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Abstract. The notion of learning from different problem instances,
although an old and known one, has in recent years regained popular-
ity within the optimization community. Notable endeavors have been
drawing inspiration from machine learning methods as a means for algo-
rithm selection and solution transfer. However, surprisingly approaches
which are centered around internal sampling models have not been revis-
ited. Even though notable algorithms have been established in the last
decades. In this work, we progress along this direction by investigating
a method that allows us to learn an evolutionary search strategy reflect-
ing rough characteristics of a fitness landscape. This latter model of a
search strategy is represented through a flexible mixture-based distri-
bution, which can subsequently be transferred and adapted for similar
problems of interest. We validate this approach in two series of experi-
ments in which we first demonstrate the efficacy of the recovered distri-
butions and subsequently investigate the transfer with a systematic from
the literature to generate benchmarking scenarios.

Keywords: Evolution strategies · Model-based optimisation ·
Continuous optimisation · Algorithm configuration · Transfer learning

1 Introduction

Within recent decades, the field of evolutionary computation has seen a surge
of novel algorithms being proposed, frequently with the intent to operate on
very specific problem domains. While this reflects on one hand the efficacy of
population-based and evolutionary approaches for a wide range of applications,
it also reflects deep rooted issues within the current state of the art. Particularly
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in regards to: 1) A lack of a prescriptive theory on how to construct efficient algo-
rithms for a given problem and 2) a lack of understanding on what constitutes
and characterizes optimisation problems and the similarity thereof in a more
generalized way. While the theorists cannot give definite answer to both ques-
tions at the moment, one may still legitimately ask whether or not it is possible
to approach some of these problems from a pragmatic line of attack. For this
reason, two popular trends have emerged within the optimisation community:
1) Research on meta-learning frameworks [13,18,23] and 2) research on transfer
learning approaches [4,9,12,14,17]. Both try to boost the efficiency of optimisa-
tion algorithms by using prior knowledge from solving problem instances.

In our work, we progress at the intersection of both lines of research by build-
ing a model of a search strategy from individual runs which may be then subse-
quently transferred to similar problem instances. For this reason, we first give in
Sect. 2 a brief overview discussing these two existing lines of research and give
insight into the state-of-the-art. Section 3 explains the extensions we introduce
to consolidate a search strategy. Further, we demonstrate its functionality on an
illustrative benchmark function. In Sect. 4.1, we widen the range of considered
benchmark problems to a selected variety of multimodal and valley-shaped prob-
lems. Subsequently, in Sect. 4.2 we consider the scenario of transferring search
strategies across problem instances generated by translations, rotation and var-
ious non-linear transformations to the benchmark functions. We conclude our
study with a summary in Sect. 5 and give an outlook on future work.

2 Knowledge from Problem Solving Exercises

In principle, within the optimisation community two approaches have been inves-
tigated within the recent decades. The first one being related to the construction
of meta-learning frameworks for algorithm selection and configuration. The sec-
ond one relating to instance-based transfer learning through candidate solutions.
Both fields, while having gained strong traction with the recent years, can trace
their origin back to much earlier roots. With seminal work on algorithm selec-
tion being done by Rice et al. [21] in the 1970s and research on transfer learning
emerging from the discourse on lifelong machine learning systems in the 1990s
[19]. However, their application towards the domain of optimisation has been
only considered since recently within the 2000s [17,23].

Meta-learning frameworks attempt to harness high-level knowledge that can
be subsequently used in the future to more efficiently solve related tasks. In the
classical algorithm selection and algorithm configuration problem, this would
equate to predicting the best performing algorithm or configuration for a given
problem [13,18]. However, a key problem in optimisation lies in the first place
in the extraction and computation of said task specific features. This poses
especially an outstanding problem within the domain of continuous optimisation,
where unlike in the combinatorial domain, problem features cannot be simply
derived from the problem state or definition. Features thus have to be explicitly
computed in a cheap and at best informative manner.



Improving Sampling Through Past Problem Instances 585
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Fig. 1. Diagram of the archetypical pipeline for transfer learning. Roughly adapted
from Pan et al. [19]. Similar setups are frequently encountered within literature on
population-based optimisation (e.g. [4,5,14]). From previously solved source problem
classes knowledge is extracted by the algorithm such that it can subsequently improve
the performance on it on a new target problem class.

Transfer learning approaches on the other side may be seen as operat-
ing under more relaxed conditions. Essentially, what transfer learning assumes
between two problem instances, is that beneficial knowledge which helped solv-
ing one problem instance, can be transferred either directly or by means of a
transformation to a new problem instance. However, notably it introduces by
this further uncertainties. The bulk of transfer learning literature in optimisa-
tion draws inspiration from instance-based transfer [19] by means of transferring
high performing candidate solutions between tasks (e.g. [5,12,14,22]). Retrieval
of the candidate solutions occurs either directly from the previous solved tasks
[5,14] or through probabilistic sampling from a continuously built repository
(e.g. [4,17]). As a way of determining the probabilistic weights, often times task
similarity measures may be used [17]. However, in many scenarios instead simply
solution similarity may be used as a proxy of task similarity [4,17]. In general, the
lack of satisfying task similarity measures together with being prone to uncon-
trolled ‘negative’ knowledge transfer which degrades algorithm performance [5]
are known problems of these approaches.

Interestingly, aside from these mentioned works, barely any of the recent
literature tries to learn across problem instances explicitly by means of inter-
nal sampling models. Although quite notably, many popular algorithms rely
upon operators drawing random variables from symmetrical distributions and
thus have by default isotropy assumptions built in. However, this assumption
becomes broken when given an optimisation problem which does not resem-
ble a flat plane. Quite intuitively, the interplay between algorithm and opti-
misation problem should enforce characteristic search strategies and behaviors.
Modern model-based algorithms [10,15] acknowledge this by adapting a distri-
bution online during the optimisation run. However, they do not attempt to
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memorize these in a more rough and abstract way, such that these can be trans-
ferred across problem instances. In many ways, this perspective might be also the
only meaningful notion to realize transfer learning in continuous single-objective
optimisation. In the following, we build up on our previous work [7,8] and try
tackle the issue in a study using a variant of the popular (µ, �)-Evolution Strat-
egy for continuous optimisation. We explicitly incorporate strategy parameters
through a windowing approach and harness systematics from the literature to
build benchmarking scenarios.

3 Extending the Evolution Strategy

In the following, we consider continuous single-objective optimisation problems
of the form f : � ⊆ IRd → IR, where � denotes the search space and d its
associated dimensionality. As a base we use a variant of the Evolution Strategy
with (µ, �) selection mechanism [1]. We keep out explicitly any recombination
operators to have the framework reduced to its essentials. Meaning to sample
mutations from a multivariate distribution and performing selection in an elitist
manner. Note, that from an evolutionary perspective, mutation is the principle
source of variation [16]. In many ways, this basic outline may resemble continu-
ous variants of Evolutionary Programming. However, the elitist selection mech-
anism in Evolution Strategies has been implicated to contribute to performance
improvements [2].

In the Evolution Strategy, population members s(j) are represented by tuples
s(j) = [x(j),�(j)], where x(j) = (x1(j), · · · , xd(j)) is the population member’s
representation in the solution space and �(j) = (�1(j), · · · , �d(j)) are its strat-
egy parameters. The latter can be considered to be a key feature of Evolution
Strategy implementations. Strategy parameters essentially control the shape the
normal distribution from which mutations

�x(j) ∼ N (0, diag[�(j)]) (1)

for the individuals j are drawn which shift the individuals x′(j) = x(j) + �x(j)
in the solution space. Likewise, variation operators can be defined such that
they also vary and recombine the strategy parameters of population members.
However, we neglect this extension within our study.

3.1 Quality-Based Filtering of Mutations

In the following, we will further filter performed mutations according to their
quality. Thus, we will distinguish between beneficial mutations as defined by

f(x(j)i
before) − f(x(j)i

after) ≥ 0 (2)

and detrimental mutations defined by

f(x(j)i
before) − f(x(j)i

after) < 0. (3)
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Fig. 2. Left panel: Rastrigin’s benchmark function. Right panel: Search distributions
for different pairs of strategy parameters � = (�x, �y) derived from a 100 compo-
nent mixture model of the distribution of beneficial mutations from 1000 runs under
reweighing according to Eq. (4) & (5).

The idea is, that once we have stored statistics about mutations outside of the
algorithm, we can use them to design improved search strategies. Specifically,
by means of constructing empirical distributions which serve as basis for model-
based mutation operators. These can be seen as reflecting globally averaged
characteristics of the fitness landscape. In principle, one would intuitively be
interested into enforcing beneficial mutations and suppressing detrimental muta-
tions. However, distributions of detrimental mutations have been implicated to
be strongly normal distributed [8]. It is also questionable from the perspective
of algorithm design whether suppressing mutations comes at the expense of con-
vergence properties, as every point in the search space should remain reachable
by a small finite amount of probability. Thus, we focus in the following only on
biasing the algorithm through distributions of beneficial mutations (Fig. 2).

3.2 Constructing Operators from Empirical Distributions

Choosing a Density Estimator. While by default, mutations are sampled
in the Evolution Strategy from a multivariate normal distribution as given in
Eq. (1), for empirical distributions one explicitly has to use a modeling technique.
In principle, many techniques are available for this purpose. However, in the fol-
lowing we will use the Gaussian mixture model as it is a well-studied model
which can act as universal density approximator. Mixture models reduce the
input data to a small set of descriptive clusters which are parametrized by mul-
tivariate normal distributions, such that the full data distribution can then be
expressed as p(x) =

�K
k=1 �k · N (x|µk,�k), with mixture coefficients �k, which

are normalized such that �K
k=1�k = 1, and determined together with means µk

and covariances �k by maximizing the log-likelihood through the expectation-
maximization algorithm [3,20].
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Incorporating Strategy Parameters. However, an outstanding problem still
lies in the fact that the Evolution Strategy possesses strategy parameters � which
control the shape of the distribution from which mutations are sampled. Chang-
ing the shape of an empirical distribution as basis for improved sampling should
not break the contained spatial information. Therefore, we simply window the
empirical distribution with the multivariate normal distribution spanned by the
strategy parameters as defined by Eq. (1). Effectively, this results in a reweighing
of the mixture model where we replace the original mixture coefficients �k with

rk =
�kck

�N
i=1 �ici

, (4)

where the coefficients ck per mixture component quantify the average value of the
normal distribution spanned by the strategy parameters over the k-th mixture
component. This can be analytically calculated such that

ck :=

�

Rn
N (x|µk, �k) N (x|0, diag(�)) dnx

=

�

Rn

exp
� − 1

2
(x − µk)T ��1

k (x − µk)
�

�
(2�)d|�k| × exp

� − 1
2

xT ��1
� x

�
�

(2�)d|�� | dnx

=
exp

� − 1
2

µT
k ��1

k µk + 1
2

µT
k

�
��1

k �c ��1
k

�
µk

�
�

(2�)d|�k||��1
c ||�� |

×
�

Rn
N (x|µc, �c) dnx

=
exp

� − 1
2

µT
k

�
��1

k (��1
k + ��1

� )�1 ��1
�

�
µk

�
�

(2�)d|�k||��1
k + ��1

� ||�� |
,

(5)

where we further introduced �� := diag(�) and �c := (�−1
k + �−1

� )−1.

Table 1. Benchmark functions used in this study, grouped from top to bottom accord-
ing to landscape structure. 1st–3rd row: Unimodal and valley shaped problems. 4th–6th
row: Multimodal problems with single global optimum and strong regularity. 7th–9th
row: Difficult multimodal problems with single global optimum and high irregularity.

Name Search Space Function Definition

Sphere [-5.12, 5.12]d f(x) =
�d

i=1 x2
i

Bohachevsky [-100, 100]d f(x) =
�d�1

i=1 [x2
i + 2x2

i+1 � 0.3 cos(3�xi) � 0.4 cos(4�xi+1) + 0.7]

Rosenbrock [-5, 10]d f(x) =
�d�1

i=1 [100(xi+1 � x2
i )2 + (xi � 1)2]

Rastrigin [-5.12, 5.12]d f(x) = 10 d +
�d

i=1[x2
i � 10 cos(2�xi)]

Ackley [-32.768, 32.768]d f(x) = �a e0.2( 1
d

�d
i=0 x2

i )0.5
+ e� 1

d
�d

i=0 cos(2�xi) + a + e

Griewank [-600, 600]d f(x) = 1 + 1
4000

�d
i=1 x2

i + 1
4000

�d
i=1 cos(xi/

�
i)

Schwefel [-500, 500]d f(x) = 418.9829d �
�d�1

i=1 xi sin(
�

|xi|)

Eggholder [-512, 512]d f(x) = �(x2+47)sin(
�

|x2+x1/2+47|)�x1sin(
�

|x1�(x2+47)|)

Rana [-512, 512]d f(x) = x1sin(
�

|x2+1�x1|)cos(
�

|x1+x2+1|)+(x2+1)cos(
�

|x2+1�x1|)sin(
�

|x1+x2+1|)
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4 Experimental Study

The following study is based upon the DEAP library for Evolutionary Compu-
tation [6] with the extensions as elaborated in Sect. 3. We first investigate in
Sect. 4.1 whether distributions of beneficial mutations can be harnessed at all
to realize performance improvements on a selected range of different continuous
optimisation problems. Subsequently in Sect. 4.2 we investigate different transfer
scenarios between problem instances. Particularly, we build these scenarios by
harnessing existing systematics from the literature.

4.1 On the E�cacy of Distributions of Bene�cial Mutations

In the following we conduct experiments over a range of 9 different optimisa-
tion problems listed in Table 1. We group these into unimodal and valley-shaped
problems (1st–3rd row), multimodal problems with single global optimum and
high regularity (4th–6th row) and multimodal problems with single global opti-
mum and high irregularity (7th–9th row). All experiments are conducted with
a population size of µ = 10 and we generate at each generation � = 30 offspring
members by randomly selecting individuals and either cloning or mutating them
with a 30% chance. In all experiments, the population is initialized randomly
upon the entire search space, where we use additionally a penalization for the dif-
ficult multimodal problems by means of rejecting mutations crossing the search
space boundaries. This is necessary, as otherwise in these problems lower optima
could be reached in the outer areas. Strategy parameters are initialized such that
� ∈ [0.1, 4.0] for the problems in row 1–6 in Table 1. For the difficult multimodal
functions we re-adjust the upper boundaries, where we use for Schwefel’s function
�max = 400, for Eggholder �max = 480 and for Rana’s function �max = 150.
We will elaborate further in the succeeding paragraph on the necessity of the
re-adjustment. Experiments are conducted over 1000 generations and we accu-
mulate data per experiment from 100 runs. Problem dimension is kept at d = 2
in all experiments, as this still allows the interpretation of the retrieved distri-
butions and lifts problems of data sparsity arising with more degrees of freedom.
The mixture model is constructed with a total number of K = 50 components.

Resulting minimum fitness curves per generation of the optimisation runs are
plotted per problem group in Figs. 3 and 4. Where top rows are the runs using
default mutation distributions, and the lower rows are runs which use distribu-
tions of beneficial mutations with and without considering strategy parameters.
Further, median (dark blue), mean (grey) and individual runs (light blue) are
plotted. Quite notably, across all considered problems the distribution of benefi-
cial mutations significantly improves the search behavior. Particularly, it reduces
late convergences by acting in a regularizing fashion. However, the inclusion of
strategy parameters is only helpful when some regularity along the parameter
axis can be harnessed. Otherwise, it’s effect on the performance is detrimental.
The approach can even be shown to work on the difficult multimodal functions
of row 7–9 in Table 1. However, we openly admit that further precautions have
to be taken for these experiments to work. In particular, for all three we had
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Fig. 3. Column 1–3: Fitness curves (light blue) for the unimodal Sphere, Bohachevsky’s
and Rosenbrock’s function from 100 runs, as well as median (dark blue) and mean (dark
grey) curves. Top row: With default sampling. Bottom row: With improved sampling
using quality-based mutations. (Color figure online)

to re-adjust the upper bound of the strategy parameter to the previously men-
tioned values such that we achieved good convergence behavior in the runs with
default sampling. Without taking these precautions, we were not able to achieve
any improvements using the distribution of beneficial mutations. In fact, for the
lower values of the strategy parameters we even found that the distributions of
beneficial mutations were detrimental to the optimisation and encouraged pre-
mature convergence into local optima. We further list performance values of our
experiments, as well as results from a statistical Wilcoxon rank sum test under
normal approximation in Table 2. The results indicate that for a significance
level of � = 0.05, the null hypothesis can be rejected in all experiments.

4.2 Cross-Instance Transfer Scenarios

In the following section we will consider now cross-instance transfer learning
scenarios. Meaning we try to transfer a mutation operator learned on a source
optimisation problem to a target problem (c.f. Fig. 1) in the hope of realizing per-
formance improvements. To generate variations of the source problem instances
we apply in the following a systematic of transformations proposed by Hansen
et al. [11].

Transformations of the Fitness Landscape. The following base transforma-
tions are designed to explicitly break the well-behavedness of our optimisation
problems by acting upon the decision variables x. Ill-conditioning introduces
fast running components by a means of a linear rescaling
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Fig. 4. Column 1–3: Fitness curves (light blue) for the multimodal Rastrigin’s, Ack-
ley’s and Griewank’s function from 100 runs, as well as median (dark blue) and mean
(dark grey) curves. Top row: With default sampling. Middle row: With improved sam-
pling considering strategy parameters. Middle row: With improved sampling consid-
ering strategy parameters. Bottom row: With improved sampling using quality-based
mutations. (Color figure online)

Till-c. : Rd → Rd, xi �−→ xi �
1
2

i� 1
d� 1 , (6)

where we choose � = 10 in our experiments. The asymmetrical transformation
breaks the symmetry of components xi under sign transformations with

Tasy : Rd → Rd, xi �−→
�

x
1+� i� 1

d� 1
√

xi

i if xi > 0
xi otherwise

, (7)

such that in the positive quadrant the components scale up exponentially. The
oscillatory transformation introduces sinusoidal variability of the components
by

Tosc : Rd → Rd, xi �−→ sign(xi) exp(x̂i+0.049(sin(c1x̂i) + sin(c2x̂i))), (8)

x̂ �−→
�

log(|x|) if x �= 0
0 otherwise

, ĉ1 �−→
�

10 if x �= 0
5.5 otherwise

, ĉ2 �−→
�

7.9 if x �= 0
3.1 otherwise
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Fig. 5. From the top left corner clockwise: Altered variants of Rastrigin’s (R1), Sphere
(S1), Griewank’s (G1) and Ackley’s (A1) function.

Further, we also use counter-clockwise rotations Trot(	) by angle 	 and trans-
lations Ttrans of the global optimum.

Experimental Validation. We investigate the utility of the transformations in
a set of 9 experiments with 4 transformed standard problems. Further, the trans-
fer from source problem to target problem P0 → P1, and likewise the transfer
into the reverse direction P0 → P1. We use in the following the sphere function
S1 with ill-conditioning, 45◦ rotation and extended search space to [−100, 100]2,
the Ackley’s function A1 with a translation of t = (−15, 20) and subsequently
added oscillations and asymmetries, Rastrigin’s function R1 with 22.5◦ rotation,

Table 2. Medians f̃min, means fmin and standard deviations �min of the minimum fit-
ness after 1000 generations aggregated from 100 runs for default sampling using a nor-
mal distribution (N ) and improved sampling using a mixture model of quality-filtered
mutations(M). Further, normalized ranks z and p-values for a two-tailed Wilcoxon rank
sum test have been calculated. For a significance level of � = 0.05 the null hypothesis
can be considered to be rejected in all experiments.

Benchmark f̃min (N ) fmin (N ) �min (N ) f̃min (M) fmin (M) �min (M) |z| p-value

Sphere 5.528e−4 1.303e−3 1.975e−3 2.360e−5 3.600e−5 3.630e−5 9.713e+0 2.670e−22

Bohachevsky 1.668e−2 4.888e−2 8.349e−2 2.754e−3 4.580e−3 5.222e−3 8.107e+0 5.180e−16

Rosenbrock 9.098e−3 1.013e−1 5.641e−1 6.096e−4 9.370e−4 1.081e−3 1.035e+1 4.390e−25

Rastrigin 1.924e−1 5.067e−1 7.974e−1 6.609e−3 9.327e−3 9.066e−3 1.133e+1 9.060e−30

Ackley 1.223e−1 9.722e−1 3.221e+0 2.957e−2 3.297e−2 1.575e−2 9.287e+0 1.580e−20

Griewank 3.686e−1 3.653e+0 5.780e+0 1.011e−4 1.747e−3 3.744e−3 1.172e+0 1.050e−31

Schwefel 3.523e+0 5.413e+1 7.509e+1 2.595e−3 1.189e+0 1.178e+1 1.201e+1 3.270e−33

Eggholder 4.959e+0 6.135e+1 7.786e+1 3.730e−5 1.131e+1 3.494e+1 9.935e+0 2.940e−23

Rana 1.652e+0 1.832e+1 2.939e+1 1.650e+0 4.359e+0 6.102e+0 2.622e+0 8.748e−3
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Table 3. Medians f̃min, means fmin and standard deviations �min of the minimum
fitness after 1000 generations aggregated from 100 runs for default sampling (upper
table) and transfer scenarios (bottom table). Further, normalized ranks z and p-values
for a two-tailed Wilcoxon rank sum test are given. For a significance level of � = 0.05
the null hypothesis can be considered to be rejected in all experiments.

Scenarios f̃min fmin �min |z| p-value

S�
0 8.319e−4 1.443e−3 1.854e−3 – –

R�
0 2.173e−1 9.599e+0 4.118e+1 – –

S1 2.623e−3 1.859e−1 1.781e+0 – –

A1 1.639e−1 3.101e+0 6.812e+0 – –

R1 1.813e−1 6.901e−1 1.438e+0 – –

G1 3.298e+0 7.139e+0 8.870e+0 – –

S�
0 → S1 5.786e−4 7.114e−4 7.064e−4 7.281e+0 3.306e−13

S1 → S�
0 1.899e−4 2.299e−4 1.751e−4 6.744e+0 1.544e−11

A0 → A1 2.839e−2 1.827e+0 5.716e+0 8.721e+0 2.771e−18

A1 → A0 3.301e−2 3.774e−2 2.379e−2 9.928e+0 3.161e−23

R0 → R1 5.689e−2 8.816e−2 8.894e−2 6.304e+0 2.902e−10

R1 → R0 6.984e−2 1.051e−1 1.111e−1 5.603e+0 2.111e−8

G0 → G1 3.034e−1 1.305e+0 4.749e+0 6.842e+0 7.837e−12

G1 → G0 1.261e−1 1.773e+0 1.793e−1 3.531e+0 4.145e−4

S�
0 → G0 3.531e+0 5.110e+0 4.490e+0 3.592e+0 3.284e−4

G0 → S�
0 6.850e−5 1.386e−4 1.488e−4 3.722e+0 1.974e−4

small shift t = (3, 2), extended search space to [−100, 100]2 and added asymme-
try, as well as Griewanks function G1 with 20◦ rotation and added oscillations.
Further, we denote the Sphere and Rastrigin’s function with extended search
spaces to [−100, 100]2 as S∗

0 and R∗
0. Heightmaps of most altered benchmark

problems are plotted in Fig. 5. We find that in most considered transfer sce-
narios, performance improvements can be realized (Table 3). However, finding
difficult and interesting scenarios without making them obvious is a bit of a
hurdle. For example, in our experiments the scenario S∗

0 → G0 features negative
transfer, as the transferred distribution is simply adapted for a unimodal fitness
landscape with small search space.

5 Conclusions

We have investigated in this paper an approach which allows us to learn an
evolutionary search strategy reflecting rough and globally averaged characteris-
tics of a fitness landscape. We represented this search strategy through flexible
mixture-based distributions of beneficial mutations as basis for improved opera-
tors. Particularly, these distributions can be considered to be improved as they
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enable us to lift the isotropy assumption usually built into mutation operators,
thus ingrain the problem structure and redistribute probability weight radially
to more appropriately balance exploration and exploitation on a given problem
instance. The distribution can be further adapted through a Gaussian reweighing
approach, thus emulating the role strategy parameters have for sampling with a
default normal distribution. However, this only seems to be useful on a limited
range of scenarios. We showed that unweighted distributions can indeed lead
to performance improvements on a large variety problems, however prior good
convergence properties of the default sampling approach seems to be an essen-
tial prerequisite. Further, we investigated systemically built transfer scenarios
and could also realize performance improvements in these. However, we openly
acknowledge the difficulty of finding meaningful and difficult transfer scenarios.
Part of the problem stems from the fact, as it is unsure to which degree one can
alter or change a problem such that it still may be attributed to be an instance
of the former. However, introducing and investigating systematic transforma-
tions should be one the first key steps towards to resolving the issue. For the
future, we plan to investigate the proposed framework in higher dimensions for
improved transfer scenarios, as well as look into measures of problem similarity
potentially by means of fitness landscape analysis.
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evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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