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Abstract

Many problems on graphs can be expressed in the following language: given a graph G =
(V,E) and a terminal set T ⊆ V , find a minimum size set S ⊆ V which intersects all “struc-
tures” (such as cycles or paths) passing through the vertices in T . We refer to this class of
problems as terminal set problems. In this paper, we introduce a general method to obtain
faster exact exponential time algorithms for several terminal set problems. In the process, we
break the O∗(2n) barrier for the classic Node Multiway Cut, Directed Unrestricted
Node Multiway Cut and Directed Subset Feedback Vertex Set problems.

1 Introduction

The goal of the design of moderately exponential time algorithms for NP-complete problems is
to establish algorithms for which the worst-case running time is provably faster than the one
of enumerating all prospective solutions, or loosely speaking, algorithms better than brute-force
enumeration. For example, for NP-complete problems on graphs on n vertices and m edges whose
solutions are either subsets of vertices or edges, the brute-force or trivial algorithms basically
enumerate all subsets of vertices or edges. This mostly leads to algorithms of time complexity
O∗(2n) or O∗(2m), based on whether we are enumerating vertices or edges1. Thus the goal of
exact algorithms for graph problems is to improve upon the algorithms running in time O∗(2n) or
O∗(2m). See the book [1] for an introduction to exact exponential algorithms.

One of the most well studied directions in exact algorithms is to delete vertices of the input
graph such that the resulting graph satisfies some interesting properties. More precisely, a natural

∗The research of Fedor V. Fomin leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959.
Daniel Lokshtanov is supported by the BeHard grant under the recruitment programme of the of Bergen Research
Foundation. Saket Saurabh is supported by PARAPPROX, ERC starting grant no. 306992.
†Most of the work was done while the author was at the University of Maryland.
‡This author has moved to the Department of Informatics, University of Bergen.
§This author has moved to the Algorithms and Complexity Group, TU Wien.
1Throughout this paper we use the O∗ notation which suppresses polynomial factors, i..e, f(n) = O∗(g(n)) if

f(n) = O(g(n) · poly(n))
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optimization problem associated with a graph class G is the following: given a graph G, what is the
minimum number of vertices to be deleted from G to obtain a graph in G? For example, when G is
the class of empty graphs, forests or bipartite graphs, the corresponding problems are Vertex Cover
(VC), Feedback Vertex Set (FVS) and Odd Cycle Transversal (OCT), respectively. The best known
algorithms for VC, FVS and OCT run in time O∗(1.2002n) [2], O∗(1.7347n) [3] and O∗(1.4661n) [4,
5] respectively. The other problems in this class for which non-trivial exact algorithms are known
include finding an induced r-regular subgraph [6], induced subgraph of bounded degeneracy [7] and
induced subgraph of bounded treewidth [3].

In this paper we study another class of graph problems which we call terminal set problems.
In these problems, the input is a graph G = (V,E) and a terminal set T ⊆ V , and the goal is to
find a minimum size set S ⊆ V that intersects certain structures such as cycles or paths passing
through the vertices in T . In this paper we introduce a general method to obtain faster exact
exponential time algorithms for many terminal set problems. The general algorithmic technique is
the following. Let the size of the terminal set T be k. We first observe that the size of the optimum
solution is at most k (or a function of k). Let S be an optimum solution to the problem and let
X = S \ T . We guess X and delete it from G. Since S \X ⊆ T , we create an auxiliary graph on T
and determine the rest of the solution using either a known polynomial time algorithm, or a fixed
parameter tractable algorithm, or a non-trivial exact algorithm for the non-terminal version (when
T = V ) of the same problem. We now provide a list of problems for which we give improved or new
algorithms using our method together with a short overview of previous work on each application.

Node Multiway Cut and Directed Unrestricted Node Multiway Cut: A fundamental
min-max theorem about connectivity in graphs is Menger’s Theorem, which states that the maxi-
mum number of vertex disjoint paths between two vertices s and t, is equal to the minimum number
of vertices whose removal separates these two vertices. Indeed, a maximum set of vertex disjoint
paths between s, t and a minimum size set of vertices separating these two vertices can be com-
puted in polynomial time. A known generalization of this theorem, commonly known as Mader’s
T -path Theorem [8] states that, given a graph G and a subset T of vertices, there are either k
vertex disjoint paths with only the end points in T (such paths are called T -paths), or there is a
vertex set of size at most 2k which intersects every T -path. Although computing a maximum set of
vertex disjoint T -paths can be done in polynomial time by using matching techniques, the decision
version of the dual problem of finding a minimum set of vertices that intersects every T -path is
NP-complete for |T | > 2. Formally, this problem is the following classical Node Multiway Cut
problem.

Node Multiway Cut(NMC)
Input : An undirected graph G = (V,E) and a set of terminals T =
{t1, t2, . . . , tk}.
Question: Find a set S ⊆ V \ T of minimum size such that G \ S has
no path between a ti, tj pair for any i 6= j.

This is a very well studied problem in terms of approximation, as well as parameterized algo-
rithms [9, 10, 11, 12]. A variant of this problem where S is allowed to intersect the set T , is known
as Unrestricted Node Multiway Cut (UNMC). The best known parameterized algorithm for
Node Multiway Cut decides in time O∗(2`) whether there is a solution of size at most ` or not.
[13] designed an exact algorithm for UNMC running in time O∗(1.8638n). We improve on this by
designing an algorithm which runs in time O∗(1.4767n) for UNMC. We also design an algorithm
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with running time O∗(1.4767n) for NMC: this is the first algorithm that improves upon the trivial
O∗(2n) algorithm for this problem.

Next we consider the directed variant of Node Multiway Cut, namely Directed Node
Multiway Cut (DNMC) where the input is a directed graph and a set T = {t1, . . . , tk} of terminals
and the objective is to find a set of vertices of minimum size which intersects every ti → tj path
for every ti, tj ∈ T with i 6= j. For the unrestricted version of this problem, namely Directed
Unrestricted Node Multiway Cut (DUNMC), we design an exact algorithm with running
time O∗(1.6181n) which is the first algorithm improving upon the trivial O∗(2n) algorithm for this
problem. The problem of designing any algorithm breaking the trivial O∗(2n) barrier for DNMC
is still open.

Subset Feedback Vertex Set and Directed Subset Feedback Vertex Set: A nontrivial
exact algorithm for Feedback Vertex Set (FVS) – finding a minimum sized vertex subset such
that its removal results in an acyclic graph – remained elusive for several years. In a breakthrough
paper Razgon [14] designed an exact algorithm for this problem running in time O∗(1.8899n). Later,
Fomin et al. [15] building upon the work in [14] designed an exact algorithm for FVS running in
time O∗(1.7548n). The current best known algorithm for this problem uses potential maximal
clique machinery and runs in time O∗(1.7347n) [3]. Razgon studied the directed version of FVS
and obtained an exact algorithm running in time O∗(1.9977n) [16]. This is the only known non-
trivial exact algorithm for Directed Feedback Vertex Set (DFVS). A natural generalization of the
Feedback Vertex Set problem is when we only want to hit all the cycles passing through a
specified set of terminals. This leads to the following problem.

Subset Feedback Vertex Set(SFVS)
Input : An undirected graph G = (V,E), a set of terminals T ⊆ V of
size k
Question: Find a minimum set of vertices which hits every cycle pass-
ing through T

Fomin et al. [13] designed an algorithm for SFVS on general graphs which runs in time O∗(1.8638n).
It is important to note that their algorithm not only finds a minimum sized solution, but also
enumerates all minimal solutions in the same time. Using our methodology we design an algorithm
for SFVS which runs in time O∗(1.8932n), and if we allow randomization then we can design an
algorithm with an expected running time of O∗(1.8826n). While our algorithms are currently not
the fastest ones, as faster FPT or exact algorithm for FVS are devised, the running time of our
algorithm will continue to improve. Since the running time of our algorithm for SFVS is quite close
to the algorithm of [13], we expect that the further improvements in the algorithms for FVS will
allow our algorithm to take the lead. Golovach et al. [17] initiated the study of exact algorithms
for SFVS on special graph classes by giving an enumeration algorithm for SFVS on chordal graphs
which runs in time O∗(1.6708n). They left it as an open question whether there exist algorithms
for SFVS on chordal graphs (even on split graphs) which are faster than O∗(1.6708n). Though
our algorithm using the described methodology for SFVS, in general, does not improve on the
best known algorithm, it answers this question in the affirmative for SFVS on chordal graphs. In
particular, we obtain an algorithm with running time O∗(1.6181n). More generally, our algorithm
for SFVS runs in O∗(1.6181n) on any graph class G which is closed under vertex deletions and edge
contractions, and where the weighted FVS problem can be solved in polynomial time. Finally, we
also consider the directed variant of the SFVS problem, namely Directed Subset Feedback
Vertex Set (DSFVS), and obtain an algorithm with running time O∗(1.9993n). This is the first
algorithm improving upon the trivial O∗(2n) algorithm for this problem.
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2 Preliminaries

Let C be a cycle in a graph G. A chord of C is an edge e /∈ C which connects two vertices of C. A
graph G is called a chordal graph if every cycle on four or more vertices has a chord. A clique is a
graph that has an edge between every pair of vertices, and we use Kn for n ≥ 2 to denote a clique
on n vertices.

Now we define the contraction of an edge or a subgraph in G. Let G be an undirected graph
and let (u, v) be an edge in G. Let G′ be the graph obtained from G in the following manner. We
add a new vertex w. For every edge (u, z) where z 6= v we add an edge (w, z), and for every edge
(y, v) where y 6= u we add an edge (y, w). Finally we delete the vertices u and v, and any parallel
edges from the graph. We say that G′ is obtained from G by contracting the edge (u, v). Let H
be a subgraph of G. Consider the graph G′ obtained from G by contracting every edge of H in an
arbitrary order. We say that G′ is obtained from G by contracting the subgraph H.

Now we define the torso graph of a subset of vertices in G. Let G = (V,E) be an undirected
graph and T and V ′ be subsets of V . We denote by torso(T, V ′) the graph defined in the following
manner. The vertex set of this graph is T and the edge set comprises of all pairs (ti, tj) such that
there is a ti − tj path in G whose internal vertices lie in V ′ \ T or there is an edge (ti, tj) ∈ E.

We also define an analogous notion of a torso graph in directed graphs. Let D = (V,A) be a
directed graph and T and V ′ be subsets of V . We denote by torso(T, V ′) the digraph defined in
the following manner. The vertex set of this graph is T and the edge set comprises of all ordered
pairs (ti, tj) such that there is a directed ti − tj path in D whose internal vertices lie in V ′ \ T or
there is an edge (ti, tj) ∈ A.

Finally, we define a generalization of the torso graphs. Let G = (V,E) be an undirected graph
and T1, T2, . . . T` and V ′ be subsets of V . We denote by `-torso(T1, . . . , T`, V

′) the graph defined
as follows. It has vertex set T = T1 ∪ T2 ∪ · · · ∪ T`. and the edge set comprises of all pairs (ti, tj)
such that ti ∈ Ti′ and tj ∈ Tj′ for some i′ 6= j′ and there is a ti − tj path in G whose internal
vertices lie in V ′ \ T .

3 Node Multiway Cut

In this section we design an exact algorithm for the Node Multiway Cut problem. We begin by
giving an algorithm for unrestricted version of this problem.

3.1 Unrestricted Node Multiway Cut

The following observation follows from the fact that the set of terminals in an instance of Unre-
stricted Node Multiway Cut itself is a potential solution.

Observation 3.1. Let (G,T ) be an instance of Unrestricted Node Multiway Cut and S be
an optimum solution to this instance . Then |S| ≤ |T |.

Now we design an algorithm for Unrestricted Node Multiway Cut using the FPT algo-
rithm for Node Multiway Cut and Observation 3.1. This algorithm uses the FPT algorithm for
multiway cut of [10]. We will use this algorithm for the instances where k is “small”.

Lemma 3.2. Let (G,T ) be an instance of Unrestricted Node Multiway Cut where |T | = k.
Then we can find an optimum solution to this instance in time O∗(2k).

Proof. We begin by performing the following transformation on the given instance. For each termi-
nal ti ∈ T , we add a new vertex t′i and make it adjacent to ti alone. Let T ′ be the set of these new
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vertices and G′ be the graph thus constructed. It is easy to see that the set of optimum solutions
to the instance (G′, T ′) of Node Multiway Cut and the set of optimum solutions to the instance
(G,T ) of Unrestricted Node Multiway Cut are in one to one correspondence. Therefore, we
may utilise the algorithm of [10] which solves Node Multiway Cut in time O∗(2`) where ` is the
size of the optimum solution. By Observation 3.1, we have that ` ≤ k and therefore, the statement
of the lemma follows.

Next, we design another algorithm for Unrestricted Node Multiway Cut which will be
used for the instances where k is “large”.

Lemma 3.3. Let (G,T ) be an instance of Unrestricted Node Multiway Cut where G =
(V,E) and let S be an optimum solution to this instance. Let X = S \ T and Y = S ∩ T . Then Y
is a vertex cover of the graph torso(T, V \X). Conversely, if Y ′ is any vertex cover for the graph
torso(T, V \X), then the set X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover of G′ = torso(T, V \X). Let E′ be the edge
set of G′. Suppose that Y is not a vertex cover of G′ and there is an edge (ti, tj) ∈ E′ which is
not covered by Y . Observe that (ti, tj) /∈ E, since this would contradict the assumption of S being
a solution. Therefore, it must be the case that there is a path P between ti and tj in G[V \ X]
whose internal vertices are disjoint from T . Since this path is disjoint from both X and Y , it is also
present in the graph G \ S, a contradiction. Hence, we conclude that Y is indeed a vertex cover of
torso(T, V \X).

We now show that for any vertex cover Y ′ of G′, the set X ∪ Y ′ is a solution to the instance
(G,T ) of Unrestricted Node Multiway Cut. Suppose to the contrary that there is a vertex
cover Y ′ of G′ = torso(T, V \X) such that the set S′ = X ∪ Y ′ is not a solution to the instance
(G,T ). That is, there is a ti-tj path in G \ S′ for some ti, tj ∈ T . Observe that this implies the
existence of a ti′-tj′ path P in G for some ti′ , tj′ ∈ T \Y ′ such that the internal vertices of P (if any)
are disjoint from T ∪ S′. Therefore the edge (ti′ , tj′) is not covered by Y ′ in G′, a contradiction.
This completes the proof this lemma.

Using the above lemma and the FPT algorithm for Vertex Cover of [18], we are able to show
the following lemma.

Lemma 3.4. There is an algorithm that given an instance (G = (V,E), T ) of Unrestricted

Node Multiway Cut returns an optimum solution in time O∗
(

1.7851n
(
1.2738
1.7851

)k)
, where k = |T |

and n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T ) such that |X| ≤ k,
we construct the graph GX = torso(T, V \X) and compute a minimum vertex cover YX for GX .
We compute the minimum vertex cover by using the FPT algorithm of [18], which runs in time
O∗(1.2738`) where ` is the size of an optimum vertex cover. Finally, we return the set X ∪ YX
which is a smallest solution over all choices of X. The correctness of this algorithm follows from
Lemma 3.3.

In order to bound the running time of this algorithm, first observe that we can ignore those
choices of X for which the set YX has size > k − |X|. Therefore, the FPT algorithm we use to
compute a minimum vertex cover of torso(T, V \X) runs in time O∗(1.2738k−|X|). Summing over
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all choices of X, the time taken by our algorithm is upper bounded by

k∑
x=0

(
n− k
x

)
O∗(1.2738k−x)

= O∗
(

1.2738k
k∑
x=0

(
n− k
x

)(
1

1.2738

)x)
= O∗

(
1.2738k

(
1 +

1

1.2738

)n−k)
= O∗

(
1.7851n

(
1.2738

1.7851

)k)

This completes the proof of the lemma.

Now we are ready to prove the main theorem of this section.

Theorem 3.5. There is an algorithm that given an instance (G = (V,E), T ) of Unrestricted
Node Multiway Cut returns an optimum solution in time O∗(1.4767n), where n = |V |.

Proof. Let (G,T ) be a given instance of Unrestricted Node Multiway Cut and |T | = k.
Recall that we have described two different algorithms for Unrestricted Node Multiway Cut.
We now choose either of these algorithms based on the values of k and n. If k ≤ 0.5622n, then
we use the algorithm described in Lemma 3.2. In this case, the running time is upper bounded
by O∗(2k) ≤ O∗(20.5622n) ≤ O(1.4767n). If k > 0.5622n, then we use the algorithm described in

Lemma 3.4. This algorithm runs in time O∗
(

1.7850n
(
1.2738
1.7850

)k)
which is a decreasing function of

k. Substituting k = 0.5622n, we get an upper bound on the running time as O∗(1.4767n). This
completes the proof of the theorem.

3.2 Node Multiway Cut

In this subsection, we give an exact algorithm for the Node Multiway Cut problem. We start
with the following observation which follows from the fact that any solution to an instance of Node
Multiway Cut is disjoint from the set of terminals in the instance.

Observation 3.6. Let (G,T ) be an instance of Node Multiway Cut. If T is not an independent
set in G, then there is no solution to the instance (G,T ). Furthermore, if two terminals t1 and t2
have a common neighbor v, then v must be in every solution for the given instance.

Due to Observation 3.6, we may assume that the terminal set is independent and the neighbor-
hoods of the terminals in G are pairwise disjoint. This reduces the restricted Node Multiway
Cut to the following generalization of the Unrestricted Node Multiway Cut, also known as
the Group Multiway Cut problem.

Group Multiway Cut
Input : An undirected graph G = (V,E) and pairwise disjoint sets of
terminals {T1, T2, . . . , T`}.
Question: Find a set S ⊆ V (G) of minimum size such that G \ S has
no u− v path for any u ∈ Ti, v ∈ Tj and i 6= j.
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In the following, we describe an exact algorithm for Group Multiway Cut. The ideas and
arguments are similar to those used in the proof of Theorem 3.5. First we give a structural lemma
about the vertices in Ti.

Lemma 3.7. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut. Let G′ be the graph
obtained by removing from G, the edges in G[Ti] for every i ∈ {1, . . . , `}. Then, S ⊆ V is a solution
to the instance (G,T1, . . . , T`) if and only if it is also a solution to the instance (G′, T1, . . . , T`).

Proof. SinceG′ is a subgraph ofG, any solution for (G,T1, . . . , T`) is also a solution for (G′, T1, . . . , T`).
We now consider the reverse direction. Let S be a solution for (G′, T1, . . . , T`). We claim that S is
also a solution for (G,T1, . . . , T`). Suppose that this is not the case, that is, there is a path P in
G from ui ∈ Ti to uj ∈ Tj disjoint from S. Furthermore, we can assume without loss of generality
that the internal vertices of P (if any) are disjoint from Tr for every 1 ≤ r ≤ `. Observe that P is
also present in the graph G′, and therefore S intersects P by definition, a contradiction.

Due to Lemma 3.7, henceforth we can assume that each Ti is an independent set in G. We have
the following observation similar to Observation 3.1.

Observation 3.8. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut. Let S be an
optimum solution to this instance and T̂ = ∪`i=1Ti. Then, |S| ≤ |T̂ |.

We have the following lemma which gives us an algorithm for the instances where k = | ∪`i=1 Ti|
is “small”. The proof of this lemma is very similar to the proof of Lemma 3.2.

Lemma 3.9. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut, let T̂ = ∪`i=1Ti and
let |T̂ | = k. Then we can find an optimum solution to the given instance of Group Multiway
Cut in time O∗(2k).

Proof. We first reduce this instance to an instance of Node Multiway Cut, by creating a new
terminal ti, for each set Ti, which is then made adjacent to all vertices in Ti. We then apply the
FPT algorithm of Cygan et al [10] for Node Multiway Cut to obtain the required solution. This
takes time O∗(2k).

Next, we describe another algorithm for Group Multiway Cut. We will use this algorithm
for those instances where k = | ∪`i=1 Ti| is “large”. We have the following lemma, whose proof is
very similar to the proof of Lemma 3.3.

Lemma 3.10. Let (G,T1, . . . , T`) be an instance of Group Multiway Cut where G = (V,E)
and let S be an optimum solution to this instance. Let X = S \ T̂ and Y = S∩ T̂ where T̂ = ∪`i=1Ti.
Then, Y is a vertex cover of `-torso(T1, . . . , T`, V \X) and conversely, for any vertex cover Y ′ for
the graph `-torso(T1, . . . , T`, V \X), the set X ∪ Y ′ is a solution to this instance.

Proof. We first show that Y is indeed a vertex cover of G′ = `-torso(T1. . . . , T`, V \ X). Let E′

be the edge set of G′. Suppose that Y is not a vertex cover of G′ and there is an edge (ti, tj) ∈ E′
which is not covered by Y . Observe that if ti ∈ Ti′ and tj ∈ Tj′ for i′ 6= j′ then (ti, tj) /∈ E since
it contradicts the assumption of S being a solution. Furthermore, if i′ = j′, then (ti, tj) /∈ E′ by
definition of torso. Therefore, it must be the case that there is a path P between ti and tj in
G[V \X] whose internal vertices are disjoint from T . Since this path is disjoint from both X and
Y , it is also present in the graph G \ S, a contradiction. Hence, we conclude that Y is indeed a
vertex cover of G′.

We now show that for any vertex cover Y ′ of G′, the set X ∪ Y ′ is a solution to the instance
(G,T1, . . . , T`) of Group Multiway Cut. Suppose to the contrary that there is a vertex cover
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Y ′ of G′ such that the set S′ = X ∪ Y ′ is not a solution to the instance (G,T1, . . . , T`). That is,
there is a ti-tj path in G \ S′ for some ti ∈ Ti′ and tj ∈ Tj′ where i′ 6= j′. Observe that this implies
the existence of a tp-tq path in G \ S′ for some tp ∈ Tp′ and tq ∈ Tq′ where p′ 6= q′ such that the

internal vertices of P (if any) are disjoint from T̂ ∪S′. Therefore the edge (tp, tq) is not covered by
Y ′ in G′, a contradiction. This completes the proof of the lemma.

Next, using Lemma 3.10 we can show the following lemma.

Lemma 3.11. There is an algorithm that given an instance (G = (V,E), T1, . . . , T`) of Group

Multiway Cut returns an optimum solution in time O∗
(

1.7851n
(
1.2738
1.7851

)k)
, where k = | ∪`i=1 Ti|

and n = |V |.

Proof. Let T̂ = ∪`i=1Ti. The description of the algorithm is as follows. For every X ⊆ (V \ T̂ ) such
that |X| ≤ k, we construct the graph GX = `-torso(T1, T2, . . . , T`, V \X) and compute a minimum
vertex cover YX for GX . We compute the minimum vertex cover by using the FPT algorithm
of [18], which runs in time O∗(1.2738`) where ` is the size of an optimum vertex cover. Finally, we
return the set X ∪ YX which is a smallest solution over all choices of X. The correctness of this
algorithm follows from Lemma 3.10.

In order to bound the running time of this algorithm, first observe that we can ignore those
choices of X for which the set YX has size > k − |X|. Therefore, the FPT algorithm we use to
compute a minimum vertex cover of `-torso(T1, T2, . . . , T`, V \X) runs in time O∗(1.2738k−|X|).

Summing over all choices of X, the time taken by our algorithm is

k∑
x=0

(
n− k
x

)
O∗(1.2738k−x)

= O∗
(

1.2738k
k∑
x=0

(
n− k
x

)(
1

1.2738

)x)
= O∗

(
1.2738k)

(
1 +

1

1.2738

)n−k)
= O∗

(
1.7851n

(
1.2738

1.7851

)k)

This completes the proof of the lemma.

Combining the algorithms from Lemma 3.9 and Lemma 3.11, we can show the next theorem.

Theorem 3.12. There is an algorithm that, given an instance (G = (V,E), T1, . . . , T`) of Group
Multiway Cut, runs in time O∗(1.4767n) and returns an optimum solution, where n = |V |.

Proof. Let (G,T1, . . . , T`) be the given instance of Group Multiway Cut and T̂ = ∪`i=1Ti and
|T̂ | = k. Recall that we have described two different algorithms for Group Multiway Cut. We
now choose either of these algorithms based on the values of k and n. If k ≤ 0.5622n, then we
use the algorithm described in Lemma 3.9. In this case, the running time is upper bounded by
O∗(2k) ≤ O∗(1.4767n). If k > 0.5622n, then we use the algorithm described in Lemma 3.11. This

algorithm runs in time O∗
(

1.7851n
(
1.2738
1.7851

)k)
which is a decreasing function of k. Substituting

k = 0.5622n, we get an upper bound on the running time as O∗(1.4767n). This completes the proof
of the theorem.
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The following theorem follows from Theorem 3.12 and Observation 3.6.

Theorem 3.13. There is an algorithm that given an instance (G = (V,E), T ) of Node Multiway
Cut returns an optimum solution in time O∗(1.4767n), where n = |V |.

4 Directed Unrestricted Node Multiway Cut

In this section, we consider the Directed Unrestricted Node Multiway Cut problem.

Directed Unrestricted Node Multiway Cut
Input : A directed graph D = (V,A) and a set of terminals T =
{t1, t2, . . . , tk}.
Question: Find a set S ⊆ V of minimum size such that G \ S has no
ti → tj path for any i 6= j.

Since we consider the version where the terminals can be deleted, we have the following obser-
vation.

Observation 4.1. Let (G,T ) be an instance of Directed Unrestricted Node Multiway
Cut and S be an optimum solution to this instance . Then, |S| ≤ |T |.

The proof of the next lemma is identical to the proof of Lemma 3.3 and therefore, we do not
repeat it.

Lemma 4.2. Let (D,T ) be an instance of Directed Unrestricted Node Multiway Cut
where D = (V,A) and let S be an optimum solution to this instance. Let X = S \T and Y = S∩T .
Then Y is a vertex cover of the graph torso(T, V \X). Conversely if Y ′ is any vertex cover of the
graph torso(T, V \X), then the set X ∪ Y ′ is a solution to this instance.

Note that torso(T, V \ X) is a directed graph. So by a vertex cover of torso(T, V \ X) we
mean a vertex cover of the underlying undirected graph of torso(T, V \X). Now we describe our
algorithm for Directed Unrestricted Node Multiway Cut.

Theorem 4.3. Directed Unrestricted Node Multiway Cut can be solved in O∗(1.6181n)
time.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \T ) such that |X| ≤ k, we
construct the graph DX = torso(T, V \X) and compute a minimum vertex cover YX for DX . Note
that we can ignore those choices of X for which the set YX has size > k − |X|. We compute the
minimum vertex cover by using the FPT algorithm of [18], which runs in time O∗(1.2738`) where
` is the size of an optimum vertex cover. Finally, we return the set X ∪ YX which is a smallest
solution over all choices of X. The correctness of this algorithm follows from Lemma 4.2. We now
bound the running time T of our algorithm. For every choice of X we run the FPT algorithm for
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vertex cover, which takes time O∗(1.2738k−|X|). Therefore we have,

T =
k∑
x=0

(
n− k
x

)
O∗(1.2738k−x)

≤
k∑
x=0

(
n− k
x

)
O∗(1.6181k−x)

= O∗(1.6181k)

k∑
x=0

(
n− k
x

)(
1

1.6181

)x
≤ O∗

(
1.6181k)

(
1

1.6181
+ 1

)n−k)
= O∗

(
1.6181k × (1.6181)n−k

)
= O∗(1.6181n)

This completes the proof of the theorem.

5 Subset Feedback Vertex Set

In this section we design an exact algorithm for Subset Feedback Vertex Set. We actually
design two different algorithms for the problem, and then use these two algorithms to construct
our final exact algorithm.

Let (G,T ) be the given instance of Subset Feedback Vertex Set. Recall that we are
allowed to pick terminal vertices into a solution. The following observation follows from the fact
that the set of terminals itself is a solution.

Observation 5.1. Let (G,T ) be an instance of Subset Feedback Vertex Set, and let S be
an optimum solution to this instance. Then |S| ≤ |T |.

Lemma 5.2. 1. There is an algorithm that given an instance (G = (V,E), T ) of Subset

Feedback Vertex Set returns an optimum solution in time O∗
(

1.2611n
(

3.619
1.2611

)k)
, where

k = |T | and n = |V |.

2. There is an algorithm that given an instance (G = (V,E), T ) of Subset Feedback Vertex

Set returns an optimum solution in time O∗
(

2n
(
1.7347

2

)k)
, where k = |T | and n = |V |.

Proof. For every X ⊆ (V \ T ) such that |X| ≤ k, let TX be the set of terminals t such that G \X
contains a cycle passing through t which contains no other terminal vertex. Let GX be the graph
obtained from G \ (X ∪ TX) by contracting every connected component of G \ (T ∪X). Given X,
we can compute both TX and GX in polynomial time. Let YX be a minimum feedback vertex set
for GX containing only vertices of T .

For the first algorithm, we compute YX in the following manner. We assign a weight of k + 1
to the vertices not in T and 1 to the vertices in T . We then use an FPT algorithm to compute a
minimum feedback vertex set of GX of weight at most k. The current fastest deterministic FPT
algorithm for checking if there is a feedback vertex set of weight p in a graph with integral weights
is due to [19], who extend the algorithm of Kociumaka and Pilipczuk [20] to weighted graphs, and
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it runs in time O∗(3.619p). The current fastest randomized algorithm weighted feedback vertex set
with integral weights is due to Cygan et al. [10], and it runs in time O∗(3p).

For the second algorithm we compute YX by computing a maximum induced forest of GX
which contains all the non-terminal vertices and taking its complement. Let F be the set of all
non-terminal vertices in GX and let q = |V (GX)| − |F | be the number of terminal vertices in GX .
We use the O∗(1.7347q) algorithm of Fomin and Villanger [3] on (GX , F ) and compute a maximum
induced forest of GX containing F .

Let SX = X ∪ TX ∪ YX . We compute SX for every X and output the one with the smallest
number of vertices as our solution.

Correctness. The correctness of both the algorithms follows from the following claims.

Claim 5.3. Let S be an optimum solution to the given instance of Subset Feedback Vertex
Set and let X = S \ T . Let TX be the set of terminals t such that G \X contains a cycle passing
through t which contains no other terminal vertices. Then TX ⊆ S.

Proof. Let t ∈ TX and Ct is a cycle passing through T in G \X which doesn’t contain any other
terminal vertex. If t /∈ S, then S doesn’t intersect Ct. This is a contradiction. Thus TX ⊆ S. This
completes the proof of this claim.

The above claim shows the correctness of adding TX to the solution. Once TX is added to the
solution then there are no cycles containing exactly one vertex from T . In this case, the following
lemma shows that it suffices to compute a minimum feedback vertex set for the graph GX .

Claim 5.4. Let S be an optimum solution to the given instance of Subset Feedback Vertex
Set and let X = S \ T and Y = S ∩ T . Furthermore, suppose that there are no cycles in G \X
containing a unique vertex of T , i.e., perform the update T ← T \ TX . Let GX be obtained from
G \X by contracting every connected component of G \ (T ∪X). Then Y is a minimum feedback
vertex set of GX . Conversely if Y ′ is any feedback vertex set of GX , then the set X∪Y ′ is a solution
for the given instance of Subset Feedback Vertex Set.

Proof. We first show that for any W ⊆ T , there is a cycle in GX \W if and only if there is a cycle in
G \ (X ∪W ) which passes through T \W . The claim then follows by setting W = Y and W = Y ′.
First, observe that there is a unique connected component Hu in G\ (T ∪X) corresponding to each
non-terminal vertex u ∈ GX .

Now consider a cycle C in GX \W and observe that all the terminal vertices in C lie in T \W .
We can replace each non-terminal vertex u in C with a path Pu in Hu to obtain a closed walk in G.
However this closed walk is actually a cycle, since the paths {Pu} are pairwise vertex disjoint (they
belong to different connected components of G \ (T ∪X)). Thus we obtain a cycle in G \ (X ∪W ).

Conversely let C be a cycle in G \ (X ∪W ) that passes through a terminal t ∈ T . We assume
that C visits each connected component of G \ (T ∪X) at most once: suppose the cycle C visits
the component Hu (corresponding to the non-terminal u ∈ GX) of G \ (T ∪X) at least twice. Let
y, y′ be the first, last2 vertices of C ∩Hu. Since Hu is connected, there is a y−y′ path P ′ contained
completely within Hu. We replace the y−y′ path in C which contained at least one other vertex of
Hu (since C visited Hu at least twice) by P ′. Hence (the modified) C visits Hu exactly once now.
If there are any more connected components of G\ (T ∪X) which are visited by C more than once,
then we repeat the above process for each such connected component. The final modified version

2That is, exactly one of the two y − y′ paths in C contains vertices from Hu
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of the cycle satisfies the desired condition that it visits each connected component of G \ (T ∪X)
at most once.

By our assumption that there are no cycles in G \ X containing exactly one terminal from
T , we know that every terminal in T \ W has at most one edge to a connected component in
G\ (T ∪X). Let Pu be a maximal subpath of C which is contained in the connected component Hu

of G \ (T ∪X). Consider the closed walk C ′ obtained from C by contracting the maximal subpath
Pu to the vertex u, for every u. Observe that C ′ is actually a cycle since no vertex is repeated in
C ′, and C ′ is present in GX \W . This completes the proof of this claim.

Running Time. Let T1 be the running time of the first algorithm and, T2 be the running time of
the second algorithms. The following two claims establish the running times of both the algorithms.

Claim 5.5. T1 = O∗
(

1.2611n ×
(

3.619
1.2611

)k )
.

Proof. For a set X the potential solution we output has size |YX |+ |X|+ |TX |. We know that the
optimum is at most |T | = k since deleting T itself is a feasible solution. Hence if |YX | > k − |X|
then we have |YX | + |X| + |TX | ≥ |YX | + |X| > k, and hence we can ignore this choice of X as it
will never lead to an optimum solution. Hence we have that

T1 =
k∑
x=0

(
n− k
x

)
O∗(3.619k−x)

= O∗(3.619k)
k∑
x=0

(
n− k
x

)( 1

3.619

)x
≤ O∗

(
3.619k ×

(
1 +

1

3.619

)n−k)
= O∗

(
3.619k × (1.2611)n−k

)
= O∗

(
1.2611n ×

(
3.619

1.2611

)k )

Claim 5.6. T2 = O∗
(

2n ×
(
1.7347

2

)k )
.

Proof. Observe the number of terminals is q = |T |− |TX | ≤ |T | = k. Therefore the exact algorithm
runs in time O∗(1.7347k). Therefore we have,

T2 =
k∑
x=0

(
n− k
x

)
O∗(1.7347k)

= O∗(1.7347k)

k∑
x=0

(
n− k
x

)
= O∗

(
1.7347k × 2n−k

)
= O∗

(
2n ×

(
1.7347

2

)k )
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This completes the proof of the lemma.

Theorem 5.7. There is an deterministic (resp. randomized) algorithm that given an instance (G =
(V,E), T ) of Subset Feedback Vertex Set returns an optimum solution in time O∗(1.8932n)
(resp. O∗(1.8826n)), where n = |V |.

Proof. Let (G,T ) be the given instance of Subset Feedback Vertex Set, where G is a graph on
n vertices and |T | = k. Based on the values of n and k we run one of the two algorithms described
above.

Note that T1, T2 are increasing, decreasing functions when k ∈ [0, n]. Setting T1 = T2 gives
k = 0.3855n. If k ≤ 0.3855n, then we run the first algorithm described in Lemma 5.2. The running

time is upper bounded by O∗
(

1.2611n×
(

3.619
1.2611

)0.3855n )
= O∗(1.8932n). Otherwise if k > 0.3855n,

then we run the second algorithm described in Lemma 5.2. This algorithm runs in time

O∗
(

2n ×
(

1.7347

2

)k )
which is a decreasing function of k. Substituting k = 0.3855n, we get an upper bound ofO∗(1.8932n)
on the running time in this case as well.

We obtain the improved running time of O∗(1.8826n) for a randomized algorithm by using the
randomized O∗(3k) algorithm of [21] in Claim 5.5 (instead of the deterministic O∗(3.619k) algorithm
of [19]).

5.1 Subset Feedback Vertex Set on Chordal Graphs

In this section we give an algorithm for Subset Feedback Vertex Set on chordal graphs which
improves upon the previous best algorithm of [17], and is much simpler. The main difference
between this algorithm and the algorithm for Subset Feedback Vertex Set described earlier
is that we use a polynomial time algorithm to solve weighted Feedback Vertex Set on chordal
graphs ([22, 23]), instead of an FPT or an exact algorithm. Recall that a graph is chordal if it does
not contain any Ct (for t ≥ 4) as an induced subgraph. It is easy to see from this definition that
chordal graphs are closed under vertex deletions and edge contractions: neither of these operations
create larger induced cycles.

We are now ready to prove the main theorem of this section:

Theorem 5.8. There is an algorithm that, given an instance (G = (V,E), T ) of Subset Feed-
back Vertex Set on chordal graphs, returns an optimum solution in O∗(1.6181n) time, where
n = |V |.

Proof. The algorithm is the same as the two algorithms described in Lemma 5.2 except that we use
the polynomial time algorithm for Feedback Vertex Set on chordal graphs instead of the FPT
or the exact exponential algorithm. For every choice of X, we compute TX and GX in polynomial
time. Observe that the graph GX is obtained from G by vertex deletions and edge contractions,
implying that GX is also a chordal graph. We assign weight 1 to each terminal vertex and weight
k + 1 to each non-terminal vertex, and compute in polynomial time a minimum weight feedback
vertex set YX of GX . This can be done by using a polynomial time algorithm of Yannakakis and
Gavril [23] that computes a maximum weight induced forest in a chordal graph. Alternatively,
we can use an algorithm of Corneil and Fonlupt [22]. We now analyze the running time of our
algorithm.
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Let S be any optimum solution and let X = S \ T . Observe that |X| ≤ |S| ≤ |T |. We now
bound the number of choices for X

number of choices for X ≤
k∑
x=0

(
n− k
x

)
(since |T | = k)

≤
k∑
x=0

(
n− k
x

)
O∗(1.6181k−x) (since 1.6181 > 1)

= O∗(1.6181k)
k∑
x=0

(
n− k
x

)
O∗(1.6181−x)

≤ O∗(1.6181k)
(

1 +
1

1.6181

)n−k
(by Binomial theorem)

= O∗(1.6181k)(1.6181)n−k (since 1.6181 is a root of x2 − x− 1 = 0)

= O∗(1.6181n)

Since after choosing X we do only a polynomial time computation, the running time of our
algorithm is O∗(1.6181n).

We remark that we can use the above method to obtain faster exact algorithm for Subset
Feedback Vertex Set on other graph classes, such as AT-free graphs [24], which are closed under
vertex deletions and edge contractions, and Feedback Vertex Set is solvable in polynomial time
on them.

6 Directed Subset Feedback Vertex Set

In this section we give an exact algorithm for the Directed Subset Feedback Vertex Set
problem running in time O∗(1.9993n). The problem is defined as follows.

Directed Subset Feedback Vertex Set
Input : A directed graph D = (V,A) and a set of terminal vertices T
of size k.
Question: Find a minimum set of vertices in D which intersects every
cycle in D which contains at least one vertex of T .

Next we observe the following property of directed graphs.

Observation 6.1. Let D = (V,A) be a directed graph. For any vertex v ∈ V , the following holds:
v belongs to a closed walk in D if and only if v belongs to a cycle in D.

Lemma 6.2. Let (D = (V,A), T ) be an instance of Directed Subset Feedback Vertex Set.
Let S be an optimum solution to this instance and X = S \ T , Y = S ∩ T . Furthermore, suppose
that every cycle in D\X that intersects T , contains at least two vertices of T . Then Y is a directed
feedback vertex set in the graph torso(T, V \X) if and only if X ∪ Y is a directed subset feedback
vertex set for the instance (D,T ).

Proof. Suppose X ∪ Y is a solution in D where X ∩ T = ∅ and Y ⊆ T . If Y is not a directed
feedback vertex set in DX = torso(T, V \ X), then there is a cycle CX in DX \ Y . From CX in
DX we can obtain a closed walk C ′ in D in the following manner. We replace every edge (ti, tj)
of CX which is not present in A, with a path Pij from ti to tj in D \X whose internal vertices lie
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in V \ (T ∪X). Therefore we get a closed walk C ′ in D \ (X ∪ Y ) which contains a terminal. By
Observation 6.1, there is a cycle in D which passes through a terminal in D, which is not covered
by X ∪ Y . This is a contradiction.

Conversely suppose that Y be a directed feedback vertex set in DX , but X ∪Y is not a solution
for (D,T ). Then there is a cycle C in D \ (X ∪Y ) that contains at least two vertices of T . Further
assume that C is the shortest such cycle. Observe that every subpath Pij of C from terminals ti
to tj whose internal vertices lie in V \ T , implies an edge (ti, tj) in DX . Therefore we can obtain a
cycle C ′ in DX from C by replacing the subpath Pij with the edge (ti, tj), for every pair of terminals
ti, tj in C. Observe that this cycle is not covered by Y . This is a contradiction.

This completes the proof of the lemma.

The following observation is immediate since the set T forms a potential solution.

Observation 6.3. Let (D,T ) be an instance of Directed Subset Feedback Vertex Set and
let S be an optimum solution for this instance. Then, |S| ≤ |T |.

We are now ready to prove the main theorem of this section.

Theorem 6.4. There is an algorithm that given an instance (D = (V,A), T ) of Directed Subset
Feedback Vertex Set returns an optimum solution in time O∗(1.9993n), where n = |V |.

Proof. The description of the algorithm is as follows. For every X ⊆ (V \ T ) such that |X| ≤ k,
we first compute (in polynomial time) the set TX which is the set of terminals t ∈ T such that
there is a directed cycle in the graph D[(V \ (T ∪X))∪{t}]. Clearly TX must be included in every
optimum solution. In polynomial time, construct the graph DX = torso(T \ TX , V \ X). Then
we compute a minimum directed feedback vertex set YX for DX by using the exact exponential
algorithm by Razgon [16] for Directed Feedback Vertex Set, which runs in time O(1.9977`)
where ` = |V (DX)| = |T \TX | ≤ |T | = k. Finally, we return the set X∪TX ∪YX which is a smallest
solution over all choices of X. The correctness of the algorithm follows from Lemma 6.2.

Running Time. The running time T of our algorithm is upper bounded by

T ≤
k∑
x=0

(
n− k
x

)
O∗(1.9977k).

To compute an upper bound on T only as a function of n, we need to examine the values of n and
k. The following claim analyzes the running time of our algorithm, and completes the proof of the
theorem.

Claim 6.5. T = O(1.9993n).

Proof. Let ε > 0 be a constant which we fix later. Based on the values taken by n and k we consider
the following two cases:

Case (1.) k ≤ n− k
2 + ε

. To address this case, we require the following well known result (see for

example Lemma 3.13 in [1]).

Claim 6.6. Let 0 < α < 1. Then(
n

αn

)
= O∗

(( 1

αα(1− α)1−α

)n)
.
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By Claim 6.6 for every 0 ≤ x ≤ k we have(
n− k
x

)
≤
(
n− k
k

)
(since k < n−k

2 )

≤
(
n− k
n−k
2+ε

)
(since k < n−k

2 )

= O∗
( 2 + ε

(1 + ε)
1+ε
2+ε

)n−k
(by Claim 6.6)

The first restriction we impose on ε is that( 2 + ε

(1 + ε)
1+ε
2+ε

)
≥ 1.9977 (1)

So, in this case we have

T ≤ O∗
(

1.9977k ·
( 2 + ε

(1 + ε)
1+ε
2+ε

)n−k)
= O∗

( 2 + ε

(1 + ε)
1+ε
2+ε

)n
(2)

Case (2.) k >
n− k
2 + ε

. In this case we have

T =

k∑
x=0

(
n− k
x

)
O∗(1.9977k)

= O∗(1.9977k) ·
k∑
x=0

(
n− k
x

)
≤ O∗(1.9977k · 2n−k) (by Binomial theorem)

= O∗
(

2n ·
(1.9977

2

)k)
≤ O∗

(
2n ·

(1.9977

2

) n
3+ε
)

(since k > n−k
2+ε )

Equating the upper bound from Case (2.) with that from Equation 2 gives ε = 0.0565. Note that
this value of ε also satisfies Equation 1. Hence, we have that

T = O∗
(

2n ·
(1.9977

2

) n
3.0565

)
= O∗(1.9993n)

This completes the proof of the theorem.

7 Conclusion

We introduced a methodology of obtaining non-trivial exact exponential algorithms for several
terminal set problems. We conclude with open problems which seems to be evasive to our approach.
Designing an algorithm faster than O∗(2n) for Directed Node Multiway Cut remains an
interesting question. Another interesting problem is Subset Odd Cycle Transversal, where
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the task is to find a vertex subset of minimum size hitting all cycles of odd length containing at least
one terminal. Again, the problem is trivially solvable in O∗(2n) but no faster algorithm for this
problem is known. We conclude by remarking that an approach based on our methodology might
result in such an algorithm since Odd Cycle Transversal is solvable in time O∗(1.4661n) [4, 5].
Finally designing an algorithm for Multicut on directed graphs, faster than the trivial O∗(2n)
algorithm, remains an interesting open problem. Only recently, it has been settled for undirected
graphs. In particular, Lokshtanov et al. [25] obtained an algorithm for Multicut on undirected
graphs running in time O∗(1.987n).
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