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Abstract—Elliptic curve cryptography (ECC) over prime fields
offers a wide range of portability since the underlying arithmetic
operations that are performed over integers can be supported
by general purpose computing devices. This portability helps in
designing various ECC based public key protocols. However im-
plementation of a fast enough ECC in tiny electronic devices such
as RFID tags, sensor nodes, smart cards etc., is a very challenging
design problem since such devices are very limited in terms of
resources. In this paper we design the first lightweight ECC
architecture over the NIST recommended 256-bit prime field,
corresponding to a medium security level of 128-bits. The ECC
architecture works as a coprocessor of a 16-bit microcontroller in
a memory-mapped configuration. The architecture uses an area
of only 5,933 GE on a 130 nm CMOS technology, and needs
roughly 6 million clock cycles to calculate a scalar multiplication.

I. INTRODUCTION

Elliptic curve cryptography (ECC) [8], [10] is a form of
public-key cryptography that offers significantly shorter keys
and lower computational requirements for achieving similar
security levels than competing cryptosystems (e.g., RSA). For
this reason, ECC is widely used when implementing public-
key cryptography in applications that are short in area, power,
energy, memory, etc. Such applications include, e.g., RFID
tags, sensor network nodes, and smart cards.

Significant research efforts have been made for developing
efficient and secure lightweight implementations of ECC (see,
e.g., [1], [3], [4], [6], [7], [13], [14], [16], [17], [20], [21],
[22]). A vast majority of the research has focused on elliptic
curves defined over binary fields because they utilize carry-free
arithmetic which results in significantly more efficient hard-
ware implementations. However, most software implementa-
tions utilize elliptic curves defined over prime fields because
they can directly take use of integer arithmetic supported by
the processors and lead to more efficient software. For this
reason, prime fields are nowadays more commonly used in
practice. Hence, it is essential to have lightweight hardware
for prime fields in order to provide seamless integration of
lightweight cryptography to existing software implementa-
tions. This has particular importance, e.g., in applications
related to the Internet of Things. Most lightweight implemen-
tations also focus on approx. 160-bit elliptic curves offering
roughly 80 bits of security. While there are no known attacks
on these curves at the moment, it has been recommended to
shift to higher security levels (e.g. 128 bits) [11].

Only few lightweight implementations of ECC over prime
fields are available in the public literature. The following
surveys the most relevant ones. Özturk et al. [13] introduced
modulus scaling techniques applicable for ECC over a prime
field in the development of their processor. Their design is
working over a 166-bit prime field. Gaubatz et al. [4] studied
the feasibility of public key protocols in sensor networks, but
they focused on very low security levels of only about 50 bits.
The applicability of ECC in RFID-identification was examined
by Wolkerstorfer [22], who reported a processor working both
over a binary field and over a 192-bit prime field. Sinha Roy
et al. [17] developed a tiny ECC coprocessor working over a
160-bit prime field which covers the computation of a scalar
multiplication. In [7], Kern et al. presented a processor that
offers authentication with elliptic curves over the same field
but with an additional support for the SHA-1 hash function.
Pessl and Hutter [14] presented a processor that offers similar
functionality (160-bit ECC and the Keccak hash function) with
a significant reduction in area and computation time. Three
implementations over a 192-bit field were reported by Wenger
[21], Hutter et al. [6], and Fürbass et al. [3]. They are slower
and have larger areas because of the larger prime.

In this paper, we present a tiny coprocessor for ECC over the
standardized NIST P-256 curve [12], which is an elliptic curve
defined over a 256-bit prime field that offers roughly 128-bit
security level. This offers seamless integration to various appli-
cations consisting of both hardware and software components
as well as to systems built for the 128-bit security level (e.g.,
that use AES-128 encryption). The coprocessor is designed
primarily to be used as a memory-mapped coprocessor for
a microcontroller so that they share the same memory (see,
e.g., the drop-in concept of [20]). This design decision was
made because memory is known to be a significant expense in
the case of lightweight ECC [20]. Our results show that ECC
over prime fields can be implemented with very small area
(less than 6000 gate equivalents (GE)) even with the relatively
high 128-bit security level. To the best of our knowledge, our
coprocessor is the first lightweight implementation of ECC
over prime fields that reaches these security levels.

Section II gives a brief overview of ECC and introduces the
algorithms used in the coprocessor. Section III describes the
architecture of the coprocessor. Section IV presents the results
on 130 nm CMOS and compares them with the related work.
Section V ends the paper with conclusions.



II. MATHEMATICAL BACKGROUND

We focus on elliptic curves defined by the equation:

y2 = x3 − 3x+ b (1)

where b is a constant in a finite field Fp. We focus on the
curve NIST P-256 defined in [12], where p is a 256-bit prime
specifically selected so that modular reductions are easy to
compute. Points (x, y) that fulfill (1) form an additive Abelian
group together with a special point O which acts as the
zero element of the group. The group operation P1 + P2 is
defined for all points of the group and it returns a third point
which is also in the group. The group operation is called
point addition when P1 6= ±P2 and point doubling when
P1 = P2. The fundamental operation in every ECC protocol
is scalar multiplication Q = kP where a point of the group is
multiplied by a scalar k, i.e., P is added to itself k times. The
security of ECC is based on the difficulty of computing the
elliptic curve discrete logarithm problem which is the inverse
of scalar multiplication: given Q and P find k. This is believed
to be computationally impossible to solve if the parameters are
chosen correctly (e.g., as defined in [12]).

Cryptographic protocols based on ECC can be visualized as
a hierarchical pyramid (shown in Fig. 1). On top of the pyra-
mid, there are protocols, e.g. for key exchange, authentication,
digital signatures, etc. The highest level that we consider in
this paper is scalar multiplication and it decomposes into point
additions and point doublings. They are in turn computed with
series of field operations. In the following, we provide brief
descriptions of the algorithms that are used in the coprocessor.

A. Field Operations

The processor implements four primitive field operations:
modular addition/subtraction/multiplication, and field inver-
sion. The algorithms assume that we have a W -bit datapath
and that the elements are split into t = dlog2(p)/W e words.
Such algorithms are called multiprecision algorithms and we
discuss them below. The algorithms are generic but, in our
coprocessor, we have log2(p) = 256, W = 16, and t = 16.

1) Addition/Subtraction: Addition and subtraction are very
similar and we only give the algorithm for the addition in
Alg. 1. The algorithm is an adapted version of the algorithm
from [9]. The first loop of the algorithm implements the
multiprecision addition. The carry bit is denoted by ε. If c ≥ p,
the prime p should be subtracted once to get the result in
the finite field. This subtraction is implemented by the second
loop. We compute both possible results (a+ b and a+ b− p)
and, afterwards, decide which of them is correct based on the

Fig. 1. Hierarchy of operations in ECC systems

1-bit values ε1 and ε2. Hence, Alg. 1 executes in constant time
where as the algorithm in [9] subtracts p only if necessary. Our
approach also does not need a big comparator for c ≥ p.

Algorithm 1 Addition in Fp

Input: a[0], . . . , a[t− 1], b[0], . . . , b[t− 1], p[0], . . . , p[t− 1]
Output: c[0], . . . , c[t− 1] such that c = a+ b mod p
(ε, c[0])← a[0] + b[0]
for i from 1 to t− 1 do

(ε, c[i])← a[i] + b[i] + ε

ε1 ← ε
(ε, c′[0])← c[0]− p[0]
for i from 1 to t− 1 do

(ε, c′[i])← c[i]− p[i]− ε
ε2 ← ε
if ε1 = 1 or ε2 = 0 then

c← c′

return c

2) Multiplication: Multiplication in Fp is a critical opera-
tion in scalar multiplications. It is performed in two steps: first,
an integer multiplication and, second, a modular reduction. We
perform the integer multiplication by using the the famous
product-scanning algorithm. We directly use the version avail-
able in [5] and, hence, we omit more detailed description here.
The result of the multiplication will be twice the size of the
operands (at most 512 bits).

Algorithm 2 Modular reduction for the NIST P-256 prime p
Input: c[0]...c[2 · t− 1]
Output: d[0]...d[t− 1] such that d = c mod p
s1 ← (c[15], . . . , c[0])
s2 ← (c[31], . . . , c[22], 0, . . . , 0)
s3 ← (0, 0, c[31], . . . , c[24], 0, . . . , 0)
s4 ← (c[31], . . . , c[28], 0, . . . , 0, c[21], . . . , c[16])
s5 ← (c[17], c[16], c[27], c[26], c[31], . . . , c[26], c[23], . . . , c[18])
s6 ← (c[21], c[20], c[17], c[16], 0, . . . , 0, c[27], . . . , c[22])
s7 ← (c[23], c[22], c[19], c[18], 0, . . . , 0, c[31], . . . , c[24])
s8 ← (c[25], c[24], 0, 0, c[21], . . . , c[16], c[31], . . . , c[26])
s9 ← (c[27], c[26], 0, 0, c[23], . . . , c[18], 0, 0, c[31], . . . , c[28])
ε← 0
for i from 0 to t− 1 do

(ε, t1[i])← s1[i] + s2[i] + s2[i] + s3[i] + s3[i] + s4[i] + s5[i] + ε

for i from ε to 1 do
(ε1, t1)← t1 − p

(ε1, t′1)← t1 − p
if ε1 = 0 then

t1 ← t′1
ε← 0
for i from 0 to t− 1 do

(ε, t2[i])← s6[i] + s7[i] + s8[i] + s9[i] + ε

for i from ε to 1 do
(ε1, t2)← t2 − p

(ε1, t′2)← t2 − p
if ε1 = 0 then

t2 ← t′2
d← (t1 − t2) mod p
return d

In general, the modular reduction of the result is a very
costly operation. However, the prime p used by the NIST P-
256 curve is a generalized Mersenne prime [18] which allows
efficient reductions involving only additions and subtractions.
We base our reduction algorithm on the ones available in [5],



[12] and it is given in Alg. 2. It also includes steps like (ε, c)←
a− b, where a, b, c are 256-bit numbers.

3) Inversion: Divisions in Fp are performed by inverting
the divisor and multiplying the result by the dividend. We base
our inversion algorithm on Fermat’s Little Theorem which
states that ap−1 = 1 holds for all a in Fp. Hence, a−1 = ap−2

and we can compute the inverse with an exponentiation to a
fixed exponent p − 2. Alg. 3 shows our inversion algorithm
tailored for the NIST P-256 prime, which is based on the
square-and-multiply exponentiation.

Algorithm 3 Inversion for the NIST P-256 prime p
Input: a[0], . . . , a[t− 1]
Output: b[0], . . . , b[t− 1] such that b = a−1

x← a; b← a
for i from 0 to 255 do

x← x · x
if 2 ≤ i ≤ 95 or i = 192 or 224 ≤ i ≤ 255 then

b← b · x
return b

B. Point Operations

The next level of the hierarchy of Fig. 1 is the point opera-
tions. We present our algorithms for point addition and point
doubling below. These algorithms use Jacobian coordinates in
order to avoid expensive inversions by representing a point
with three coordinates (X,Y, Z) (see, e.g., [5]). An affine
point (x, y) is mapped to Jacobian coordinates by setting
(x, y, 1). The mapping back to affine coordinates is performed
by computing (X/Z2, Y/Z3) which involves an inversion.

1) Point Doubling: Point doubling computes the point 2 ·P
so that the input and output points are in Jacobian coordinates.
We base our point doubling algorithm on the algorithm pro-
vided in [5]. The algorithm is adapted so that it uses only
the primitive field operations discussed in Section II-A. We
also optimized the algorithm so that the number of interme-
diate variables is reduced. This is particularly important for
lightweight implementations because it leads to smaller RAM
requirements. The point doubling algorithm is given in Alg. 4.

2) Point Addition: For point addition, we use the mixed
coordinate point addition algorithm from [5], where the first
point is in Jacobian coordinates and the second point is in
affine coordinates. The result is given in Jacobian coordinates.
Also this algorithm is modified so that it uses only the
primitive field operations and fewer temporary variables. The
resulting algorithm is given as Alg. 5. The point doubling in
Alg. 5 is computed by using Alg. 4.

3) Scalar Multiplication: In this paper, we use the basic
double-and-add algorithm for computing scalar multiplications
(see, e.g., [5]). The algorithm is given Alg. 6. It computes a
point doubling for each ki of the scalar and a point addition
if ki = 1. The algorithm ends with a conversion back to the
affine coordinates. We emphasize that this algorithm can be
changed by replacing the control logic. For instance, one can
use Montgomery’s ladder with regular pattern of operations
for added security against side-channel attacks or windowing
algorithms with precomputations for increased performance.

Algorithm 4 Point Doubling
Input: P = (X1, Y1, Z1) in Jacobian coordinates
Output: 2 · P = (X3, Y3, Z3) in Jacobian coordinates

if P = O then return O
1. T1 ← Z1 · Z1 11. T3 ← T4 + T4
2. T2 ← X1 − T1 12. T3 ← T3 ·X1

3. T1 ← X1 + T1 13. T4 ← T4 · T4
4. T2 ← T2 · T1 14. T4 ← T4 + T4
5. T3 ← T2 + T2 15. X3 ← T2 · T2
6. T2 ← T2 + T3 16. T1 ← T3 + T3
7. T4 ← Y1 + Y1 17. X3 ← X3 − T1
8. Z3 ← T4 · Z1 18. T1 ← T3 −X3

9. T4 ← Y1 · Y1 19. T1 ← T1 · T2
10. T4 ← T4 + T4 20. Y3 ← T1 − T4
return (X3, Y3, Z3)

Algorithm 5 Point Addition
Input: Q = (X1, Y1, Z1) in Jacobian coordinates, P = (x2, y2) in affine

coordinates.
Output: P +Q = (X3, Y3, Z3) in Jacobian coordinates

if Q = O then return (X1, Y1, Z1)
if P = O then return (x2, y2, 1)
1. T1 ← Z1 · Z1 4. T2 ← T2 · y2
2. T2 ← T1 · Z1 5. T1 ← T1 +X1

3. T1 ← T1 · x2 6. T2 ← T2 − Y1
if T1 = 0 then

if T2 = 0 then return 2 · (x2, y2, 1)
else return O

7. Z3 ← Z1 + T1 13. X3 ← X3 − T1
8. T3 ← T1 · T1 14. X3 ← X3 − T4
9. T4 ← T3 · T1 15. T3 ← T3 −X3

10. T3 ← T3 ·X1 16. T3 ← T3 · T2
11. T1 ← T3 + T3 17. T4 ← T4 · Y1
12. X3 ← T2 · T2 18. Y3 ← T3 − T4
return (X3, Y3, Z3)

III. ARCHITECTURE

In this section we describe the hardware architecture of our
lightweight prime field ECC coprocessor. The ECC copro-
cessor is memory mapped [15] with a 16-bit microcontroller
following the drop-in concept of [16], [20]. In this configu-
ration the RAM of the microcontroller is used to store the
field elements during an ECC operation. We choose 16-bit
microcontrollers such as TI MSP430F241x or MSP430F261x
[19]. These families of microcontrollers are ideal for resource
constrained applications since they are low-power, have at least
4KB of RAM, and can run at 16 MHz clock frequency. The
microcontroller loads the input data into specific addresses of
the RAM and then instructs the ECC coprocessor to compute
a scalar multiplication. During this ECC operation, the shared
RAM is controlled by the ECC coprocessor. The top level
interface between the microcontroller, ECC coprocessor and
the shared RAM is shown in Fig. 2. The ECC coprocessor,
which we design in this work, is composed of four main
blocks: the ALU, the instruction decoder, the RAM address
unit and the controller. The internal architecture of the ECC
coprocessor is shown in Fig. 3.

The Shared RAM stores field elements in 16-bit words. For
the double-and-add scalar multiplication algorithm we need to
store 16 field elements, each consuming 16 words. Thus in
total 512 bytes of RAM is used during an ECC operation. To
facilitate the access of data from the shared RAM, we segment



Algorithm 6 Scalar Multiplication
Input: Scalar k = (kt−1, kt−2, ..., k1, k0)2, point P on the elliptic curve

in affine coordinates
Output: Q = k · P in affine coordinates
Q← O
for i from t− 1 downto 0 do

Q← 2 ·Q
if ki = 1 then

Q← Q+ P

Q←convert Jacobian affine(Q)
return Q

the RAM into 16 macro-slots. The address of a macro-slot is
referred to as the virtual address. A macro-slot consists of 16
words, and a particular word from a macro-slot is accessed
using the address-pointer offset address. The Address Unit of
the ECC coprocessor concatenates the virtual address and the
offset signals to an 8-bit physical address signal.

A. The arithmetic and Logic Unit (ALU)

The internal architecture of the ALU is shown in Fig. 4. It
is the central part of the ECC coprocessor and is responsible
for the prime field arithmetic operations. The architecture of
ALU is designed to utilize a minimum amount of area. This
area optimization is achieved by performing resource sharing
as much as possible and by using a 16-bit data path. This
particular width of the data path also nicely fits with the shared
RAM which also has 16-bit words.

The centre of the ALU is the 16 × 16 integer multiplier
which is used in almost every clock cycle. The input words to
the multiplier are kept in two registers S1 and S2. These two
registers are connected to the data-output of the shared RAM.
The 32-bit result of the multiplier is split into two chunks
of 16 bits. These two chunks go to an adder and an adder-
subtracter circuit, where they can be added (or subtracted)
to the previous values stored in the accumulator registers R0

and R1. The outputs from the adder and the adder-subtracter
circuits are stored in the two accumulator registers.

B. The Controller

The controller block generates the control signals for the
decoder and the address unit. This block is composed of a hi-
erarchy of finite state machines (FSMs). The decoder receives
commands from the controller block and then decodes them

Fig. 2. Top level architecture

Fig. 3. ECC coprocessor architecture

into control signals for the ALU. These control signals (the
green arrows in Fig. 4) control the inputs to the multiplexers
and to write or clear the internal registers of the ALU. The
hierarchy of FSMs in the controller block is divided into two
levels: the low-level controller (L1 controller) and the high-
level controller (L2 controller).

The L1 controller is in charge of the primitive field op-
erations. It receives instructions from the L2 controller and
generates control signals for the data path. During a field
operation the L1 controller sends a busy signal to the L2
controller. The L2 controller is initiated by the microcontroller
to perform the point operations. Below we describe how the
FSMs in the controllers perform various tasks.

• Field addition implements Alg. 1. It adds two field
elements by sequentially accumulating the words. The ith
word of the first element is fetched from the RAM and
then stored in the register S2. Next, the word is multiplied
by one (using the multiplexer M1) and added with zero
(using the multiplexer M2) using the adder-subtracter
circuit and finally stored in the accumulation register R0.
Now the ith word of the second field element is fetched
from the RAM, then stored in S2, again multiplied with
1, and brought to the input of the adder-subtracter circuit
to be added with the content of R0, which contains the ith
word of the first element. The sum is stored in R0 and the

Fig. 4. The ALU block



carry is stored in the carry register D. The value stored
in R0 is written back in RAM in the next cycle. The
carry register is taken into account during the addition of
the (i + 1)th words. After a multi-precision addition of
two field elements, a multi-precision subtraction of the
prime modulus from the result is performed. The result
of modular field addition is determined based on the sign
of this subtraction operation.

• Field subtraction performs subtraction of two field ele-
ments similarly to the field addition.

• Field multiplication first computes an integer multipli-
cation of the two field elements and then performs a
modular reduction by using Alg. 2. For the integer
multiplication, words of the operands are serially multi-
plied and then accumulated using the product-scanning
multiplication algorithm [5]. The result of the integer
multiplication is stored in the RAM and is later processed
during the modular reduction step. The modular reduc-
tion operation performs multi-precision integer additions
and subtractions. This field multiplication FSM is also
responsible for performing a field squaring operation.
To save area, we have not kept a separate FSM for
performing field squaring. Moreover an optimized field
squaring over a prime field is only slightly faster than a
field multiplication. The steps of the modular reduction
are hardcoded in the FSM routine.

• Field inversion implements Alg. 3. It uses the field
multiplication FSM for squarings and multiplications.

The L2 controller executes the point operations such as
point addition and point doubling in a sequence. The steps
of these operations (shown in Algs. 4 and 5) are stored
as instructions in a ROM. During a scalar multiplication, a
counter is used as a pointer to the instruction sequence.

IV. RESULTS AND COMPARISON WITH RELATED WORK

We described the ECC coprocessor using VHDL and ver-
ified its correct behavioral and post-route functionality using
the Xilinx iSim simulation tool. We obtained the ASIC results
after synthesizing the final code using the ‘regular compile’
function of the Synopsys Design Compiler D-2010.03-SP4
for UMC 0.13 µm CMOS with a voltage of 1.2 V, using
the ‘Faraday FSC0L low-leakage standard cell libraries’. Our
ECC coprocessor architecture consumes a total area of only
5,933 GE. This gate count includes everything shown in Fig. 3
but excludes the area of the shared RAM which belongs to
the microcontroller. The ECC coprocessor uses the RAM only
during an ECC scalar multiplication. If the area of the RAM
is taken into account (e.g. standalone ECC processor), then
it would cost additional 6,000 GE following the memory-
compiler generated area reports in [20]. The ECC coprocessor
computes a scalar multiplication in nearly 6.2 million cycles
and thus spends nearly 386 milliseconds at 16 MHz clock
frequency. This computation time is reasonably sufficient for
many applications that run on resource constrained platforms.

In Table I we compare the area of our ECC coprocessor
architecture with other reported architectures over prime fields.

TABLE I
COMPARISON WITH REPORTED LIGHTWEIGHT PRIME FIELD ECC

IMPLEMENTATIONS IN TERMS OF AREA

Ref. Field Func. Area Techn.
(GE) (nm)

[4], 2005 Fp100 ECMV 18 720 130
[13], 2004 Fp166 ECSM 30 333 130
[7], 2010 Fp160 ECDSA, SHA-1 18 247 350
[17], 2013 Fp160 ECSM 26 000 32
[14], 2014 Fp160 ECDSA, Keccak 12 448 130
[22], 2005 Fp192 ECDSA 23 000 350
[3], 2007 Fp192 ECDSA, SHA-1 23 656 350
[6], 2010 Fp192 ECDSA, SHA-1 19 115 350
[21], 2011 Fp192 ECDSA,SHA-1 14 644 130

This work, 2015 Fp256 ECSM 5 933 130
+ 256×16 RAM

∗The 256× 16-bit RAM is estimated to have an area of 5794 GE [20].

Since our architecture is the first one in the category of
lightweight implementations for 256-bit prime fields, it is
relatively hard to do fair comparison with the lightweight
ECC architectures in Table I. Moreover several of these
architectures report area costs of ECC based protocols. In the
functionality column of the table, ECSM stands for Elliptic
Curve Scalar Multiplication, ECDSA for Elliptic Curve Digital
Signature Algorithm, ECMV is an elliptic curve key trans-
port protocol, and SHA-1 and Keccak are two cryptographic
hashing functions. Nevertheless, from the area reports in the
table we see that even for a higher security prime field we
can design an ECC architecture in a very small area footprint
when we use a 16-bit data path and use the ECC architecture
as a coprocessor of a microcontroller.

In Table II we compare the timing results of our ECC ar-
chitecture with other lightweight prime field architectures. Our
architecture requires roughly six million cycles which is larger
by an order in comparison to the other reported cycle counts.
This larger cycle originates from the greater security provided
by our architecture. Where the other processors guarantee
security of 50-90 bits, our processor offers security of 128
bits. The computational complexity of an elliptic curve scalar
multiplication grows faster than a quadratic order of the bit
security. A much fairer comparison is done when we consider
a recent work by Sinha Roy, Järvinen and Verbauwhede [16],
where a similar 16-bit memory-mapped ECC coprocessor is
designed over a 283-bit NIST recommended binary field. This
architecture consumes roughly 4,300 GE (excluding the shared
RAM) and spends roughly 1.6 million cycles to perform a
scalar multiplication. Our prime field architecture is slightly
larger and obviously slower due to the more complicated prime
field arithmetic which involves carry propagation. This extra
cost of prime field arithmetic is compensated by its support
for a wide range of platforms.

The benefit of our lightweight hardware architecture be-
comes more visible when compared with software implemen-
tations of ECC with similar security levels on 16-bit architec-
tures. The most recent software implementation by Düll et al.
in [2] performs a scalar multiplication on a specially optimized
256-bit prime curve Curve25519 in nearly 9.1 million cycles



TABLE II
COMPARISON WITH REPORTED LIGHTWEIGHT PRIME FIELD ECC

IMPLEMENTATIONS IN TERMS OF COMPUTATION TIME

Ref. Field # cycles Freq. Timing
(kHz) (ms)

[4], 2005 Fp100 205 250 500 410
[13], 2004 Fp166 638 000 20 000 32
[7], 2010 Fp160 511 864 1 000 512
[17], 2013 Fp160 250 000 1 000 250
[14], 2014 Fp160 139 930 1 000 140
[22], 2005 Fp192 458 950 68 500 6.7
[3],2007 Fp192 500 000 83 333 6
[6], 2010 Fp192 859 188 6 780 127
[21], 2011 Fp192 394 000 1 695 232

This work, 2015 Fp256 6 180 856 16 000 386

at 16 MHz clock frequency (which is also the frequency we
use). This curve allows more efficient arithmetic than the NIST
P-256 curve we use in our architecture. We preferred to use
the NIST P-256 curve since it is used in several standards.
Nevertheless our architecture is almost 1.5 times faster than
the software implementation of the faster curve.

V. CONCLUSIONS AND FUTURE WORK

In this paper we showed that a lightweight ECC coprocessor
architecture over a 256-bit NIST recommended prime field,
providing 128 bit security is feasible. We even achieved
the smallest area footprint in comparison to other reported
prime field ECC architectures. Such a low area footprint was
achieved by restricting the width of the data path to 16 bits
and by instantiating the architecture as a coprocessor of a 16-
bit microcontroller. The designed ECC coprocessor performs a
scalar multiplication operation in 386 ms which is fast enough
for most resource constrained applications.

Our target was to check the feasibility of a lightweight ECC
processor over a prime field that is large enough to provide
128-bit security. In addition to an efficient and lightweight
implementation, security against side channel attacks is also
very important for an ECC architecture. In the presented
architecture we did not implement countermeasures against
side channel attacks. For example, the double-and-add scalar
multiplication algorithm is not secure against side channel
attacks since the bits of scalar can be derived by observing
the instantaneous power consumption of the processor. We can
solve this problem by executing a balanced scalar multiplica-
tion algorithm. Security against differential power attacks can
be obtained by introducing randomness in the scalar multipli-
cation. In the future we will integrate these countermeasures
by modifying the microcode of the ECC architecture that is
responsible for executing the scalar multiplication.
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[13] E. Öztürk and B. Sunar. Low-power elliptic curve cryptography using
scaled modular arithmetic. In Cryptographic Hardware in Embedded
Systems (CHES 2004), LNCS 3156, pages 92–106. Springer, 2004.

[14] P. Pessl and M. Hutter. Curved tags — a low-resource ECDSA
implementation tailored for RFID. In Proc. Workshop on RFID Security
(RFIDsec 2014), LNCS 8651, pages 156–172. Springer, 2014.

[15] P. R. Schaumont. A Practical Introduction to Hardware/Software
Codesign. Springer, 1st edition, 2010.

[16] S. Sinha Roy, K. Järvinen, and I. Verbauwhede. Lightweight coprocessor
for Koblitz curves: 283-bit ECC including scalar conversion with only
4300 gates. In Cryptographic Hardware and Embedded Systems (CHES
2015), LNCS 9293, pages 102–122. Springer, 2015.

[17] S. Sinha Roy, B. Yang, V. Rozic, N. Mentens, J. Fan, and I. Ver-
bauwhede. Designing tiny ECC processor. Presentation at the 17th
Workshop on Elliptic Curve Cryptography, 2013. url: https://www.cosic.
esat.kuleuven.be/ecc2013/files/sujoy.pdf (accessed Oct. 22, 2015).

[18] J. A. Solinas. Generalized Mersenne numbers. Technical Report CORR
1999/39, University of Waterloo, Combinatorics and Optimization, 1999.

[19] Texas Instruments. MSP430F261x and MSP430F241x, Jun. 2007,
Rev. Nov. 2012. url: http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
(accessed Oct. 22, 2015).

[20] E. Wenger. Hardware architectures for MSP430-based wireless sensor
nodes performing elliptic curve cryptography. In Proc. Int. Conf. on
Applied Cryptography and Network Security (ACNS 2013), LNCS 7954,
pages 290–306. Springer, 2013.

[21] E. Wenger, M. Feldhofer, and N. Felber. Low-resource hardware design
of an elliptic curve processor for contactless devices. In Proc. Int.
Workshop on Information Security Applications (WISA 2010), LNCS
6513, pages 92–106. Springer, 2010.

[22] J. Wolkerstorfer. Scaling ECC hardware to a minimum. In Proc.
Austrochip 2005 Mikroelektronik Tagung, pages 207–214, 2005.


