,x) to (Σ(X ),N), and Ω is the

loop space. For X : U and Y ,Z : U•, it is easy to see that there is a
canonical equivalence

(X → p1Y ) ≃ ((X + 1) →• Y ) , (2)

and by [22, Lem 6.5.4], we have

(Y →• Ω(Z )) ≃ (Σ(Y ) →• Z ) . (3)

The above diagram (1) should for our purpose only be regarded as an
illustration of these two equivalences. Talking about the adjunctions
more precisely is difficult since the correct notions would be ∞-
categorical. This leads into a territory that is vastly unexplored in
homotopy type theory [12], although higher adjunctions can be
represented using only a finite amount of data [19]; here, we do
not go further into this.

LetG be a given∞-group, represented by (Z , z). This means that
we have G ≃ (z = z). We can then calculate:

F(A) →∞grp G

by Def 1 and Lem 6 ≃ (W(A),N) →• (Z , z)

≃ Σ(A + 1) →• (Z , z)

by (3) ≃ (A + 1) →• Ω(Z , z)

by (2) ≃ A→ (z = z)

≃ A→ G .

(4)

Thus, F : U → ∞GRP is “morally” left adjoint to the forgetful
functor which returns the underlying type of a higher group.

2.2 On Alternative Constructions
As a preparation for the development in Section 3, and to better
understand the difficulties with F(A), let us attempt to construct
F(A) in a different way. Let us write A± for A +A; we call A± the
type of elements of A with a sign, and we think of inl(a) as a and
inr(a) as a−1. For a : A±, we write .

a for the element we get by
changing the sign. Of course, this means that

..
a = a.

Elements of the free group F(A) are, at least intuitively, lists over
A±. The difficulty is that different lists may represent the same
group element. This happens, for example, for [inl(a), inr(a)] (i.e.
a · a−1) and the empty list, both of which represent the unit of the
group. We can avoid this problem by quotienting to identify the
list [x0, . . . ,xk ,a,

.
a,xk+1, . . . ,xn ] with the list [x0, . . . ,xn ]. This

quotient will be a set by definition of the quotient (set quotient) op-
eration. If we are happy to work only with sets, and to set-truncate
everything, then this is entirely possible, and in fact, it is a construc-
tion of the set-based free group given in [22, Thm 6.11.7]. If, like in
this paper, we do not want to restrict ourselves to sets, we might
think of taking a HIT which has path constructors for each such
pair of lists, without set-truncating. The problem is that we need
coherences: if we use a path constructor to reduce one redex and
then a second, we should get the same equality as if we reduce the
second redex and then the first. When looking at three redexes, we
need to express that these equalities “fit together”, and so on. This
is an instance of the problem of infinite coherences which seem to
be hard and possibly impossible to express in HoTT. In Section 3,
we will perform a finite approximation of this construction in order
to show Theorem 3, although we will see that a couple of additional
arguments are required to complete the proof.

Alternatively, we could think to only consider lists over A± in
normal form, i.e. lists which come together with a proof that they
do not contain a redex. The type of lists over A in normal form is a
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set (assuming that A is a set), and the presentation is indeed fully
coherent. The trouble is that we are in general unable to define a
suitable binary operation on this set, i.e. we are lacking a group
operation. If we have two lists in normal form, their concatenation
might not be in normal form, and for arbitrary types, we have no
way of calculating a normal form or even checking whether we
already have a normal form.

Unsurprisingly, the approach with normal forms works if A has
decidable equality:

Proposition 7. If A has decidable equality, in the sense that

(a1,a2 : A) → (a1 = a2) + ((a1 = a2) → 0), (5)

then F(A) has decidable equality as well. Moreover, F(A) is in this
case canonically equivalent to the set-truncated construction of the
free group as given in [22, Chp 6.11].

Proof sketch. Thanks to [22, Thm 6.11.7], we can take set-quotiented
lists (as described above) as the definition of the set-truncated free
group. Using decidable equality of A, it is easy to see that this
quotient is equivalent to the type of lists in normal form; let us
write LNF(A) for the latter type. An element of LNF(A) is a list
together with a propositional property, and we have an embed-
ding LNF(A) → List(A±). What is left to do is to compare LNF(A)
with F(A). Note that LNF(A) is a set without being explicitly set-
truncated. There is a canonical F(A)-algebra structure on LNF(A),
giving rise to a map F(A) → LNF(A). Further, one can construct
a function List(A±) → F(A), by induction on the list. The empty
list is mapped to unit, inl(a) translates into an application of consa ,
and inr(a) becomes iconsa . These functions give rise to an equiv-
alence LNF(A) ≃ F(A), and since LNF(A) has decidable equality,
F(A) enjoys the same property. □

3 The fundamental group of the free∞-group
In this section, the core of the paper, we develop a couple of tech-
niques that, when combined, allow us to prove Theorem 3. For
the whole section, let us assume that A is a given set. Given lists
x ,y : List(A±), we write xy for their concatenation, i.e. the list we get
by simply joining the two lists as in [a1,a2][a3,a4] = [a1,a2,a3,a4].
Since this operation is associative (up to a canonical and fully co-
herent equality), we omit brackets and write xyz for both (xy)z and
x(yz). Given a : A±, we regard a as a one-element list and allow
ourselves to write e.g. xayz or a .ay.

3.1 A simple reduction system in type theory
As discussed in Section 2.2 above, we can think of elements of
F(A) as lists over A±, and the main problem is that different lists
represent the same group element. This motivates the development
of a system of reductions.

Definition 8. The type family Red : List(A±) → U, which ex-
presses that a list represents the same group element as the empty
list (i.e. the neutral element of the group F(A)), is defined as follows.
We first define an auxiliary family R : N → List(A±) → U by

induction on the natural numbers:

R0(x) :≡ length(x) = 0
R2+n (x) :≡ Σ(a : A±), (y, z : List(A±)),

(length(y) + length(z) = n) ,

(x = ya
.
az) ,

Rn (yz)

Using this, we set Red(x) :≡ Rlength(x )(x).

If we have indexed inductive families in the theory, we can
alternatively define Red directly as such a family generated by

zero : Red(nil)
step : (y, z : List(A±)) → (a : A±) → Red(yz) → Red(ya .az).

The two definitions are essentially the same, only represented in dif-
ferent ways. In both cases, given r : Red(x), we say that r witnesses
that x can be reduced to the empty list and we call r a reduction
sequence. We view it as a sequence consisting of steps, each of which
removes a single redex a

.
a. An example of a reduction sequence

r : Red(a .abc .c
.
b) could be pictured as follows, where each step is

represented by an arrow{ annotated with the redex it reduces:

a
.
abc

.
c
.
b

c .c
{ a

.
ab

.
b

a .a
{ b

.
b

b
.
b
{ nil. (6)

Remark 9. There are a couple of points that we want to point out
explicitly.

1. In the above example and in the discussions to come, a : A±
is already positive or negative, which means that every redex
is of the form a

.
a; the possibility .

aa is already covered.
2. The number of steps of r : Red(x) is simply half of the length

of the list x , which means that all elements of Red(x) have
the same number of steps. In particular, it is easy to prove
that Red(x) is empty if length(x) is odd.

3. For a given list x , there is no way to compute a reduction
sequence, since we do not know whether an occurring pair
bc forms a redex. A reduction r : Red(x) encodes equalities
which guarantee that all redexes that it reduces are really
redexes. Deciding whether bc is a redex would require de-
cidable equality on A (but of course, we can always check
whether an element of A± is positive or negative, and this
analysis might give us that bc is definitely not a redex).

4. For a given x , equality on Red(x) is decidable. This is be-
cause a sequence encodes the positions of the redexes that
it reduces, and positions are decidable, while the (in general
undecidable) equalities on A± are propositions. Similarly, if
we have r : Red(xby), we can say in which step b is reduced,
since this is encoded by a position.

Let us remind ourselves that the goal of the paper is to show
that F(A) has trivial fundamental groups. This is a statement about
equalities between equalities. If we think of a reduction sequence
as a proof that a list represents the neutral group element, i.e. as
something giving rise to an equality proof, it is hopefully intuitive
that we now want to discuss the relationship between different
reduction sequences. In a nutshell, we want to give a criterion
which guarantees that two reduction sequences give rise to equal
equalities. To do so, we consider transformations:
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Definition 10. Letw : List(A±) be a list and r : Red(w) a reduction
sequence. We consider the following two operations, each of which
allows us to create a new reduction sequence in Red(w) from r :

1. Swap two consecutive independent steps in r . More precisely,
if r is a sequence of the form

. . . { xa
.
ayb

.
bz

b
.
b
{ xa

.
ayz

a .a
{ xyz { . . . , (7)

we can change it to

. . . { xa
.
ayb

.
bz

a .a
{ xyb

.
bz

b
.
b
{ xyz { . . . . (8)

Analogously, we can change (8) into (7).
2. If a step reduces a redex a .a in a list of the form xa

.
aay, we

can change this step to remove the redex .
aa instead, or vice

versa. This means that

. . . { xa
.
aay

a .a
{ xay { . . . (9)

can be changed to

. . . { xa
.
aay

.aa
{ xay { . . . , (10)

or vice versa.
We say that r : Red(w) can be transformed into s : Red(w) if there
is a finite chain of these operations that changes r into s .

After what we said in the paragraph before Definition 10, the best
we could hope for is that any reduction sequence can be transformed
into any other reduction sequence (of the same listw). Indeed, this
is what we will show. We start with a technical lemma which will
not only help us to prove what we just said (Corollary 12), but also
another useful consequence (Corollary 13).

Lemma 11. Assume we are given a list of the form xa
.
ay, i.e. a list

in A± with an explicitly given redex a .a. Assume further that we have
a reduction sequence s : Red(xa .ay). It is possible to transform s into
a reduction sequence which reduces the redex a .a in the first step, i.e.

starts with xa .ay a .a
{ xy { . . ..

Proof. Let x , a, y, and r : Red(xa .ay) be given. Let us writem for
the number of the step in which a is reduced, and n for the number
of the step in which .

a is reduced. There are three cases:
• If m = n, then the redex a

.
a is reduced in step n. If n = 0,

there is nothing to do. Otherwise, we can swap this step with
step (n − 1), since the two steps will be independent of each
other. Swapping a further (n − 1) times, we can move the
step reducing a .a to the beginning of the sequence.
• Ifm > n, then a

.
a are not reduced together, but .a is reduced

with some
..
a to its right instead. Note that

..
a = a. Before

step n, the list thus has to be of the form ua
.
aav , and step

n consists of reducing .
aa. We define r1 to be the reduction

sequence which is identical to r in every step expect in step
n where it reduces a .a; this is the second of the two possible
operations in Definition 10. We are now in case one (m = n).
• The casem < n is analogous to the casem > n. □

Corollary 12. Any reduction sequence can be transformed into
any other reduction sequence. More precisely, for w : List(A±) and
r , s : Red(w), we can transform r into s .

Proof. A reduction sequence is given by a chain of reduction steps,
and the number of steps in r and s are equal (both are length(w)/2).
Thus, it is sufficient to transform r into a sequence which consists
of the same steps as s . By the above lemma, we can transform r
into a sequence r ′ which in the first step reduces whichever redex s
reduces in the first step. Applying the same argument to the “tail” of
the sequences (note that r ′ and s , each with the first step removed,
still reduce the same list), we get a transformation into a sequence
which in every step mirrors the reduction of s and is thus equal to
s . □

A second easy consequence is that, if a list is reducible, then
we cannot “get stuck” while reducing: we can start reducing at an
arbitrary position without risking of ending up with an unreducible
list. Note that we write B ↔ C for (B → C) × (C → B).

Corollary 13. For any lists y, z and a : A±, we have

Red(ya .az) ↔ Red(yz). (11)

Proof. The direction← is immediate, by adding a single reduction
step reducing a .a. The direction→ is an application of Lemma 11.

□

Remark 14. Note that Corollary 12 subtly but crucially depends
on the assumption that A is a set, while Lemma 11, as formulated,
would work for arbitrary types A. It is true independently of A
that a reduction sequence is given by a chain of reduction steps. A
reduction step encodes the position at which the reduction is taking
place (say, the length of the list y in Definition 8), together with
a proof that the reduction is possible (i.e. a proof that the pair at
the position is actually a redex). The second part amounts to an
equality in A± (since “ab being a redex” means a =

.
b); thus, it is a

proposition if A is a set. In this case, a reduction step is determined
by the position, and a reduction sequence is determined by the
chain of positions which it encodes. The proof of Corollary 12
relies on this.

Lemma 11 holds even without the requirement of A being a set.
However, note that the proof of Lemma 11, when it uses the second
operation in Definition 10, has to construct a new equality (this
is hidden in the sentence “Before step n, the list thus has to be
of the form ua

.
aav”). Therefore, the new sequence constructed in

Lemma 11 will reduce a .a in the first step, but the proof that a .a is
indeed a redex could be a nontrivial one.

3.2 A non-recursive approximation to the free∞-group
We are ready to define a non-recursive approximation to the free
group F(A), a HIT that we call N(A). By non-recursive, we mean
that constructors of N(A) do not use points or paths of N(A) in their
arguments.
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Definition 15. We define N(A) to be the HIT with the following
constructors:

η : List(A±) → N(A)

τ : (x : List(A±)) → (a : A±) → (y : List(A±))
→ η(xa

.
ay) = η(xy)

sw : (x : List(A±)) → (a : A±) → (y : List(A±))
→ (b : A±) → (z : List(A±))

→ τ (x ,a,yb
.
bz) � τ (xy,b, z) = τ (xa

.
ay,b, z) � τ (x ,a,yz)

ov : (x : List(A±)) → (a : A±) → (y : List(A±))
→ τ (x ,a,ay) = τ (xa,

.
a,y)

tr : is-1-type(N(A))

We can think of N(A) (without the last constructor) as a “wild”
quotient of List(A±). Recall that we said that lists over A± corre-
spond to very intentional representations of group elements. The
HIT with constructors η and τ can be thought of as a “level 0 ap-
proximation” to a fully coherent non-recursive quotient of List(A±):
we identify some lists which represent the same group element,
but the equalities are incoherent. This is partially remedied by the
constructors sw (“swap”) and ov (“overlap”), ensuring that the equal-
ities generated by τ satisfy basic coherence. They can be pictured
as follows:

η(xa
.
ayb

.
bz) η(xyb

.
bz)

η(xa
.
ayz) η(xyz)

sw(x ,a,y,b, z)

τ (x ,a,yb
.
bz)

τ (xa
.
ay,b, z) τ (x ,a,yb

.
bz)

τ (xa
.
ay,b, z)

(12)

η(xa
.
aay) η(xay)ov(x ,a,y)

τ (x ,a,ay)

τ (xa,
.
a,y)

(13)

sw and ov themselves are not directly guaranteed to be coherent;
if we omit the constructor tr, we can think of N(A) as a “level 1 ap-
proximation”. tr ensures that all higher equalities hold, by forcing
N(A) to be 1-truncated. The statement that N(A) is an approxi-
mation to the free higher group can then be made by drawing a
connection to ∥F(A)∥1, which we will do later.

If a list can be reduced, then in N(A), it is indistinguishable from
the empty list:

Lemma 16. We have a function

red-is-neutral : (z : List(A±)) → Red(z) → η(z) = η(nil). (14)

Proof. We need to analyse the element r : Red(z). It encodes a finite
number of reduction steps. The first reduction step shows that z is of
the form z = xa

.
ay, thus the constructor τ (x ,a,y) (transported along

the equality z = xa
.
ay) provides us with the equality η(z) = η(xy).

Similarly, each of the remaining reduction steps encoded in r shows
how τ can be applied, and the concatenation of all these equalities
yields η(z) = η(nil).

IfRed is defined as an indexed inductive family, red-is-neutral(x)(r )
can be constructed by induction on r , and the induction step is given
by the constructor τ . □

Not only can we show that reducible lists are equal to nil in N(A),
it is also the case that the concrete witness of reducibility does not
matter:

Lemma 17. For any given x , the function

red-is-neutral(x) : Red(x) → η(x) = η(nil) (15)

is weakly constant, in the following sense:

(r , s : Red(x)) → red-is-neutral(x)(r ) = red-is-neutral(x)(s).
(16)

Proof. The constructors sw and ov ensure that, if two reduction
sequences can be transformed into each other, then they lead to
equal proofs of η(x) = η(nil). More precisely, the first operation in
Definition 10 is exactly covered by the constructor sw, while the
second operation is covered by ov. The statement thus follows from
Corollary 12. □

The point of N(A) is that it is easier to reason about N(A) than
about F(A), thanks to the absence of recursive constructors; one
can say that N(A) attempts to bridge the gap between List(A±) and
F(A). We first define a property stating that an element of N(A) can
be reduced. We write hProp for Σ (X : U) . is-prop(X ) as usual.

Lemma 18. The family ∥−∥ ◦Red : List(A±) → hProp extends to a
family red : N(A) → hProp as in the following commuting triangle:

List(A±) U hProp

N(A)

Red ∥−∥

η
red

(17)

Proof. We do induction onN(A). Clearly, we have to set red(η(x)) :≡
∥Red(x)∥ . The proof obligation of the constructor τ is met by Corol-
lary 13. The remaining two constructors are trivial, since they ask
for equalities between elements of propositions. □

To avoid confusion with elements of List(A±), which we call
x ,y, z, . . ., we use Greek letters for elements of N(A). If γ : N(A) is
reducible, it is equal to the neutral element:

Lemma 19. There is a function of type

(γ : N(A)) → red(γ ) → γ = η(nil). (18)

Proof. We do induction on γ . First, we consider the case γ ≡ η(x),
and we want to find fx : red(η(x)) → η(x) = η(nil). Recall that
a weakly constant function into a set (which the codomain here
is) factors through the propositional truncation [16], hence since
red(η(x)) ≡ ∥Red(x)∥ by definition, Lemma 17 gives us a function

fx : red(η(x)) → η(x) = η(nil) (19)

such that fx (|r | ) = red-is-neutral(x)(r ). We want to extend this
function to N(A). Induction on γ requires us to provide construc-
tions corresponding to τ , sw, and ov. The latter two are contractible,
and we do not need to worry about them. The proof obligation
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for τ says that, for any y,a, z, and witnesses s : red(η(yz)), s ′ :
red(η(ya .az)), the triangle

η(ya
.
az) η(yz)

η(nil)
fya .az (s ′)

fyz (s)

τ (y,a, z)

(20)

commutes. This is a proposition, thus we can assume that s , s ′
come from actual reduction sequences, i.e. we have r : Red(yz)
with |r | = s and r ′ : Red(ya .az) with |r ′ | = s ′. This simplifies the
triangle to:

η(ya
.
az) η(yz)

η(nil)
red-is-neutral(ya .az)(r ′)

red-is-neutral(yz)(r )

τ (y,a, z)

(21)
If wewrite r ′′ : Red(ya .az) for the sequence r , extended by the single
step reducing a .a in the beginning, we see that composition of the
horizontal and vertical arrow give red-is-neutral(ya .az)(r ′′). Thus,
Lemma 17 yields the required commutativity of the triangle. □

This allows us to conclude:

Lemma20. N(A) is a set locally atη(nil), in the sense thatη(nil) =N(A) η(nil)
is contractible.

Proof. If equality is implied by a “reflexive mere relation”, then the
type is a set ([22, Thm 7.2.2.], sometimes called “Rijke’s theorem”).
Here, we need the local formulation of this statement as given in
[15], together with Lemma 19. □

Next, we want to extend this observation and show that N(A) is
a set. In general, if a type X is a set locally at x0 : X and we have an
equivalence e : X → X , then X is also a set locally at e(x0), using
that ape will be an equivalence. Therefore, if for every y : X there
is an equivalence mapping x0 to y (we can say that such an X is
“homogeneous”), then X is a set; and in fact, it is enough if for a
giveny the equivalence merely exists (i.e. hidden with a truncation).
This is one motivation for the following technical lemma, where we
construct equivalences N(A) → N(A). Another motivation is that
these equivalences are the main part of an F(A)-algebra structure
on N(A), but we will come back to this later.

Lemma 21. There is a function f : A± → N(A) → N(A) such that,
for every c : A±, the map fc : N(A) → N(A) is an equivalence with
f .c as its inverse. Further, the construction can be done such that, for
every x : List(A±), we have fc (η(x)) ≡ η(cx).

Proof. Let c : A be given. We need to define fc : N(A) → N(A), i.e.
for a given α : N(A), we need fc (α) : N(A). This can be done by
recursion on α in the obvious way:
• We set fc (η(x)) :≡ η(cx).
• Next, we need a witness of fc (η(xa

.
ay)) = fc (η(xy)). Slightly

abusing notation, we write fc (τ (x ,a,y)) for this1, and we set
fc (τ (x ,a,y) :≡ τ (cx ,a,y).
• Similarly, we set fc (sw(x ,a,y, z)) :≡ sw(cx ,a,y, z);
• and fc (ov(x ,a,y)) :≡ ov(cx ,a,y);

1The more accurate notation might be apfc (τ (x, a, y)).

• and finally, we have fc (tr) :≡ tr.
We need to show that fc is an inverse of f .c . It is sufficient to show
that, for α : N(A), we have fc (f .c (α)) = α and f .c (fc (α)) = α . Let us
concentrate on the first of these, as the second is no more than a
copy which switches the sign of c . Note that the goal is an equality
in the 1-type N(A) and thus a set. Thus, when we do induction on
α , in order to construct a function h : (α : N(A)) → fc (f .c (α)) = α ,
the proof obligations for sw, ov, and tr are trivial. For η and τ , the
constructions work as follows:
• For η, we need h(η(x)) of type fc (f .c (η(x))) = η(x), which
reduces to η(c

.
cx) = η(x). Therefore, we can set h(η(x)) :≡

τ (nil, c,x).
• For τ , we need to construct h(τ (x ,a,y)) which shows that
h(η(xa

.
ay)) and h(η(xy)) are equal as paths over τ (x ,a,y).

After unfolding what this means, we see that the type of
h(τ (x ,a,y)) is:

apfc .c (τ (x ,a,y))
� τ (nil, c,xy) = τ (nil, c,xa .ay) � τ (x ,a,y). (22)

By the given construction of fc above, this simplifies to
τ (c

.
cx ,a,y) � τ (nil, c,xy) = τ (nil, c,xa .ay) � τ (x ,a,y), (23)

which is given by sw(nil, c,x ,a,y). □

From Lemma 21, it is very easy to derive an F(A)-algebra struc-
ture. We will record this later in Corollary 23. Before going there,
we draw another immediate conclusion:

Lemma 22. The type N(A) is a set.

Proof. It suffices to show the that, for any given α : N(A), the type
α =N(A) α is contractible. We do induction on α . Since the goal is a
proposition which becomes trivial for all higher constructors, we
only need to show the statement for the point constructor η. Thus,
assuming x : List(A±), we need to show that η(x) =N(A) η(x) is
contractible. We do induction again, this time on the list x . If x is the
empty list nil, then the statement is given by Lemma 20. Otherwise,
x is ay with a : A±. Consider the equivalence f (a) : N(A) → N(A)
from Lemma 21. It gives us an equivalence apf (a) : η(y) = η(y) →
η(ay) = η(ay), the domain of which is contractible by the induction
hypothesis. □

3.3 Connection between approximations of the free group
In order to make use of N(A) and the results we have found so far,
we show in this section that ∥F(A)∥1 is equivalent to N(A). A direct
proof via “maps in both directions which are inverse to each other”
would in principle be possible. Our calculations however led to
a very messy argument, which did not provide much insight. In
this paper, we therefore proceed a bit differently: after constructing
F(A)- andN(A)-algebra structures on bothN(A) and ∥F(A)∥1 (which
corresponds to constructing the two functions), we show that the
structures are “compatible”, i.e. that a certain N(A)-algebra map is
also an F(A)-algebra morphism. We will later explain in detail what
this means.

Recall from the statement of Principle 5 that an F(A)-algebra
structure on a type X consists of a point u : X and a family f : A→
X → X such that each fa is an equivalence on X , witnessed by
some p : (a : A) → isequiv(fa ). An F(A)-algebra is a type X with
such a structure, i.e. a tuple (X ,u, f ,p). Also recall that an F(A)-
algebra morphism between (X ,u, f ,p) and (Y ,v,д,q) is a triple
(h, r , s), where h : X → Y , r : f (u) = v , and s : h ◦ f = д ◦ h.
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Similarly, we say that a type Y carries an N(A)-algebra structure
if we have a tuple (e, t , s,o,h) mirroring the constructors of N(A),
with N(A)-algebra morphisms defined in the obvious way. Then,
(N(A),η,τ , sw, ov, tr) is homotopy initial among all N(A)-algebras.

From Lemma 21, we immediately get a canonical F(A)-algebra.
Note that here and later we write _ (blank) for a “nameless” com-
ponent which should be clear from the context.

Corollary 23. We have an F(A)-algebra (N(A),η(nil), f , _), where
f is given by the function Lemma 21 composed with the embedding
inl : A → A± of a into “positively signed a”. Since F(A) carries the
initial such structure, we get a canonical map F(A) → N(A).

It does not seem to be the case in general that truncations pre-
serve algebra structure, since this seems to require a choice princi-
ple; see e.g. the infinitary branching trees in [4, 5]. Fortunately, it
is very simple in our case:

Lemma 24. The type ∥F(A)∥1 carries an F(A)-algebra structure, and
|−| : F(A) → ∥F(A)∥1 is an F(A)-algebra morphism.

Proof. This follows easily from the fact that |−| preserves equiva-
lences. □

Corollary 23 can be reversed if we add a truncation:

Lemma 25. The type ∥F(A)∥1 carries an N(A)-algebra structure.

Proof. Doing this in detail is tedious, but there is no hidden difficulty.
The components corresponding to the constructors (η,τ , sw, ov)
could all be constructed using F(A) directly, we simply need to
throw in |−| : F(A) → ∥F(A)∥1 at the right places. The component
corresponding to η, which has type

e : List(A±) → ∥F(A)∥1, (24)

is simply given by composing instances of |cons| or |icons| with
each other, one for each element of the list x (we use |cons| for posi-
tive list elements and |icons| for negative ones), and applying them
on the unit element |unit| . We write e(x) :≡ | ®consx | for this. For
example, if x is the list a

.
bc (where a, b, c are now all assumed to be

positive), then e(x) ≡ | ®consx | ≡ |consa | (|iconsb | (|consc | (|unit| ))).
The component corresponding to τ , which has type

t : (x : List(A±)) → (a : A±) → (y : List(A±)) → e(xa
.
ay) = e(xy),

(25)
is then given by “whiskering” as in (let us for simplicity assume
that a is positive):

t(x ,a,y) :≡ ap��� ®cons(x)
��� (|µ2 | (a,y)) (26)

The components for sw and ov are essentially naturality of whisker-
ing and µ, respectively, while the fact that we have 1-truncated F(A)
gives us the component for the constructor tr. □

Using that F(A) carries the (homotopy) initial F(A)-algebra struc-
ture, and N(A) the (homotopy) initial N(A)-algebra structure, the
statements of Corollary 23 and Lemma 25 give us maps h and k as
follows:

F(A) N(A) ∥F(A)∥1
map of F(A)-algs map of N(A)-algs

h k
(27)

In the next lemma, we show that both these functions are maps of
F(A)-algebras. This will be sufficient to show that N(A) is a retract
of ∥F(A)∥1. It was a suggestion by Paolo Capriotti that this lemma
might lead to a cleaner proof of the property we ultimately want,
which, we think, is indeed the case.

Lemma26. Themapk in (27) is amap of F(A)-algebras, with respect
to the F(A)-algebra structures constructed in Corollary 23 and Lemma
24.

Proof. We need to show that the points and the equivalences are
preserved, independently of each other. The point in N(A) is η(nil),
which is mapped to the |unit| as required. For the equivalence, we
only need to check that the underlying functions match accordingly.
This corresponds to showing commutativity of the following square,
for any given c : A:

N(A) N(A)

∥F(A)∥1 ∥F(A)∥1

fc (Lem 21)

|consc |

k k (28)

We do induction on α : N(A). The goal is an equality in a 1-type,
i.e. a set, which means that we only have to check the constructors
η and τ . Tracing the explicit construction in Lemma 25 through the
square, we can check directly that the square commutes in both
cases (strictly speaking, in the case for τ , it is a cube):

η(x) η(cx)

| ®consx | (|unit| ) |consc | (| ®consx | (|unit| ))

(29)

and:
τ (x ,a,y) τ (cx ,a,y)

ap
| ®cons(x) |

(|µ2 |(a,y)) ap
|consc |( | ®cons(x) |)

(|µ2 |(a,y))

(30)

The commutativity is judgmental in the first square, and the second
square only uses the usual equality apд ◦ apf = apд◦f . □

This finally allows us to show:

Theorem 3. If A is a set, then all fundamental groups of F(A) are
trivial. In other words, ∥F(A)∥1 is a set.

Proof. By the previous lemma, the composition of the maps in (27)
is an F(A)-algebra map. But so is the map |−| : F(A) → ∥F(A)∥1
by Lemma 24. Since F(A) is the initial such algebra, these two
functions must coincide, which means that |−| : F(A) → ∥F(A)∥1
factors through N(A). We know from Lemma 22 that N(A) is a set.
This implies that ∥F(A)∥1 is a set, which is the second part of the
theorem.

To see the first part, take q : F(A). F(A) having trivial funda-
mental groups means that

q =F(A) q

0 is contractible. By [22], we

have q =F(A) q

0 ≃

(
|q | =∥F(A) ∥1 |q |

)
. (31)
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The second type is contractible since ∥F(A)∥1 is a set. □

Having proved the main result, we add two results that now
have become very easy:

Lemma 27. For a set A, the two approximations of the free higher
group which we have considered are equivalent, i.e. ∥F(A)∥1 ≃ N(A).

Proof. From the argument in the proof of the previous theorem, we
can follow that ∥F(A)∥1 is a retract of N(A). Thus, we still need to
show that the composition N(A) → ∥F(A)∥1 → N(A) is the identity.
But now that we know that everything is a set, it is easy to do this
by induction on N(A). □

Theorem 28. The type ∥F(A)∥1 is equivalent to the purely set-based
free group over A as constructed in [22, Chp 6.11]. If Question 2 can
be answered positively, then our free group does indeed generalise the
free group construction of [22] from only sets to arbitrary types.

Proof. Since N(A) is a set by Lemma 22, it is easy to see that it is
equivalent to the set-quotient of List(A±) by the relation that identi-
fies a list with the list then one gets after reducing; this is essentially
because, when we know that N(A) is a set, the constructors sw and
ov become obsolete, and what remains is just this set-quotient. But
this set-quotient is exactly the purely set-based free group of [22]
by [22, Thm 6.11.7].

If Question 2 turns out to have a positive answer, then F(A) and
∥F(A)∥1 are equivalent, and everything that holds for the latter is
also true for the former. □

4 Conclusions
The central and guiding question of this paper was the problem
of showing that the free ∞-group F(A) over a set is a set as well.
We have proved a first approximation of this, namely that F(A) has
trivial fundamental groups. This is done entirely in “book HoTT”,
the type theory developed in [22]. It would be very interesting
to formalise the complete argument in a proof assistant, and we
expect that this would be challenging. For example, the use of
list concatenation in the constructors of the higher inductive type
N(A) would lead to many application of transport (substitution). It
is likely that a different representation of N(A) and the reduction
relation would enable a more elegant formalisation. For a human
reader, the presentation in terms of lists is the most intuitive and
understandable one that we could think of.

Brunerie has discussed the James construction in homotopy type
theory [9]. In this context, a type A with a point ⋆A : A is given,
and the higher inductive type JA is defined to be the free monoid
over A where ⋆A plays the role of the neutral element. Brunerie
then constructs a non-recursive version of JA. Of special interest
for him is the case thatA is connected (i.e. ∥A∥0 is contractible), and
in this case, JA becomes very similar to our free group. However,
connectedness would be a very unnatural assumption in the present
paper; in fact, since we are interested in the case that A is a set, our
case of interest is orthogonal to Brunerie’s. If A is not known to be
connected, then, compared to our F(A), JA is lacking the condition
that every consa is invertible, which is the main source of difficulty
in our work.

Related to the current paper is also previous work by Capriotti,
Vezzosi, and the current first author [13]. That work gives a nec-
essary and sufficient condition for a function X → Y to factor
through ∥X ∥n , assuming that Y is (n + 1)-truncated. In the current

paper, we have been particularly interested in the situation that
n is 0, X is the “level 0 approximation” of the free group (see the
description after Definition 15), and Y is ∥F(A)∥1. The reason why
we have not directly applied the result of [13] is that, in our case of
interest, showing the mentioned condition is tricky. This difficulty
corresponds to what in our presentation has made the more refined
approximation with the constructors sw and ov necessary. We do
not know whether there is an alternative proof of our main result
which uses [13] directly.

Let us further analyse the methods we have used in the paper.
In principle, the strategy which we have developed should be ap-
plicable to more general results than the one we have proved; for
example, with somemore effort, we expect that it should be possible
to show that ∥F(A)∥2 and ∥F(A)∥3 (which are better approximations
to F(A)) are sets. The obvious attempt to do this is to work with a
“better” non-recursive approximation, i.e. a refined version of N(A)
which would use higher path constructors to guarantee the coher-
ence of sw and ov. One would then include a 2- or 3-truncation
constructor instead of the 1-truncation constructor tr. It seems
plausible that this could work; for example, instead of constructing
a weakly constant function

Red(x) → η(x) = η(nil) (32)
as in Lemma 17, we would have to construct a constant function
satisfying one or more coherence conditions [14], and the new
constructors of N(A) would be chosen in such a way that this
would be possible.

The additional value that such a generalisation would give us is
unclear. Of course, what we want is to show that F(A) is a set, not
just a finite truncation of it. If we try to use our approach, it seems
we would need to find a way to encode the whole infinite tower of
coherences in a non-recursive type, and it looks suspiciously similar
to the long-standing open problem of defining semisimplicial types
in HoTT [23]. (To clarify, we would not need a single HIT with
infinitely many constructors, since we could take a sequential col-
imit; and the absence of a general version of Whitehead’s principle
does not seem to be a problem as long as we can show that (32)
satisfies the coherence conditions given in [14], which does not
rely on hypercompleteness either.)

Our problem of showing that F(A) is a set is not much different
from the open problem of HoTTwhich asks whether the suspension
of a set is a 1-type; as we have already discussed, what we are asking
is essentially whether a the suspension of a set with a distinguished
isolated point is a 1-type. Thus, our question is slightly weaker and,
as far as we can see, an answer to the weaker question would not
be sufficient to answer the more general question.2 However, it
seems plausible that an approach similar to ours is applicable to the
more general question as well. In this case, being able to encode
infinite towers of coherences could potentially be key to both open
problems, although of course there would still be a lot of work to
do (which might or might not even be impossible).

Theories such as Voevodsky’s homotopy type system (HTS) [25],
two-level type theory (2LTT) [3, 7] or computational higher type
theory [6] are variations of standard HoTT in which such infinite
structures can be constructed. We believe it would be worth inves-
tigating whether the “suspension of a set” problem can be resolved
in such systems. Our preliminary investigations hint that it is at
2Related is the discussion Does “adding a path” preserve truncation levels? at https:
//groups.google.com/forum/#!topic/homotopytypetheory/gVmcvaOeD5c.

https://groups.google.com/forum/#!topic/homotopytypetheory/gVmcvaOeD5c
https://groups.google.com/forum/#!topic/homotopytypetheory/gVmcvaOeD5c
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least be possible to define a “completely non-recursive” version of
F(A), which would be a starting point. However, actually using this
construction to mimic the proof that we have given in this paper
is, of course, a completely different story.

If (we are now in the realm of complete speculation) it turns
out that HTS can prove that the suspension of a set is a 1-type,
it would be even more interesting whether “standard HoTT” can
do it as well. This is because one would need to come up with a
completely different argument in standard HoTT, and if it turns
out that the open problem is independent of standard HoTT, hope
for a conservativity result would be lost for all theories that are
powerful enough to encode semisimplicial types. Recall that we
have a conservativity result for 2LTT, due to Capriotti [11], which
says that a fibrant type in 2LTT can only be inhabited if the cor-
responding type in HoTT (assuming it exists) is inhabited as well.
This however only works for a version of 2LTT where we do not
have semisimplicial types in the usual formulation (we only have
semisimplicial types indexed over the pretype of strict natural num-
bers, but not over the type fibrant natural numbers). Thus, in this
version of 2LTT, the sketched approach to solve the open problem
regarding the suspension of a set would not work. This might be
more than a coincidence.
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