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Key points: 43 
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 Single particle data collected over Saharan desert-Tropical-North Atlantic Ocean. 47 

 Data used to study Saharan dust (SD) and Primary Biogenic Aerosol Particles 48 

(PABP). 49 

 Minor presence of organic nitrogen and alkylamines in SD-PBAB at their origin. 50 

 PBAP are found to be enriched in alkylamines in North Atlantic Ocean air. 51 

 Atmospheric biogeochemical processes may be  responsible for detected 52 

alkylamines.  53 
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Abstract 74 

 75 

Using a number of datasets from single particle Aerosol Time-Of-Flight Mass Spectrometry 76 

(ATOFMS) measurements, we show only a minor presence of Organic Nitrogen (ON) 77 

species in Saharan dust particles (aerosol size range 0.2-3m) collected at their origin. ON 78 

enhancement is not observed on Saharan dust particles after atmospheric transport (48-79 

96 hours) either over the Tropical Ocean in the vicinity of Cape Verde, over the North 80 

Atlantic Ocean. In the negative ATOFMS mass spectra, signals due to ON species were 81 

found weaks in biological particles (rich in potassium and phosphate) in their source area, 82 

and signals due to alkylamines in the positive ATOFMS mass spectra were not found. In 83 

striking contrast, biological particles travelling within aerosol dust plumes are found to be 84 

enriched in ON species - including alkylamines - in North Atlantic Ocean air (Mace Head, 85 

Ireland), as seen in both positive and negative ATOFMS mass spectra. Contrary to filter 86 

based aerosol techniques which report ON enrichment within Saharan dust, our single 87 

particle mass spectrometry data - allowing study of the aerosol mixing state  - suggests 88 

that the aging biological particles and not the associated transported aging Saharan dust 89 

may be a source of ON species. We suggest biogeochemical processes occurring in the 90 

atmosphere in which biological particles are responsible for ON production. This may be 91 

an important source of nutrients to the ocean via atmospheric deposition. 92 

 93 

 94 

 95 
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 104 

 105 
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1. Introduction 106 

 107 

Organic nitrogen (ON) represents a consistent fraction of the total atmospheric nitrogen 108 

and is an ubiquitous component of the atmospheric aerosols (Galloway et al., 2008; 109 

DeLong, E., 2009). Aerosol deposition and in particular the deposition of ON, to marine 110 

environments, where auto- and heterotrophic microbial communities are often nutrient-111 

limited, may affect community composition, productivity and consequently the marine 112 

carbon cycle, including carbon sequestration (Cornell et al., 2003; Cape et al., 2011). 113 

Organic nitrogen is found as a complex mixture of materials from multiple natural and 114 

anthropogenic sources. Kanakidou et al. (2012) estimated that 45% of the total ON 115 

atmospheric flux to the ocean comes from combustion sources, 32% from primary 116 

biological aerosol particles (PBAP), 1% from soil dust, 20% from ocean primary emissions 117 

and 3% from ocean secondary emissions. However, large uncertainties are associated 118 

with N emissions and the magnitude and impacts of anthropogenic atmospheric nitrogen 119 

inputs on the ocean (Kanakidou et al., 2016; Jickells et al., 2017, Kanakidou et al., 2018). 120 

Altieri et al. (2016) suggested that anthropogenic activity is not a significant source of 121 

organic N to the marine atmosphere over the North Atlantic, despite large pollution 122 

sources present in North America. Other bio-aerosol studies also suggest that PBAP may 123 

account for almost a third of ON in the marine atmosphere (Cote et al. 2008, Tittensor et 124 

al., 2010; Vaïtilingom et al. 2013, Krumnis et al. 2014, Miriokefalitakis et al., 2017; Amato 125 

et al. 2017, Šantl-Temkiv et al. 2018). A fraction of PBAP may be able to sustain microbial 126 

activity in the atmosphere and could also therefore be involved in atmospheric ON 127 

processing (Hill et al., 2007). For example, Šantl-Temkiv et al (2013) suggested that 128 

bacterial cells present in cloud droplets may have been responsible for the process of ON 129 

mineralization to inorganic nitrogen that the studies observed in the clouds.  130 

 131 

The correct apportionment of ON sources is particularly important in the marine 132 

atmosphere because of the role that depositing ON plays in enhancing ocean productivity 133 

(Duce et al., 2008). Anthropogenic, agricultural and biomass burning sources of ON are 134 

mainly important in cases when terrestrial air masses travel over marine areas (Jickells et 135 

al., 2013). Less is known of the importance of ON marine emissions. Primary marine 136 

emissions of ON in the form of amino acids and their derivatives have been reported 137 
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(Graber and Rudich, 2006; Altieri et al. 2009; Geddes et al. 2009). Gas-to-particle 138 

secondary organic aerosol reactions of gaseous amines with sulphuric acid have also 139 

been found in marine aerosol over the North Atlantic (Facchini et al., 2008) and Pacific 140 

Ocean (Sorooshian et al. 2008; Miyazaki et al. 2010; 2011). The Tropical NE Atlantic 141 

marine atmosphere presents a peculiarly intricate scenario with a diverse, variable and 142 

complex mixture of ON aerosol sources (Baker et al., 2010). Lesworth et al. (2010) 143 

reported a wide range of ON concentrations associated with both coarse (>1µm) and fine 144 

(<1µm) particles, apportioning them to African dust sources and to anthropogenic 145 

emissions from Europe. Other studies carried out in the Eastern Mediterranean (Violaky et 146 

al. 2010; Violaki and Mihalopoulos 2010) also stress that combustion processes and 147 

African dust are an important source of ON. By contrast, ON of marine origin seems to 148 

play a small role in these sub-tropical marine regions (Muller et al., 2009). Although these 149 

studies stress the importance of dust for the marine ON budgets in air, the low sampling 150 

time resolution (1-4 days) and off-line analysis that the authors used, do not allow them to 151 

conclude whether the ON is associated directly with dust particles or with the large 152 

quantities of PBAP that are ejected into the atmosphere with the dust events (Kellogg and 153 

Griffin 2006).  154 

 155 

Aside from the complexity and diverse sources of ON, there are also two main issues 156 

associated with sampling and analysing ambient ON aerosols. First, the concentration of 157 

ON is often estimated by measuring concentrations of total nitrogen and subtracting the 158 

concentrations of NO3
- and NH4

+, which propagates errors from the three individual 159 

species and leads to uncertainties in the ON analytical concentrations. Second, most of 160 

the current measurements are carried out with off-line filter measurements (Sullivan and 161 

Prather, 2005), which do not allow information on the ON mixing state and hence 162 

challenge the aerosol source apportionment. An aerosol population is broadly "internally 163 

mixed" when all single particles have the same chemical composition (equal to the bulk 164 

composition). By contrast, an aerosol population is "externally mixed" when single particles 165 

have a different chemical composition. In order to reduce uncertainty on ON-containing 166 

aerosols, Jickells et al. (2013) stressed the importance of deploying new technologies. 167 

Detection of PBAPs by real-time (RT) techniques for autonomous, online detection and 168 

characterization of PBAP properties has become increasingly important for research 169 
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purposes (Hoffman et al., 2019). Single particle mass spectrometry (SPMS) - techniques 170 

that ablate and ionize single aerosol particles - is capable of PBAP detection, although the 171 

interpretation of SPMS mass spectra is challenging and  requires extensive human 172 

interaction. For example, amino acids are ubiquitous compounds with an integral role in 173 

atmospheric bioaerosol compositions (Ge et al., 2011). Previous SPMS identified amino 174 

acids in PBAP particles (Fergenson et al., 2004; Russell et al., 2004; Czerwieniec et al, 175 

2005, Schneider et al., 2011). However, difference in ionization laser wavelengths may 176 

produce different single-particle mass spectra, and therefore, specific markers for amino 177 

acids do not exist.  178 

This study uses state-of-the-art Single Particle Aerosol Time-Of-Flight Mass Spectrometer 179 

(ATOFMS; Su et al., 2004) to shed some light on natural aerosols containing ON species. 180 

The ATOFMS data herein presented allows us to determine if the aerosol population is 181 

internally or externally mixed, a peculiar feature absent in most filtration-based aerosol 182 

sampling techniques (Sullivan and Prather, 2005). It is also worth reminding that the 183 

ATOFMS is a particularly good aerosol instrument for studying amines and organic 184 

nitrogen in general because the LDI laser wavelength (266 nm) ionizes them very 185 

efficiently (Angelino et al., 2001; Dall´Osto et al., 2016; Healy et al., 2015). 186 

 187 

The large ATOFMS datasets used in this work were previously used to study the variation 188 

of the mixing state of Saharan dust particles with atmospheric transport (Dall´Osto et al., 189 

2010a) during the DODO project; and to study the aerosol properties associated with air 190 

masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI 191 

intensive observing period (Dall´Osto et al., 2010b). The current study aims - for the first 192 

time - to specifically presents an ATOFMS analysis looking at the properties of specific 193 

clusters - including biological particles - and comparing the temporal trends with black 194 

carbon and dimethyl sulphide concentrations across different locations. We focus our 195 

attention on Saharan dust and biological particles found at their origins, as well as on 196 

those sampled during ambient field measurements over both Tropical and North Atlantic 197 

Oceans. The aims of this study include: (1) to elucidate if Saharan dust or the associated 198 

terrestrial PBAP contains ON, (2) to understand if ON in natural aerosols has mainly a 199 

primary or a secondary origin and (3) to discuss whether aerosol aging results in a 200 

degradation or production of ON.  201 
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2. Methodology 202 

 203 

2.1 Atmospheric measurements 204 

 205 

2.1.1 ATOFMS 206 

 207 

We deployed an ATOFMS (Model 3800-100, TSI, Inc.), which collects bipolar mass 208 

spectra of individual aerosol particles. Briefly, ambient aerosol is focused into a narrow 209 

particle beam for sizes between 100 nm and 3 µm (vacuum aerodynamic diameter), 210 

following which laser desorption/ionization take place and a positive and a negative single 211 

particle mass spectra are obtained. The mass spectrum is only qualitative because the 212 

peaks intensities depend strongly on the particle matrix, the coupling between the laser 213 

and the particle and the shot to shot variability of the laser (Dall’Osto and Harrison, 2006). 214 

However, recent studies (Jeong et al., 2011) report excellent correlations for inorganic 215 

species (sulfate, nitrate, and ammonium) but weaker ones between total organic and 216 

elemental carbon (EC) detected with ATOFMS and other instruments (Jeong et al., 2011). 217 

Furthermore, using a different approach, Healy et al. (2012, 2013) demonstrated that the 218 

ATOFMS can deliver good quantitative results for Elemental Carbon (EC) and Organic 219 

Carbon (OC) containing particles, when compared with other measurement techniques. 220 

Overall, the ATOFMS gives a measure of  particle number as function of size and 221 

chemical composition, allowing the determination of the mixing state.  222 

 223 

2.1.2 Dimethyl sulphide (DMS) measurements 224 

 225 

DMS measurements were carried during the North Atlantic Marine Boundary Layer 226 

Experiment (NAMBLEX) took place at Mace Head, Ireland during summer 2002 (Lewis et 227 

al.; 2005), further information can be found elsewhere (Heard et al., 2006).  228 

 229 

2.1.3 Black Carbon (BC) measurements 230 

 231 
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Aerosol absorption (and Black Carbon mass) was measured using both a McGee 232 

Scientific Aethalometer AE-16 and a Multi-Angle Absorption Photometer (MAAP) 233 

(Dall´Osto et al., 2010b). 234 

 235 

2.2 Laboratory and field studies  236 

 237 

In this study, we utilized previously published Saharan dust ATOFMS data from our 238 

laboratories (Dall´Osto et al., 2010a) for the presence of ON. The Sahara Sahel Dust 239 

Corridor (SSDC) is a huge zone lying between latitudes 12º N and 28º  N and running 240 

4000 km east-west from Chad to Mauritania (Moreno et al., 2006). During low wind 241 

conditions, four different samples of SSDC desert soil, road, and aeolian dusts were 242 

collected. A summary of the SSDC locations is discussed elsewhere (Moreno et al., 2006; 243 

Dall´Osto et al., 2010a). Briefly, three dust samples were taken from the Saharan region, 244 

and one from Algeria. Each dust sample was put into a flask in a sonicator, a suspension 245 

of dust particles under filtered lab air flow was created, and single particles mass spectra 246 

were obtained with the ATOFMS. About 1,000 single particle mass spectra were collected 247 

for each of the four dust samples.  248 

 249 

For this study, we also utilized ATOFMS datasets collected in two previous field studies. 250 

This gives the possibility to compare single particle mass spectra from airborne particles 251 

with those obtained from the Saharan dust particles analyzed in the laboratory. During 252 

August and September 2002 The North Atlantic Marine Boundary Layer Experiment 253 

(NAMBLEX) took place at Mace Head, Ireland (Heard et al., 2006). The Atmospheric 254 

Research Station at Mace Head allows westerly exposure to the North Atlantic ocean 255 

(clean sector, 180 degrees through west to 300 degrees) and the opportunity to study 256 

atmospheric composition under Northern Hemispheric background conditions. Also, within 257 

the Dust Outflow and Deposition to the Ocean (SOLAS-DODO)  project (McConnell et al. 258 

2008), an ATOFMS was deployed during a research cruise (P332) in the vicinity of the 259 

Cape Verde Islands (January-February 2006) on board the research vessel FS Poseidon 260 

as part of the UK-SOLAS programme. The study areas are summarized in Fig. 1:  261 

 262 
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 Fig 1, Sites A, B: Four samples of desert soil were collected from several regions of 263 

the Sahara-Sahel Dust Corridor during low wind conditions and analysed in a 264 

laboratory study (4,205 ATOFMS mass spectra, Dall’Osto et al. 2010a). 265 

 Fig 1, Site C: A cruise (research vessel FS Poseidon; P332, Winter 2006) within the 266 

Dust Outflow and Deposition to the Ocean (SOLAS-DODO), where an ATOFMS 267 

collected 187,205 ATOFMS single particle mass spectra (Rijkenberg et al. 2008).  268 

 Fig. 1, Site D: An ATOFMS operated at the Mace Head Atmospheric Research 269 

Station during the North Atlantic Marine Boundary Layer Experiment (NAMBLEX, 270 

Summer 2002) collecting 191,504 ATOFMS single particle mass spectra (Dall’Osto 271 

et al., 2004).  272 

 273 

 274 

2.3 Data analysis 275 

 276 

The ATOFMS data presented cover a large aerosol size range (100-3000 nm) at a high 277 

time resolution (1 hour) which were collected over a large area (Figure 1). ATOFMS single 278 

particle positive and negative mass spectra were imported into YAADA (Yet Another 279 

ATOFMS Data Analyzer, Song et al., 1999) and single-particle mass spectra were 280 

grouped with adaptive resonance theory neural network, ART-2a (learning rate 0.05, 281 

vigilance factor 0.85, and 20 iterations). Further details of the parameters can be found 282 

elsewhere (Dall´Osto and Harrison, 2006). Briefly, the ART-2a area matrix (AM)  of a 283 

single particle mass spectra represents the average intensity for each m/z for all particles 284 

within a group, reflecting the typical mass spectra of specific aerosol groups. 285 

Finally, air mass back trajectories of the air masses arriving at the different study areas 286 

were calculated at four arrival times for each day of the campaign (00:00, 06:00, 12:00 and 287 

18:00 UTC), depicting the path taken by the air mass reaching the sampling site over the 288 

previous five days. The back trajectories were run using the on-line HYSPLIT model 289 

developed by the National Oceanic and Atmospheric Administration (NOAA) (Draxler and 290 

Rolph, 2003).  291 

 292 

3. Results  293 

 294 
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The ART-2a algorithm generated a number of clusters used to describe the ATOFMS 295 

mass spectra. Most of the obtained particle types were associated with anthropogenic 296 

sources (fresh and aged combustion related aerosols), sea salt, ship emissions, 297 

secondary aerosol of inorganic nature, some of which were already discussed elsewhere 298 

(Dall’Osto et al., 2004; 2006, 2010a,b). Table 1 shows a summary of the previous results, 299 

and put it in context with the current specific ON analysis. Table 1 shows that Saharan 300 

dust particles and biological particles were detected in all the ATOFMS datasets 301 

presented. ATOFMS has already proved to be a good tool able to separate dust (mainly 302 

Ca-rich or Al-Si rich) and biological particles (Fergenson et al., 2004; Pratt et al., 2009). 303 

Briefly, biological mass spectral signatures can be differentiated from dust on the basis of 304 

abundant organic and phosphorus ions, as well as a lack of key dust markers, such as 305 

aluminium and silicates. Within the main objective of this work, the ATOFMS is a very 306 

sensitive instrument towards ON (m/z - 26 and m/z -42, due to [CN]- and [CNO]-, 307 

respectively), and many alkylamines (Angelino et al. 2001; Moffet et al. 2008; Pratt et al. 308 

2009; Healy et al., 2015; Dall´Osto et al., 2016).  309 

Figure 2 shows the positive  and negative ART-2a ATOFMS mass spectra of dust particles 310 

and PBAP detected at their source (Saharan dust particles collected in Africa; Fig. 2 a, b, 311 

respectively); during the SOLAS-DODO cruise around Cape Verde (Fig. 2 c, d, 312 

respectively) and during the NAMBLEX field study at Mace Head, Ireland (Fig. 2e, f, 313 

respectively).  It is clear that ATOFMS mass spectra of Saharan dust particles (Fig. 2 a, c, 314 

e) shows peaks due to most common ion species characteristic of crustal materials 315 

including aluminum (m/z 27 [Al]+), calcium (m/z 40 [Ca]+ and 56 [CaO]+), titanium (m/z 48 316 

[Ti]+and 64 [TiO]+), lithium (m/z 7 [Li]+) and iron (54 54[Fe]+ and 56 54[Fe]+).  Peaks for other 317 

metals such as sodium (m/z 23 [Na]+), magnesium (m/z 24 24[Mg]+, 25 25[Mg]+) and 318 

potassium (m/z 39 [K]+) can also be seen. In addition, other peaks for calcium (57 319 

[CaOH]+, 96 [Ca2O]+ and 113 [(CaO]2H]+) were detected but at low intensity. The negative 320 

particle mass spectra in Figure 2 (a, c, e) show ions from oxygen (m/z -16 16[O]-, -17 [OH]-321 

), chloride (m/z -35 35[Cl]-, -37 37[Cl]-), phosphate (m/z -63 [PO2]- and m/z -79 [PO3]-), a 322 

small abundance of -46 [NO2] – and -62 [NO3]-. It is important to note that in these Al/Si-323 

rich Saharan dust particles, peaks of of silicate at m/z -60 [SiO2]- and -76 [SiO3]- dominate 324 

the negative spectra. This is further discussed in Dall’Osto et al. (2004, 2010a), where 325 
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Al/Si-rich dust particles consistent with Saharan dusts which are dominated by SiO2 and 326 

Al2O3 (Goudie and Middleton, 2001) were observed. 327 

Few particles found in Saharan soil dust samples (<4%) were internally mixed with ON 328 

species. We have previously reported that both organic and organic nitrogen species were 329 

more commonly associated with Saharan dust particles collected in the source region 330 

relative to the atmospheric Saharan dust particles sampled during the two field studies 331 

(SOLAS-DODO and NAMBLEX, Dall´Osto et al. 2010a). It is possible that some of these 332 

ON components may be mineralized (a process by which organic N is converted to plant-333 

available inorganic forms) during atmospheric transport. This is supported by the 334 

observation that Saharan dust particles with shorter atmospheric residence, i.e. collected 335 

near the Cape Verde Islands (Fig 1, 2c, DODO experiment), showing increased internally 336 

mixed nitrate (possibly mineralized ON). In addition, this can be seen also in the Saharan 337 

dust particles with longer atmospheric residence times, i.e. collected on the coast of 338 

Ireland (Fig. 1, 2e, NAMBLEX experiment) showing also a very high degree of internally 339 

mixed secondary species including nitrate (m/z -46, see also Dall´Osto et al., 2010a).  340 

Overall, our studies suggest that fresh Saharan dust is not a major source of ON. It is 341 

important to stress that no clear peaks associated to alkylamines (Healy et al., 2015; 342 

Dall´Osto et al., 2016) were detected in any of the Saharan dust particle types (Fig. 2 a, c, 343 

e).  344 

With regard to biological particles, those were detected in all the datasets: the Saharan 345 

soil dust samples and the two ATOFMS ambient field studies (Table 1, Fig. 2). A strong 346 

peak at m/z 39 is usually seen in the positive mass spectra, whereas the negative 347 

spectrum is usually dominated by phosphate [PO2]- m/z -63 and [PO3]- m/z -79) and often 348 

also internally mixed with ON species (Pratt et al. 2009). Biological particles detected in 349 

Saharan dust samples and over the Tropical Ocean had a weak signal associated with ON 350 

and amines. Our results - showed in Fig. 2 - suggest that fresh PBAP are lacking in ON 351 

signal, both at their origin (dust samples collected in Africa) and after a few days of 352 

transport (Cape Verde region). By striking contrast, 19% of PBAP detected at Mace Head 353 

were internally mixed with ON compounds. By querying the ATOFMS NAMBLEX dataset, 354 

it was found that the majority (>99%) of the signal due to ON and amines species was 355 

associated with a specific PBAP type (Fig. 2 f), indicating that this is a major source of ON 356 

sampled over the North Atlantic. Additionally, strong peaks of alkylamines are seen in the 357 
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positive mass spectra, including m/z 58 [C2H5NH=CH2]+,  m/z 59 ([N(CH3)3]+ and m/z 86 358 

[(C2H5)2N=CH2]+ (Dall´Osto et al., 2016). The peak of m/z 74 and m/z 104 (potentially 359 

[C2H4NO2]+ and [C3H6NO3]+, respectively) were previously attributed to organic nitrogen 360 

peaks including alkylamines (Angelino et al., 2001). A previous study in the city of 361 

Barcelona (Spain) found that m/z 104 was found to be to be linked alkylamines of primary 362 

aerosol origin, whereas m/z 74 alkylamines of secondary aerosol origin (Dall´Osto et al., 363 

2016). This particle type (Fig. 2 f) presented an aerosol size distribution centred at about 364 

2µm, shifted towards an even larger modes than Al-Si Saharan particles (Dall’Osto et al. 365 

2004). An overview the differences in spectra for the PBAP NAMBLEX (aged transported 366 

PBAP) and its origin (PBAP Saharan region) or in the Tropical Ocean (PBAP DODO) can 367 

be seen in Figure 3, which show the subtraction spectrum for PBAP NAMBLEX minus 368 

PBAP DODO (Fig. 4a) and for PBAP NAMBLEX minus PBAP Saharan dust origin (Fig. 369 

4b). The positive ion spectrum for PBAP NAMBLEX is enhanced in organic nitrogen and 370 

alkylamines (m/z 59, 74, 86, 104), whilst the negative is enriched in nitrate peaks (m/z -46, 371 

-62) and organic nitrogen (m/z - 42). A representative ATOFMS single particle mass 372 

spectrum of the PBAP particle carrying ON (Fig. 2 f) is presented in Figure 4, showing a 373 

strong peak at m/z 39 likely to be due to potassium [K], and minor peaks at m/z 23 [Na] 374 

and m/z 56 [Fe] in the positive mass spectra. In the negative mass spectra, ON peaks are 375 

found at m/z -26 [CN] and m/z -42 [CNO], along with phosphate (m/z -63 and m/z -79) and 376 

methanesulfonic acid MSA (m/z -95). The mass spectrum has features that are generally 377 

attributed to vegetative debris (potassium-phosphate) except that it is internally mixed with 378 

ON species. Major ion peaks in the positive mass spectra at m/z 58, 59, 74, 86, and 104, 379 

118 and 154 are all consistent with ON ATOFMS mass spectra peaks detected in previous 380 

field and laboratory studies (Angelino et al. 2001, Moffet el al. 2008, Healy et al., 2015: 381 

Dall´Osto et al., 2016).  382 

In order to investigate the origin of the dominant PBAP associated with ON during 383 

NAMBLEX, we separated the field study sampling period accordingly to three main air 384 

mass categories (marine Tropical, marine Polar-Arctic and European continental Polar – 385 

mT, mP-mA and cP respectively, Dall’Osto et al. 2010b). We found - as expected - higher 386 

values of BC for cP air masses (209±197 ng m-3) relative to mT (51±23 ng m-3) and the 387 

very clean mP-mA ones (33±21 ng m-3) (Figure 4a). DMS concentrations - by contrast - 388 

were much higher for mT air masses (507±120 pptV) than for cP (105±110 pptV) and mP-389 
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mA (140±120 pptV) (Figure 4b). Other studies (Dall’Osto et al. 2010b, Bassford et al. 390 

1999) have also indicated that during mT air masses the vast majority of DMS and MSA 391 

observed at the Mace Head site had been transported significant distances from the mid 392 

tropical Atlantic. Figure 4c shows that biological particles were detected at about double 393 

the concentration (t-test, 95%, 1.31±1 and 2.67±2 respectively) for mT relative to cP air 394 

masses. This PBAP type was found in association with Al-Si particles detected in the 395 

same study and attributed to dust particles, mainly detected during mT air masses and to a 396 

lesser extent during cP air masses (Dall’Osto et al 2004, 2010a, Figure 3d). An increase in 397 

microbial concentrations during dust storms has previously been reported and can be two 398 

orders of magnitude higher than under non-dusty conditions (Hara and Zhang 2012, 399 

Yamaguchi et al 2014, Mazar et al. 2016). In conclusion, the PBAP associated with ON 400 

were likely transported to the North Atlantic together with dust events, which may have 401 

originated in the Sahara-Sahel region and travelled over the Tropical Ocean. During their 402 

atmospheric travel time, the PBAP injected with dust events, seem to first be low in ON as 403 

we observed during the SOLAS-DODO measurements and then get enriched with ON with 404 

atmospheric transport as we observed during the NAMBLEX measurements. 405 

 406 

4. Discussion and Conclusion  407 

 408 

The first conclusion of this study is that (within the 0.2-3µm size) the ON aerosol 409 

concentrations reported over the Tropical Ocean - at least during the study period - are 410 

likely to be contained within the terrestrial PBAP travelling in association with Saharan dust 411 

and not with the dust particle themselves. Saharan dust is also not found to be enhanced 412 

in ON species when detected over the North Atlantic. Overall, our single particle mass 413 

spectrometry measurements collected at high time resolution over a large geographical 414 

area, suggest that Saharan dust particles are not rich in ON, either at their origin, or in the 415 

Cape Verde region. The second conclusion of this study is that the PBAP that are injected 416 

into the atmosphere together with dust events are the aerosol particles that contain ON 417 

compounds. Furthermore, it appears that these biological particles get enriched in ON 418 

species during their atmospheric residence. The low associated BC concentrations make 419 

an anthropogenic influence unlikely.  420 
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Previous ATOFMS studies discovered existence of different ON groups (alkylamines, 421 

proteins, amino acids etc.) in aerosols and reported their involvement in atmospheric 422 

processes, including indoor tobacco smoke (Dall’Osto et al., 2007), cloud/fog processing 423 

(Rehbein et al., 2011), primary traffic pollution (Angelino et al., 2001; Dall´Osto et al., 424 

2016), non-salt organic aerosol products through reaction with oxidizing agents (Murphy et 425 

al., 2007, Pratt et al., 2009) and marine aerosol reactions (Dall´Osto et al., 2012; Healy et 426 

al., 2015). However, it is important to note that - in this study - ON was found internally 427 

mixed with biological particles and externally mixed with other aerosols, therefore we can 428 

conclude that ON is not formed by condensation of secondary semi-volatile organic 429 

nitrogen species as these compounds would condense on the whole aerosol population.  430 

  431 

An explanation for the ON enrichment of the aging PBAP can only be speculative at this 432 

stage. Previous studies have demonstrated that viable airborne micro-organisms present 433 

in the atmosphere can contribute to atmospheric chemistry through degradation 434 

processes, as well as chemical change due to the release or desorption of molecules from 435 

microbiological entities (Deguillaume et al. 2008; Cote et al., 2008). Airborne metabolically 436 

active microorganisms, for example fungal and bacterial cells, can transform chemical 437 

constituents of the atmosphere by metabolic activity and have been implicated in the 438 

nitrogen and carbon cycling in clouds (Hill et al. 2007, Cote et al 2008, Vaïtilingom et al 439 

2013, Krumnis et al. 2014, Amato et al 2017, Šantl-Temkiv et al 2018). Nitrogen can be 440 

microbially incorporated into organic compounds through the processes of fixation and 441 

assimilation. Different prokaryotes - including Cyanobacteria - which are commonly found 442 

in the atmosphere (reviewed in Genitsaris et al. 2011), are capable of nitrogen fixation and 443 

can convert atmospheric nitrogen into biologically accessible ammonia. Assimilation of 444 

inorganic nitrogen is performed by diverse bacteria and fungi, who can convert nitrate and 445 

ammonia into different forms of ON. It is not known at this stage if the association of ON 446 

with aging biological particles is due to the metabolic activity of microorganisms externally 447 

mixed with Saharan dust plumes, which have travelled to the North Atlantic region. The 448 

long distance transport of microorganisms with dust particles has been shown to 449 

negatively affect the viability of microbial cells as <40% of all bacterial cells were found 450 

viable compared to >70% of non-dust-associated cells (Hara and Zhang 2012). Despite 451 

this, the absolute number of viable microorganisms travelling with dust storms remained 452 
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high. It may be that these viable microbial cells may maintain their metabolic activity and 453 

affect the atmospheric nitrogen cycle. Further multidisciplinary studies on the impact of 454 

airborne micro-organisms and possible chemical mechanisms are recommended to 455 

underpin these findings.   456 

 457 

Another possible explanation is that the biological particles enriched in ON have a marine 458 

origin. However, we detected such biological particles mainly during dust events. Usually, 459 

concentration of bacteria over the sea are much lower than over land, and higher 460 

concentrations of aerosolized microorganisms during dust events relative to clean 461 

background marine conditions are normally observed (Kellog and Griffin 2006, Prospero et 462 

al., 2005; Griffin et al., 2006). Furthermore, the ATOFMS mass spectra of ocean-derived 463 

particle types are enriched in elements (mainly Na and Mg, Gaston et al., 2011) not found 464 

in the biological particles reported in this study.  465 

 466 

 467 

 468 

 469 

In conclusion, using on-line single particle aerosol mass spectrometry, we show that fresh 470 

and aged Saharan dust aerosols are not a major source of ON. Furthermore, we find that 471 

biological particles – likely of terrestrial origin – are enriched in ON during atmospheric 472 

transport. We hypothesize that microbial processes may generate ON through nitrogen 473 

fixation and assimilation during the atmospheric residence of microbial cells, which results 474 

in an enrichment of ON compounds within the cell. Coarser particles possess higher dry 475 

deposition rates and such microorganisms internally mixed with ON may be an important 476 

source of nitrogen, which is an essential nutrient in North Atlantic Ocean marine 477 

ecosystems. González Benítez et al. (2009) found that dry deposition of particles was the 478 

main contributor of N-containing species in bulk rain samples, which were not strongly 479 

associated with either combustion or agricultural sources alone (González Benítez et al. 480 

2010). Our data do not rule out a suggestion that SOA production of amines is important 481 

for the marine atmosphere when considering the fine particle mode (Facchini et al. 2008, 482 

Muller et al. 2009), but we propose an additional source for the total ON concentrations in 483 
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the coarse aerosols mode that has a natural origin. Further studies are needed in order to 484 

validate the event reported in this study.  485 

 486 

 487 
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Table 1. ATOFMS particle clusters identified from the Saharan dust soil samples and from 906 

the NAMBLEX and DODO ambient field studies. 907 

 908 

Figure 1 Map of sampling locations: (A-B) shows the Saharan dust samples locations; Air 909 

mass arriving at Cape Verde (C) are for of a 5-day air mass back trajectory at mid-day at 910 

500 m above the position of the ship during the dust event on 4 Feb 2006, (D) an marine 911 

Tropical (mT) air mass arriving at Mace Head (Ireland) at 12:00 LT on 8 December 2002 912 

(Dall’Osto et al. 2004, Rijkenberg el al. 2008, Dall’Osto et al. 2010b). Aerosol transport 913 

time between point C and D was estimated to be 3-4 days from air mass trajectories 914 

analysis. Green and orange circles shows Saharan dust particles (Dust, orange) and 915 

primary biological aerosol particles (Bio, green). In point (D) these are enriched - with 916 

transport - in secondary organic aerosols (SOA, Dall´Osto et al., 2010a) and in Organic 917 

Nitrogen (ON, this study).  918 

 919 

Figure 2 Positive (+) and negative (-) ART-2a ATOFMS mass spectra of Saharan dust 920 

particles and PBAP detected during Saharan origin (a, b, respectively); SOLAS-DODO 921 

cruise around Cape Verde (c, d, respectively) and NAMBLEX at Mace Head (e, f, 922 

respectively).   923 

 924 

Figure 3 Positive (+) and negative (-) ART-2a ATOFMS mass spectra for PBAP 925 

NAMBLEX minus PBAP DODO (a) and PBAP NAMBLEX minus PBAP Saharan origin (b). 926 

Peaks below the horizontal line represents components less abundant in the NAMBLEX 927 

than the DODO/Origin; above the line are those with greater abundance.  928 

 929 

Figure 4. Single particle positive and negative mass spectra of a single particle (2.3 µm) 930 

sampled during the NAMBLEX field study 931 

 932 

Figure 5: (a) Black Carbon (Aethalometer AE16) concentrations (ng m-3) (b) DMS 933 

concentrations (pptV), (c-d) ATOFMS counts for K-P-ON (biological particles) and Dust 934 

(Saharan Dust) for cP (European continental Polar), mT (marine Tropical) and mP-mA 935 

(marine Polar-Arctic ) air masses (respectively); the three main air mass categories are 936 

further described in Dall´Osto et al., (2010b). ATOFMS counts are average counts per 937 

hour under mT and cP air masses (47 and 176 hours, respectively; total K-P-ON ATOFMS 938 

spectra 130 and 230, respectively). 939 
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Figure 1. Map of sampling locations: (A-B) shows the Saharan dust samples locations; Air 988 

mass arriving at Cape Verde (C) are for of a 5-day air mass back trajectory at mid-day at 989 

500 m above the position of the ship during the dust event on 4 Feb 2006, (D) an marine 990 

Tropical (mT) air mass arriving at Mace Head (Ireland) at 12:00 LT on 8 December 2002 991 

(Dall’Osto et al. 2004, Rijkenberg el al. 2008, Dall’Osto et al. 2010b). Aerosol transport 992 

time between point C and D was estimated to be 3-4 days from air mass trajectories 993 

analysis. Green and orange circles shows Saharan dust particles (Dust, orange) and 994 

primary biological aerosol particles (Bio, green). In point (D) these are enriched - with 995 

transport - in secondary organic aerosols (SOA, Dall´Osto et al., 2010a) and in Organic 996 

Nitrogen (ON, this study).  997 
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 1025 

Figure 2 Positive (+) and negative (-) ART-2a ATOFMS mass spectra of Saharan dust 1026 

particles and PBAP detected during Saharan origin (a, b, respectively); SOLAS-DODO 1027 

cruise around Cape Verde (c, d, respectively) and NAMBLEX at Mace Head (e, f, 1028 

respectively).   1029 
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(b) PBAP NAMBLEX - PBAP Saharan dust origin
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Figure 3 Positive (+) and negative (-) ART-2a ATOFMS mass spectra for PBAP 1043 

NAMBLEX minus PBAP DODO (a) and PBAP NAMBLEX minus PBAP Saharan origin (b). 1044 

Peaks below the horizontal line represents components less abundant in the NAMBLEX 1045 

than the DODO/Origin; above the line are those with greater abundance.  1046 
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Figure 4. Single particle positive and negative mass spectra of a single particle (2.3 µm) 1061 

sampled during the NAMBLEX field study 1062 
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Figure 5: (a) Black Carbon (Aethalometer AE16) concentrations (ng m-3) (b) DMS 1083 

concentrations (pptV), (c-d) ATOFMS counts for K-P-ON (biological particles) and Dust 1084 

(Saharan Dust) for cP (European continental Polar), mT (marine Tropical) and mP-mA 1085 

(marine Polar-Arctic ) air masses (respectively); the three main air mass categories are 1086 

further described in Dall´Osto et al., (2010b). ATOFMS counts are average counts per 1087 

hour under mT and cP air masses (47 and 176 hours, respectively; total K-P-ON ATOFMS 1088 

spectra 130 and 230, respectively). 1089 
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