

University of Birmingham

Constructions with non-recursive higher inductive
types
Kraus, Nicolai

DOI:
10.1145/2933575.2933586

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kraus, N 2016, Constructions with non-recursive higher inductive types. in LICS '16 - Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science. Association for Computing Machinery (ACM), pp.
595-604, The 31st Annual ACM/IEEE Symposium on Logic in Computer Science , New York, United States,
5/07/16. https://doi.org/10.1145/2933575.2933586

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Mar. 2024

https://doi.org/10.1145/2933575.2933586
https://doi.org/10.1145/2933575.2933586
https://birmingham.elsevierpure.com/en/publications/14a93071-c2ce-4fc0-8db6-652d07a17616

Constructions with Non-Recursive Higher Inductive Types

Nicolai Kraus ∗

University of Nottingham
nicolai.kraus@nottingham.ac.uk

Abstract
Higher inductive types (HITs) in homotopy type theory are a pow-
erful generalization of inductive types. Not only can they have or-
dinary constructors to define elements, but also higher constructors
to define equalities (paths). We say that a HIT H is non-recursive
if its constructors do not quantify over elements or paths in H . The
advantage of non-recursive HITs is that their elimination principles
are easier to apply than those of general HITs.

It is an open question which classes of HITs can be encoded
as non-recursive HITs. One result of this paper is the construc-
tion of the propositional truncation via a sequence of approxima-
tions, yielding a representation as a non-recursive HIT. Compared
to a related construction by van Doorn, ours has the advantage
that the connectedness level increases in each step, yielding sim-
plified elimination principles into n-types. As the elimination prin-
ciple of our sequence has strictly lower requirements, we can then
prove a similar result for van Doorn’s construction. We further de-
rive general elimination principles of higher truncations (say, k-
truncations) into n-types, generalizing a previous result by Capri-
otti et al. which considered the case n ≡ k + 1.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Lambda calculus and related systems

Keywords homotopy type theory, higher inductive types, sequen-
tial colimits, truncation elimination, van Doorn construction

1. Introduction
Homotopy type theory, also known as HoTT, is a branch of inten-
sional dependent type theory based on the observation that types
can be interpreted as (some form of) topological spaces. For a type
A with elements a1, a2 ∶ A, we can view a1 and a2 as points and
the equality type IdA(a1, a2) (most of the time simply written as
a1 = a2) as the type of paths between these points. In the light of
HoTT, it is natural to consider a powerful generalization of induc-
tive types, called higher inductive types (HITs), some constructors
of which may define elements (point constructors) while others
may define equalities (higher constructors, or path constructors).
A standard example is the circle S1, which can be represented as
the higher inductive type that is generated by a point constructor
base ∶ S1 and a path constructor loop ∶ base =S1 base. Another
innocent-looking example is the propositional truncation: For any
type A, the HIT ∥A∥ is the type generated by a point constructor
∣−∣ ∶ A → ∥A∥ and a path constructor t ∶ Πu,w∶∥A∥u = w. The
propositional truncation is certainly the most prominent concept
that can be implemented as a HIT (without being implementable as
an ordinary inductive type), as similar operations have been con-
sidered long before HoTT was a subject of research. It roughly cor-
responds to the squash types of NuPRL (Constable et al. 1986) and

∗ The author acknowledges support by the Engineering and Physical Sci-
ences Research Council (EPSRC), grant reference EP/M016994/1.

the concept of bracket types in extensional type theory (Awodey
and Bauer 2004). It is interesting because it allows to formulate the
proposition that a type is inhabited, without the obligation to spec-
ify a concrete element of the type. For more detailed examples of
HITs, we want to point to the standard reference (Univalent Foun-
dations Program 2013, Chapter 6).

In topology, a particularly nice class of spaces are the CW
complexes. These can be constructed stepwise. To build a CW
complex, one starts with a (discrete) set of points, or 0-cells. For
any two points, one may draw a path (or multiple paths) between
them; these are the 1-cells. Then, for any configuration of points
and lines that forms a cycle, one can attach a 2-cell which has this
cycle as its boundary, and so on. A first view on HITs may be that
they correspond to CW complexes. This is indeed a good intuition
for many basic HITs that are commonly considered: for example,
S1 is really built of one point (the base constructor) and one path
(the loop constructor).

However, general HITs are more difficult to understand because
they are higher inductive types: A constructor of a HIT H may
quantify over all elements of H , or even over paths or loops in
H , something that one does not allow when constructing CW
complexes. Again, the most prominent example is the propositional
truncation mentioned above. The first constructor is simple: The
point constructor ∣−∣ ∶ A → ∥A∥ gives us one point for every
point in A. However, the path constructor t ∶ Πu,w∶∥A∥u = w is
tricky. It does not correspond to simply adding one path between
any two points given by the first constructor. Instead, it means
that a path is added between any two points of the type that is
currently constructed, and not every such point is equal to one that
is generated by the first constructor (at least not in a “continuous”
way). Intuitively, t also adds paths between points which “lie on
paths” that are generated by t itself.

Ordinary inductive types and their expressivity are reasonably
well-understood. It is less clear what the status of HITs is. Let
us say that a HIT H is non-recursive if no constructor quanti-
fies over points or paths in H (a reasonable variant would be to
only impose this restrictions on path-constructors, but not on point-
constructors, in order to consider an ordinary inductive type to be a
non-recursive HIT). At the HoTT workshop in Warsaw (June 29–
30, 2015), Altenkirch and the current author have posed the open
question whether non-recursive HITs (together with ordinary in-
ductive types) are sufficient to construct all types that can be repre-
sented by general HITs. A positive answer would serve as a reduc-
tion theorem, similar to the well-known hubs and spokes construc-
tion (Univalent Foundations Program 2013, Chapter 6.7) which
shows that, up to homotopy, all HITs can be constructed using only
point- and simple path-constructors, but without constructors for
higher paths (i.e. without constructors that define paths between
paths). Here, we gloss over the fact that a general satisfactory syn-
tactical scheme for HITs has yet to be established.

If it turned out that any HIT can be constructed as a non-
recursive HIT, this would also have practical advantages when

mailto:nicolai.kraus@nottingham.ac.uk

using HoTT. The point is that non-recursive HITs have elimination
principles that are generally easier to use than those of arbitrary
HITs. For example, a map S1 → X for any type X is given
by a point x ∶ X and a loop (a path whose endpoints coincide)
p ∶ x = x. In comparison, a map ∥A∥ → X is given by a map
A → X , but only if X is a propositional type itself (i.e. we need
an element of Πx,y∶Xx = y). This condition on X represents a
serious restriction, as it may often happen that one wants a function
into some type which is not known to be propositional, in which
case a function f ∶ A → X is not sufficient. Thus, the crucial
difference is that general HITs can pose restrictions on the types
into which their elimination principles can eliminate, while non-
recursive HITs have elimination principles that can be used to
eliminate into any type.

The question how to construct functions ∥A∥ → X in general
has already been examined in previous research, and the goal al-
ways is to weaken the requirements on X . The standard reference
describes the strategy of finding a propositional type P such that f
factors through P (Univalent Foundations Program 2013, Chapter
3.9), while (Kraus et al. 2014) and (Escardó and Xu 2015) describe
strategies for several special cases. Previous work by the current
author shows that a function ∥A∥ →X corresponds to a coherently
constant function A → X , which comes with an infinite tower of
coherence data, requiring certain Reedy limits. If X is n-truncated
for some finite n, then this infinite tower becomes finite, generaliz-
ing some of the previously known special cases.

For a given type A, let us consider the HIT {A} that is given
by a point-constructor p ∶ A → {A} and a path-constructor e ∶
Πa1,a2 ∶Ap(a1) = p(a2). This HIT looks similar to ∥A∥; however,
note that its second constructor does not quantify over elements of
{A}, i.e. it is non-recursive. In fact, it is very different from ∥A∥.
While ∥A∥ is always propositional, {A} is never propositional, un-
less A is empty. For example, in the case that A is the unit type 1,
the type {1} consists of a point and a loop around that point, which
is evidently just S1. The elimination principle of {A} is very sim-
ple: a function {A}→X corresponds to a map f ∶ A→X together
with an element of Πa1,a2 f(a1) = f(a2); we say that such a func-
tion f is weakly constant. Note that the terminology weakly con-
stant can be somewhat misleading as the weak constancy datum is
not well-behaved, and weakly constant functions are not as easy to
understand as one could expect (to reformulate the above example:
a weakly constant function from 1 to X is given by a loop in X).
In any case, because of the before-mentioned reason, Altenkirch
has called {A} the constant map classifier in private discussions
with the current author. Independently, Coquand and Escardó have
called it the generalized circle (Coquand and Escardó) because of
the connection with S1 mentioned above.

Moreover, {A} plays a central role in a recent construction by
van Doorn (van Doorn 2016), who call it the one-step truncation
as they view {A} as a “first step” towards the actual propositional
truncation ∥A∥. More precisely, they consider the sequence

A
pÐ→ {A} pÐ→ {{A}} pÐ→ . . . (1)

and show that the colimit of this sequence, which is a non-recursive
HIT, is propositional and has the properties of ∥A∥. This leads
to a new elimination principle for ∥A∥: a function ∥A∥ → X
corresponds to a cocone under the sequence (1), that is, a family
of functions {. . .{A} . . .}→X , for any number of applications of
{−}, which are coherent in a certain way. This can be expressed in
type theory without additional assumptions.

At first sight, it may be surprising that the colimit of the van
Doorn sequence (1) is propositional: Even for simple examples of
A (such as the unit type), already {{A}} and {{{A}}} are very
hard to visualize, and there does not seem any aspect in which the
sequence becomes simpler. An unpleasant side-effect is that, unlike

the elimination principle of (Kraus 2015), van Doorn’s elimination
principle does not simplify if one wants to eliminate into an n-type;
it is still necessary to have an infinite family of functions.

In the current paper, we show that van Doorn’s core argument
can be generalized: any sequence has a propositional colimit, as
long as all maps are weakly constant. We sketch a couple of appli-
cations of this observation. First of all, the van Doorn construction
follows. Further, it allows us to directly see that the ω-sphere, writ-
ten S∞ and constructed as a sequential colimit, is contractible. This
fact is well-known, but has so far been proved “manually”. We also
define a generalized version of the ω-sphere which turns out to be
contractible as well.

The main part of the paper examines a generalization of the
HIT {A}, namely the pseudo-truncation for any n ≥ −1, written
LAMn. It is derived from the HIT which represents the truncation
∥A∥n by changing the path-constructor so that it only quantifies
over elements of A, but not over elements of LAMn. In the same
way as ∥A∥ and {A} are different from each other, ∥A∥n and LAMn
are different as well. The connection between them is that we have

∥LAMn∥n+1 ≃ ∥A∥n. (2)

This allows us to formulate an elimination principle of the n-
truncation into (k + n)-types. For k ≡ 1, this principle simplifies
to (and is proved using) the main result of previous work (Capriotti
et al. 2015).

The heart of the paper is our analysis of the sequence

A→ LAM−1 → LLAM−1M0 → LLLAM−1M0M1 → (3)

Here, the maps are the canonical maps of the form pn ∶ A→ LAMn.
For a type A in general, the only such map which is weakly
constant is p−1; what can be said about all the other maps is
much weaker – they are only weakly constant on the (n + 1)-st
higher path spaces. However, assuming a ∶ A, we show that in
the sequence (1), each single map is weakly constant, allowing us
to conclude that the sequential colimit is, once more, equivalent
to ∥A∥. Although this construction looks similar to van Doorn’s
(1), the idea behind the constructions is very different, and so
are their consequences. An important feature of (3) is that it is
really a sequence of approximations of ∥A∥ in a suitable sense,
and the derived elimination principle becomes finite if one tries to
eliminate into an n-type, while (1) seems to be somewhat chaotic.
Moreover, we can construct a morphism from our sequence to
van Doorn’s, implying that any cocone of van Doorn’s sequence
gives a cocone of ours. A particular consequence of this is that
the elimination principle from the van Doorn sequence can be
simplified when one wants to eliminate into an n-type B. For the
HIT {−}, we still do not have the principle (2), and we thus do
not have an equivalence between the type {. . .{A} . . .} → B with
(n + 1) iterations of {−} and the type ∥A∥ → B. However, via the
morphism of sequences, we can show that these two types are at
least logically equivalent (there exist functions in both directions).
Thus, a map {. . .{A} . . .} → B does allow us to construct a map
∥A∥ → B if B is n-truncated.

Organization Section 2 very briefly reviews the construction of
sequential colimits. In Section 3, we show that the colimit of a se-
quence of weakly constant maps is propositional, together with a
few applications. What follows in Section 4 is a technical inter-
lude which establishes some connections between loops and maps
from spheres mainly using the “adjunction” between the suspen-
sion and the loop space operator. In Section 5, we introduce the
pseudo-truncation and derive an elimination principle for higher
truncations from it. Section 6 contains the proof that every map in
(3) is weakly constant, and in Section 7, we derive the mentioned
consequence for the van Doorn sequence and compare several elim-
ination principles, and make further concluding remarks.

Setting We work in the type theory that is used in the standard
textbook on HoTT (Univalent Foundations Program 2013). We
assume familiarity with the constructions and notations that it uses.
In particular, we recall that a pointed type is a pair of a type A
and a point a ∶ A, and the type of pointed maps (A,a) →● (B, b)
is defined to be Σ (f ∶ A→ B) . fa = b. Further, the suspension
of a type A, written ΣA, is the HIT with two point-constructors
north and south, and a family of paths between them which we
call the meridian, mrdn ∶ A→ north = south. To avoid ambiguity
when we talk about more than one suspension at the same time,
we may write northA, southA, and mrdnA. The sphere S0 is
the two-element type, and Sn+1 is by definition ΣSn, meaning
that we can view each Sn as a pointed type (Sn,north). For any
n ≥ −1 and type A, we have the n-truncation ∥A∥n, together
with a map ∣−∣n ∶ A → ∥A∥n. In the case n ≡ −1, we omit the
index and write ∣−∣ ∶ A → ∥A∥ instead of ∣−∣

−1 ∶ A → ∥A∥
−1.

If P is a family over a type A, p ∶ a1 =A a2 a path in A, and
b1 ∶ P (a1) and b2 ∶ P (a2) points, we use the path over notation
b1 =Pp b2 (Univalent Foundations Program 2013, equation 6.2.2)
synonymously to the equality type p∗(b1) =P (a2) b2, which in turn
reads b1 transported along p equals b2.

Graphical notation We want to emphasize that we use the nota-

tions A
fÐ→ B and a

pÐ→ b for both the case of a function f ∶ A → B
and an equality p ∶ a = b. As types are notated with capital and
elements with lower-case letters, we do not expect a risk of con-
fusion (the notation is not used for type-level equalities). If we
say that a diagram commutes, we always mean that it commutes
up to homotopy, i.e. that we have an element of an equality type
that expresses commutativity. In particular, note that “commut-
ing” is nearly never a propositional property, but an actual datum.

a b

c d

p

q u

v

As equalities are invertible, we can talk about
the composition a

pÐ→ b
q←Ð c. Because of

this, we can talk about the commutativity of
diagrams such as the one shown on the right.
Note that there are many types which express
commutativity, e.g. p u−1 = q v−1 or p u−1 v
q−1 = refla. As all these types are equivalent,
we do not specify which type exactly we mean when we say that
the square commutes.

Agda formalization A formalization of the core results is avail-
able as an unofficial supplement to the paper (Kraus 2016). This
formalization follows the structure of the paper and can be read in
parallel, or consulted for specific statements. It builds on the com-
munity’s HoTT Agda library and benefits greatly from other devel-
opers’ implementations (see the acknowledgements).

2. Colimits over Graphs
In HoTT, homotopy limits and colimits over graphs are a much sim-
pler concept than homotopy limits and colimits over categories due
to the coherence problems involved in the latter. A systematic treat-
ment of homotopy limits over graphs has been presented by (Avi-
gad et al. 2015), which comes with a rigorous formalisation in Coq.
Homotopy colimits over graphs have been introduced by (Rijke and
Spitters 2014). Here, we only recall the special case that we need,
namely colimits over N (where N is viewed as a graph with exactly
one edge from n to n + 1 for every n, and no other edges), i.e.
colimits of sequences.

We define a sequence, more precisely a sequence of types, in the
obvious way:

Definition 2.1 (Sequence). A sequence is a family A ∶ N → U of
types, together with a family of functions f ∶ Πn∶N(An → An+1).
For the sequence given by (A,f), we also writeA0

f0Ð→ A1
f1Ð→

Moreover, a finite sequence is a pair (A,f) as before, but with N
replaced by a finite set of the form {0,1, . . . ,m− 1} (often written
as Finm). In other words, a finite sequence is simply a finite chain

A0
f0Ð→ . . .

fmÐÐ→ Am.

Definition 2.2 (Sequential colimit). We define the sequential co-

limit of a sequence A0
f0Ð→ A1

f1Ð→ . . . to be the higher inductive
type Aω with the two constructors i (“insert”) and g (“glue”) as
follows:

• i ∶ Πn∶N (An → Aω)
• g ∶ Πn∶NΠa∶An ina =Aω in+1(fna).

The induction principle of the sequential colimit is straightfor-
ward to write down:

Principle 2.3 (Sequential colimit - induction). For a given se-

quence A0
f0Ð→ A1

f1Ð→ . . ., the induction principle of Aω is given
as follows. Assume P ∶ Aω → U is a type family. Assume further
that we have a pair (i,g) of terms of the following types:

• i ∶ Πn∶NΠa∶AnP (ina)
• g ∶ Πn∶NΠa∶An ina =Pgna in+1(fna).

Then, there is a term

indAω

i,g
∶ Πx∶AωP (x) (4)

with the judgmental computation rule indAω

i,g
(ina) ≡ ina as well

as the “homotopy” computation rule apd
ind

Aω

i,g

(gna) = gna.

The following is straightforward, and we record it for future use.
We refer to our formalization for a rigorous proof.

Lemma 2.4. The colimit of a sequence is equivalent to the colimit
of the sequence with a finite initial segment removed. That is, for

a sequence A0
f0Ð→ A1

f1Ð→ . . ., the colimit Aω is equivalent to the

colimit of the sequence An
fnÐ→ An+1

fn+1ÐÐ→

The following notation will be useful at several points in the
paper:

Notation 2.5. Let k and m be natural numbers with k <m. Given
a sequence A0

f0Ð→ A1
f1Ð→ . . ., we write fmk ∶ Ai → Am+1 for the

composition fm ○ fm−1 ○ . . . ○ fk. If we are given a point a ∶ Ak,
we can consider a sequence of equalities in Aω , namely

ika
gkaÐÐ→ ik+1(fka)

gk+1(fka)ÐÐÐÐÐ→ . . .
gm(f

m−1
k a)

ÐÐÐÐÐÐ→ im+1(fmk a). (5)

We write gmk a ∶ ika = im+1(fmk a) for this composition.

3. Weakly Constant Sequences
We say that a function f ∶ A→ B is weakly constant if it maps any
two elements to equal values:

wconst(f) ∶≡ Πa1,a2 ∶Af(a1) = f(a2). (6)

By a theorem of (van Doorn 2016), the colimit of the sequence
A → {A} → {{A}} → . . . is propositional, where {A} is van
Doorn’s one-step truncation (for this result, see Example 3.2 below,
and for a generalization of the type operator {−}, see Section 5).
We show that this result holds for any sequence, as long as all the
maps are weakly constant. The main steps of the proofs are the
same as in van Doorn’s proof. However, for this generalization, we
crucially rely on a strategy that simplified Doorn’s original proof,
suggested by the current author (van Doorn, blog post comment
section).

Lemma 3.1. Assume we are given a sequence A0
f0Ð→ A1

f1Ð→ . . .
and every fi is weakly constant. Then, Aω is propositional.

Proof. By assumption, we have ck ∶ wconst(fk) for every k. Note
that this means that ik ∶ Ak → Aω is weakly constant as well, as
for any a, a′ ∶ Ak we have

ika
gkaÐÐ→ ik+1(fka)

apik+1
(ck(a,a

′
))

ÐÐÐÐÐÐÐÐÐ→ ik+1(fka′)
gka

′

←ÐÐ ika
′. (7)

To prove the lemma, it is sufficient to showAω → isContr(Aω).
By the recursion principle of the sequential colimit (the non-
dependent version of the induction principle), this means that we
need to construct

ĩ ∶ Πn∶N(An → isContr(Aω)) (8)

g̃ ∶ Πn∶NΠa∶An ĩna = ĩn+1(fna). (9)

Since the type of g̃ is contractible, we only need ĩ. Let us fix n ∶ N;
we need to show An → isContr(Aω). By Lemma 2.4, Aω is

contractible if and only if the colimit of An
fnÐ→ An+1

fn+1ÐÐ→ . . .
is, so we may prove this instead. By re-indexing, we can ensure
n ≡ 0, and we may thus assume a0 ∶ A0.

We choose i0a0 ∶ Aω as the center of contraction, and therefore,
we need to construct an element of Πw∶AωP (w) with

P ∶ Aω → U (10)
P (w) ∶≡ w = i0(a0). (11)

We do induction on w, i.e. we apply Principle 2.3 a second time.
Thus, we need i and g, the types of which are

i ∶ Πn∶NΠa∶An ina = i0(a0) (12)

g ∶ Πn∶NΠa∶An ina =Pgna in+1(fna). (13)

The type of gna is, by an application of a standard lemma (Univa-
lent Foundations Program 2013, Theorem 2.11.3), equivalent to

ina = gna in+1(fna). (14)

We construct ina as the composition:

ina ∶≡ gna apin+1
(cn(a, fn−1

0 a0)) gn0 (a0)−1
. (15)

We want to remind the reader of Notation 2.5: fn0 is a composition
of functions, while gn0 is a concatenation of equalities. Note that the
proof constructed in (15) is the concatenation of the above proof
that in is weakly constant with gn−1

0 (a0).
The construction of (13) requires more work. Let us consider

Figure 1. By (14), what we need to show is the commutativity of the
triangle built of the dashed arrows and the arrow labelled gna. The
two quadrangles labelled 1 and 2 commute by the construction
of ina. Hence, we need to show that the heptagon of solid arrows
commutes.

Our strategy is to simplify the solid heptagon until we see that
it commutes. For our next step, let us look at Figure 2 which shows
the heptagon again. Some of the heptagon’s faces are dashed, and
some additional arrows are added. The triangles 3 and 4 com-
mute trivially. The two parallel arrows 5 are equal because in+2

is weakly constant, implying that apin+2
is constant as well (Kraus

et al. 2013, 2014).
Therefore, we are left with proving that the solid pentagon in

Figure 2 commutes. This becomes easy when we generalize the
situation: Let us replace fna by some x ∶ An+1, and fn0 a0 by some
y ∶ An+1, and cn(a, fn−1

0 a0) by some proof q ∶ x = y. What we
need to prove becomes

gn+1(x) (apin+2
apfn+1(q)) = apin+1

(q) gn+1(y), (16)

and this is obvious by induction on q.

ina

in+1(fna)

in+1(fn0 a0) i0(a0)

in+1(fna)

in+2(fn+1(fna))

in+2(fn+1
0 a0)

1

2

gna

apin+1

(cn(a, fn−1
0 a0))

gn0 (a0)

gna gn+1(fna)

apin+2
(cn+1(fna, fn0 a0))

gn+1
0 (a0)

ina

in+1(fna)

Figure 1: Construction of g (13), first step

ina

in+1(fna)

in+1(fn0 a0) i0(a0)

in+1(fna)

in+2(fn+1
0 a0)

in+2(fn+1(fna))
3

4

5
gna

apin+1

(cn(a, fn−1
0 a0))

gn0 (a0)

gna gn+1(fna)

gn+1
0 (a0)

refl

gn+1(fn0 a0)

apin+2
apfn+1

(cn(a, fn−1
0 a0))

Figure 2: Construction of g (13), second step

Sample Applications In the remainder of this section, we demon-
strate a few applications of Lemma 3.1. These will not be required
for our main results.

Example 3.2 (The construction of ∥−∥ by (van Doorn 2016)). As
discussed in the introduction, van Doorn defines the one-step trun-
cation of a type A, written {A}, as the HIT with the constructors

• p ∶ A→ {A}
• e ∶ Πa1,a2 ∶Af(a1) = f(a2).

They then consider the sequence

A
pÐ→ {A} pÐ→ {{A}} pÐ→ . . . (17)

and show that the colimit {A}ω has all the properties of ∥A∥, which
means that ∥−∥ can be constructed using only non-recursive HITs.
Let us reconstruct this result.

We write {A}n for {. . .{A} . . .} with n applications of {−}.
The counterpart of ∣−∣ ∶ A → ∥A∥ is the map i0 ∶ A → {A}ω .
Next, we need to show that for any propositional type P , the map
({A}ω → P) → (A → P) given by composition with i0 is an
equivalence. As both function types are propositional, it is suffi-
cient to construct any function in the other direction. Assume we
are given f ∶ A → P . We need to construct a map {A}ω → P . By
recursion on the sequential colimit, we need a family of functions
in ∶ {A}n → P ; the coherence cells g are automatic as equalities in

propositional types. We do induction on n. The map i0 is given by
f . For a function in+1 ∶ {{A}n} → P , we apply recursion on the
one-step truncation. We need to provide a map {A}n → P , which is
given by in, and we need to show Πa1,a2 ∶{A}n ina1 = ina2, which
is again automatic. The judgmental computation rule is inherited
from the one of the colimit.

The hard part of van Doorn’s construction is to show that {A}ω
is propositional. This is a direct consequence of Lemma 3.1, as the
constructor e ensures that each map p is weakly constant.

Example 3.3 (S∞ is contractible). Let us quickly recall that the
suspension operator Σ is functorial: given a function f ∶ A → B,
we get a function Σf ∶ ΣA → ΣB. Concretely, Σf is defined by
Σ-recursion: we map northA to northB and southA to southB ,
and the required function A → northB = southB is given my
mrdnB ○ f .

We further note that, assuming a0 ∶ A and weak constancy of f ,
the mapΣf is constantly northB and thus weakly constant as well.
Let us show Q ∶≡ Πx∶ΣAΣf(x) = northB by Σ-induction. To do
this, we need elements n ∶ Q(northA), and s ∶ Q(southA), and
finally m ∶ Πa∶An =Q

mrdnA(a)
s. We define n to be reflexivity and

s to be mrdnB(a0). By standard calculations (Univalent Founda-
tions Program 2013, Theorem 2.11.3), the type of m(a) becomes
apΣf(mrdnAa) = mrdnB(fa0). We have the “homotopy com-
putation rule” apΣf(mrdnAa) = mrdnB(fa), and the required
equation follows from the fact that f is weakly constant.

The ∞-sphere can be constructed in at least two reasonable
ways, as indicated in the standard reference (Univalent Foundations
Program 2013, Exercise 8.3 and 8.4). One possibility is to construct
it as the sequential colimit of the sequence

S0 f0Ð→ S1 f1Ð→ S2 f2Ð→ . . . , (18)

where the maps fn are defined by induction on n. The function f0

simply maps the two points of S0 to north and south, respectively.
Further, we define fn+1 ∶≡ Σ(fn).

The function f0 is clearly weakly constant, and thus every map
fn by what we have established above. Thus, S∞ is propositional
by Lemma 3.1 and, as it is inhabited by i1(north), it is contractible.

There is an alternative way of defining the suspension which
we call the equatorial suspension, written Σe. The feature of this
version is that there is an “equator” constructor which directly gives
a map A→ ΣeA. The situation is illustrated in Figure 3.

Definition 3.4 (equatorial suspension). For a type A we define the
equatorial suspension ΣeA as the higher inductive type with the
constructors

• north ∶ ΣeA
• south ∶ ΣeA
• eqtr ∶ A→ ΣeA
• n ∶ Πa∶Anorth = eqtr(a)
• s ∶ Πa∶Aeqtr(a) = south.

Lemma 3.5. The equatorial suspension is equivalent to the ordi-
nary suspension. That is, for a type A, we have ΣeA ≃ ΣA.

Proof. This equivalence is straightforward, although the precise
formalization via the induction principles is tedious. The key ob-
servation is that the pair (eqtr,n) forms a singleton type, implying
that the type ΣeA has the same universal property as ΣA.

Remark 3.6. Of course, under the equivalence sketched in the
proof of Lemma 3.5 above, the map eqtr ∶ A → ΣeA simply
becomes the map A→ ΣA which is constantly north.

Example 3.7 (The generalized∞-sphere is contractible). LetA be
a type. We can consider the sequence

A
eqtrÐÐ→ ΣeA

eqtrÐÐ→ Σe (ΣeA) eqtrÐÐ→ (19)

We may call the colimit of this sequence the generalized ∞-sphere
because, for A ≡ S0, the sequence (19) becomes equal to the
sequence (18). To see this, we simply need to use that by what we
said in Example 3.3, the maps in (18) are all constantly north, and
compare this to Remark 3.6.

This generalized∞-sphere is contractible, not matter whatA is,
by Lemma 3.1.

●
north

●
south

mrdn(x)

●
north

●
south

●
eqtr(x)

n(x)

Figure 3: The 2-sphere as suspension (left) and as equatorial sus-
pension (right)

4. A Technical Interlude: The Correspondance
between Loops and Maps from Spheres

For the further development, we need to work out several technical
statements. The core ingredient of these observations is the well-
known fact that there morally is an adjunction Σ ⊣ Ω between
the suspension and the loop space “functor”. If one settles for an
appropriate notion of (∞,1)-category, the author expects that this
can be turned into a precise statement. Here, we choose to work
on a lower level and manually prove some consequences of the
conjectured adjunction.

To begin with, recall the following result from (Univalent Foun-
dations Program 2013, Lemma 6.5.4):

Lemma 4.1. For pointed types A and B, there is a map

ΦA,B ∶ (ΣA→● B) → (A→● ΩB) (20)

which is an equivalence.

We will usually omit the type indices of the function (20) and
simply write Φ instead of ΦA,B . Note that the type of pointed
maps (X,x0) →● (Y, y0) has always a canonical element, namely
cy0 ∶≡ (λx.y0, refly0). The following to lemmata are easy to
verify by analyzing how Φ is constructed; we refer to the Agda
formalization for the proofs. The first lemma states that Φ is a
pointed map itself:

Lemma 4.2. For any (A,a0) and (B, b0), the map (20) preserves
the canonical element in the sense that Φ(cb0) = creflb0

.

The second lemma expresses naturality of the “hom-set isomor-
phism” Φ in the second argument (naturality in the first argument
is analogous, but we will not need it). Note that it is standard in ho-
motopy type theory to write apg instead of Ωg for a map g between
pointed types. We further write ap●g for the pointed version of apg
(carrying the obvious proof that refl is preserved).

Lemma 4.3 (Naturality of Φ in second argument). For pointed

types and maps as in ΣA
fÐ→● B

gÐ→● C, the equation

Φ(g ○ f) =A→●ΩC ap●g ○Φ(f). (21)

holds.

Given a function f ∶X → Y and a point y0 ∶ Y , we can say that
f is null (Capriotti et al. 2015) if

isNull(f) ∶≡ Πx∶X f(x) = y0. (22)

We can also talk about isNull(f) if f is a pointed map, in which
case we simply mean that the underlying map is null with respect to
the point of the codomain. Alternatively, we can extend the notion
and define, for a pointed map g ∶ (A,a0)→● (B, b0),

isNull●(g) ∶≡ g = cb0 . (23)

As a small caveat we want to remark that “being null” is not in
general a propositional property in either case.

The connection between (22) and (23) is the following:

Lemma 4.4. If f ∶ A →● B, is a pointed map, then we have the
logical equivalence

isNull(f) ←→ isNull●(f). (24)

Proof. The direction “←” is obvious. For the other direction, as-
sume we are given f , p, and a proof of isNull(f) in the form of an
element q ∶ Πa∶Af(a) = b0. The term q′ ∶≡ λa.q(a) q(a0)−1 p
(which is of the same type as q) satisfies q′(a0) = p, allowing us to
construct an element of isNull●(f).

Lemma 4.5. For a pointed map g ∶ Σ(A,a0)→● (B, b0), we have

isNull●(g) ≃ isNull●(Φ(g)). (25)

Proof. This follows directly from the definition (23), Lemma 4.2,
and the fact that equivalences preserve path spaces.

Remark 4.6. For a pointed map (f, p) ∶ Σ(A,a0) →● (B, b0),
we have

isNull(f)←→ isNull(fst(Φ(f, p))) (26)
by combining Lemma 4.4 and Lemma 4.5. Note that it cannot
be strengthened to an actual (homotopy) equivalence. If B is an
(n + 2)-type, then isNull(f) is an (n + 1)-type (and not always an
n-type), while isNull(fst(Φ(f, p))) is always n-truncated.

For a pointed map g ∶ B →● C, we can iterate ap● to construct
a function

ap●g
m ∶ Ωm(B)→● Ωm(C). (27)

Lemma 4.7. Let k and m be natural numbers, and assume that
Sk+m fÐ→● B

gÐ→● C are two pointed functions. We may then also

consider the composition Sk
Φm
(f)

ÐÐÐÐ→● Ωm(B)
ap●g

m

ÐÐÐ→● Ωm(C).
We have an equivalence

isNull●(g ○ f) ≃ isNull(ap●g
m ○Φm(f)). (28)

Proof. Induction on m using the Lemmata 4.3 and 4.5.

We have two ways of expressing that a function is null on path-
levelm. The following lemma, which arises as a special case of the
previous statement, connects these.

Lemma 4.8. Let m > 0 be a number and g ∶ (B, b0) →● (C, c0)
be a pointed function. Then, we have

(Πf ∶Sm→●(B,b0) isNull●(g ○ f)) ≃ isNull(ap●g
m). (29)

Proof. This is Lemma 4.7 with k ≡ 0 and the observation that
S0 →● X is equivalent to X for any pointed type X .

A further useful consequence is the following:

Lemma 4.9. Let n be a natural number and P ∶ Sn+1 → U be a
family of types such that P (north) is (n − 1)-truncated. Then, we
can construct a function

P (north)→ Πy∶Sn+1P (y). (30)

Proof. We regard P as a pointed map Sn+1 →● (U , P (north)).
Consider the type Ωn+1(U , P (north)). By (Kraus and Sattler
2015, Lemma 5.2), it equals Πz∶P (north)Ω

n(P (north), z), which
in turn is contractible as P (north) is (n − 1)-truncated (Univa-
lent Foundations Program 2013, Theorem 7.2.9). This shows that
Φn+1(P, refl) is null, and so is P by Lemma 4.7 (where the second
map is simply the identity). Hence, P = λy.P (north), and the
claimed map (30) is trivial to construct.

5. General Pseudo-Truncations
In this section, we will generalize the HIT {−} and prove some
basic results about this generalization. Let us start with the defini-
tion of the n-truncation ∥A∥n as it is given in (Univalent Founda-
tions Program 2013, Chapter 7.3). It is a HIT with a constructor
∣−∣n ∶ A → ∥A∥n; for every function r ∶ Sn+1 → ∥A∥n, a hub
h(r) ∶ ∥A∥n; and, for every r as before and every x ∶ Sn+1, a spoke
path sr(x) ∶ r(x) = h(r). We change the constructors so that they
only quantify over maps Sn+1 → A instead of maps Sn+1 → ∥A∥n,
making sure that the resulting HIT is presented non-recursively, and
we call this HIT the pseudo-n-truncation. Of course, this HIT will
usually not be equivalent to the actual n-truncation, but there are
some connections which we will examine later.

Definition 5.1 (Pseudo-truncation). For a number n ≥ −1 and a
type A, the n-th pseudo-truncation of A is a higher inductive type
LAMn with the three constructors pn (“points”), hn (“hubs”), and
sn (“spokes”), as follows:

• pn ∶ A→ LAMn
• hn ∶ (Sn+1 → A)→ LAMn
• sn ∶ Πr∶Sn+1→AΠx∶Sn+1 pn(rx) = hn(r).

The pseudo-truncation L−M− is to be understood as a family that
is parametrized over both a suitably defined type of numbers and
the relevant type universe, in the same way as the truncation ∥−∥

−

is. Let us give its induction principle:

Principle 5.2 (Pseudo-truncation – induction). Given n andA, the
induction principle of LAMn is the following. Assume we have a
family P ∶ LAMn → U , and terms (pn,hn, sn) of the following
types:

• pn ∶ (a ∶ A)→ P (pn(a))
• hn ∶ (r ∶ Sn+1 → A)→ P (hn(r))
• sn ∶ (r ∶ Sn+1 → A)→ (x ∶ Sn+1)→ pn(rx) =

P
sn(r)

hn(r),
Then, there is a term

ind
L−Mn
pn,hn,sn

∶ Πx∶LAMnP (x). (31)

Moreover, this term satisfies the judgmental computation rules

ind
L−Mn
pn,hn,sn

(pn(a)) ≡ pn(a) (32)

and
ind

L−Mn
pn,hn,sn

(hn(r)) ≡ hn(r) (33)

as well as the “homotopy computation rule”

ap
ind

L−Mn
pn,hn,sn

(sn(r, x)) = sn(r, x). (34)

Remark 5.3. Regarding the above definition, we want to note two
things.

1. It is easy to check that LAM−1 is equivalent to van Doorn’s one-
step truncation {A} that has been discussion in the introduction
and in Example 3.2.

2. In the definition of the pseudo-n-truncation, the hub constructor
hn could be removed if we let sn construct a path pn(rx) =
pn(r(north)) instead. For n > −1, the resulting HIT would in
general not be equivalent to the HIT that we have defined, for
the reason explained by (Univalent Foundations Program 2013,
Remark 6.7.1). However, the resulting HIT would behave very
similar, and we expect that all the further results of this paper
would hold for this modification of L−Mn as well.

The induction principle of the pseudo-truncation is powerful
enough to emulate the induction principle of the “real” truncation:

Lemma 5.4. Let A be a type and n be a number, as well as
P ∶ LAMn → U a family of n-types. Then, we have the “weak
induction” principle

indL−Mn
w ∶ (Πa∶AP (pna))→ Πx∶LAMnP (x) (35)

such that ind
L−Mn
w (f) ○ pn ≡ f .

Proof. We assume that we are given f ∶ Πa∶AP (pna), and we do
induction on x ∶ LAMn. We choose

pn ∶≡ f (36)

(which already ensures the claimed judgmental equality) and

hn(r) ∶≡ transportP ((sn(r,north)) , f(r(north))) . (37)

Finally, we need to define sn(r), the type of which has to be

Πy∶Sn+1 pn(ry) =
P
sn(r) hn(r). (38)

By the assumption that P is a family of n-types, the type family
here is (n − 1)-truncated, and by Lemma 4.9, it is enough to
construct an inhabitant for y ≡ north. Simplifying the transport-
terms, we see that this equality type is canonically inhabited.

Recall Notation 2.5: given a sequence, we write fmk for the
concatenation fm ○ . . . fk. For any n, we consider the n-th pseudo-
truncation to be an endofunction on the universe (which is how
HITs are commonly understood); that is, we have L−Mn ∶ U → U .
Therefore, for given numbers k < m, we write L−Mmk for the
composition L. . . L−Mk . . .Mm.

Further, if A is a given type and k ≥ −1 a number, we can
consider the sequence

A
pkÐ→ LAMk

pk+1ÐÐ→ LAMk+1
k

pk+2ÐÐ→ LAMk+2
k

pk+3ÐÐ→ . . . , (39)

and we write LAMωk for its sequential colimit. Our interest will lie
on LAMω−1. The following is a derived induction principle of LAMωk
which shows that this colimit satisfies the elimination rule of ∥A∥k.

Lemma 5.5 (derived induction principle for L−Mωk). LetA be a type
and P ∶ LAMωk → U a family of k-types, for some k ≥ −1. Then, we
can derive

ind
L−Mωn
d ∶ (Πa∶AP (i0a)) → Πx∶LAMω

k
P (x). (40)

such that ind
L−Mωn
d (f) ○ i0 ≡ f .

The special case where P is a constant family (i.e. P is simply
λa.Q for some type Q gives a recursion principle: for a k-type Q
such that A→ Q, we get LAMωk → Q.

Proof of Lemma 5.5. This is an advanced version of the argument
given in Example 3.2. Assume we are given f ∶ Πa∶AP (i0a). We
first do induction on the sequential colimit. This means we need
to construct a family fm ∶ Πx∶LAMk+m−1

k
P (imx) (note that we use

∥LAMn∥n+1 ∥LAMn∥n+1LAMn

A ∥A∥n

pn

∣−∣n+1 id

∣−∣n

tu
s

1

2 3

Figure 4: Factoring the identity through ∥A∥n

the notation LAMk−1
k ≡ A). We choose f0 ∶≡ f , ensuring that the

claimed judgmental equality is satisfied. Next, we can construct
fn+1 from fn as follows. We consider Qn+1 ∶≡ P ○ in+1. In this
formulation, what we need is fn+1 ∶ Πx∶LAMk+n

k
Q(x). We see that

fn is exactly what we need to use Lemma 5.4, and the equality
stated in that lemma gives us the coherences that we need between
fn and fn+1.

To conclude the section, let us establish a few direct connections
between the pseudo-truncation and the truncation.

Lemma 5.6. For a type A and n ≥ −1, the map ∣−∣n ∶ A → ∥A∥n
factors through LAMn. That is, there is a map u ∶ LAMn → ∥A∥n
such that ∣−∣n = u ○ pn.

Proof. This is given by the special case P ∶≡ λx.∥A∥n of the “weak
induction principle” in Lemma 5.4.

A central result about pseudo-truncations is the following:

Theorem 5.7. For a type A and a number n ≥ −1, we have

∥LAMn∥n+1 ≃ ∥A∥n. (41)

Before giving the proof, we state an immediate consequence:

Corollary 5.8. Let A be a type and k,m be numbers, −1 ≤ k ≤m.
Then, we have the equivalence

∥LAMm−1
k ∥

m
≃ ∥A∥k. (42)

Consequently, if B is an m-type, then we have

(LAMm−1
k → B) ≃ (∥A∥k → B) . (43)

This gives an elimination principle for k-truncations into m-types
for all finite numbers k and m (note that the case k ≥m is trivial).

Proof of Theorem 5.7. Firstly, the identity on ∥LXMn∥n+1 factors
through ∥X∥n. To show this, let us write f for the composition

A
pnÐ→ LAMn

∣−∣n+1ÐÐÐ→ ∥LXMn∥n+1

idÐ→ ∥LXMn∥n+1. (44)

Clearly, ∥LXMn∥n+1 is an (n + 1)-type. By (Capriotti et al. 2015,
Theorem 1), f factors through ∥A∥n if (and only if), for every a ∶ A,
the map apn+1

f,a ∶ Ωn+1(A,a) → Ωn+1 (∥LAMn∥n+1, ∣pna∣n+1) is
null. This is guaranteed by the constructors hn and sn together with
Lemma 4.8. Therefore, we get the map t ∶ ∥A∥n → ∥LAMn∥n+1
as shown in Figure 4, and the big shape commutes. The rest is a
“diagram chase” in Figure 4. We get the map u and commutativity
of 1 by Lemma 5.6. As any map into an n-type factors through the
(n + 1)-truncation, we get s and that 2 commutes. Applying the
induction principle of the truncation, we know that 3 commutes
if (and only if) ∣−∣n+1 = t ○ s ○ ∣−∣n+1. By Lemma 5.4, we can
compose each side with pn and we get the equation ∣−∣n+1 ○ pn =
t○s○ ∣−∣n+1 ○pn which holds as 2 , 1 and the big shape commute.
This shows t ○ s = id.

To prove s ○ t = id, we can compose both sides with ∣−∣n
by the induction principle of ∥−∥n. But s ○ t ○ ∣−∣n = ∣−∣n using
commutativity of the big shape, 2 , and 1 in this order.

6. The Propositional Truncation as
Non-Recursive HIT

Let A be a type, and let us consider the sequence

A
p−1ÐÐ→ LAM−1

p0Ð→ LAM0
−1

p1Ð→ LAM1
−1

p2Ð→ (45)

The goal of the current is to show that the colimit LAM∞−1 has all the
properties of the propositional truncation ∥A∥, and thus represents
a non-recursive construction of the propositional truncation.

From Corollary 5.8, we have the equivalence

∥LAMm−1
−1 ∥m ≃ ∥A∥ (46)

for any m. Because of this, we say that LAMm−1
−1 is conditionally

m-connected (it is m-connected if it is inhabited). From this, it
is not hard to see that the the sequential colimit LAM∞−1 is also
conditionally m-connected, for any number m with −1 ≤ m <
∞. Unfortunately, this does not entail that LAM∞−1 is propositional
itself. The problem is that Whitehead’s principle is not provable in
HoTT (Univalent Foundations Program 2013, Chapter 8.8). If we
have a type X and we know that X is m-connected for any finite
number m, we cannot conclude that X is contractible. Therefore,
the result of Section 5 is not sufficient to conclude that LAM∞−1 is
propositional.

In Section 3, we have established the result that the colimit of
a sequence is propositional if all the maps are weakly constant. Of
course, the map p−1 ∶ A→ LAM−1 is weakly constant. However, for
n ≥ 0, the map pn ∶ A → LAMn satisfies only a much weaker
condition that can be phrased as “constancy on (n + 1)-st path
spaces” (see Lemma 4.8). In particular, pn is usually not weakly
constant, as the following two observations show:

1. If a1 and a2 are not equal in A, then pna1 and pna2 are not
equal in LAMn.

2. If pn is weakly constant, then ∣−∣n is also weakly constant
(which happens exactly if A is conditionally n-connected) us-
ing Lemma 5.6.

We do not know whether the second point can be reversed. We
conjecture that this is not the case; it looks as if one would need
to make some non-trivial choice to do this (note that, if A is
conditionally n-connected, then the statement “the map ∣−∣n ∶ A→
∥A∥n is weakly constant” is propositional, but the statement “the
map pn is weakly constant” is not necessarily propositional).

If the second point could actually be reversed, it could indeed
be used to show that each map in the sequence (45) is weakly con-
stant as we have already established in the previous paragraph that
LAMm−1

−1 is conditionally m-connected. However, this would still
not be satisfactory: we want to show that LAM∞−1 represents a con-
struction of the propositional truncation using only non-recursive
HITs, and the higher truncation operators ∥−∥n that we are using
are implemented as recursive HITs.

Our proof for the fact that LAM∞−1 is propositional does go via
Lemma 3.1, i.e. the result that the colimit of a chain of weakly
constant functions is propositional. However, we do not show this
for any type A, but only for pointed A; and we do think that this
assumption is necessary. Fortunately, it will afterwards turn out that
this assumption is unproblematic.

Lemma 6.1. Let A be a type with a point a ∶ A. Then, every map
in the sequence

A
p−1ÐÐ→ LAM−1

p0Ð→ LAM0
−1

p1Ð→ LAM1
−1

p2Ð→ . . . (47)

is weakly constant.

Proof of Lemma 6.1. For every j ≥ −2, and every y ∶ LAMj−1, we
will construct a term

cj,y ∶ pj+1(y) =LAMj+1
−1

p
j+1
−1 (a). (48)

Of course, the concatenation of cj,y and cj,y′−1 will then be of
the required type pj+1(y) = pj+1(y′). To construct cj,y , we do
induction on j.

Case j ≡ −2 For y ∶ A we need to show p−1(y) =LAM−1 p−1(a).
Recall from Remark 5.3 that the constructors h−1 and s−1 essen-
tially say that p−1 is weakly constant. This makes this case very
easy. In detail, recall that S0 is a type with two elements, say
north and south. Consider the function r ∶ S0 → A mapping
north to y and south to a. We define c−2,y to be the composition
s−1(r,north) (s−1(r, south))−1.

Case j ≡ i + 1 We want to do induction on y ∶ LAMj−1. As the
considered type family is given by

P (y) ∶≡ pj+1(y) =LAMj+1
−1

pj+1
−1 (a), (49)

the data that we need has the types

pj ∶ Πw∶LAMj−1
−1

pj+1(pj(w)) =LAMj+1
−1

pj+1
−1 (a) (50)

hj ∶ Πr∶Sj+1→LAMj−1
−1

pj+1(hj(r)) =LAMj+1
−1

pj+1
−1 (a) (51)

sj ∶ Πr∶Sj+1→LAMj−1
−1

Πx∶Sj+1 pj(rx) =
P
sj(r)

hj(r). (52)

For pj , we choose appj+1
applied on the induction hypothesis,

pj(w) ∶≡ appj+1
(cj−1,w). (53)

Next, we choose

hj(r) ∶≡ appj+1
((sj(r,north))−1 cj−1,r(north)) . (54)

To construct sj , let us start by fixing a function r ∶ Sj+1 → LAMj−1
−1 .

For every x ∶ Sj+1 we need to show

pj(rx) =
P
sj(r)

hj(r). (55)

By a standard lemma (Univalent Foundations Program 2013, Theo-
rem 2.11.3), the type (55) expresses commutativity of the following
triangle:

pj+1(hjr)pj+1(pj(rx))

pj+1
−1 (a)

appj+1
(sj(r, x))

hj(r)pj(rx)
(56)

For every x ∶ Sj+1, this triangle can be viewed as a loop kx based
at pj+1

−1 (a), and we need to show that each kx is equal to refl.
The core observation of this proof is that kx can be written as

appj+1
(hx), where h is given by

h ∶ Sj+1 → pj−1(a) = pj−1(a) (57)

hx ∶≡ (cj−1,rx)−1
sj(r, x) (sj(r,north))−1 cj−1,r(north) (58)

Is is easy to see that hnorth equals refl. We can thus view h as a
pointed map

h ∶ Sj+1 →● Ω (LAMj−1, p
j
−1(a)) . (59)

We need to show that ap●pj+1 ○ h is null, and by Lemma 4.7, this is
the case if the composition

Sj+2 Φ−1
(h)

ÐÐÐÐ→● (LAMj−1, p
j
−1(a))

pj+1ÐÐ→● (LAMj+1
−1 , p

j+1
−1 (a)) (60)

is null (pj+1 is viewed as a pointed map in the obvious way). By
Lemma 4.4, it is enough to show that the underlying composition

Sj+2 → LAMj−1

pj+1ÐÐ→ LAMj+1
−1 maps every x ∶ Sj+2 to the same point

as it maps north to, which is guaranteed by the constructors hj+1

and sj+1. This completes the construction of sj .

The just proved lemma is the main ingredient for the proof of
the result of the current section:

Theorem 6.2. In HoTT, the type LAM∞−1 is equivalent to the propo-
sitional truncation ∥A∥

−1. More precisely, in HoTT without general
recursive HITs, but only non-recursive HITs, the type LAM∞−1 has all
the properties that one expects of the propositional truncation ofA,
i.e. the propositional truncation can be constructed.

Proof. The map i0 ∶ A → LAM∞−1 plays the role of ∣−∣ ∶ A → ∥A∥
−1.

From Lemma 5.5, we have the correct induction and recursion
principles, including the judgmental computation rules. We need
to show that LAM∞−1 is propositional. To do this, it is enough to
show that any z ∶ LAM∞−1 implies that LAM∞−1 is contractible. Using
Lemma 5.5, we can assume that z is i0(a) with some a ∶ A, and we
may simply concatenate the Lemmata 6.1 and 3.1.

The above theorem implies immediately that functions out of
∥−∥ are equivalent to cocones under the sequence that we consider:

Corollary 6.3. For types A and B, a function g ∶ ∥A∥ → B
corresponds to a family of functions fn ∶ LAMn+1

−1 → B which is
coherent in the sense that fn = fn+1 ○ pn+1.

7. Conclusions: On Elimination Principles of
Truncations

Apart from a construction of ∥−∥ via non-recursive HITs, the main
presented results are characterizations of function spaces ∥A∥k →
B, whereB is either assumed to bem-truncated as in Corollary 5.8
or an arbitrary type as in Corollary 6.3. We use this section to
compare these results with those of previous articles.

Consequences for the van Doorn sequence With the results by
van Doorn and the current paper, we have two sequences which
have the propositional truncation as their colimit. Van Doorn’s
sequence can, with the notation as in Example 3.2, be written as

A
pÐ→ {A} pÐ→ {A}2 pÐ→ (61)

Note that {−} could equivalently be replaced by L−M−1 by Re-
mark 5.3. The sequence discussed in the current paper is

A
p−1ÐÐ→ LAM−1

p0Ð→ LAM0
−1

p1Ð→ (62)

In each case, it follows that we can construct functions ∥A∥ → B
by giving a cocone under the sequence, and we can ask how these
cocones compare to each other.

Of course, the type of cocones under (61) is equivalent to the
type of cocones under (62), as both correspond to ∥A∥ → B. At
the same time, our sequence has the advantage that the finite initial
segments are better behaved: If B is an m-truncated type, then the
“full” type of cocones under our sequence is equivalent to a finite
initial segment, namely the cocones underA→ . . .→ LAMm−1

−1 ; and
such a cocone is of course determined by a single map LAMm−1

−1 →
B. This is captured as the special case k ≡ −1 by Corollary 5.8.
Nothing similar is true for the van Doorn sequence: even if B is
m-truncated (with m ≥ 0), maps ∥A∥ → B can only be described

as cocones under the full sequence, but not under a finite initial
segment.

Moreover, our sequence is less “demanding” than van Doorn’s,
in the sense that it is generally easier to construct a cocone under
our sequence than under van Doorn’s; this can be summarized by
proving that there is a “natural transformation” from our sequence
to van Doorn’s:

Theorem 7.1. For types A and B, there is an N-indexed family of
functions gn ∶ LAMn−2

−1 → {A}n such that each square of the form

LAMn−2
−1 LAMn−1

−1

{A}n {A}n+1

pn−1

gn gn+1

p

commutes.

Proof. The core idea behind this statement is that, if a map is
weakly constant (such as the constructor p), then it is weakly
constant on higher loop spaces (such as the constructor pn). A
precise proof proceeds as follows. For any typeC, we can construct
a map kn+1 ∶ LCMn → {C} via the recursion principle of L−Mn (see
Principle 5.2). As always, we need to construct three components:
First, a map C → {C}; we simply use p. Second, for any r ∶
Sn+1 → C a hub point; we take p(r(north)) ∶ {C}. Third, for r as
before and x ∶ Sn+1, we need to construct p(r(x)) = p(r(north));
but this is immediately given by the second constructor of {C}.

The map g0 is trivial. Given gn, we get gn+1 as the composition

LAMn−1
−1

LgnMn−1ÐÐÐÐ→ L{A}nMn−1
knÐ→ {A}n+1, (63)

where we use that L−M−1 is (“homotopy”) functorial.

A nice consequence for the van Doorn sequence is that we can
use a finite initial segment of the infinite cocone to eliminate into
an m-type (again, such a finite initial segment is determined by a
single map):

Corollary 7.2. Given an m-type B and a type A. Then, we have a
logical equivalence

({A}n+1 → B) ←→ (∥A∥ → B) . (64)

Proof. The direction “←” is trivial, and “→” is done as follows.
Given a function f ∶ {A}n+1 → B, we compose it with gn+1 ∶
LAMn−1

−1 → {A}n+1 from Theorem 7.1. Then, we apply the second
function from Corollary 5.8 (with k ∶≡ −1 and m ∶≡ n).

Functions out of Higher Truncations Corollary 5.8 enables us
to construct functions ∥A∥k → B, if B is an m-type. This general-
izes (Capriotti et al. 2015) which considers the case m ≡ k + 1.

Universal Properties of the Propositional Truncation It is worth
comparing the characterizations of functions ∥A∥ → B via cocones
over van Doorn’s and our sequence, as analyzed above, to the
“general universal property of the propositional truncation” given
in (Kraus 2015). In that work, functions ∥A∥ → B are shown to be
equivalent to coherently constant functions. These consists of an
infinite tower of coherence data, similar as the discussed cocones
have an N-indexed family of components. On the first levels, a
coherently constant function consists of:

1. a function f ∶ A → B. This is the same as the first component
of both van Doorn’s and our cocones.

2. a proof c that f is weakly constant. This is still the same as for
the cocones.

3. a proof that c is coherent in the sense of cx,y cy,z = cx,z . This
is much more minimalistic than the condition that the cocones
encode. It says that any triangle generated by c can be filled.
In the case of our sequence, we require that any triangle (the
type of triangles is equivalent to the type of loops) can be filled,
not matter whether it was generated by previous constructors or
whether it already existed anyway, while van Doorn’s sequence
demands that any two points are equal, no matter where they
come from, an even stronger requirement.

From here, the data of coherently constant functions diverges con-
siderately from (and is much easier to satisfy than) what the co-
cones encode. In total, it seems that the coherently constant func-
tions of (Kraus 2015) give much more minimalistic characteriza-
tions of maps out of the propositional truncation. This is easy to
see if one tries to unfold what the requirements for the cocones
are without the nice syntax that the HITs offer. On the other hand,
one requires the type theory to have certain Reedy limits in order
to even state the type of coherently constant functions, while the
characterization via cocones is completely internal.

Final Conclusions Although the construction of the proposi-
tional truncation presented in the current paper looks similar to the
one presented by van Doorn, the two ideas behind the sequences are
rather different. Van Doorn’s idea is to use the one-step truncation
in order to make any two existing points equal. This creates a chaos
of new paths which do not behave well in any sense. This chaos is
cleaned up in the next step, which in turn creates even more chaos
(as {A} is usually more complicated than A), and so on. In the
colimit, there is no “last step”, and hence no remaining chaos. In
comparison, our sequence (62) tries to approximate ∥A∥ stepwise.
In the first step, we create paths between any two points in order to
ensure that the result will be conditionally 0-truncated. In the sec-
ond step, we fill all “open 1-loops” in order to get a conditionally
1-truncated type, and in the n-th step, we fill all “open loops” on
level (n − 1). This is much more similar to the idea of coherently
constant functions in (Kraus 2015), and Altenkirch and the current
author have considered the sequence (62) before learning about van
Doorn’s result; however, the crucial fact that the proof of the trun-
cation level of the colimit factors through Lemma 3.1 is inspired
by van Doorn’s construction.

What is left open is whether the type LAMωk is k-truncated and
represents the k-truncation of A in general. This seems likely but
would require a generalization of the developed techniques. For
this reason, we have only derived a characterization of maps from
∥A∥k intom-types, but not into arbitrary types. It also seems likely
that ∥A∥k can be constructed via the sequence consisting only
of iterations of L−Mk along the lines of van Doorn’s construction,
which however would again give a weaker elimination principle.

Finally, the main question motivating further research in the
direction pursued in the current paper is of course the following
question, originally posed as an open problem by Altenkirch and
the current author at the HoTT workshop in Warsaw (June 29–30,
2015): Can all HITs be represented as non-recursive HITs, or for
which classes of HITs is this the case?

Acknowledgments
I am grateful to Thorsten Altenkirch (from whom I initially learnt
the idea of iterating non-recursive truncations) for several fruitful
discussions on the topic, and to Floris van Doorn for explanations
on the one-step truncation. I would like to thank all contributors
of the HoTT Agda library, in particular Guillaume Brunerie, Evan
Cavallo, and Kuen-Bang Hou (Favonia). Especially the implemen-
tation of the Σ-Ω adjunction by Evan Cavallo has been extremely
useful when I mechanized the core results of this paper in Agda.

References
J. Avigad, K. Kapulkin, and P. L. Lumsdaine. Homotopy limits in type

theory. Mathematical Structures in Computer Science, 25(05):1040–
1070, 2015. doi: 10.1017/S0960129514000498.

S. Awodey and A. Bauer. Propositions as [types]. Journal of Logic and
Computation, 14(4):447–471, 2004. doi: 10.1093/logcom/14.4.447.

P. Capriotti, N. Kraus, and A. Vezzosi. Functions out of higher truncations.
24th EACSL Annual Conference on Computer Science Logic (CSL’15),
volume 41 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 359–373, 2015. ISBN 978-3-939897-90-3. doi: 10.4230/LIPIcs.
CSL.2015.359.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the
NuPRL Proof Development System. Prentice-Hall, NJ, 1986. ISBN 0-
13-451832-2.

T. Coquand and M. H. Escardó. The geometry of constancy. Unpublished
note, presented at the Warsaw workshop on HoTT/UF, 30 June 2015.

M. H. Escardó and C. Xu. The Inconsistency of a Brouwerian Con-
tinuity Principle with the CurryâĂŞHoward Interpretation. 13th In-
ternational Conference on Typed Lambda Calculi and Applications
(TLCA’15), volume 38 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 153–164, 2015. ISBN 978-3-939897-87-3. doi:
10.4230/LIPIcs.TLCA.2015.153.

N. Kraus. The general universal property of the propositional trunca-
tion. 20th International Conference on Types for Proofs and Programs
(TYPES’14), volume 39 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 111–145, 2015. ISBN 978-3-939897-88-0. doi:
10.4230/LIPIcs.TYPES.2014.111.

N. Kraus. Agda formalization: Constructions with non-recursive higher
inductive types, 2016. Unofficial supplement of the paper, available on
GitHub (github.com/nicolaikraus/HoTT-Agda) and the author’s
institutional webpage.

N. Kraus and C. Sattler. Higher homotopies in a hierarchy of univalent
universes. ACM Transactions on Computational Logic (TOCL), 16(2):
18:1–18:12, April 2015. doi: 10.1145/2729979.

N. Kraus, M. Escardó, T. Coquand, and T. Altenkirch. Generalizations
of Hedberg’s theorem. Typed Lambda Calculus and Applications
(TLCA’13), volume 7941 of Lecture Notes in Computer Science, pages
173–188. Springer-Verlag, 2013. doi: 10.1007/978-3-642-38946-7_14.

N. Kraus, M. Escardó, T. Coquand, and T. Altenkirch. Notions of anony-
mous existence in Martin-Löf type theory. Submitted to the special issue
of TLCA’13, 2014.

E. Rijke and B. Spitters. Sets in homotopy type theory. MSCS, special
issue: From type theory and homotopy theory to univalent foundations,
2014. doi: 10.1017/S0960129514000553.

T. Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. homotopytypetheory.org/book, Institute
for Advanced Study, 2013.

F. van Doorn. Constructing the propositional truncation using nonrecursive
hits. Blog post at homotopytypetheory.org/2015/07/28.

F. van Doorn. Constructing the propositional truncation using non-
recursive hits. In 5th ACM SIGPLAN Conference on Certified Programs
and Proofs (CPP’16), pages 122–129, 2016. doi: 10.1145/2854065.
2854076.

https://github.com/nicolaikraus/HoTT-Agda/blob/master/nicolai/pseudotruncations/NONRECURSIVE-INDEX.agda
http://www.cs.nott.ac.uk/~psznk/docs/html-pseudotruncs/nicolai.pseudotruncations.NONRECURSIVE-INDEX.html
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/2015/07/28/constructing-the-propositional-truncation-using-nonrecursive-hits/

	Introduction
	Colimits over Graphs
	Weakly Constant Sequences
	A Technical Interlude: The Correspondance between Loops and Maps from Spheres
	General Pseudo-Truncations
	The Propositional Truncation as Non-Recursive HIT
	Conclusions: On Elimination Principles of Truncations

