Do e-cigarettes and vaping have a lower risk of osteoporosis, nonunion, and infection than tobacco smoking?

Nicholson, Thomas; Scott, Aaron; Newton Ede, Matthew; Jones, Simon

DOI:
10.1302/2046-3758.103.BJR-2020-0327.R1

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Cigarette smoking is significantly associated with reduced bone mineral density (BMD), increased risk of fracture, and reduced fracture healing. Smoking is also independently associated with increased incidence of post-surgery complications such as infection and aseptic loosening following arthroplasty. While cigarette consumption has declined over the past decade, the use of electronic cigarettes (E-cigarettes), or vaping, has risen dramatically, partly due to being regarded as a safer alternative to smoking. Indeed, Public Health England guidance suggests that E-cigarettes are 95% safer than cigarettes, fuelling public perception of negligible risk. Increased use of E-cigarettes will undoubtedly represent a harm reduction in comparison to cigarettes due to less exposure to carcinogens and toxicants. However, E-cigarette usage still results in systemic exposure to numerous and potentially harmful vapour constituents, including nicotine (in nicotine-containing liquids), flavouring chemicals, and reactive aldehydes, particularly for highly vascularized tissues such as the bone. Critically, recent data suggest that vaping may be considerably more harmful than first thought.

There is evidence that E-cigarette users self-titrato consumption to achieve a nicotine dose similar to that obtained from cigarettes. Therefore, the impact of nicotine on bone following the use of nicotine-containing E-cigarettes may be comparable to that of conventional cigarettes. Critically, the expression of nicotinic acetylcholine receptor subunits has been reported in both human bone tissue and primary human osteoblasts, with expression upregulated in response to nicotine. Nicotine appears to have a bimodal effect on proliferation of primary human osteoblasts, with low doses...
increasing proliferation and higher doses (> 0.1 μM) significantly reducing proliferation and inducing apoptosis.21,23 Functionally, there is evidence that nicotine reduces human primary osteoblast alkaline phosphatase activity and osteogenenic gene expression, including runt-related transcription factor 2 (RUNX2) and osterocin.24 Furthermore, nicotine has also been demonstrated to increase matrix metalloproteinases-1, 2, 3, and 13 mRNA expression in Saos-2 cells, and drive mitochondrial stress in murine osteoblast-like cells, resulting in increased reactive oxygen species production.22,25,26

In contrast to osteoblasts, osteoclasts are primarily responsible for bone resorption. Therefore a positive balance between osteoclast and osteoblast activity leads to a reduction in bone mass. Osteoclasts also express α1 to 5, 7, 9, and 10 nicotine receptor subtypes, with α7 mRNA increasing in response to nicotine treatment.27 In vitro data examining the role of nicotine on osteoclast function are conflicting. On the one hand, nicotine increased RAW264.7 osteoclast carbonic anhydrase expression, promoting demineralization.27 However, there is also evidence that nicotine reduces bone resorption by decreasing V-ATPase expression and the planar area of the resorption.27 Contrasting results have also been observed in vivo. Firstly, knockout of α7 nicotine receptors in mice resulted in decreased osteoclastogenesis and increased bone mass.28,29 However, nicotine-mediated activation of α7 receptors in mice has been demonstrated to upregulate receptor activator of nuclear factor kappa-B ligand (RANKL) expression, promoting osteoclast activation and bone resorption.29

The most common carrier agents/humectants used in E-cigarette liquids include propylene glycol and vegetable glycerine. E-cigarette use results in thermal degradation of such humectants, generating carbonyl compounds such as formaldehyde, acetaldehyde, and acrolein.30,31 Importantly, increased amounts of aldehyde compounds were detected in exhaled breath after vaping, while exhaled formaldehyde concentrations were similar to traditional cigarettes (~5 μg·puff−1).32,33 Although the effect of E-cigarette-derived carbonyl compounds on bone cell function has not been studied directly, there is evidence that aldehydes can reduce proliferation and increase cell death of U2OS cells (human osteoblastic cell line) in a dose-dependent manner,32,33 and reduce osteoblast alkaline phosphatase activity and mineralization.34 Acetaldehyde has also been shown to stimulate peroxisome proliferator-activated receptor (PPARY) expression in murine osteoblasts, inhibiting osteoblast differentiation.35 Additionally, genetic polymorphisms resulting in reduced aldehyde dehydrogenase, mitochondrial (ALDH2) cause a build-up of acetaldehyde in humans, lower BMD, and a significantly increased rate of hip fracture and osteoporosis.36,37

The wide variety of E-cigarette flavouring liquids available for consumption (over 8,000 to date) is a primary contributing factor to the rise in popularity of E-cigarette usage, especially among younger individuals and those who previously did not smoke cigarettes.38-40 However, there is limited regulation and quality control of flavouring compounds present in E-cigarette liquids. Flavouring chemicals have been demonstrated to have harmful effects on other cell types such as immune cells,37 and atomization of flavouring chemicals including linalool, dipentene, and citral causes free radical production.31-34 Despite this, there is a dearth of studies investigating physiological effects of flavouring chemicals on bone directly.

Traditional cigarettes are associated with the inhalation of metal particulates, including chromium, cadmium, lead, and nickel, all of which are known to have a variety of harmful effects.44-46 Emerging data have demonstrated that metal particulates and nanoparticles are also generated from E-cigarettes, with concentrations in many cases similar or exceeding those from cigarette smoke.7,24 However, the effect of E-cigarette-derived metal particulates on bone has not yet been reported.

The development of E-cigarette devices has also resulted in their use to vape cannabidiol (CBD), the major non-psychoactive constituent of cannabis, due to its purported analgesic, anti-inflammatory, and anti-epileptic properties.49-51 Again, although no direct study of the effect of vaping CBD on bone has been performed, data surrounding direct administration of CBD suggest a largely positive impact on bone, including reduced bone loss following the induction of periodontal disease,52 promotion of fracture healing,53 and recovery following injury in rats.54,55 There is also evidence that CBD can suppress osteoclastogenesis and reduce the function of human osteoclasts.56,57

To date there has been little investigation into the effect of E-cigarette vapour on bone and bone cell function. Current data suggest that exposure of both osteoblasts and osteoclasts to high concentrations of nicotine may reduce their viability and impair function. Similarly, aldehydes and flavouring chemicals may also negatively impact osteoblast viability and ability to form bone. However, such findings are predominantly derived from studies using bone cell lines, with limited use of human osteoblasts or osteoclasts. Understanding how E-cigarette vapour components may mediate human bone cell function, in addition to long-term studies to determine the potential harm of chronic E-cigarette use on human bone, will be important to inform users and healthcare providers of potential risks, particularly regarding bone healing following orthopaedic surgery and injury.

\textbf{Twitter}

Follow S. W. Jones @UoB_JonesLab

\textbf{References}

DO E-CIGARETTES AND VAPING HAVE A LOWER RISK OF OSTEOPOROSIS, NONUNION, AND INFECTION THAN TOBACCO SMOKING?

Author contributions:

T. Nicholson: Wrote the first draft of the manuscript, Reviewed, edited, and approved the final manuscript.

A. Scott: Conceptualized the study, Reviewed, edited, and approved the manuscript.

M. Newton Ede: Conceptualized the study, Reviewed and approved the final manuscript.

S. W. Jones: Conceptualized the study, Reviewed, edited, and approved the manuscript.

Funding statement:

The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. This work was supported by a funding grant from NuVasive Ltd and from MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (MR/K00414X/1). The funders had no role in the decision to publish, or preparation of the manuscript.

ICMJE COI statement:

S. W. Jones and T. Nicholson report an institutional grant from NuVasive Ltd related to this article. A. Scott and T. Nicholson report an institutional grant from MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (MR/K00414X/1), also related to this article.

Acknowledgements:

The authors acknowledge support from the funders NuVasive Ltd and the MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research.

© 2021 Author(s) et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non-Commercial-No Derivatives (CC BY-NC-ND 4.0) licence, which permits the copying and redistribution of the work only, and provided the original author and source are credited. See https://creativecommons.org/licenses/by-nc-nd/4.0/.

Author information:

T. Nicholson, BSc, PhD, Post-doctoral Research Associate
S. W. Jones, BSc, PhD, Reader in Musculoskeletal Ageing, MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK.

A. Scott, BSc, PhD, Lecturer, Birmingham Acute Care Research Group Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham, UK.

M. Newton Ede, MBChB, MRCS(Eng), FRCS(Tr&Orth), Consultant Orthopaedic Surgeon, Royal Orthopaedic Hospital, Birmingham, UK.

