Investigation of inactive state κ opioid receptor homodimerization via single molecule microscopy using new antagonistic fluorescent probes
Drakopoulos, Antonios; Koszegi, Zsombor; Lanoiselee, Yann; Hubner, Harald; Gmeiner, Peter; Calebiro, Davide; Decker, Michael

DOI:
10.1021/acs.jmedchem.9b02011

License:
None: All rights reserved

Citation for published version (Harvard):
Investigation of inactive state κ opioid receptor homodimerization via single molecule microscopy using new antagonistic fluorescent probes

Antonios Drakopoulos+, Zsombor Koszegi#, Yann Lanoiselée§, Harald Hübner§, Peter Gmeiner§, Davide Calebiro*,#, Michael Decker*+.

+: Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany

#: Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, United Kingdom

§: Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany

KEYWORDS: fluorescent probe, 5’-guanidinonaltrindole, TIRF, Single Molecule Microscopy, GPCR.
ABSTRACT: Opioid receptors (ORs) are among the best studied G protein-coupled receptors (GPCRs) due to their involvement in neurological disorders and important role in pain treatment. Contrary to the classical monomeric model, indirect evidence suggests that ORs might form dimers, which could be endowed with a distinct pharmacological profile, and, thus, be targeted to develop innovative pharmacological therapies. However, direct evidence for the spontaneous formation of OR dimers in living cells under physiological conditions is missing. Despite a growing interest in the kappa opioid receptor (KOR), KOR-selective fluorescent probes are particularly scarce in literature. Herein, we present the first set of fluorescent KOR-selective probes with antagonistic properties. Two of these were employed in single molecule microscopy (SMM) experiments to investigate KOR homodimerization, localization and trafficking. Our findings indicate that most KORs labelled with the new fluorescent probes are present as apparently freely diffusing monomers on the surface of a simple cell model.

Introduction

Opioid drugs remain, in spite of severe side effects such as respiratory depression and addiction, among the most commonly prescribed pain relievers and broad-spectrum analgesics due to their clinical efficacy.1–6 Opioids produce their pharmacological actions by binding to specific receptors located at the surface of neurons. Opioid receptors (ORs)7 are divided in three classical subtypes (MOR, DOR, KOR), and a non-classical nociception receptor subtype (NOR), the structures of which were recently elucidated through crystallography.8–11

Recent work has identified KOR as a novel promising target for pain alleviation with a lower potential of abuse than MOR.12,13 KORs are primarily expressed in the CNS, particularly in areas of the brain that are responsible for regulating reward, mood, and cognitive functions (e.g. dysphoria and sedation). Furthermore, they participate in analgesia, respiratory depression and
dyspnea, and they can also be found in the periphery. As a result, efforts to selectively target the KOR have been made with the goal of treating neurological disorders. Above all, antagonists selectively targeting the KOR have been reported to be effective in the treatment of depression, psychosis, schizophrenia, addiction and anxiety.

Although the classical viewpoint on GPCRs was that they function as single units, more recent evidence indicates that at least some receptors might form homo-/hetero-dimers or even oligomers. In the case of opioid receptors, there is indirect evidence that they might form dimers or higher order oligomers among themselves as well as with non-opioid receptors. Interestingly, KOR has been reported to crystallize in a parallel homodimeric form when bound to the antagonist JDTic and to the agonist MP1104, however it is not clear whether this dimerization reflects a physiological organization or is an artifact caused by crystallization. In addition, studies focusing on KOR heteromerization with the other OR subtypes (KOR-MOR, KOR-DOR, KOR-NOR) have been conducted, the majority of which suggest the possibility of heterodimer formation. A number of bivalent ligands designed to target KOR heteromers has been synthesized. Furthermore, two monovalent KOR heteromer-selective ligands have been reported; 6’-guanidinonaltrindole (6’-GNTI) on the KOR-DOR dimer and N-naphthoyl-β-naltrexamine (NNTA) on the KOR-MOR dimer. Still, the occurrence and functional consequences of OR oligomerization in living cells remain largely unexplored and controversial due to lack of direct methods to observe dimers and the complexity of opioid pharmacology.

The recent introduction of innovative microscopy methods to investigate GPCRs in living cells with high spatio-temporal resolution has led to important findings on their organization, signaling and dynamics on the surface of living cells. Within this field, the development of
novel fluorescent probes to label wild-type receptors is of high importance.47–54 However, studies on developing KOR selective fluorescent probes have been particularly scarce. Most available probes are non-selective derivatives of wide-spectrum OR antagonists like naloxone or β-naltrexamine.55–58 The very few high-affinity KOR fluorescent ligands available have been identified serendipitously by screening of compounds originally designed to target other OR subtypes.59 To our knowledge, the only highly selective KOR fluorescent probes reported in the literature so far are analogues of the arylacetamide agonist ICI-199,44160–62 and a set of fluorescent peptide probes that behave as partial agonists.63 A KOR selective fluorescent probe with antagonistic properties, as well as a selective morphinane-based probe are currently missing. The development of such probes would be very useful to investigate the inactive state of the KOR receptor both in vitro and in vivo.

Herein, we present the synthesis, biological evaluation, and application of five fluorescent probes with high KOR affinity, based on the high affinity and selective opioid antagonist 5’-guanidinonaltrindole (5’-GNTI). After exploring their pharmacology, optical properties and dissociation kinetics, a suitable pair of these probes was used in single molecule microscopy (SMM) experiments to study spontaneous homodimerization of inactive KORs at low/physiological expression levels. Spontaneous organization of KORs in dimers, even in the non-active state, could suggest the existence of a functional unit with a potentially different pharmacologic profile than KOR monomers. Therefore, elucidating KOR homodimerization in living cells may ultimately lead to the design of new opioid drugs with higher selectivity, less side effects and more favorable pharmacological profile altogether.

5’-GNTI has been used in opioid research as a standard pharmacological tool. Its pharmacological properties have been extensively studied both in vitro64–67 and in vivo,68–72 as
well as its pharmacokinetic profile.73,74 5'-GNTI has a subnanomolar affinity for the KOR with good selectivity against MOR and DOR. Functionally, it shows low inverse agonist properties towards G protein activation.67 Although the compound is highly water-soluble, it exhibits a slow onset and long duration of action, in addition to antidepressant-like behavioral effects and allodynia in animal models.64,68–74 Not only have its structure-activity relationships (SARs) and binding mode been thoroughly investigated,10,64,66,75,76 5'-GNTI has also been successfully used as a KOR pharmacophore in the bivalent ligands KDN-2133–35 and KMN-2136. These studies provide valuable insights into the optimal position for implementing a linker moiety on 5'-GNTI, without causing affinity and selectivity loss. Furthermore, information on optimal linker length and its chemical nature can also be extracted.

The selection of a suitable fluorescent dye is crucial for fluorescent ligand design. The cyanine dyes Cy5 (excitation wavelength: 647 nm) and Cy3 (excitation wavelength: 555 nm) are excellent candidates for probe design, exhibiting a non-toxic profile, pH insensitivity and photostability.77–79 Furthermore, Cy5 has been successfully used in recently developed opioid fluorescent probes that have been successfully used both \textit{in vitro} and \textit{in vivo}.47,48,59,80–82

\section*{Results}

\section*{Chemistry}
Scheme 1: Synthesis of 5'-GNTI coupled to fluorescent dyes Cy5 (9a) and Cy3 (9b), respectively, via an alkylene linker. Reaction conditions: i. Fmoc-NCS / CH₂Cl₂; ii. 4-Nitrophenylhydrazine HCl / HCl / AcOH; iii. Ra-Ni / H₂NNH₂ / EtOH; iv. 5 / HgCl₂ / DIPEA /
DMF; v. HCl / MeOH / EtOH; vi. a) Cy5-NHS or Cy3-NHS / DIPEA / DMF; b) Piperidine 6% / DMF

In previous studies33–36 it had been shown that the implementation of a linker on the guanidinyl NH leads to molecules which can retain affinity, antagonistic activity and selectivity for the KOR. Inspired by these studies, and also by investigations highlighting the contribution of the linker’s length and physicochemical properties in avoiding non-specific binding and preserving the pharmacological profile of the prototype ligand,60,61,83–85 we designed three sets of fluorescent probes: a) compounds \textit{9a} and \textit{9b}, which bear a 11-bond aliphatic linker (Scheme 1); b) compound \textit{13}, which bears a 17-bond linker with the incorporation of a diglycine moiety (Scheme 2); c) compounds \textit{17a} and \textit{17b}, which bears a 23-bond linker with the incorporation of a tetraglycine moiety (Scheme 2).
Scheme 2: Synthesis of 5’-GNTI coupled to fluorescent dyes Cy5 (17a and 13) and Cy3 (17b), respectively, via diglycine and tetraglycine containing linkers. Reaction conditions: i. N-Boc-Gly2 / EDCI / HOBT / DIPEA / DMF; ii. TFA 5% / CH2Cl2; iii. a) Cy5-NHS or Cy3-NHS / DIPEA / DMF; b) Piperidine 6% / DMF

Regarding their synthesis, an orthogonal approach was necessary in order to simultaneously accommodate the selective protection of primary amines and the protection of the guanidinyl NH throughout the synthetic scheme. Thus, Fmoc and Boc protective groups were selected for the
guanidinyl NH and the primary amines respectively. This is because the former are cleaved primarily in basic conditions (in presence of secondary amines), while the latter under acidic conditions.

5’-Nitronaltrindole 2 was synthesized from naltrexone via Fischer indole synthesis and underwent a Raney nickel catalyzed reduction to yield 5’-aminonaltrindole 3 (Scheme 1), as previously described. The dual protected thiourea intermediate 5 was synthesized in quantitative yield from Fmoc-isothiocyanate and N-Boc-ethylenediamine 4 (Scheme 1) based on the protocol of Linton et al. The diprotected guanidine compound 6 was formed using a mercury(II) chloride-assisted coupling reaction (Scheme 1), based on reported protocols. The Boc group was subsequently cleaved with an alcoholic HCl solution, and the resulting salt 7 was then coupled with Cy5 N-hydroxysuccinimide ester forming the Fmoc protected fluorescent ligand 8 (Scheme 1). One flask Fmoc deprotection took place by addition of piperidine (i.e. piperidine was added to the reaction mixture after completion of the coupling reaction), leading to the target compound. The purification of all target compounds was performed by reverse phase flash chromatography and reverse phase semi-preparative HPLC. For target compound 9a in particular, purification via semi-prep RP-HPLC was performed before Fmoc cleavage, at the stage of compound 8, as a first approach. Compound 8 was then deprotected with 6% piperidine and was purified again via semi-prep RP-HPLC. Further trialing confirmed that the deprotection step could be conducted in a one flask manner, thus this approach was favored henceforth.

Compound 7 was further used for the synthesis of the diglycine and tetruglycine analogues, after EDCI/HOBt coupling with N-Boc-diglycine (Scheme 2). Compound 10 underwent Boc cleavage using trifluoroacetic acid (TFA), and the salt produced (11) then reacted with Cy5 N-
hydroxysuccinimide ester towards target compound 13 after Fmoc deprotection (Scheme 2), as described above. Boc deprotection as performed in a previous stage using HCl in alcohols yielded a hydrochloric salt, which is solid and easy to handle (Scheme 1). In this stage however, the alcoholic solvent in combination with the lengthy reaction time necessary for quantitative Boc deprotection and acidic conditions caused glycine cleavage as well. Therefore, after coupling with glycine moieties, the Boc deprotection method was switched to a rapid, anhydrous TFA in dry dichloromethane protocol (Scheme 2) to avoid byproduct formation; the film-like texture of the resulting TFA salts being a minor disadvantage though.

The diglycine TFA salt intermediate 11 was coupled with N-Boc-diglycine forming the diprotected tetruglycine compound 14, which is then subjected to the aforementioned synthetic steps (i.e. Boc deprotection, Cy5-NHS coupling, Fmoc deprotection) to yield target compounds 17a and 17b (Scheme 2). It is noteworthy to mention that intermediates 10 and 14 suffered from poor solubility in organic solvents, probably due to their high polarity. Thus, extensive workup with high volumes of chloroform/methanol mixtures was needed.

An alternative synthetic pathway was trialed for the tetruglycine compounds by reacting intermediate 7 with N-Cbz-tetruglycine. Due to the poor solubility of the latter, the EDCI/HOBt coupling reaction was applied in dimethyl formamide (DMF) medium as well as in pyridine medium. The combination of lower yields, partial Fmoc deprotection due to the presence of pyridine, and hardship on the following Cbz deprotection rendered the latter synthetic route unfavorable though.

Pharmacology

Affinity measurements via radioligand binding were performed using membrane preparations from HEK293T cells (cf. Supporting Information). The resulting K_i values showed the
development of higher levels of KOR selectivity with incorporation of glycine moieties (Table 1); however this was not proportional to the linker length. Concentration-binding relationships at the KOR were measured also using total internal reflection fluorescence (TIRF) microscopy for compounds 9a, 9b and 17a in transiently transfected CHO cells (cf. Supporting Information). The resulting K_d values were 9.5 ± 1.3 nM, 18.8 ± 13.4 nM and 4.8 ± 2.8 nM, respectively, similar to those obtained in the radioligand binding assays. All compounds exhibited very good optical properties, high signal-noise ratio and low unspecific binding.

Table 1: Radioligand binding studies

<table>
<thead>
<tr>
<th></th>
<th>Kᵢ (nM)</th>
<th>Kᵢ (nM)</th>
<th>Kᵢ (nM)</th>
<th>DOR/KOR</th>
<th>MOR/KOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>9b</td>
<td>8.6 ± 1.4</td>
<td>31 ± 4</td>
<td>380 ± 111</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>9a</td>
<td>1.4 ± 0.8</td>
<td>39 ± 16</td>
<td>40 ± 6</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>1.1 ± 0.1</td>
<td>106 ± 15</td>
<td>100 ± 34</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>17a</td>
<td>1.8 ± 0.4</td>
<td>193 ± 29</td>
<td>133 ± 14</td>
<td>107</td>
<td>74</td>
</tr>
<tr>
<td>17b</td>
<td>3.2 ± 0.8</td>
<td>280 ± 62</td>
<td>110 ± 14</td>
<td>88</td>
<td>34</td>
</tr>
</tbody>
</table>

OR subtype-specific binding affinities were measured using the radioligand [³H]diprenorphine and membrane preparations from HEK293T cells transiently transfected with MOR, DOR, KOR, respectively. Non-specific binding was determined in the presence of naloxone at a final concentration of 10 µM.

For imaging applications, fluorescent probes with slow dissociation kinetics are preferable, as this allows washing out unbound probes and retaining a high degree of labeling during imaging.
Therefore, we measured the dissociation of compounds 9a, 13 and 17a from KOR by TIRF microscopy. In all cases, above 90% of the probes remained bound to the receptors at the end of a 20-min wash with cell culture medium (Figure 1). This is indicative of particularly slow dissociation kinetics, which make the probes ideal for SMM and other imaging applications.

![Wash resistance graph](image)

Figure 1: Normalized fluorescence intensity plotted over time and fitted with a one phase exponential decay function. Each data point is the average of three independent experiments ± S.E.M.

Intrinsic activity measurements of the probes were conducted in order to verify whether they retained the pharmacological profile of the parent compound. Receptor activation mediated by G protein signaling was determined via applying the IP-One HTRF® assay (Cisbio, Codolet, France) under co-transfection of the appropriate opioid receptor and the hybrid G protein Gαqi, a Gαq protein with the last five C-terminal amino acids replaced by the corresponding sequence of Gαi. Furthermore, β-arrestin-2 recruitment was measured via the PathHunter® assay (DiscoverX, Birmingham, U.K.); in both assays, dynorphin A was used as a reference KOR agonist (cf. Supporting Information).
Figure 2: Accumulation of inositol monophosphate normalized to the maximum effect of dynorphine A, plotted against compound concentration ± SEM (cf. Supporting Information for single curve graphs).

Figure 3: Recruitment of β-arrestin-2 normalized to the maximum effect of dynorphine A, plotted against compound concentration ± SEM (cf. Supporting Information for single curve graphs).

The resulting curves show that all probes apart from compounds 9a and 9b are very weakly inverse agonists for G protein activation (Figure 2); while all probes are very weakly partial agonist for β-arrestin-2 recruitment (Figure 3) (cf. Supporting Information).
Single Molecule Microscopy

Figure 4: Single-molecule imaging of KORs labelled with 9b in CHO cells transiently transfected with wild-type KOR and treated with 100 nM 9b for 20 min, followed by a rapid washing step. A representative cell is shown (left). The blue circles indicate all automatically detected particles of the same cell (middle). Representative trajectories are shown (right). Scale bar: 2 μm

Fluorescent probes 9a and 9b were selected for SMM experiments in CHO cells transiently transfected with human KOR. This pair of probes was preferred over 17a, 17b, since the slightly reverse agonist profile of the latter might potentially hamper receptor oligomerization. The applied transfection protocol was designed to achieve low/physiological receptor densities on the cell surface (cf. Supporting Information). The cells were incubated with saturating concentrations of the fluorescent probes (9a - 10 nM; 9b - 100 nM), rapidly washed, and immediately imaged by TIRF microscopy. The acquired movies were analysed with an automated single particle detection and tracking algorithm in MATLAB environment (Figure 4), and further investigated using custom algorithms, as previously described.47,48,91,92
Figure 5: Representative trajectories (presented to the left) and TA-MSD vs time plots (presented to the right) of the four subtypes of motion present: immobile, sub-diffusive, diffusive and super-diffusive motion, derived from one-color SMM measurements using compound 9b. Each plot line corresponds to the TA-MSD of a single particle over time. The trajectories of some representative particles for each motion subtype are presented on the left of the corresponding plot.

Figure 6: Distribution of labelled receptors in terms of generalized diffusion coefficient ($\log D$) and anomalous diffusion exponent (α), derived from one-color SMM measurements using compound 9b.
A time-averaged mean-squared displacement analysis (TA-MSD) was performed to characterize the movements of KOR labelled with 9b in the cell membrane (Figure 5). Single-molecule trajectories were classified into four different groups, based on both their generalized diffusion coefficient (D), and their anomalous diffusion exponent (α). The analysis (Figure 6) showed that approximately 16% of the receptors were immobile, 25% were confined (sub-diffusion), 51% followed normal Brownian diffusion, and 8% had directional motion (super-diffusion).

To investigate whether KORs form dimers at physiological expression levels, two-colour single-molecule experiments were performed. In order to estimate the frequency and duration of the receptor-receptor interactions, a control (CD86-SNAP) was introduced. CD86 is an unrelated transmembrane protein, which is not expected to interact with KOR. CD86 was labelled with silicon rhodamine (SiR) via a SNAP tag fused at its N terminus.46–48

![Figure 7: Deconvolved co-localisation of KOR receptors in two-colour SMM over time averaged over 34 individual cells (18 for CD86). The curve corresponding to true interactions is very close to the negative control, indicating the lack of detectable transient dimerization](image-url)
First, the distribution of the co-localization times between KOR-9a and KOR-9b was measured. Then, by measuring the co-localization times between KOR-9b and CD86-SNAP molecules, we were able to determine the expected distribution of random co-localizations. The frequency and duration of receptor-receptor interactions were then estimated by deconvolution of the KOR-9a and KOR-9b co-localization times with those obtained with KOR-9b and CD86-SNAP as previously described.47,48,92 The deconvolved co-localization times of KOR-9a with KOR-9b were virtually superimposable to those obtained with the control CD86-SNAP (Figure 7). These data suggest that KORs bound to 9a and 9b ligands either do not undergo significant dimerization under our experimental conditions, or the interactions are so short-lived (< 100 ms), that they cannot be detected by our method.

Discussion

The new fluorescent KOR compounds developed in this study exhibit low nanomolar affinity for the KOR (Table 1), which renders them amongst the most potent fluorescent ligands for this receptor subtype. The crucial role of linker length and composition was once more affirmed. Furthermore, the new fluorescent compounds display very good optical properties, very low unspecific binding and slow dissociation kinetics (Figure 1). As shown in the intrinsic activity assay, the compounds retain antagonistic properties (Figure 2). The SAR derived from our results (Figure 2) suggests that a shift towards G protein inverse agonism is observed with longer, peptide-extended linkers when compared to the shorter hydrocarbon linker found in compounds 9a and 9b. Inverse agonism was only very weak for all compounds tested, so that they essentially behave like neutral antagonists. At the same time, all the aforementioned
substitution patterns slightly promote β-arrrestin-2 recruitment (Figure 3). KOR selectivity over
the other ORs was observed, reaching approximately 100-fold for ligands 13 and 17a (Table 1).
The combination of all above features makes these probes valuable candidates for imaging
KORs by single-molecule microscopy and other imaging methods.

Investigating potential KOR homodimerization in an inactive state at the single molecule
level is relevant, because if a significant proportion of KORs on the cell surface is organized in
dimers, this could have important implications for the screening and pharmacological profiling
of KOR ligands. Past studies on KOR homodimerization have suggested that KOR might be
constitutively organized as a dimer on the cell surface.26,29,30 Interestingly, Ramsay et al. reported
that binding to 5'-GNTI did not affect this KOR homodimeric organization.30 However, these
studies were conducted using ensemble fluorescent methods (BRET, confocal microscopy) and
biochemical methods (Western blot, co-immunoprecipitation). These methods typically rely on
receptor overexpression, which can artificially bring receptors in close proximity due to
crowding. Furthermore, the ORs in the aforementioned studies were labelled with large protein
tags (GFP, YFP, Luciferase), which were inserted in the sequences of human ORs. Although this
did not affect OR functionality, the presence of large protein covalent tags might affect OR
dimerization and/or trafficking.

The aforementioned studies, alongside KOR crystallization (conducted under non-
physiological conditions though) and computational modelling,94–97 suggested that KORs may
have the capacity to oligomerize. However, the question remained as whether this occurs at
physiological expression levels on the membrane of living cells. Using a similar SMM approach,
we most recently showed that a small, but consistent fraction (4-5%) of MOR bound to a
fluorescent ligand undergoes transient dimer formation lasting approximately 1-2 seconds in
low/physiological receptor density.47,48 However, our current investigation, studying wild-type KOR expressed at low/physiological levels by single-molecule microscopy, did not detect a relevant fraction of long lasting (>100 ms) KOR dimers on the surface of living cells (Figure 7). Thus, our results do not support a model in which KOR form stable dimers that do not dissociate upon antagonist ligand binding.

Conclusion

We present herein the design, synthesis and biological testing of the first antagonistic and morphinane-based selective fluorescent probes for the KOR. These newly synthesized ligands exhibit high affinity for the KOR and excellent photophysical properties, and appear therefore ideal for advanced imaging applications, such as single-molecule microscopy. We exemplarily used probes 9a and 9b to study KOR kinetics, localization and homodimerization on a transfected cell line by single-molecule microscopy. These probes could be applied both \textit{in vitro} and in native tissues to further investigate fundamental aspects of KORs such as their homo- and heteromerization. In addition, these probes could be tested against the adrenergic receptor, for which $5'$-GNTI has been reported to show properties of a positive allosteric enhancer.74

EXPERIMENTAL SECTION

Materials & Methods

Cy3 NHS ester dye and Cy5 NHS Na+ ester dye were purchased from Click Chemistry Tools. Naltrexone was purchased from Carbosynth. All other chemicals and solvents were purchased from Sigma Aldrich. The thin-layer chromatography for reaction-control was performed on
coated plates (Silica Gel 60 F254). The substances were either visualized by their fluorescence, when irradiated with UV-light (256 nm), by spray-reagents (Dragendorff’s reagent, Ehrlich’s reagent) or by iodine coloring. Silica gel with a grain size of 0.063 - 0.2 mm (company Merck, Darmstadt, Germany) was used for the manual column chromatography. The columns were packed wet. The composition of the eluents is indicated in percentage by volume.

General Procedures

NMR spectra were recorded at room temperature on a Bruker AV 400 FT-NMR-Spectrometer (company Bruker Biospin, Karlsruhe, Germany) (1H: 400 MHz, 13C: 100 MHz). The residual protons and the 13C-resonance signals of the deuterated solvents were used as internal standard. The chemical shifts δ were indicated in [ppm] and the coupling constants in [Hz]. The signal multiplicities were abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet. Analytical HPLC was performed on a Shimadzu LC20AB system equipped with a DGU-20A3R controller, and a SPD-20A UV/Vis detector. Stationary phase was a Synergi 4u Fusion-RP (150×4.6 mm) column. Gradient MeOH/water + 0.1% formic acid (phase A/ phase B) were used as mobile phase (cf. Supporting Information for gradient system methods). For analytical HPLC a flow rate of 1 mL/min was used. ESI-MS spectral data were acquired on a Shimadzu LCMS-2020 single quadrupole LC-MS (Shimadzu Europe, Duisburg, Germany). A flash column system PuriFlash 430 by Interchim was used in the purification of the target compounds (cf. Supporting Information for gradient systems used). In cases where further purification of the target compounds was needed, it was performed via semi-preparative HPLC on the aforementioned Shimadzu system using a puri a Synergi 4u Fusion-RP 80A (250×10.0 mm) column as stationary phase and the flow rate was 2.5-3 mL/min (cf.
Supporting Information for gradient systems used). Purity of all final compounds was 95% or higher.

Synthesis

The fluorescent dyes were reacted as zwitterions. However, due to the 0.1% formic acid in the LCMS gradient system, protonation occurs also to the sulfonic acid group, leading to a +1 of the calculated mass M. Noted with #.

General method A – coupling the diglycine moieties

_N-Boc-diglycine (1.1 eq) was dissolved in dry DMF under stirring and argon atmosphere. After dissolvolation it was cooled to 0 °C. EDCI HCl (1.1 eq), HOBt (0.1 eq) were added. After 30 min DIPEA (2.2 eq) was added, and 5 min later the respective primary amine intermediate (1 eq). The ice bath was removed and the reaction mixture was left to slowly reach room temperature under the aforementioned conditions. After the reaction was concluded (usually 12-24h), the reaction mixture was extensively worked up with brine, chloroform and chloroform:methanol 5:1. The volume of the combined organic phases was reduced under vacuum, dried (Na₂SO₄), filtered and taken to dryness yielding a solid residue which was stored in the desiccator overnight. The crude product was purified via column chromatography.

General method B – Cleavage of N-Boc group from glycine moieties

The respective Boc, Fmoc diprotected intermediate was dissolved in a solution of 5% TFA in dry DCM under Ar atmosphere and stirring. The reaction was monitored with TLC, LCMS and was
concluded at ~2h. The reaction mixture was taken to dryness (rotary bath at 30°C) and stored in the desiccator. The compound was used in the next step without further purification.

General method C – coupling the precursors with the dyes

Precursor compound (1 eq) was dissolved in 1.5 mL dry DMF under stirring and argon atmosphere. After complete dissolvation, DIPEA (2.2 eq) was added and the reaction mixture was left to stir for 10 min. Cy5-NHS Na or Cy3-NHS ester (0.8 eq) was added and the reaction mixture was left to stir overnight under the aforementioned conditions with exclusion of light. After conclusion of the reaction, piperidine (90 μL – 6% v/v, Fmoc cleavage) was added in the mixture which was left to stir for 2 min and was purified via RP flash column chromatography and RP semi prep-HPLC (cf. Supporting Information for gradient methods used).

5’-Nitronaltrindole (2): 1 g (1 eq) of naltrexone HCl salt 1 (MW = 377.14) and 1.253 g (1 eq) of 4-nitrophenylhydrazine HCl salt (MW = 189.03) were dissolved in 27 mL of HCl 37% : acetic acid glacial 1:1 v/v mixture. Some desolvation problems were solved once the temperature started rising. The reaction mixture was heated at 90°C overnight under nitrogen atmosphere and vigorous stirring. After cooling to room temperature, the reaction mixture was basified with solid Na₂CO₃, solid NaOH and saturated Na₂CO₃ solution under ice-cooling. The mixture was worked up with an extensive amount of chloroform and chloroform/isopropanol mix (4:1). The combined organic extract was filtered (paper, gravity), dried (Na₂SO₄), filtered and evaporated under reduced pressure to yield 1 g of a yellow-brown solid residue. Purification through column chromatography (DCM : MeOH : NH₃ – 40:1:0.1 → 10:1:0.1) yielded 720 mg of orange solid. Yield 59%. ¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H, H1’), 7.42 (s, 1H, H4’), 6.95 (s, 1H, H6’),
6.70 (dd, J = 24.9, 8.0 Hz, 2H, H1 and H2), 6.49 (s, 1H, H7’), 5.59 (s, 1H, H5), 3.41 – 3.37 (m, 1H, H9), 3.15 (d, J = 18.6 Hz, 1H, H10b), 2.90 (dd, J = 18.4, 5.6 Hz, 1H, H10a), 2.72 (d, J = 16.4 Hz, 2H, H16b and H15b), 2.54 – 2.28 (m, 5H, H15a, H16a, H8b, N-CH2-CH-(CH2)2), 1.75 (d, J = 11.2 Hz, 1H, H8a), 1.34 – 1.16 (m, 1H, N-CH2-CH-(CH2)2), 0.95 – 0.78 (m, 1H, N-CH2-CH-(CH2)2), 0.58 (d, J = 7.7 Hz, 2H, N-CH2-CH-(CH2)2), 0.17 (d, J = 4.2 Hz, 2H, N-CH2-CH-(CH2)2). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 120.04 (C1), 117.89 (C2), 117.55 (C6’), 115.39 (C4’), 110.36 (C7’), 84.87 (C5), 62.33 (C9), 59.60 (N-CH2-CH-(CH2)2), 48.26, 43.61 (C16), 31.55 (C8), 28.14 (C15), 23.29 (C10), 9.51 (N-CH2-CH-(CH2)2), 4.08 (2C, N-CH2-CH-(CH2)2). MS: C\(_{26}\)H\(_{25}\)N\(_3\)O\(_5\) calc. 459.18. ESI (m/z): 460.15 [M+H]\(^+\)

5’-Aminonaltrindole (3): 5’-nitronaltrindole 2 (392 mg, 1 eq) was well dissolved in 12 mL of ethanol under stirring. An amount of wet Ra-Ni was brought into a small penicillin type vial containing fresh deionized water, so as to wash out acid which may form during its storage. From there the wet solid was later added in the reaction mixture. Four teaspoons of wet Ra-Ni were added. Hydrazine (240 \(\mu\)L, 7.7 eq) was added carefully in the reaction mixture which was left to stir at room temperature under nitrogen atmosphere (balloon). After 6h the reaction was concluded. The reaction mixture was filtered in celite pad and the cake was thoroughly washed with ethanol, methanol and boiling methanol. The combined organic fractions of the filtrate were reduced under vacuum, dried (Na\(_2\)SO\(_4\)), filtered and taken to dryness. The crude product remained in the desiccator for 48h yielding 383 mg of crude product as a pale yellow solid powder. Purification via column (20:1:0.1 \(\rightarrow\) 17:1:0.1; DCM:MeOH:NH\(_3\)) affording 249 mg of product. Yield: 68%. \(^1\)H NMR (400 MHz, MeOD) \(\delta\) 7.11 (dd, J = 8.5, 0.5 Hz, 1H, H7’), 6.82 – 6.75 (m, 1H, H4’), 6.66 (dd, J = 8.5, 2.2 Hz, 1H, H6’), 6.54 (q, J = 8.1 Hz, 2H, H1 and H2), 5.55
(s, 1H, H5), 3.40 – 3.33 (m, 1H, H9), 3.16 (d, J = 18.6 Hz, 1H, H10b), 2.81 (dd, J = 18.6, 6.6 Hz, 1H, H10a), 2.76 – 2.68 (m, 2H, H15b and H16b), 2.55 (dd, J = 15.7, 0.9 Hz, 1H, H15a), 2.44 (dd, J = 6.6, 1.9 Hz, 2H, N-CH2-CH-(CH2)2), 2.38 – 2.24 (m, 2H, H8b and H16a), 1.76 – 1.62 (m, 1H, H8a), 1.41 – 1.23 (m, 1H, H15b), 1.03 – 0.82 (m, 2H, H15a and N-CH2-CH-(CH2)2), 0.65 – 0.47 (m, 2H, N-CH2-CH-(CH2)2), 0.28 – 0.07 (m, 2H, N-CH2-CH-(CH2)2). 13C NMR (100 MHz, MeOD) δ 119.68 (C1), 118.31 (C2), 115.16 (C6’), 112.60 (C7’), 105.76 (C4’), 86.27 (C5), 63.57 (C9), 60.41 (N-CH2-CH-(CH2)2), 44.96 (C16), 32.68 (C8), 29.86 (C15), 24.09 (C10), 10.17 (N-CH2-CH-(CH2)2), 4.63 (N-CH2-CH-(CH2)2), 4.09 (N-CH2-CH-(CH2)2). MS: C26H27N3O3 calc. 429.21. ESI (m/z): 430.15 [M+H]+

(9′H-fluoren-9′-yl)methyl (1-((3-((tert-butoxy)oxo)amino)propyl)amino)thioxo)carbamate (5): N-Boc-1,3-propandiamine 4 (244 mg, 1 eq) was dissolved in 5 mL dry DCM under nitrogen atmosphere (balloon) and stirring. The reaction mixture was then ice-cooled to 0 °C and 9H-fluoren-9-ylmethoxycarbonyl isothiocyanate (434 mg, 1.1 eq) was added. The reaction mixture was left to stir under nitrogen and slowly come to room temperature. After 5h TLC control (3:1, petrol ether:ethyl acetate, Rf = 0.6) showed that the reaction was concluded. An approximately double amount of pentane was added to the reaction mixture under stirring, leading to the formation of a fine white precipitate (solid with a paper-like texture), which was filtered off and dried in the desiccator. 666 mg – quantitative. 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H, NH), 7.78 (d, J = 7.6 Hz, 2H, H4’ and H5’), 7.55 (dd, J = 7.5, 0.8 Hz, 2H, H1’ and H8’), 7.43 (t, J = 7.3 Hz, 2H, H3’ and H6’), 7.33 (td, J = 7.5, 1.1 Hz, 2H, H2’ and H7’), 4.84 (s, 1H, NH), 4.50 (d, J = 6.7 Hz, 2H, H10’), 4.23 (t, J = 6.7 Hz, 1H, H9’), 3.74 (q, J = 6.6 Hz, 2H, H3), 3.19 (d, J = 6.1 Hz, 2H, H5), 1.83 (p, J = 6.6 Hz, 2H, H4), 1.44 (s, 9H, H8-H10). 13C NMR (100 MHz,
CDCl₃ δ 128.25 (2C, C2’ and C7’), 127.42 (2C, C3’ and C6’), 124.96 (2C, C4’ and C5’), 120.38 (2C, C1’ and C8’), 68.36 (1C, C10’), 46.69 (1C, C9’), 42.92 (1C, C3), 37.64 (1C, C5), 29.31 (1C, C4), 28.55 (3C, C8-C10). MS: C₂₄H₂₉N₃O₄S calc. 455.19. ESI (m/z): 456.19 [M+H]+, 478.10 [M+Na]+, 933.10 [2M+Na]+

tert-butyl (3-((E)-2-(1-((9H-fluoren-9-yl)methoxy)oxo)-3-(5’-guanidinonaltrindole)propyl)carbamate (6): 5’-aminonaltrindole 3 (235 mg, 1 eq) was dissolved in 2 mL of dry DMF under stirring and nitrogen atmosphere (balloon). After full dissolution the reaction mixture was cooled to 0 ºC (ice-bath). When the reaction mixture was cooled down, DIPEA (205 μL, 2.2 eq) and intermediate 5 (275 mg, 1.1 eq) were added. The reaction mixture was left to stir under ice-bath cooling and nitrogen atmosphere until everything was nicely dissolved; the mixture retains a dark red color. HgCl₂ (164 mg, 1.1 eq) was added in one portion and rapid stirring was maintained for 20 min under ice cooling and nitrogen atmosphere. Afterwards the ice-bath was removed and the reaction mixture was left to slowly reach room temperature. After 2h the color changed to black-brown and the reaction mixture had become quite viscous (indication of extended HgS formation). TLC control (15:1:0.1 – DCM:MeOH:NH₃) confirmed that the reaction was concluded. An amount of methanol was added, and the mixture was filtered through a celite pad to remove HgS. The cake was subsequently washed with pure methanol and boiling methanol. The filtrate volume was reduced under vacuum, dried (Na₂SO₄), filtered and taken to dryness under reduced pressure to afford 629 mg of dark-brown solid crude product. Trialing (2D TLC, incubation, incubation at 40ºC) showed that the compound is stable in DCM:MeOH:NH₃ environment. Purified via column chromatography (30:1:0.1 → 20:1:0.1 – DCM:MeOH:NH₃) yielding 264 mg of light pink solid.
Yield: 57%. $^1\text{H NMR}$ (400 MHz, CDCl$_3$) δ 10.34 (s, 1H, NH), 9.18 (s, 1H, NH), 7.81 – 7.64 (m, 3H, H6’ and H4‘’ and H5’’), 7.36 (t, $J = 7.4$ Hz, 2H, H3’’ and H6’’), 7.30 – 7.27 (m, 2H, H1’’ and H8’’), 7.09 (d, $J = 15.1$ Hz, 1H, H7’), 6.69 (d, $J = 20.8$ Hz, 1H, H4’), 6.63 (d, $J = 8.0$ Hz, 1H, H2), 6.51 (d, $J = 8.1$ Hz, 1H, H1), 5.60 (s, 1H, H5), 4.33 (br s, 2H, H10’’), 3.36 (d, $J = 13.9$ Hz, 3H, H1’’’ and H9’’), 3.04 (dd, $J = 38.8, 12.0$ Hz, 2H, H3’’’), 2.75 (dd, $J = 34.4, 11.7$ Hz, 2H, H10a, NH), 2.55 (d, $J = 15.6$ Hz, 1H, H10b), 2.32 (dd, $J = 47.6, 17.8$ Hz, 4H, H2’’’ and N-CH$_2$-CH-(CH$_2$)$_2$), 1.93 (s, 1H, H8a), 1.44 (d, $J = 5.2$ Hz, 2H, H8b, H16b), 1.31 (s, 9H, H4’’’-H6’’’), 1.26 (s, 3H, H16a, H9, OH), 1.17 – 1.11 (m, 1H, H15b), 0.93 – 0.78 (m, 2H, H15a and N-CH$_2$-CH-(CH$_2$)$_2$), 0.55 (d, $J = 7.2$ Hz, 2H, N-CH$_2$-CH-(CH$_2$)$_2$), 0.15 (d, $J = 3.9$ Hz, 2H, N-CH$_2$-CH-(CH$_2$)$_2$). 13C NMR (100 MHz, CDCl$_3$) δ 127.62 (2C, C3’’ and C6’’’), 127.18 (2C, C1’’’ and C8’’’), 125.69 (2C, C6’ and C7’), 119.92 (2C, C4’’’ and C5’’’), 119.20 (2C, C1 and C2), 117.46 (1C, C4’), 84.98 (1C, C5), 67.67 (1C, C10’’’), 62.39 (2C, C1’’’’ and C3’’’’), 59.55 (N-CH$_2$-CH-(CH$_2$)$_2$), 47.28 (1C, C9’’’), 30.45 (1C, C16), 29.86 (1C, C15), 28.83 1C, C10), 28.50 (3C, C4’’’-C6’’’), 23.30 (1C, N-CH$_2$-CH-(CH$_2$)$_2$), 22.61 (1C, C8), 3.97 (2C, N-CH$_2$-CH-(CH$_2$)$_2$). MS: C$_{50}$H$_{54}$N$_6$O$_7$ calc. 850.41. ESI (m/z): 426.45 [M+2H]$^{2+}$, 851.41 [M+H]$^+$

(E)-2-(1-((9H-fluoren-9-yl)methoxy)oxo)-1-(3-aminopropyl)-3-(5'-guanidinonaltrindole)

(7): Intermediate 6 (58 mg, 1 eq) was dissolved in 1 mL of dry ethanol and cooled to 0 °C under stirring and argon atmosphere (balloon). HCl in methanol 1.25 M (3.4 mL, 44 eq) was added dropwise and the reaction mixture was left to stir under argon atmosphere without renewing the ice-bath, so that it slowly reaches room temperature. After two overnights the product was formed quantitatively and the reaction mixture was taken to dryness affording a pale white solid (59 mg). 1H NMR (400 MHz, MeOD) δ 7.72 (d, $J = 7.1$ Hz, 2H, H4’’ and H5’’), 7.54 (ddd, $J =
22.2, 13.3, 5.9 Hz, 2H, H3'' and H6''), 7.42 (t, J = 8.9 Hz, 2H, H1'' and H8''), 7.38 – 7.25 (m, 2H, H2'' and H7''), 7.24 (dd, J = 14.5, 7.2 Hz, 2H, H6' and H7'), 6.98 (d, J = 8.6 Hz, 1H, H4'), 6.66 – 6.54 (m, 2H, H1 and H2), 5.70 (s, 1H, H5), 4.51 (d, J = 18.7 Hz, 2H, H10''), 4.22 (br s, 1H, H9''), 3.61 – 3.28 (m, 5H, H1''', NH3+), 3.17 (dd, J = 12.5, 3.9 Hz, 1H, H10a), 3.09 – 2.82 (m, 2H, H3'''), 2.79 – 2.62 (m, 3H, H10b, H9, H8b), 1.95 (dd, J = 27.7, 14.2 Hz, 4H, H2''', N-CH2-CH-(CH2)2), 1.23 (s, 2H, H16a and H8a), 1.17 – 1.04 (m, 2H, H15a and N-CH2-CH-(CH2)2), 0.81 (dd, J = 23.0, 20.2 Hz, 4H, H15b, H16b and N-CH2-CH-(CH2)2), 0.50 (s, 2H, N-CH2-CH-(CH2)2). 13C NMR (101 MHz, MeOD) δ 129.24 (2C, C2'' and C7''), 128.45 (2C, C3''' and C6''), 126.19 (2C, C4'' and C5'''), 121.25 (2C, C6' and C7'), 120.83 (1C, C4'), 120.71 (1C, C2), 119.55 (1C, C1), 84.97 (1C, C5), 69.92 (1C, C10'''), 63.74 (1C, C9), 59.10 (1C, N-CH2-CH-(CH2)2), 47.99 (1C, C9'''), 47.78 (1C, C16), 29.91 (1C, C2''')). 25.24 (1C, C15), 7.06 (1C, C10), 6.46 (1C, N-CH2-CH-(CH2)2), 3.59 (2C, N-CH2-CH-(CH2)2). Purity: 95%. MS: C45H46N6O5 calc. 750.35. ESI (m/z): 376.35 [M+2H]2+, 751.40 [M+H]+

1-((E)-5-(((4bS,8R,8aS,14bR)-7-(cyclopropylmethyl)-1,8a-dihydroxy-5,6,7,8,8a,9,14,14b-octahydro-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazol-11-yl)amino)-1-(9H-fluoren-9-yl)-3,11-dioxo-2-oxa-4,6,10-triazahexadec-4-en-16-yl)-3,3-dimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethyl-5-sulfoindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium-5-sulfonate (8): As a first approach, the Fmoc protected probe 8 was purified, then deprotected and purified again to reach target compound 9a. The reaction mixture was taken to dryness using the oil pump with liquid nitrogen. The crude product was purified via RP semi-prep HPLC (cf. Supporting Information for gradient system method; flow rate 3 mL/min). Purity: 96%. MS: calc. 1374.55. ESI (m/z): 1376.20 [M+1+H]4+, 688.60 [M+1+2H]4#
1-(6-((3-(3-((4bS,8R,8aS,14bR)-7-(cyclopropylmethyl)-1,8a-dihydroxy-5,6,7,8,8a,9,14,14b-octahydro-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazol-11-yl)guanidino)propyl)amino)-6-oxohexyl)-3,3-dimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethyl-5-sulfoindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium-5-sulfonate (9a): The pure 8 was treated with 1 mL of 6% piperidine in DMF under stirring for 2 min and then taken to dryness using the oil pump and liquid N₂. LCMS control verified total Fmoc deprotection, the product peak and the 1-((9H-fluoren-9-yl)methyl)piperidine peak. Amount: 7.3 mg. Yield: 35%. Purity: 96%. MS: calc. 1152.48. ESI (m/z): 577.45 [M+1+2H]^{2+}

1-(6-((3-(3-((4bS,8R,8aS,14bR)-7-(cyclopropylmethyl)-1,8a-dihydroxy-5,6,7,8,8a,9,14,14b-octahydro-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazol-11-yl)guanidino)propyl)amino)-6-oxohexyl)-3,3-dimethyl-2-((E)-3-((E)-1,3,3-trimethyl-5-sulfoindolin-2-ylidene)prop-1-en-1-yl)-3H-indol-1-ium-5-sulfonate (9b): Application of General method C. Amount: 5.4 mg. Yield: 30%. Purity: 99%. MS: C₆₀H₇₀N₈O₁₀S₂ calc. 1126.47. ESI (m/z): 1128.00 [M+1+H]⁺, 564.50 [M+1+2H]^{2+}

tert-butyl (2-((2-((3-(3-(1-((9H-fluoren-9-yl)methoxy)oxo)-3-(5’-guanidinonoraltrindole)propyl)amino)-2-oxoethyl)amino)-2-oxoethyl)carbamate (10): Application of General method A, yielding 268 mg of a residue which was stored in the desiccator overnight. The crude product was purified via column chromatography (20:1:0.1 → 15:1:0.1 – DCM:MeOH:NH₃) affording 105 mg of yellow-white powder. Yield: 60%. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 28.2, 6.8 Hz, 3H, H6’, H4’’ and H5’’), 7.36 (m, 2H, H3’’ and
H6’’), 7.29 (m, 2H, H1’’ and H8’’), 7.10 (m, 2H, H7’ and 1’-NH), 6.79 (m, 1H, H4’), 6.62 (s, 1H, H2), 6.51 (s, 1H, H1), 5.62 (s, 1H, H5), 5.37 (m, 2H, H4’’’), 4.52 (s, 2H, H10’’’), 4.29 (m, 2H, H5’’’), 3.46 (m, 3H, H1’’’ and NH), 3.37 (s, 1H, H9’’’), 3.09 (d, J = 17.8 Hz, 2H, H3’’’), 2.81 (dd, J = 22.5, 8.8 Hz, 3H, H10a, H9, NH), 2.27 (m, 5H, H2’’’ and N-CH2-CH-(CH2)2, 2.02 (m, 1H, H8a), 1.39 (s, 9H, H6’’’-H8’’’), 1.24 (m, 5H, H15b, H16, H8b), 0.82 (m, 4H, H15a, NH, NH and N-CH2-CH-(CH2)2), 0.54 (br s, 2H, N-CH2-CH-(CH2)2), 0.14 (br s, 2H, N-CH2-CH-(CH2)2). 13C NMR (101 MHz, CDCl3) δ 127.77 (2C, C3’’ and C6’’), 127.22 (2C, C1’’ and C8’’), 125.22 (2C, C6’ and C7’), 120.11 (2C, C4’’ and C5’’), 119.24 (2C, C1 and C2), 116.51 (1C, C4’), 85.17 (1C, C5), 66.56 (1C, C10’’’), 63.80 (1C, C3’’’), 60.98 (1C, C2’’’), 59.91 (N-CH2-CH-(CH2)2), 47.36 (1C, C9’’’), 44.71 (1C, C5’’’), 43.76 (1C, C4’’’), 29.83 (1C, C15), 29.40 (1C, C10), 28.47 (3C, C6’’’-C8’’’), 23.16 (1C, N-CH2-CH-(CH2)2), 22.85 (1C, C8), 5.76 (2C, N-CH2-CH-(CH2)2). MS: C54H60N8O9 calc. 964.45. ESI (m/z): 965.50 [M+H]+, 483.45 [M+2H]2+

1-(1-(((4bS,8R,8aS,14bR)-7-(cyclopropylmethyl)-1,8a-dihydroxy-5,6,7,8,8a,9,14,14b-octahydro-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazol-11-yl)amino)-1-imino-7,10,13-trioxo-2,6,9,12-tetraazaoctadecan-18-yl)-3,3-dimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethyl-5-sulfoindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium-5-sulfonate (13):
Application of General method C. Amount: 4.5 mg. Yield: 20%. Purity: 97%. MS: C_{66}H_{78}N_{10}O_{12}S_{2} calc. 1266.52. ESI (m/z): 634.45 [M+1+2H]^{2+}.

tert-butyl ((E)-5-((5'-aminonaltindole)-1-(9H-fluoren-9-yl)-3-oxo-11,14,17,20-tetraoxo-2-oxa-4,6,10,13,16,19-hexaazahenicos-4-en-21-yl)carbamate (14): Application of General method A, yielding 100 mg of a residue which was stored in the desiccator overnight. The crude product was purified via column chromatography (15:1:0.1 → 10:1:0.1 – DCM:MeOH:NH₃) affording 48 mg of yellow-white powder. Yield: 95%. ¹H NMR (400 MHz, MeOD) δ 7.78 (ddd, J = 7.4, 2.0, 1.2 Hz, 3H, H6', H4'' and H5''), 7.71 (m, 2H, H2'' and H7''), 7.37 (m, 3H, H3'', H6'', H4''), 7.30 (m, 2H, H1'' and H8'') 6.94 (d, J = 8.3 Hz, 1H, H7''), 6.61 (s, 2H, H1 and H2), 6.13 (s, 1H, 1'-NH), 5.66 (s, 1H, H5), 4.41 (dd, J = 9.0, 3.7 Hz, 2H, H10'''), 4.30 (m, 1H, H9''), 3.80 (d, J = 7.2 Hz, 2H, H7'''), 3.71 (m, 6H, H4''''-H6''''), 3.63 (s, 1H, NH), 3.60 (s, 2H, H1''), 3.27 (m, 3H, H3'''', NH), 3.17 (m, 3H, H2''''' and NH), 2.62 (s, 2H, H9 and H10a), 1.42 (s, 9H, H8''''-H10'''), 1.37 (s, 2H, H10b, NH), 1.35 (s, 2H, H8b, NH), 1.29 (m, 6H, H16b, H8a, N-CH₂-CH-(CH₂)₂, NH, OH), 1.09 (t, J = 7.2 Hz, 2H, H15b, H16a), 0.89 (m, 6H, H15a, NH, N-CH₂-CH₂ and N-CH₂-CH₂), 0.37 (s, 1H, N-CH₂-CH₂). ¹³C NMR (101 MHz, MeOD) δ 130.01 (1C, C4''), 128.86 (2C, C2' and C7''), 128.27 (2C, C3'' and C6''), 126.42 (2C, C4'' and C5''), 122.68 (1C, C1), 122.18 (1C, C2), 121.07 (2C, C1'' and C8'''), 120.81 (1C, C6''), 120.45 (1C, C7'), 85.54 (1C, C5), 68.58 (1C, C10''), 64.45 (1C, C1'''), 63.76 (1C, C3''''), 57.20 (N-CH₂-CH₂), 49.42 (1C, C7''), 49.21 (1C, C9''), 48.71 (1C, C9), 44.95 (1C, C6'''), 44.25 (1C, C15), 44.06 (1C, C5'''), 43.75 (1C, C4'''), 30.87 (1C, C8), 30.46 (1C, C16), 30.14 (1C, C10), 28.85 (3C, C8'''-C10'''), 23.87 (1C, N-CH₂-CH₂), 3.90 (2C, N-CH₂-CH₂). MS: C_{58}H_{66}N_{10}O_{11} calc. 1078.49. ESI (m/z): 1079.20 [M+H]^+, 540.40 [M+2H]^{2+}.
\(N-(3-(E)-2-(1-((9H-fluoren-9-yl)methoxy)oxo)-3-(5'-guanidinaltrindole)propyl)-2-(2-(2-aminoacetamido)acetamido)acetamido)acetamide \) (15): Application of General method B. 55 mg of salt (quantitative). Purity: 73%. MS: \(C_{53}H_{58}N_{10}O_{9} \) calc. 978.44. ESI (m/z): 979.20 [M+H]^+, 490.25 [M+2H]^{2+}, 327.20 [M+3H]^{3+}

\(1-(1-(((4bS,8R,8aS,14bR))-7-(cyclopropylmethyl)-1,8a-dihydroxy-5,6,7,8,8a,9,14b-octahydro-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazol-11-yl)amino)-1-imino-7,10,13,16,19-pentaoxo-2,6,9,12,15,18-hexaazatetracosen-24-yl)-3,3-dimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethyl-5-sulfoindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-indol-1-ium-5-sulfonate \) (17a): Application of General method C. Amount: 3.7 mg. Yield: 15%. Purity: 99%. MS: \(C_{70}H_{84}N_{12}O_{14}S_{2} \) calc. 1380.57. ESI (m/z): 691.50 [M+1+2H]^{2+} #

\(1-(1-(((4bS,8R,8aS,14bR))-7-(cyclopropylmethyl)-1,8a-dihydroxy-5,6,7,8,8a,9,14b-octahydro-4,8-methanobenzofuro[2,3-a]pyrido[4,3-b]carbazol-11-yl)amino)-1-imino-7,10,13,16,19-pentaoxo-2,6,9,12,15,18-hexaazatetracosen-24-yl)-3,3-dimethyl-2-((1E,3E)-5-((E)-1,3,3-trimethyl-5-sulfoindolin-2-ylidene)prop-1-en-1-yl)-3H-indol-1-ium-5-sulfonate \) (17b): Application of General method C. Amount: 2.8 mg. Yield: 15%. Purity: 99%. MS: \(C_{68}H_{82}N_{12}O_{14}S_{2} \) calc. 1354.55. ESI (m/z): 678.45 [M+1+2H]^{2+} #

Pharmacology assays

Radioligand binding studies: Binding affinities towards the human DOR, KOR and MOR were determined as described previously.\(^{98,99}\) In brief, membranes were prepared from HEK293T
cells each transiently transfected with the cDNAs for DOR, KOR (both cDNAs obtained from the cDNA resource center, www.cdna.org) and MOR, respectively (generous gift from the Ernest Gallo Clinic and Research Center, UCSF, CA). Receptor densities (B\text{max} value) and specific binding affinities (K_D value) for the radioligand [³H]diprenorphine (specific activity 31 Ci/mmol, PerkinElmer, Rodgau, Germany) were determined to be 1,700 fmol/mg protein, 0.25 nM for DOR, 6,500 fmol/mg protein, 0.13 nM for KOR, and 1,400±780 fmol/mg protein, 0.078±0.002 nM for MOR, respectively. Competition binding experiments were performed by incubating membranes in binding buffer (50 mM Tris, 5 mM MgCl_2, 0.1 mM EDTA, 5 µg/mL bacitracin and 5 µg/mL soybean trypsin inhibitor at pH 7.4) at a final protein concentration of 2-14 µg/well, together with the radioligand (final concentration 0.3 nM for DOR, KOR, 0.2-0.3 nM for MOR) and varying concentrations of the competing ligands for 60 minutes at 37 °C. Non-specific binding was determined in the presence of naloxone at a final concentration of 10 µM. The protein concentration was established using the method of Lowry.100 The resulting competition curves were analyzed by nonlinear regression using the algorithms implemented in PRISM 6.0 (GraphPad Software, San Diego, CA) to provide an IC\textsubscript{50} value, which was subsequently transformed into the K_i value employing the equation of Cheng and Prusoff.101

Accumulation of inositol mono phosphate (IP) as functional assay for G-protein mediated signaling: Determination of the activation of DOR, KOR and MOR was measured applying the IP-One HTRF® assay (Cisbio, Codolet, France) according to the manufacturer’s protocol and as described previously.90 In brief, HEK-293T cells were grown to a confluence of approx. 70% and transiently co-transfected with the cDNA of the human KOR (cDNA Resource Center, Bloomsberg, PA) and of the hybrid G-protein G\alpha_{qi} (G\alpha_q protein with the last five amino acids at the C-terminus replaced by the corresponding sequence of G\alpha_i; gift from The J. David Gladstone
Institutes, San Francisco, CA)89 applying the Mirus TransIT-293 transfection reagent (Peqlab, Erlangen, Germany). After one day cells were detached from the culture dish with Versene (Life Technologies, Darmstadt, Germany), seeded into black 384-well plates (10000 cells/well) (Greiner Bio-One, Frickenhausen, Germany) and maintained for 24 h at 37 °C. Agonist properties were determined by incubating the test compounds (final range of concentration from 0.1 pM up to 10 μM) in duplicates for 180 min at 37°C. Incubation was stopped by addition of the detection reagents (IP1-d2 conjugate and Anti-IP1cryptate TB conjugate each dissolved in lysis buffer) for further 60 min at room temperature. Time resolved fluorescence resonance energy transfer (HTRF) was measured using the Clariostar plate reader (BMG, Ortenberg, Germany). Data analysis was performed by nonlinear regression using the algorithms for log(agonist) vs. response of PRISM 6.0 (GraphPad, San Diego, CA) and normalization of the raw data to basal (0%) and the maximum effect of dynorphine A (KOR) (100%) (cf. Supporting Information for the corresponding curves).

Recruitment of β-arrestin-2: Measurement of arrestin-2 recruitment was done applying the PathHunter® assay (DiscoverX, Birmingham, U.K.) according to the manufacturer’s protocol and as described previously.90,102 In brief, HEK-293 cells stably expressing the enzyme acceptor (EA) tagged β-arrestin-2 fusion protein were transiently transfected with the ProLink tagged KOR-PK2 construct employing the Mirus TransIT-293 transfection reagent. After 24 h cells were transferred into white clear bottom 384-well plates (5000 cells/well) (Greiner Bio-One) and maintained for further 24 h at 37 °C, 5 % CO₂. To start receptor stimulated arrestin recruitment test compounds were added to the cells to get a final concentration in a range of 1 pM to 10 μM. Incubation was continued for 300 min at 37°C. Stimulation was stopped by addition of the detection mix and further incubation for 60 min at room temperature. Chemiluminescence was
determined using a Clariostar plate reader. Data analysis was done by nonlinear regression using
the algorithms for log(agonist) vs. response of PRISM 6.0 (GraphPad, San Diego, CA) and
normalization of the raw data to basal (0%) and the maximum effect of dynorphine A (KOR-
PK2) (100%) (cf. Supporting Information for the corresponding curves).

Assays on TIRF microscope

Cell culture: For the binding curves and the single-molecule experiments Chinese Hamster
Ovary (CHO) K1 cells (ATCC) were used. Cells were cultured in phenol red-free Dulbecco’s
modified Eagle’s medium (DMEM)/F12 supplemented with 10% (v/v) FBS, 100 U/ml penicillin
and 0.1 mg/ml streptomycin at 37°C and 5% CO₂. The cell lines were routinely passaged every
two to three days.

Transfection: CHO-K1 cells were seeded the day before transfection at a density of 1.8 x 10⁵
cells per well on clean 25 mm glass coverslips in 6-well culture plates. Transfection was
performed with Lipofectamine 2000 according to the manufacturer’s protocol. The transfection
medium was phenol red-free Dulbecco’s modified Eagle’s medium (DMEM)/F12 supplemented
with 10% (v/v) FBS. For each well 2 µg of human KOR (GenScript) and 6 µL of Lipofectamine
2000 were used.

Binding curves: The experiments were performed 24 h after transfection. Before imaging
each coverslip was incubated for 20 minutes with a specific concentration of fluorescent ligand
dissolved in complete medium at 37°C, washed once with 1 mL of imaging buffer (137 mM
NaCl, 5.4 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 10 mM HEPES, pH 7.3) and mounted for
imaging in a microscopy chamber filled with 300 µL of imaging buffer. Imaging was performed
on a custom built TIRF microscope (Cairn Research) based on an Eclipse Ti2 (Nikon, Japan)
equipped with EMCCD cameras (iXon Ultra, Andor), a 561 nm and 637 nm diode lasers, and a 100x oil-immersion objective (NA 1.49, Nikon). Images were acquired using 21 mW laser power (35% of total intensity) of a 637 nm diode laser for the Cy5 compound and 28 mW laser power (35% of total intensity) of a 561 nm diode laser for the Cy3 compound (both lasers from Coherent). TIRF angle was set to 70, exposure time to 47.5 ms. The images were analyzed using ImageJ FIJI. The mean intensity of each cell was averaged over the whole cell and these intensities were then averaged for each ligand concentration. The number of cells for each concentration of ligand was above 30. The intensity of all concentrations was normalized to the intensity of the highest concentration. The averaged fluorescence intensity experimental points were then plotted against ligand concentration and fitted with a nonlinear regression curve fit (log (agonist) vs. response) in PRISM 6.0 (GraphPad, San Diego, CA). Each experiment was replicated three times (cf. Supporting Information for the corresponding curves).

Dissociation kinetics: The experiments were performed 24 h after transfection. Before imaging each coverslip was incubated for 20 minutes at 37°C with 50 nM of fluorescent ligand dissolved in complete medium. After incubation the coverslips were mounted for imaging in a microscopy chamber filled with 300 µL of imaging buffer. The sample was then washed while mounted on the objective by removing the imaging buffer and adding 300 µL of fresh imaging buffer in the microscopic chamber. Imaging was performed on the same customized microscope described previously using 4.8 mW laser power (8% of total intensity), 31.7 ms exposure time and TIRF angle set to 70. Then every minute another picture of the same cell was recorded. As a bleaching control, a movie of 20 frames length was acquired with the same settings as the pictures for the washout in time span of 1 min. The pictures were analyzed using ImageJ FIJI. A region of interest (ROI) was drawn around the cell and from the first image before washing and
then, the same ROI was taken for all following images. The intensity of each cell in each image was measured. Similarly, the movie for the bleaching control was analyzed in each frame. The intensities were then normalized to the initial intensity. Using PRISM 6.0 (GraphPad, San Diego, CA) the intensities were plotted over time and fitted with a one phase exponential decay. Each experiment was replicated three times.

Single Molecule Microscopy

Methods: CHO-K1 cells (ATCC) were cultured in phenol red-free DMEM/F12, supplemented with 10% FBS at 37 °C with 5% CO₂. Cells were seeded onto 25 mm clean glass coverslips at a density of 3 x 10⁵ per well. On the following day, cells were transfected with the KOR plasmid (cDNA, GenScript), using Lipofectamine 2000, according to the manufacturer’s recommendations. Four hours following transfection, KOR transfected cells were labelled with compound **9b** (100 nM) and **9a** (10 nM). After washing the coverslip with 1 mL of imaging buffer (137 mM NaCl, 5.4 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 10 mM HEPES, pH 7.3), the cells were imaged in 300 μL imaging buffer at 20 °C, using a custom built TIRF microscope (Cairn Research) based on an Eclipse Ti2 (Nikon, Japan) equipped with EMCCD cameras (iXon Ultra, Andor), a 561 nm and 637 nm diode lasers, and a 100x oil-immersion objective (NA 1.49, Nikon). Single-molecule image sequences were acquired with an exposure time of 47.5 ms and using 15 mW laser power (25% of total intensity) of a 637 nm diode laser for the Cy5 compound and 28 mW laser power (35% of total intensity) of a 561 nm diode laser for the Cy3 compound. Control coverslips were co-transfected with KOR and the SNAP-CD86 construct (GenScript). Six hours after transfection they were labelled with 1 μM of SNAP-SiR (New England Biolabs, UK) for 20 mins, followed by 3 x 5 min wash with culture medium. Afterwards, they were
labelled with 100 nM of compound 9b for 20 mins and then imaged, as previously described, using 24 mW laser power (40% of total intensity) of a 637 nm diode laser for the SiR and 32 mW laser power (40% of total intensity) of a 561 nm diode laser for the Cy3 compound. Image sequences were then analysed with an automated particle detection software (utrack) in the MATLAB environment and further investigated using custom algorithms, as previously described.91,92

Analysis: To analyse the motion of receptors, the time-averaged mean squared displacement (TA-MSD) of individual trajectories from TIRF image sequences was computed, as previously described.92 In order to calculate the diffusion coefficient (D), the TA-MSD data were fitted with the following equation:

\[
\text{TA-MSD}(t) = 4Dt^\alpha + 4\sigma_{err}^2
\]

where t indicates time, \(\alpha\) is the anomalous diffusion exponent and \(\sigma_{err}\) is a constant offset for localization error. Only trajectories lasting at least 100 frames were analysed (10861 trajectories from 24 cells). Trajectories were then categorized according to the diffusion parameters D and \(\alpha\). Particles with \(D < 0.01 \ \mu \text{m}^2\text{s}^{-\alpha}\) were considered to be immobile. Normal diffusion was assigned to particles that had \(D \geq 0.01 \ \mu \text{m}^2\text{s}^{-\alpha}\) and \(0.75 \leq \alpha \leq 1.25\). Sub- and super-diffusion were assigned to particles with \(D \geq 0.01 \ \mu \text{m}^2\text{s}^{-\alpha}\) and \(\alpha < 0.75\) or \(\alpha > 1.25\), respectively.

For the analysis of dimer formation, trajectory segments were first linked to obtain continuous trajectories that are no longer interrupted by merging and splitting events. Then, for each particle in the Cy5 channel at frame f, all particles in Cy3 channel falling within a defined search radius (150 nm) were identified as co-localizing. If a co-localization was also present at frame f+1, the
co-localization was extended. The process was iterated until the last frame of the image sequence. These data were used to build a matrix containing information for each co-localization (involved particles as well as the start and end frames). The observed co-localization time corresponds to the duration of true interactions plus the duration of random co-localizations. Thus, the distribution of the observed co-localization times can be seen as a convolution of the distribution of true interaction times and random co-localization times. The expected distribution for random co-localizations was measured using the KOR (labelled with Cy3 ligand) and a non-interacting protein (CD86). To obtain the true co-localization time, deconvolution with the Lucy-Richardson algorithm was performed.92

ASSOCIATED CONTENT

Details about the purification and characterization of the ligands (liquid chromatography elution methods, LCMS reports of target compounds), fluorescence binding curves, intrinsic activity assays. Molecular Formula strings available. This material is available free of charge via the Internet at \url{http://pubs.acs.org}

AUTHOR INFORMATION

Corresponding Authors

*michael.decker@uni-wuerzburg.de
*d.calebiro@bham.ac.uk

Author Contributions
All authors have given approval to the final version of the manuscript.

Funding Sources

The Elite Network of Bavaria (“Elitenetzwerk Bayern”) is acknowledged for awarding a PhD position to A.D. within the International Doctoral Program “Receptor Dynamics”. This study was partially funded by a Wellcome Trust Senior Research Fellowship to D.C (212313/Z/18/Z).

ACKNOWLEDGMENTS

We thank Mrs. Christin Misigaiski for training A.D. in cell culture techniques and Ms. Kerstin Seier for her help in forming the protocols used for the microscopy experiments.

ABBREVIATIONS

Boc, *tert*-butyloxy carbonyl; Cbz, benzyl oxycarbonyl; CHO, Chinese hamster ovary; DIPEA, *N,N*-diisopropylethylamine; DMF, dimethylformamide; DOR, delta opioid receptor; EDCI, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; Fmoc, 9-fluorenylmethoxycarbonyl; HEK, human embryonic kidney; HOBT, hydroxybenzotriazole; HPLC, high performance liquid chromatography; KOR, kappa opioid receptor, LCMS, liquid chromatography mass spectrometry; MOR, mu opioid receptor; NOR, nociception receptor; RP, reverse-phased; SAR, structure-activity relationships; TFA, trifluoroacetic acid;

REFERENCES

(1) Rothstein, M. A. The Opioid Crisis and the Need for Compassion in Pain Management.

(31) Berg, K. A.; Rowan, M. P.; Gupta, A.; Sanchez, T. A.; Silva, M.; Gomes, I.; McGuire, B.

(37) Daniels, D. J.; Kulkarni, A.; Xie, Z.; Bhushan, R. G.; Portoghese, P. S. A Bivalent Ligand (KDAN-18) Containing δ-Antagonist and κ -Agonist Pharmacophores Bridges Δ2 and K1

(45) Rahmeh, R.; Damian, M.; Cottet, M.; Orcel, H.; Mendre, C.; Durroux, T.; Sharma, K. S.;

(58) Lawrence, D. M. P.; Hutchinson, I.; Seyed-Mozaffari, A.; Archer, S.; Bidlack, J. M. Fluorescent Staining of κ Opioid Receptors Using Naltrexamine Derivatives and

(71) Casal-Dominguez, J. J.; Clark, M.; Traynor, J. R.; Husbands, S. M.; Bailey, S. J. In Vivo and in Vitro Characterization of Naltrindole-Derived Ligands at the Kappa-Opioid

(74) Munro, T. A.; Huang, X.-P.; Inglese, C.; Perrone, M. G.; Van’t Veer, A.; Carroll, F. I.; Béguin, C.; Carlezon, W. A.; Colabufo, N. A.; Cohen, B. M.; Roth, B. L. Selective κ Opioid Antagonists Nor-BNI, GNTI and JDTic Have Low Affinities for Non-Opioid Receptors and Transporters. PLoS One 2013, 8, e70701.

(85) Vernall, A. J.; Stoddart, L. A.; Briddon, S. J.; Ng, H. W.; Laughton, C. A.; Doughty, S. W.; Hill, S. J.; Kellam, B. Conversion of a non-selective adenosine receptor antagonist

(99) Fish, I.; Stößel, A.; Eitel, K.; Valant, C.; Albold, S.; Huebner, H.; Möller, D.; Clark, M. J.;
Sunahara, R. K.; Christopoulos, A.; Shoichet, B. K.; Gmeiner, P. Structure-Based Design

(100) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the

(101) Cheng, Y.; Prusoff, W. H. Relationship between the Inhibition Constant (K1) and the
Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic

Möller, D.; Gmeiner, P. Structure-Guided Development of Heterodimer-Selective GPCR
Single Molecule Microscopy

No κOR homodimer formation detected with TIRF microscopy