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Abstract8

Let f : X → X be a continuous map on a compact metric space X and let αf , ωf and
ICTf denote the set of α-limit sets, ω-limit sets and nonempty closed internally chain
transitive sets respectively. We show that if the map f has shadowing then every element
of ICTf can be approximated (to any prescribed accuracy) by both the α-limit set and
the ω-limit set of a full-trajectory. Furthermore, if f is additionally expansive then every
element of ICTf is equal to both the α-limit set and the ω-limit set of a full-trajectory.
In particular this means that shadowing guarantees that αf = ωf = ICTf (where the
closures are taken with respect to the Hausdorff topology on the space of compact sets),
whilst the addition of expansivity entails αf = ωf = ICTf . We progress by introducing
novel variants of shadowing which we use to characterise both maps for which αf = ICTf
and maps for which αf = ICTf .
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1. Introduction12

Let f : X → X be a dynamical system, so that f is a continuous map on the compact13

metric space X. Given a point x ∈ X, its ω-limit set is the set of accumulation points14

of the sequence x, f(x), f2(x), . . .. Calculating the ω-limit set of a given point is often15

relatively easy. Conversely one may ask if a given set is an ω-limit set: this can be16
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quite difficult to answer. As such, various authors have either studied, or attempted1

to characterise, the set of all ω-limit sets, denoted here by ωf , in a variety of settings.2

For example, ω-limit sets of continuous maps of the closed unit interval I have been3

completely characterised in [1, 13]: the authors show that a nonempty subset E of I4

is an ω-limit set of some continuous map f if and only if E is either a closed, nowhere5

dense set, or a union of finitely many non-degenerate closed intervals. Furthermore, it6

has been shown that ωf is closed (with respect to the Hausdorff topology) for maps7

of the circle [42], the interval [8] and other finite graphs [32]. It is known [29] that8

every ω-limit set is internally chain transitive: briefly a set A ⊆ X is internally chain9

transitive if for any a, b ∈ A and any ε > 0 there exists a finite sequence 〈x0, x1, . . . , xn〉10

in A such that x0 = a, xn = b and d(f(xi), xi+1) < ε for each i. We denote the set of11

nonempty closed internally chain transitive sets by ICTf . The map f is said to have12

shadowing if for each ε > 0 there is a δ > 0 such that for any sequence 〈xi〉∞i=0 with13

d(f(xi), xi+1) < δ for each i, there is a point z ∈ X such that d(f i(z), xi) < ε for14

each i. In this case we say z shadows or ε-shadows the sequence 〈xi〉∞i=0. Shadowing15

has both numerical and theoretical importance and has been studied extensively in a16

variety of settings; in the context of Axiom A diffeomorphisms [9], in numerical analysis17

[14, 15, 37], as an important factor in stability theory [40, 43, 47], in understanding the18

structure of ω-limit sets and Julia sets [5, 6, 7, 10, 33], and as a property in and of itself19

[16, 24, 26, 31, 35, 38, 40, 44]. A variety of variants of shadowing have also been studied20

including, for example, ergodic, thick and Ramsey shadowing [11, 12, 19, 21, 36], limit,21

or asymptotic, shadowing [4, 27, 41], s-limit shadowing [4, 27, 31], orbital shadowing22

[23, 34, 39, 41], and inverse shadowing [15, 25, 30].23

Of particular importance to us is a result of Meddaugh and Raines [33] who establish24

that, for maps with shadowing, ωf = ICTf . More recently, using novel variants of25

shadowing, Good and Meddaugh [23] precisely characterised maps for which ωf = ICTf26

and ωf = ICTf .27

Whilst the ω-limit set of a point can be thought of as its target - it is where the point28

ends up - an α-limit set concerns where a point came from - its source, so to speak.29

However, whilst the definition of an ω-limit set is fairly natural, giving an appropriate30

definition of an α-limit set is less straightforward. This is because a point may have31

multiple points in its preimage (or indeed, if the map is not surjective, it may have32

empty preimage). Various approaches to this difficulty have been taken; these will be33

discussed in more detail in Section 3. We follow the approach taken in [2] and [29],34

by refraining from defining such sets for individual points, but rather defining them35

for backward trajectories. Given a point x ∈ X an infinite sequence 〈xi〉i≤0 is called a36

backward trajectory of x if f(xi) = xi+1 for all i ≤ −1 and x0 = x. The α-limit set of37

〈xi〉i≤0 is the set of accumulation points of this sequence. We denote the set of all α-limit38

sets by αf . Although α-limit sets have not been studied quite as extensively as there ω39

counterparts, interest in them has been growing (see, for example, [2, 17, 18, 28, 29]).40

As with ω-limit sets, it is known that α-limit sets are internally chain transitive [29].41

In this paper we seek to provide a characterisation of maps for which αf and ICTf42

coincide. We start with the preliminaries in Section 2. Section 3 is a standalone section43

in which we briefly explain the various types of α-limit sets that have been studied in the44

literature. In Section 4 we show that, for maps with shadowing, for any ε > 0 and any45

A ∈ ICTf there is a full trajectory whose α-limit set and ω-limit set both lie within ε of46

A (with respect to the Hausdorff distance). Furthermore, we show that the addition of47
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expansivity entails that there is a full trajectory whose limit sets equal A. In particular1

this means that for maps with shadowing αf = ωf = ICTf , whilst the addition of2

expansivity means that αf = ωf = ICTf . We progress in Section 5 by introducing novel3

types of shadowing which we use to characterise both maps for which αf = ICTf and4

maps for which αf = ICTf , complementing the work of the first and second author in5

[23].6

2. Preliminaries7

A dynamical system is a pair (X, f) consisting of a compact metric space X and a8

continuous function f : X → X. We say the positive orbit of x under f is the set of9

points {x, f(x), f2(x), . . .}; we denote this set by Orb+
f (x). A backward trajectory of the10

point x is a sequence 〈xi〉i≤0 for which f(xi) = xi+1 for all i ≤ −1 and x0 = x. We say a11

bi-infinite sequence 〈xi〉i∈Z is a full orbit (of each xi) if f(xi) = xi+1 for each i ∈ Z. We12

emphasise that a full orbit of a point need not be unique. Note further that we do not13

assume that the map f is a surjection. (NB. Because we will be particularly concerned14

with backward accumulation points of individual trajectories, for clarity we will say that15

a point which does not have an infinite backward trajectory does not have a full orbit.16

Whenever we say full orbit, we mean a bi-infinite trajectory.)17

For a sequence 〈xi〉i>N in X, where N ≥ −∞, we define its ω-limit set, denoted18

ω(〈xi〉i>N ), or simply ω(〈xi〉), to be the set of accumulation points of the positive tail of19

the sequence. Formally:20

ω(〈xi〉) =
⋂
M∈N

{xn | n > M}.

For x ∈ X, we define the ω-limit set of x: ω(x) := ω(〈fn(x)〉∞n=0). In similar fashion, for21

a sequence 〈xi〉i<N in X, where N ≤ ∞, we define its α-limit set, denoted α(〈xi〉i<N ), or22

simply α(〈xi〉), to be the set of accumulation points of the negative tail of the sequence.23

Formally:24

α(〈xi〉) =
⋂
M∈N

{xn | n < −M}.

We denote by ωf the set of all ω-limit sets of points in X. We denote by αf the set of25

all α-limit sets of full trajectories in (X, f). Note that since X is compact it follows that26

elements of αf and ωf are closed, compact and nonempty.27

We denote by 2X the hyperspace of nonempty compact subsets of X. This is a28

(compact) metric space in its own right with the Hausdorff metric induced by the metric29

d. For A,B ∈ 2X the Hausdorff distance between A and B is given by30

dH(A,A′) = inf{ε > 0 | A ⊆ Bε(A′) and A′ ⊆ Bε(A)}.

Note that, as collections of nonempty compact sets, αf and ωf are subsets of 2X .31

A set A ⊆ X is said to be invariant if f(A) ⊆ A. It is strongly invariant if f(A) = A.32

A nonempty closed set A is minimal if ω(x) = A for all x ∈ A.33

A finite or infinite sequence 〈xi〉Ni=0 is said to be an ε-chain if d(f(xi), xi+1) < ε for34

all indices i < N . If N = ∞ then we say the sequence is an ε-pseudo-orbit. A set A is35

internally chain transitive if for any pair of points a, b ∈ A and any ε > 0 there exists a36

finite ε-chain 〈xi〉Ni=0 in A with x0 = a, xN = b and N ≥ 1. We denote by ICTf the set of37
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all nonempty closed internally chain transitive sets. Notice that ICTf ⊆ 2X . Meddaugh1

and Raines [33] establish the following result.2

Lemma 2.1. [33] Let (X, f) be a dynamical system. Then ICTf is closed in 2X .3

Hirsch et al. [29] show that the α-limit set (resp. ω-limit set) of any pre-compact4

backward (resp. forward) trajectory is internally chain transitive. Since our setting is a5

compact metric space all α- and ω- limit sets are internally chain transitive. We formulate6

this as Lemma 2.2 below.7

Lemma 2.2. [29] Let (X, f) be a dynamical system. Then αf ⊆ ICTf and ωf ⊆ ICTf .8

Remark 2.3. When one first encounters positive and negative limit sets of trajectories,9

it is natural to ask (for a surjective map) if every ω-limit set is also an α-limit set, along10

with the converse. The following is an example of a homeomorphism for which neither is11

true. Take two copies of the interval and embed them side by side in the plane (i.e. one12

on the left and one on the right). Snake one infinite line between them which has each13

interval as an accumulation set - akin to how the topologist’s sine curve approaches the14

y-axis. Define a continuous map as follows: Let every point on each of the two intervals15

be fixed whilst points on the line move continuously along it, away from the left interval16

and towards the right. It follows that the left interval is the α-limit set of the unique17

backward trajectory of any point on the line, whilst the right left interval is the ω-limit18

set of any point on the line. However it is clear that the left interval is not an ω-limit19

set, whilst the right interval is not an α-limit set.20

Remark 2.4. As stated in [2], a minimal set is both an ω-limit set and an α-limit set.21

Whilst it may be the case that αf 6= ωf , it is true that every α-limit set contains the22

ω-limit set of every one of its points and, similarly, every ω-limit set contains an α-limit23

set of a backward trajectory of each of its points. To show this we recall the well-known24

fact that the ω-limit sets in compact systems are strongly invariant (e.g. [20, Theorem25

3.1.9]). The same is true of the α-limit sets of backward trajectories (e.g. [2, Lemma 1]).26

Proposition 2.5. Let x, y ∈ X and suppose that 〈zi〉i≤0 is a backward trajectory of a27

point z = z0 ∈ X. Then:28

1. If x ∈ α(〈zi〉) then Orb+
f (x) ⊆ α(〈zi〉).29

2. If y ∈ ω(x) then there is a backward trajectory 〈yi〉i≤0, with y0 = y, which lies in30

ω(x) and such that α(〈yi〉) ⊆ ω(x).31

Proof. Condition (1) is immediate from the fact that α-limit sets are closed and invariant32

under f .33

Now suppose y ∈ ω(x) and let y0 = y. Since ω-limit sets are strongly invariant y has34

a preimage in ω(x), call it y−1. This itself has a preimage in ω(x); call it y−2. Continuing35

in this manner gives a backward trajectory 〈yi〉i≤0 of y which lies in ω(x). The result36

now follows by observing that ω(x) is closed.37

Remark 2.6. In [28] the author proves condition (1) in Proposition 2.5 holds for interval38

maps.39
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A point x is said to ε-shadow a sequence 〈xi〉∞i=0 if d(f i(x), xi) < ε for all i ∈ N0.1

We say the system (X, f) has the shadowing property, or simply shadowing, if for every2

ε > 0 there exists δ > 0 such that every δ-pseudo-orbit is ε-shadowed.3

Definition 2.7. Suppose that (X, f) is a dynamical system.4

1. The sequence 〈xi〉i≤0 is a backward δ-pseudo-orbit if d(f(xi), xi+1) < δ for each5

i ≤ −1.6

2. The sequence 〈xi〉i∈Z is a two-sided δ-pseudo-orbit if d(f(xi), xi+1) < δ for each7

i ∈ Z.8

3. The system (X, f) has backward shadowing if for any ε > 0 there exists δ > 0 such9

that for any backward δ-pseudo-orbit 〈xi〉i≤0 there exists a backward trajectory10

〈zi〉i≤0 such that d(xi, zi) < ε for all i ≤ 0.11

4. The system (X, f) has two-sided shadowing if for any ε > 0 there exists δ > 0 such12

that for any two-sided δ-pseudo-orbit 〈xi〉i∈Z there exists a full trajectory 〈zi〉i∈Z13

such that d(xi, zi) < ε for all i ∈ Z.14

A sequence 〈xi〉∞i=0 is called an asymptotic pseudo-orbit if d(f(xi), xi+1)→ 0 as i→15

∞. Similarly a sequence 〈xi〉i≤0 is a backward asymptotic pseudo-orbit if d(f(xi), xi+1)→16

0 as i→ −∞. Finally a sequence 〈xi〉i∈Z is called a two-sided asymptotic pseudo-orbit if17

d(f(xi), xi+1)→ 0 as i→ ±∞.18

The system (X, f) has s-limit shadowing if, in addition to having shadowing, for19

any ε > 0 there exists δ > 0 such that for any asymptotic δ-pseudo orbit 〈xi〉∞i=0 there20

exists z ∈ X which asymptotically ε-shadows 〈xi〉∞i=0 (i.e. d(f i(z), xi) → 0 as i → ∞21

and d(f i(z), xi) < ε for all i ∈ N0). The system has two-sided s-limit shadowing if, in22

addition to two-sided shadowing, for any ε > 0 there exists δ > 0 such that for any23

two-sided asymptotic δ-pseudo orbit 〈xi〉i∈Z there exists a full trajectory 〈zi〉i∈Z which24

asymptotically ε-shadows 〈xi〉i∈Z (i.e. d(f i(z), xi) → 0 as i → ±∞ and d(f i(z), xi) < ε25

for all i ∈ Z).26

2.1. Shift spaces27

Given a finite set Σ considered with the discrete topology, the one-sided full shift with28

alphabet Σ consists of the set of infinite sequences in Σ, that is ΣN0 , which we consider29

with the product topology. This forms a dynamical system with the shift map σ, given30

by31

σ
(
〈ai〉i≥0

)
= 〈ai+1〉i≥0.

A one-sided shift space is some compact strongly invariant (under σ) subset of some32

one-sided full shift.33

In similar fashion, the two-sided full shift with alphabet Σ consists of the set of bi-34

infinite sequences in Σ, that is ΣZ, which we consider with the product topology. As35

before, this forms a dynamical system with the shift map σ, which we define by saying36

that, for each i ∈ Z,37

πi(σ
(
〈ai〉i∈Z

)
) = ai+1,

where πi is the projection map for each i. A two-sided shift space is some compact38

strongly invariant (under σ) subset of some two-sided full shift. If (X,σ) is a two-sided39
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shift space and x = 〈ai〉i∈Z ∈ X then we refer to the sequences 〈ai〉i≥0 and 〈ai〉i≤0 as1

the right-tail and left-tail of x respectively.2

Given an alphabet Σ, a word in Σ is a finite sequence a0a1 . . . am, made up of elements3

of Σ. Let F be a finite set of words in Σ. The one-sided shift of finite type associated with4

F is the dynamical system (XF , σ) where XF is the set of all infinite sequences which5

do not contain any occurrence of any word from F . The two-sided shift of finite type6

associated with F is the dynamical system (ZF , σ) where ZF is the set of all bi-infinite7

sequences which do not contain any occurrence of any word from F . A shift space (X,σ)8

is said to be a one-sided (resp. two-sided) shift of finite type if there exists a finite set of9

words F such that X = XF (resp. X = ZF ).10

If (X,σ) is a one-sided shift space, x = 〈ai〉i≥0 ∈ X and n ∈ N0, we refer to the word11

a0a1 . . . an as an initial segment of x. In similar fashion, if (X,σ) is a two-sided shift12

space and x = 〈ai〉i∈Z ∈ X and n ∈ N0, we refer to the word a−n . . . a−1a0a1 . . . an as a13

central segment of x. In the two-sided case, when writing out an element of X in full we14

use a “·” to indicate the position of the middle of the central segment:15

x = . . . a−3a−2a−1 · a0a1a2a3 . . . .

The following two theorems concerning limit sets in shift spaces are folklore.16

Theorem 2.8. Let (X,σ) be a one-sided shift space. Let x, y ∈ X. Then y ∈ ω(x)17

if and only if every initial segment of y occurs infinitely often in x. Given a backward18

trajectory 〈xi〉i≤0 consider the backward infinite sequence 〈ai〉i≤0 where ai = π0(xi).19

Then y ∈ α(〈xi〉) if and only if every initial segment of y occurs infinitely often in20

〈ai〉i≤0.21

Theorem 2.9. Let (X,σ) be a two-sided shift space. Let x, y ∈ X. Then y ∈ ω(x) if22

and only if every central segment of y occurs infinitely often in the right-tail of x. Given23

a backward trajectory 〈xi〉i≤0 then y ∈ α(〈xi〉) if and only if every central segment of y24

occurs infinitely often in the left-tail of x0.25

For those wanting more information about shift systems, [20, Chapter 5] provides a26

thorough introduction to the topic.27

As stated in Lemma 2.2, αf and ωf are both subsets of ICTf . Example 2.10 gives a28

surjective shift space (X,σ) where ασ, ωσ and ICTσ are all distinct, complementing the29

discussion in Remark 2.3.30

Example 2.10. Let x = 10102103 . . ., and y = 20202203 . . .. Let31

P (x) = {30n30n−1 . . . 30x | n ∈ N}.

Take32

X =
⋃

z∈P (x)

Orb+
σ (z) ∪Orb+

σ (y) ∪ {0ny | n ∈ N},

where the closure is taken with regard to the one-sided full shift on the alphabet {0, 1, 2, 3}.33

Considering the system (X,σ), ασ 6= ωσ 6= ICTσ. Furthermore ασ 6⊆ ωσ and ωσ 6⊆ ασ.34

In Example 2.10, ω(x) = {0∞, 0n10∞ | n ≥ 0} and ω(y) = {0∞, 0n20∞ | n ≥ 0}. It35

is easy to see that the only other ω-limit set is {0∞}. Thus36

ωσ = {{0∞}, {0∞, 0n10∞ | n ≥ 0}, {0∞, 0n20∞ | n ≥ 0}}.
6



Meanwhile1

ασ = {{0∞}, {0∞, 0n30∞ | n ≥ 0}}.

Finally whilst ICTσ ⊇ ασ ∪ ωσ it additionally contains {0∞, 0n10∞, 0n20∞ | n ≥ 0},2

{0∞, 0n10∞, 0n30∞ | n ≥ 0}}, {0∞, 0n20∞, 0n30∞ | n ≥ 0} and3

{0∞, 0n10∞, 0n20∞, 0n30∞ | n ≥ 0}. Hence ασ 6= ωσ 6= ICTσ, ασ 6⊆ ωσ and ωσ 6⊆ ασ.4

3. Various notions of negative limit sets5

In the previous section we defined what we mean by the term α-limit set: it was6

defined for backward sequences. Meanwhile the definition of an ω-limit set was extended7

to individual points. This was done in the only natural way: any given point only has8

one forward orbit. If one wishes to define the α-limit set of a point, say x, the best way9

forward is less obvious; there are multiple approaches one might reasonably take when10

defining negative limit sets of points. In this standalone section we give a brief outline11

of several different approaches taken in the literature and give two examples which serve12

to illustrate their differences.13

For homeomorphisms one can define α-limit sets (or negative limit sets) in precisely14

the same way as ω-limit sets. With non-invertible maps, however, a seemingly natural15

definition is less obvious. One approach is to take the set of accumulation points of the16

sequence of sets f−k({x}): this is done in [17] and [18]. Call this Approach 1 (A1). Two17

further approaches are motivated by considering the accumulation points of backward18

trajectories of the point in question. One might say that y is in the negative limit set of19

a point x if there exists a sequence 〈yi〉∞i=0 such that yi ∈ Orb+
f (yi+1) for each i, x = y020

and limi→∞ yi = y: that is, the negative limit set of x is the union of all accumulation21

points of backward trajectories from x. In [28] the author defines this set as the special22

α-limit set of x and examines them for interval maps. These sets are investigated in [46]23

and [45] for graph maps and dendrites. Call this Approach 2 (A2). The final approach,24

A3, used in [28], is to say y is in the α-limit set of a point x if there exists a sequence25

〈yi〉∞i=1 and a strictly increasing sequence 〈ni〉∞i=1 such that fni(yi) = x for each i and26

limi→∞ yi = y. Clearly this set contains the one given by A2. The converse is not true27

(see Example 3.2).28

By means of demonstrating some of the differences A1-3 yield we provide the following29

two examples.30

Example 3.1. Define a map f : [−1, 1]→ [−1, 1] by31

f(x) =

 2x+ 1 if x ∈ [−1,−1/2),
0 if x ∈ [−1/2, 1/2),
2x− 1 if x ∈ [1/2, 1].

The graph of this function may be seen in Figure 1.32

In Example 3.1, under A1 the negative limit set of 0 can be seen to be the whole33

interval [−1, 1]. Under A2 and A3 the negative limit set of 0 is simply {−1, 0, 1}. Notice34

that the negative limit set of any backward trajectory from 0 will be either {−1} or {0}35

or {1}.36

7



−1 1

−1

0
x

y

1

Figure 1: Example 3.1

Example 3.2. Define a map f : [−1, 2]→ [−1, 2] by1

f(x) =

 2x+ 2 if x ∈ [−1, 0),
2− 2x if x ∈ [0, 1),
2x− 2 if x ∈ [1, 2].

The graph of this function may be seen in Figure 2.2

−1 1 20

1

2

x

y

Figure 2: Example 3.2

In Example 3.2, under A2 the negative limit set of 0 is {2/3, 2}. Consider the back-3

ward trajectory of 0 given by the increasing sequence 〈xi〉i≥0, where x0 = 0 and x1 = 1,4

x2 = 3
2 , x3 = 7

4 .... This sequence approaches 2. However each point xi in this sequence5

has a preimage yi in the interval [−1, 0). Each of these yi thereby eventually map onto 06
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but they do not themselves have preimages. Furthermore, if fn(yi) = 0 and fm(yi+1) = 01

then by construction m > n. This, together with the fact that limi→∞ yi = 0 implies2

that 0 is in the negative limit set of itself under A3. Under A3 the negative limit set of 03

is {0, 2/3, 2}. (NB. Hero [28] provides an example illustrating this same difference. For4

Hero, 0 would be an α-limit point of itself but not a special α-limit point of itself: these5

would only be 2/3 and 2.)6

As stated previously, in this paper we will not define α-limit sets of individual points,7

instead we focus on the accumulation points of individual backward trajectories. Note8

that this is the approach taken in [2] and [29].9

4. Shadowing, ICT and αf10

The following lemma is a recent observation of the authors et al. (see [22]).11

Lemma 4.1. [22] Let (X, f) be a dynamical system. If f has shadowing then it has12

backward shadowing and two-sided shadowing. If f is onto then all three properties are13

equivalent.14

Theorem 4.2. Let (X, f) be a dynamical system with shadowing. Then for any ε > 015

and any A ∈ ICTf there is a full trajectory 〈xi〉i∈Z such that16

1. dH(ω(x0), A) < ε17

2. dH(α(〈xi〉), A) < ε.18

In particular every element of ICTf is in both αf and ωf .19

Remark 4.3. Before proving Theorem 4.2, we observe that for any A ∈ ICTf , for each20

η > 0 and for each a ∈ A there exists a finite η-chain 〈a = a0, a1, . . . , am = a〉 in A which21

is η-dense in A, i.e.
⋃m−1
i=0 Bη(ai) ⊇ A and for each i ∈ {0, . . . ,m− 1}, ai ∈ A.22

Proof of Theorem 4.2. Let A ∈ ICTf and let ε > 0 be given. By Lemma 4.1 there exists23

δ > 0 such that every two-sided δ-pseudo-orbit is ε/2-shadowed by a full orbit. We will24

construct a two-sided asymptotic δ-pseudo-orbit in A which is η-dense in A for all η > 0.25

To this end, let l ∈ N be such that 1/2l < δ. Pick b ∈ A. For each k ∈ N0 choose a26

finite 1/2l+k-chain 〈ak·0 = b, ak·1, ak·2, . . . , ak·mk
〉 in A which is 1/2l+k-dense in A and such27

that d(f(ak·mk
), b) < 1/2l+k. (Here we are simply using the observation in Remark 4.3.)28

Concatenation of these chains now gives us an asymptotic δ-pseudo-orbit in A:29

〈a0·0, a0·1, a0·2, . . . , a0·m0 , a1·0, a1·1, a1·2, . . . , a1·m1 , . . . , ak·0, ak·1, ak·2, . . . , ak·mk
, . . .〉.

We can now extend this into a two-sided asymptotic δ-pseudo-orbit in A by ‘running30

backwards’ through the δ-chains:31

〈. . . , a2·0, a2·1, . . . , a2·m2 , a1·0, a1·1, . . . , a1·m1 ·a0·0, a0·1, . . . , a0·m0 , a1·0, a1·1, . . . , a1·m1 , . . .〉.

We call this two-sided asymptotic δ-pseudo-orbit ϕ. In order to simplify notation we32

now denote the kth coordinate of ϕ by ak, so that, for example, a0 = a0·0 is the 0th33
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coordinate of ϕ and a−1 = a1·m1 is the (−1)th coordinate of ϕ. With this revised1

notation ϕ = 〈ai〉i∈Z. From the construction of ϕ it follows that2

A =
⋂
n≥0

{ai | i ≥ n},

and3

A =
⋂
n≤0

{ai | i ≤ n}.

Let 〈xi〉i∈Z be a full trajectory such that d(xi, ai) < ε/2 for all i ∈ Z. We claim4

that dH(α(〈xi〉), A) < ε. Indeed, pick a ∈ A. Then there is a decreasing sequence5

〈in〉n∈N of negative integers such that a = limn→∞ ain . Thus there is N ∈ N such that6

d(a, ain) < ε/3 for all n > N . Since d(xin , ain) < ε/2 for all n ∈ N, it follows that7

xin ∈ B 5ε
6

(a) for n > N . By compactness the sequence 〈xin〉n>N has a limit point8

z ∈ B5ε/6(a): in particular d(z, a) < ε. Hence z ∈ α(〈xi〉) and9

A ⊆
⋃

y∈α(〈xi〉)

Bε(y). (1)

Now take z ∈ α(〈xi〉). Then there is a decreasing sequence 〈in〉n∈N of negative10

integers such that z = limn→∞ xin . Let k ∈ N be such that d(z, xik) < ε/2. By shadowing11

d(aik , xik) < ε/2. By the triangle inequality d(z, aik) < ε. Since aik ∈ A it follows that12

α(〈xi〉) ⊆
⋃
a∈A

Bε(a). (2)

By Equations (1) and (2) it follows that dH(α(〈xi〉i∈Z), A) < ε.13

The fact that dH(ω(x0), A) < ε follows by similar argument.14

The following example shows that the converse to Theorem 4.2 is false.15

Example 4.4. Define a map f : [−1, 1]→ [−1, 1] by16

f(x) =

{
(x+ 1)2 − 1 if x ∈ [−1, 0),
x2 if x ∈ [0, 1].

Then f does not have shadowing but ICTf = αf = ωf . The graph of this function may17

be seen in Figure 3.18

In Example 4.4, it is easy to see that ICTf = αf = ωf = {{−1}, {0}, {1}}. However f19

does not have shadowing. Let ε = 1/3. For any δ > 0 we can construct a δ-pseudo-orbit20

which is not ε-shadowed. Indeed, fix δ > 0 and let n > 1 be such that 1/n < δ. Now21

pick z ∈ (2/3, 1) such that 1/n ∈ Orb+
f (z). Let m ∈ N be such that fm(z) = 1/n. Now let22

k ∈ N be such that fk(−1/n) ∈ (−1,−3/4). Then23

〈z, f(z), . . . , fm(z), 0,−1/n, f(−1/n), . . . , fk(−1/n)〉

is a finite δ-pseudo orbit. Suppose x ε-shadows this pseudo-orbit. Then x ∈ Bε(z) ⊆24

(1/3, 1]. But [0, 1] is strongly invariant under f , hence Orb+
f (x) ⊆ [0, 1]. Since (−1,−3/4)∩25

Bε([0, 1]) = ∅ this is a contradiction: f does not exhibit shadowing.26

10
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Figure 3: Example 4.4

Corollary 4.5. Let (X, f) be a dynamical system with shadowing. Then αf = ωf =1

ICTf .2

Proof. By Lemma 2.2, ICTf ⊇ αf and ICTf ⊇ ωf . The result now follows immediately3

from Theorem 4.2.4

Remark 4.6. The fact that ωf = ICTf for systems with shadowing has been proved5

previously by Meddaugh and Raines in [33].6

Since ICTf is always closed in the hyperspace 2X (see Lemma 2.1), we also get the7

following corollary.8

Corollary 4.7. Let (X, f) be a dynamical system for which αf = ICTf . Then αf is9

closed.10

Theorem 4.2 suggests the following question: when is it the case that every element11

of ICTf is both the α-limit set and the ω-limit set of the same full trajectory? The next12

result gives a sufficient condition for this to be the case.13

Theorem 4.8. Let (X, f) be a dynamical system with two-sided s-limit shadowing. Then14

for any A ∈ ICTf there is a full trajectory 〈xi〉i∈Z such that α(〈xi〉) = ω(〈xi〉) = A. In15

particular αf = ωf = ICTf .16

Proof. Let A ∈ ICTf and let ε > 0 be given. By two-sided s-limit shadowing there17

exists δ > 0 such that every two-sided asymptotic δ-pseudo-orbit is asymptotically ε/2-18

shadowed by a full trajectory (without loss of generality we assume δ < ε/2).19

Now follow the construction of the two-sided asymptotic δ-pseudo orbit 〈ai〉i∈Z in the20

proof of Theorem 4.2. Recall that21

A =
⋂
n≥0

{ai | i ≥ n},

11



and1

A =
⋂
n≤0

{ai | i ≤ n}.

Let 〈xi〉i∈Z be a full trajectory such that2

1. d(xi, ai) < ε/2 for all i ∈ Z,3

2. limi→±∞ d(xi, ai) = 0.4

It follows that α(〈xi〉) = ω(〈xi〉) = A. The fact that αf = ωf = ICTf now follows from5

Lemma 2.2.6

Remark 4.9. We did not use the fact that 〈xi〉i∈Z ε/2-shadows 〈ai〉i∈Z in the proof of7

Theorem 4.8. Therefore, we could replace the hypothesis of “two-sided s-limit shadowing”8

with the weaker condition: “there exists δ > 0 such that for any two-sided asymptotic δ-9

pseudo-orbit 〈yi〉i∈Z there exists a full trajectory 〈zi〉i∈Z such that limi→±∞ d(yi, zi) = 0.”10

A system (X, f) is expansive if there exists η > 0 (referred to as an expansivity11

constant) such that given any two distinct full trajectories 〈xi〉i∈Z and 〈yi〉i∈Z there12

exists i ∈ Z such that d(xi, yi) ≥ η. In [5] the first author et al. showed that an13

expansive map has shadowing if and only if it has s-limit shadowing. We extended that14

result in [22] to show that an expansive map has shadowing if and only if it has two-sided15

s-limit shadowing. Combining this result with Theorem 4.8, we immediately obtain the16

following.17

Theorem 4.10. Let (X, f) be a dynamical system with shadowing. If f is expansive18

then for any A ∈ ICTf there is a full trajectory 〈xi〉i∈Z such that α(〈xi〉) = ω(〈xi〉) = A.19

In particular αf = ωf = ICTf .20

Corollary 4.11. Let (X,σ) be a shift of finite type (whether one- or two- sided). Then21

for any A ∈ ICTσ there is a full trajectory 〈xi〉i∈Z such that α(〈xi〉) = ω(〈xi〉) = A. In22

particular ασ = ωσ = ICTσ.23

Proof. Shifts of finite type are precisely the shift systems that exhibit shadowing [47].24

By Theorem 4.10 it now suffices to note that all shift spaces are expansive.25

Remark 4.12. Corollary 4.11 enhances a result of Barwell et al. [3] who show that ICTσ =26

ωσ for shifts of finite type.27

4.1. A remark on γ-limit sets28

At this point we digress from our main topic to make a brief foray into γ-limit sets.29

First introduced by Hero [28] who studied them for interval maps, γ-limit sets have30

since been further examined by Sun et al. in [46] and [45] for graph maps and dendrites31

respectively. The γ-limit set of a point x, denoted γ(x), is defined by saying that, for32

any y ∈ X, y ∈ γ(x) if and only if y ∈ ω(x) and there exists a sequence 〈yi〉∞i=1 in X33

and a strictly increasing sequence 〈ni〉∞i=1 in N such that fni(yi) = x for each i and34

limi→∞ yi = y. Note that it is possible that γ(x) = ∅. We denote by γf the set of all35

γ-limit sets of (X, f).36
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Remark 4.13. Whilst we have refrained from defining the α-limit set of a point, if one1

were to use Hero’s definition of such (see Section 3), then it would follow that γ(x) =2

α(x) ∩ ω(x).3

Remark 4.14. For a dynamical system (X, f), if f is a homeomorphism it is easy to4

see that, for any x ∈ X, γ(x) = α(〈xi〉) ∩ ω(x), where 〈xi〉i≤0 is the unique backward5

trajectory of x.6

Unlike α- and ω- limit sets, γ-limit sets are not necessarily internally chain transitive.7

The example below demonstrates this.8

Example 4.15. Let (X,σ) be the full two-sided shift with alphabet {0, 1, 2}. Consider9

the point x:10

x = . . . 0n1n0n−11n−1 . . . 021201 · 02212203213 . . . 0n21n . . . .

Then γ(x) is not internally chain transitive.11

In Example 4.15, let 〈xi〉i≤0 be the unique backward trajectory of x. By Theorem12

2.9 we can observe that:13

α(〈xi〉) = {0∞, 1∞, σn(0∞ · 1∞) | n ∈ Z},
14

ω(x) = {0∞, 1∞, σn(0∞2 · 1∞) | n ∈ Z}.

Since σ is a homeomorphism, by Remark 4.14,15

γ(x) = {0∞, 1∞}.

It is obvious that γ(x) is not internally chain transitive.16

Example 4.15 notwithstanding, every γ-limit set is closed and contained in a single17

chain component of the dynamical system, i.e. for each ε > 0 and for all a, b ∈ γ(x) there18

is an ε-chain from a to b in X (as opposed to in γ(x)).19

Proposition 4.16. Let (X, f) be a dynamical system. For any x ∈ X, γ(x) is closed20

and contained in a single chain component of (X, f).21

Proof. If γ(x) = ∅ then the closedness holds and chain transitivity is vacuous.22

Let a, b ∈ γ(x). Let δ > 0 be given. Let y ∈ X be such that d(f(y), f(a)) < δ23

and there exists n > 1 such that fn(y) = x: such a point exists by the continuity of f24

combined with the fact that a ∈ γ(x). Now let m ∈ N be such that d(fm(x), b) < δ. It25

follows that 〈a, f(y), f2(y) . . . , fn(y) = x, f(x), f2(x), . . . , fm−1(x), b〉 is a δ-chain from26

a to b.27

Now suppose z ∈ γ(x). Then there is a sequence 〈yi〉∞i=1 in γ(x) such that limi→∞ yi =28

z. Note that, since ω(x) is closed and yi ∈ ω(x) for each i it follows that z ∈ ω(x). Now,29

for each i ∈ N, let zi ∈ B1/i(yi) and ni ∈ N be such that fni(zi) = x and 〈ni〉∞i=1 is an30

increasing sequence. Then, as limi→∞ zi = z, it follows that z ∈ γ(x).31

Using theorems 4.8 and 4.10 we obtain the following corollaries concerning the nonempty32

closed internally chain transitive sets in systems with two-sided s-limit shadowing.33

Corollary 4.17. If (X, f) is a system with two-sided s-limit shadowing then ICTf ⊆ γf .34
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Proof. Let A ∈ ICTf . By Theorem 4.8 there is a full trajectory 〈xi〉i∈Z through x0 = x1

such that α(〈xi〉) = ω(x) = A. Notice that γ(x) ⊆ ω(x) by definition. Since α(〈xi〉) =2

ω(x), and 〈xi〉i≤0 is a backward trajectory of x, it follows that γ(x) = A. Hence ICTf ⊆3

γf .4

Corollary 4.18. If (X, f) is an expansive system with shadowing then ICTf ⊆ γf .5

5. Characterising αf = ICTf and αf = ICTf6

In [23] the authors characterise systems for which ωf = ICTf and ωf = ICTf in7

terms of novel shadowing properties. In this section we show that the natural backward8

analogues of these shadowing properties characterise when αf = ICTf and αf = ICTf .9

We also demonstrate by way of examples that, in contrast to the shadowing property,10

there is no general entailment between the backward and forward versions of these types11

of shadowing.12

In [23] it is shown that the property of ωf = ICTf is characterised by a variation13

on shadowing the authors term cofinal orbital shadowing. A system f : X → X has the14

cofinal orbital shadowing property if for all ε > 0 there exists δ > 0 such that for any15

δ-pseudo-orbit 〈xi〉∞i=0 there exists a point z ∈ X such that for any K ∈ N there exists16

N ≥ K such that17

dH({fN+i(z)}∞i=0, {xN+i}∞i=0) < ε.

The authors additionally demonstrate that this form of shadowing is equivalent to one18

which seems prima facie stronger: the eventual strong orbital shadowing property. A19

system f : X → X has the eventual strong orbital shadowing property if for all ε > 020

there exists δ > 0 such that for any δ-pseudo-orbit 〈xi〉∞i=0 there exist a point z ∈ X and21

K ∈ N such that22

dH({fN+i(z)}∞i=0, {xN+i}∞i=0) < ε

for all N ≥ K.23

Definition 5.1. A system f : X → X has the backward cofinal orbital shadowing property24

if for all ε > 0 there exists δ > 0 such that for any backward δ-pseudo-orbit 〈xi〉i≤0 there25

exists a backward trajectory 〈zi〉i≤0 such that for any K ∈ N there exists N ≥ K such26

that27

dH({zi−N}i≤0, {xi−N}i≤0) < ε.

Definition 5.2. A system f : X → X has the backward eventual strong orbital shadowing28

property if for all ε > 0 there exists δ > 0 such that for any backward δ-pseudo-orbit29

〈xi〉i≤0 there exists a backward trajectory 〈zi〉i≤0 and there exists K ∈ N such that30

dH({zi−N}i≤0, {xi−N}i≤0) < ε

for all N ≥ K.31

Theorem 5.3. Let (X, f) be a dynamical system. The following are equivalent:32

1. f has the backward cofinal orbital shadowing property;33

2. f has the backward eventual strong orbital shadowing property;34
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3. αf = ICTf .1

Proof. From the definitions it is easy to see that (2) =⇒ (1). We will show (1) =⇒ (3)2

and that (3) =⇒ (2).3

Suppose that f has the backward cofinal orbital shadowing property. Recall that4

αf ⊆ ICTf , hence it will suffice to show ICTf ⊆ αf . Let A ∈ ICTf . Let ε > 0 be given.5

It will suffice to show there exists B ∈ αf with dH(A,B) < ε. Let δ > 0 correspond to6

ε/2 for cofinal orbital shadowing. Now, follow the construction of the sequence 〈ai〉i∈Z in7

Theorem 4.2 (but for ε/2 and δ as here) and let xi = ai for all i ≤ 0. Recall that this8

means9

A = α(〈xi〉i≤0).

Let 〈zi〉i≤0 be given by backward cofinal orbital shadowing so that for any K ∈ N there10

exists N ≥ K such that11

dH({zi−N}i≤0, {xi−N}i≤0) < ε/2.

Notice that in particular this means that12

dH(α(〈xi〉), α(〈zi〉)) < ε.

Since α(〈xi〉i≤0) = A it follows that A ∈ αf .13

Now suppose that (X, f) does not have backward eventual strong orbital shadowing14

and let ε > 0 witness this. (We will show ICTf 6= αf .) This means that for each n ∈ N15

there is a backward 1/2n-pseudo-orbit 〈xni 〉i≤0 such that for any backward orbit 〈zi〉i≤016

and any K ∈ N there exists N ≥ K with17

dH({zi−N}i≤0, {xi−N}i≤0) ≥ ε.

It follows that, in particular, for each backward orbit 〈zi〉i≤0 and any n ∈ N18

dH(α(〈zi〉), α(〈xni 〉)) ≥ ε/2. (3)

For each n ∈ N let An = α(〈xni 〉i≤0). The sequence of compact sets 〈An〉n∈N has a19

convergent subsequence which converges in the hyperspace 2X . Without loss of generality20

we may assume the sequence itself is convergent; let A be its limit. We claim A ∈ ICTf21

but that A /∈ αf .22

Let a, b ∈ A and let ξ > 0 be arbitrary. By the uniform continuity of f , there exists23

η > 0 such that for any x, y ∈ X if d(x, y) < η then d(f(x), f(y)) < ξ/2. Without loss of24

generality take η < ξ/2. Let M ∈ N be such that 1/2M < η/3 and dH(AM , A) < η/3. Now25

take K ∈ N such that26

dH({xMi−K}i≤0, AM ) < η/3.

Thus27

dH({xMi−K}i≤0, A) < 2η/3.

Let m ∈ N be such that d(xM−m−K , b) < 2η/3 and let l > m be such that d(xM−l−K , a) <
2η/3. Let y0 = a and yl−m = b. For each j ∈ 1, . . . , l −m− 1 pick yj ∈ A with

15



d(yj , x
M
−l−K+j) < 2η/3. We claim 〈y0, y1, . . . , yl−k〉 is a ξ-chain from a to b. Indeed, for

j ∈ {0, . . . , l −m− 1}

d(f(yj), yj+1) ≤ d(f(yj), f(xM−l−K+j)) + d(f(xM−l−K+j), x
M
−l−K+j+1)

+ d(xM−l−K+j+1, yj+1)

≤ ξ/2 + 1/2M + 2η/3

≤ ξ/2 + η/3 + 2η/3

≤ ξ.

Since a and b were chosen arbitrarily in A we have that A is internally chain transitive.1

Thus, since A is nonempty and closed, A ∈ ICTf .2

Suppose for a contradiction that A ∈ αf . Then there exists a backward trajectory3

〈zi〉i≤0 ∈ X such that dH(α(〈zi〉i≤0), A) < ε/4. Let M ∈ N be such that dH(AM , A) < ε/4.4

Then dH(α(〈zi〉i≤0), AM ) < ε/2, which contradicts Equation 3. Therefore A ∈ ICTf \αf .5

Thus αf 6= ICTf .6

Remark 5.4. Unlike with shadowing (see Lemma 4.1), none of the shadowing properties7

in Theorem 5.3 imply their forward analogues (nor vice-versa). To see this, by Theorem8

5.3 and [23, Theorem 13], it suffices to give an example where αf = ICTf but ωf 6= ICTf9

and an example where ωf = ICTf but αf 6= ICTf . Examples 5.5 and 5.6 provide this.10

Example 5.5. Let x = 10102103 . . .. Take11

X = Orb+
σ (x) ∪ {0nx | n ∈ N},

where the closure is taken with regard to the one-sided full shift on the alphabet {0, 1},12

and consider the system (X,σ). Then ICTσ = ωσ 6= ασ.13

In Example 5.5, ω(x) = {0∞, 0n10∞ | n ≥ 0}. It is easy to see that the only other14

ω-limit set is {0∞}. Thus15

ωσ = {{0∞}, {0∞, 0n10∞ | n ≥ 0}}.

Meanwhile16

ασ = {{0∞}}.

Observe that ασ = ασ. Finally ICTσ = ωσ 6= ασ. Hence the system has cofinal orbital17

shadowing and eventual strong orbital shadowing by [23, Theorem 13] but the system18

does not have their backward analogues by Theorem 5.3.19

Example 5.6. Take20

X = {σk(10n10n−1 . . . 10210∞) | k, n ∈ N},

where the closure is taken with regard to the one-sided full shift on the alphabet {0, 1},21

and consider the system (X,σ). Then ICTσ = ασ 6= ωσ.22

In Example 5.6 it is easily observed that23

ωσ = {{0∞}}.
16



Meanwhile1

ασ = {{0∞}, {0∞, 0n10∞ | n ≥ 0}}.

Observe that ωσ = ωσ. Finally ICTσ = ασ 6= ωσ. Hence the system (X,σ) has backward2

cofinal orbital shadowing and backward eventual strong orbital shadowing by Theorem3

5.3 but it does not have their forward analogues by [23, Theorem 13].4

In [23, Theorem 22] the authors show that the property of ωf = ICTf is characterised5

by several equivalent asymptotic variants of shadowing: These are asymptotic orbital6

shadowing, asymptotic strong orbital shadowing and orbital limit shadowing. The system7

(X, f) has then has the asymptotic orbital shadowing property if for any asymptotic8

pseudo-orbit 〈xi〉i≥0 there exists a point z ∈ X such that for any ε > 0 there exists9

N ∈ N such that10

dH({xN+i}i≥0, {fN+i(z)}i≥0) < ε.

The system has the asymptotic strong orbital shadowing property if for any asymptotic11

pseudo-orbit 〈xi〉i≥0 there exists a point z ∈ X such that for any ε > 0 there exists12

K ∈ N such that13

dH({xN+i}i≥0, {fN+i(z)}i≥0) < ε

for all N ≥ K. Finally, the system has the orbital limit shadowing property, as introduced14

by Pilyugin [41], if for any asymptotic pseudo-orbit 〈xi〉i≥0 there exists a point z ∈ X15

such that ω(z) = ω(〈xi〉).16

Before characterising ωf = ICTf by these notions of shadowing, the authors [23] note17

that asymptotic shadowing, also known as limit shadowing, is sufficient but not necessary18

for ωf = ICTf : a system has asymptotic shadowing if for each asymptotic pseudo-orbit19

〈xi〉i≥0 there exists a point z ∈ X such that20

lim
i→∞

d(f i(z), xi) = 0.

As with other shadowing variants, asymptotic shadowing has a backward analogue.21

Definition 5.7. A system f : X → X has the backward asymptotic shadowing property22

if for each backward asymptotic pseudo-orbit 〈xi〉i≤0 there exists a backward trajectory23

〈zi〉i≤0 such that24

lim
i→−∞

d(zi, xi) = 0.

We shall see (Corollary 5.13) that backward asymptotic shadowing is sufficient for25

αf = ICTf , however it is not necessary. The irrational rotation of the circle satisfies26

αf = ICTf (as a minimal map, both are equal to {X}) however it fails to have backward27

asymptotic shadowing. To see this one can observe that for any irrational rotation f of28

the circle, the inverse function f−1 is also an irrational rotation of the circle. It thereby29

suffices to note that no irrational rotation of the circle has asymptotic shadowing [41].30

Definition 5.8. A system f : X → X has the backward asymptotic orbital shadowing31

property if for each backward asymptotic pseudo-orbit 〈xi〉i≤0 there exists a backward32

trajectory 〈zi〉i≤0 such that for any ε > 0 there exists N ∈ N such that33

dH({zi−N}i≤0, {xi−N}i≤0) < ε.

17



Definition 5.9. A system f : X → X has the backward asymptotic strong orbital shadow-1

ing property if for each backward asymptotic pseudo-orbit 〈xi〉i≤0 there exists a backward2

trajectory 〈zi〉i≤0 such that for any ε > 0 there exists K ∈ N such that3

dH({zi−N}i≤0, {xi−N}i≤0) < ε

for all N ≥ K.4

The following is a backward version of the orbital limit shadowing property, studied5

by Pilyugin et al. [41].6

Definition 5.10. A system f : X → X has the backward orbital limit shadowing property7

if for each backward asymptotic pseudo-orbit 〈xi〉i≤0 there exists a backward trajectory8

〈zi〉i≤0 such that9

α(〈zi〉) = α(〈xi〉).

As mentioned previously, Hirsch et al. [29] showed that the α-limit set (resp. ω-limit10

set) of any backward (resp. forward) pre-compact trajectory is internally chain transitive.11

In the same paper, the authors show that the ω-limit set of any pre-compact asymptotic12

pseudo-orbit is internally chain transitive [29, Lemma 2.3]. Whilst we omit the proof,13

the same is true of pre-compact backward asymptotic pseudo-orbits. We formulate this14

as Lemma 5.11 below.15

Lemma 5.11. [29] Let (X, f) be a dynamical system where X is a (not necessarily16

compact) metric space. The α-limit set (resp. ω-limit set) of any backward (resp. forward)17

pre-compact asymptotic pseudo-orbit is internally chain transitive. In particular, when18

X is compact, all such limit sets are in ICTf .19

Theorem 5.12. Let (X, f) be a dynamical system. The following are equivalent:20

1. αf = ICTf ;21

2. f has the backward orbital limit shadowing property;22

3. f has the backward asymptotic orbital shadowing property;23

4. f has the backward asymptotic strong orbital shadowing property.24

Proof. Clearly (4) =⇒ (3). It is also easy to see that (2) =⇒ (4). We will show25

(3) =⇒ (1) =⇒ (2).26

To this end, suppose that f has backward asymptotic orbital shadowing. Let A ∈27

ICTf . Form a backward asymptotic pseudo-orbit 〈xi〉i≤0 by following the construction28

as in the proof of Theorem 4.2 and taking xi = ai for all i ≤ 0. (We may ignore the ε29

and δ in the construction, we can simply take l = 0.) Recall that this means30

A =
⋂
n≤0

{xi | i ≤ n},

or equivalently,31

A = α(〈xi〉).

18



Let 〈zi〉i≤0 be given by backward asymptotic orbital shadowing. Now let ε > 0 be given1

and let N ∈ N be such that2

dH(α(〈zi〉), {zi−N}i≤0) < ε/3,

3

dH({zi−N}i≤0, {xi−N}i≤0) < ε/3,

and4

dH({xi−N}i≤0, α(〈xi〉)) < ε/3.

By the triangle inequality it follows that dH(α(〈zi〉), A) < ε. Since ε > 0 was picked5

arbitrarily this implies that A = α(〈zi〉). Hence ICTf ⊆ αf . By Lemma 2.2 we have6

αf ⊆ ICTf , thus (1) holds.7

Now suppose that αf = ICTf . Let 〈xi〉i≤0 be a backward asymptotic pseudo-orbit.8

By Lemma 5.11 α(〈xi〉) ∈ ICTf . Since αf = ICTf there exists a backward trajec-9

tory 〈zi〉i≤0 with α(〈zi〉) = α(〈xi〉). Hence f has the backward orbital limit shadowing10

property, i.e. (2) holds.11

Corollary 5.13. If (X, f) has backward asymptotic shadowing then αf = ICTf .12

Proof. By Theorem 5.12 it suffices to note that backward asymptotic shadowing implies13

backward orbital limit shadowing.14

Remark 5.14. Combining theorems 5.3 and 5.12 we have that if αf is closed then the15

following are equivalent:16

1. f has the backward orbital limit shadowing property;17

2. f has the backward eventual strong orbital shadowing property;18

3. f has the backward asymptotic (strong) orbital shadowing property;19

4. f has the backward cofinal orbital shadowing property.20

Remark 5.15. Examples 5.5 and 5.6, together with Theorem 5.12 and [23, Theorem21

22], show that, unlike shadowing (see Lemma 4.1), neither the backward orbital limit22

shadowing property nor the backward asymptotic orbital shadowing nor the backward23

asymptotic strong orbital shadowing is equivalent to its forward analogue.24
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[22] Chris Good, Sergio Maćıas, Jonathan Meddaugh, Joel Mitchell, and Joe Thomas. Expansivity and31

unique shadowing, 2020. arXiv: 2002.11199.32

[23] Chris Good and Jonathan Meddaugh. Orbital shadowing, internal chain transitivity and ω-limit33

sets. Ergodic Theory Dynam. Systems, 38(1):143–154, 2018.34

[24] Chris Good and Jonathan Meddaugh. Shifts of finite type as fundamental objects in the theory of35

shadowing. Invent. Math., 220(3):715–736, 2020.36

[25] Chris Good, Joel Mitchell, and Joe Thomas. On inverse shadowing. Dynamical Systems, 0(0):1–9,37

2020.38

[26] Chris Good, Joel Mitchell, and Joe Thomas. Preservation of shadowing in discrete dynamical39

systems. J. Math. Anal. Appl., 485(1):123767, 39, 2020.40

[27] Chris Good, Piotr Oprocha, and Mate Puljiz. Shadowing, asymptotic shadowing and s-limit shad-41

owing. Fund. Math., 244(3):287–312, 2019.42

[28] Michael W. Hero. Special α-limit points for maps of the interval. Proc. Amer. Math. Soc.,43

116(4):1015–1022, 1992.44

[29] Morris W. Hirsch, Hal L. Smith, and Xiao-Qiang Zhao. Chain transitivity, attractivity, and strong45

repellors for semidynamical systems. J. Dynam. Differential Equations, 13(1):107–131, 2001.46

[30] Keonhee Lee. Continuous inverse shadowing and hyperbolicity. Bull. Austral. Math. Soc., 67(1):15–47

26, 2003.48

[31] Keonhee Lee and Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete49

Contin. Dyn. Syst., 13(2):533–540, 2005.50

[32] Jie-Hua Mai and Song Shao. Spaces of ω-limit sets of graph maps. Fund. Math., 196(1):91–100,51

2007.52

[33] Jonathan Meddaugh and Brian E. Raines. Shadowing and internal chain transitivity. Fund. Math.,53

222(3):279–287, 2013.54

[34] Joel Mitchell. Orbital shadowing, ω-limit sets and minimality. Topology Appl., 268:106903, 7, 2019.55

[35] Helena E. Nusse and James A. Yorke. Is every approximate trajectory of some process near an56

exact trajectory of a nearby process? Comm. Math. Phys., 114(3):363–379, 1988.57

[36] Piotr Oprocha. Shadowing, thick sets and the Ramsey property. Ergodic Theory Dynam. Systems,58

36(5):1582–1595, 2016.59

20



[37] D. W. Pearson. Shadowing and prediction of dynamical systems. Math. Comput. Modelling, 34(7-1

8):813–820, 2001.2

[38] Timothy Pennings and Jeffrey Van Eeuwen. Pseudo-orbit shadowing on the unit interval. Real3

Anal. Exchange, 16(1):238–244, 1990/91.4

[39] S. Yu. Pilyugin, A. A. Rodionova, and K. Sakai. Orbital and weak shadowing properties. Discrete5

Contin. Dyn. Syst., 9(2):287–308, 2003.6

[40] Sergei Yu. Pilyugin. Shadowing in dynamical systems, volume 1706 of Lecture Notes in Mathemat-7

ics. Springer-Verlag, Berlin, 1999.8

[41] Sergei Yu. Pilyugin. Sets of dynamical systems with various limit shadowing properties. J. Dynam.9

Differential Equations, 19(3):747–775, 2007.10

[42] David Pokluda. On the transitive and ω-limit points of the continuous mappings of the circle. Arch.11

Math. (Brno), 38(1):49–52, 2002.12

[43] Clark Robinson. Stability theorems and hyperbolicity in dynamical systems. In Proceedings of the13

Regional Conference on the Application of Topological Methods in Differential Equations (Boulder,14

Colo., 1976), volume 7, pages 425–437, 1977.15

[44] Kazuhiro Sakai. Various shadowing properties for positively expansive maps. Topology Appl.,16

131(1):15–31, 2003.17

[45] Taixiang Sun, Yalin Tang, Guangwang Su, Hongjian Xi, and Bin Qin. Special α-limit points and18

γ-limit points of a dendrite map. Qual. Theory Dyn. Syst., 17(1):245–257, 2018.19

[46] TaiXiang Sun, HongJian Xi, and HaiLan Liang. Special α-limit points and unilateral γ-limit points20

for graph maps. Sci. China Math., 54(9):2013–2018, 2011.21

[47] Peter Walters. On the pseudo-orbit tracing property and its relationship to stability. In The22

structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D.,23

1977), volume 668 of Lecture Notes in Math., pages 231–244. Springer, Berlin, 1978.24

21


	Introduction
	Preliminaries
	Shift spaces

	Various notions of negative limit sets
	Shadowing, ICT and f
	A remark on -limit sets

	Characterising f=ICTf and f=ICTf

