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A B S T R A C T   

Renewable and sustainable energy production systems offer promising perspectives for the future, as their 
production and maintenance prices decrease, and their efficiency and reliability increase, favouring the 
competitiveness of this industry. Thereby, wind energy is one of the most used and developed as renewable 
energy, since it is a cost-effective way to generate clean and sustainable energy. Wind energy is divided into 
onshore and offshore depending on the wind farm location. Offshore wind energy is increasing its use. However, 
the offshore industry requires more maintenance, which is also more complicated to do because of the envi
ronmental conditions. Setting the best maintenance strategy becomes a complicated optimization problem with 
several objectives and constraint functions. In this paper, a novel multi-objective optimization problem is defined 
and solved for real case studies by using Genetic Algorithms and Particle Swarm Optimization to minimize 
operational costs and maximize performance of the wind turbines. The results of both algorithms are compared 
considering several scenarios in a real case study. These results show a better performance of Particle Swarm 
Optimization for optimal cost achieved, and less computational cost to solve it. Finally, the influence of the 
model parameters is studied by performing a sensitivity study, that shows the importance of preventive main
tenance and the reduction of corrective maintenance tasks.   

Introduction 

Wind power is one of the largest growing sectors in energy produc
tion as it is based on a non-pollutant energy production technology 
[1–3]. Wind power is divided into onshore and offshore based on the 
location of the wind farm. Generally, offshore wind farms generate more 
power, are less environmentally impactful, and have the possibility to be 
larger in size. They require larger initial investments and operation and 
maintenance costs [4,5]. Energy production using wind turbines shows 
an increasing trend, see Fig. 1, from less than 10 GW in the early 2000 s 
to more than 50 GW in 2018 [6] (in blue), with production predicted to 
be increased even more (in orange). More than 90% of the production is 
onshore, the rest being offshore [7]. 

Wind turbines are complex machines subjected to random environ
mental and mechanical loads that cause wear and damage in their 

components, reducing their availability [8], leading to regular shut 
downs and inspections, and causing costs and power losses [4,9]. These 
costs can be reduced by applying maintenance optimization manage
ment, aimed at ensuring acceptable levels of energy production [10,11] 
and reducing false alarms [12,13]. Research on the applications of 
Artificial Intelligence (AI) for wind turbine maintenance has signifi
cantly increased in the last two decades [14–17], with an exponential 
growth in publications, mostly dedicated to modelling and optimizing 
management using methods such as statistical methods, trend analysis, 
time and frequency-domain and Fourier transforms [14,17]. In general, 
Maintenance Optimization Management using AI generally focuses on 
decision making, maintenance optimization and fault detection. 

Decision making and maintenance optimization focus on minimizing 
maintenance costs and downtimes due to inspections and faults [18], 
with most faults and delays concentrated in the turbine gearbox, 
generator and blades. Optimization functions are usually associated 
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with economic variables such as related costs due to power losses, power 
production income or fault occurrence, producing a large variety of 
models applied for this [18,19]. Hajej et al. [20] modelled the rela
tionship between variation of energy production and failure rate of wind 
turbines considering a Weibull distribution for power production, aim
ing to optimize their maintenance strategy following their production 
policies. Nachimuthu et al. [21] proposed a statistical model assuming 
known fault occurrence probabilities by taking time spent on inspection 
and repairing into account for uncertainties in condition monitoring. 
They obtained cost savings above 80% compared to traditional practice. 
Other approximations to select a maintenance strategy include: 
component monitoring, considering the lifetime costs associated to 
maintenance, inspection and repair of each component [22]; Identifi
cation of the defect position and severity to evaluate the need for in
spection and repair [23]; and Optimizing the relationship between 
preventive and corrective maintenance [10]. It is common to compare 
several maintenance strategies in order to obtain the most appropriate 
approach, [24,25], or to group individual component maintenance 
schedules to improve the general strategy [26]. In summary, most sta
tistical methods applied for decision making consider fault probability 
and system availability to decide the best maintenance policy. This is the 
same approach carried out in this paper, but in this paper new variables 
and components of the system, employing methods based in AI, are 
introduced. 

In recent years, the use of AI for both maintenance optimization and 

early fault detection has been increasing due to the advantages of these 
systems, especially cost reduction, reliability, and versatility [14,27,28]. 
Configurations based on Artificial Neural Networks (ANN) are the most 
common, applied for both short term maintenance considering different 
types and components [29], long term planning for maintenance and life 
cycle scheduling and costs [30] and wind turbine positioning [31,32], 
and production forecasting [33–35], producing notable cost and in
spection time reductions [36,37]. Fault tree analysis is also applied for 
decision making [38,39]. Fuzzy logic is commonly applied for decision 
making considering costs and failure modes [40,41], and preventive 
maintenance for early fault detection and prediction [42–44]. Genetic 
Algorithms (GA) and Particle Swarm Optimization (PSO) are discussed 
in Section 2. 

Fault detection using AI is frequently combined with Supervisory 
Control and Data Acquisition (SCADA) systems. García Márquez et al. 
[45] showed the use of ANN to detect gearbox faults using bearing 
temperature and wind speed, as well as machine learning [46] for early 
ice detection using ultrasounds and EMATs [47–49]. Marugán et al. [12] 
presented a new approach based on ANN to detect false alarms and 
prioritize alarms for wind turbines maintenance focused on reliability, 
where principal component analysis is employed for filtering the signals 
[50]. Benmessaoud et al. [51] applied fuzzy logic to evaluate the state of 
a wind farm based on big data and a SCADA system. Their approach 
reduced false alarms, and hence led to an optimization of the wind farm. 
False alarms were also studied by Peco et al. [52] on the main bearing of 

Nomenclature 

GA Genetic Algorithm 
PSO Particle Swarm Optimization 
ANN Artificial Neural Network 
λ Failure rate [-] 
r Downtime [h] 
A Availability [-] 
Ti Time interval [h] 
Ni Number of failures occurred during the time interval [-] 
xi Number of turbines reported for the time interval [-] 
ri Productive hours lost during the time interval [h] 
CPM Cost of preventive maintenance tasks [€] 
CCM Cost of corrective maintenance tasks [€] 
CPE Penalty cost of additional maintenance work [€] 
CLoss Cost due to production loss when the system stops [€] 

CT Total maintenance and production costs [€] 
αj Duration of the preventive maintenance task [h] 
CPM

j Hourly cost for performing preventive maintenance [€/h] 
βk Number of corrective maintenance tasks [-] 
CCMA Average cost for performing corrective maintenance [€] 
ne Supplementary hours of maintenance [h] 
Cpen Penalty cost of additional maintenance work [€] 
Cel Cost of electricity production [€] 
ECMA Average energy loss due to corrective maintenance [kWh] 
G Number of generations [-] 
PPM

j Power loss due to preventive maintenance of task j [kW] 
P Population [-] 
Pti Power generated by the wind turbine i [kW] 
ri Downtime of the turbine i [h]  

0

10

20

30

40

50

60

70

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Wind energy capacity

Year

P
ro

du
ct

io
n 

[G
W

]

Fig. 1. Evolution of wind energy capacity (blue) and its projection (orange) [6].  
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the wind turbines. They modelled the temperature of the gearbox 
bearing versus wind speed to study false alarms by data partitioning and 
data mining centres. In summary, the combination of SCADA systems 
with AI makes up a robust method to detect and evaluate false alarms in 
wind power systems. 

In this paper the use of GA and PSO is proposed to optimize main
tenance tasks of a wind turbine, which is not a scientific novelty. The 
novelty of this research lies in the application of a real case study using 
the failure rate of different components from an offshore wind turbine to 
optimize the scheduling and defining of maintenance regimes, consid
ering both preventive and predictive maintenance. Therefore, reliability 
and costs are also taken into account for a new complex and robust 
model. This optimization is carried out by using component failure rate 
and availability, the costs associated to perform preventive and 
corrective maintenance tasks, and costs due to production losses. The 
response of the model is evaluated using both PSO and GA, in order to 
assess their advantages and disadvantages and to validate the results. 
Furthermore, a sensitivity study is performed to evaluate the influence 
of the model parameters in the costs. 

The rest of the paper is structured as follows: Section 2 explains the 
background of GA and PSO for wind turbine maintenance management; 
The cost model is presented in Section 3 by applying component avail
ability and costs derived from maintenance and downtime; Section 4 
shows the real case study; The cost model is then evaluated in Section 5 
with a case study and a comparison between GA and PSO in several 
scenarios, as well as a sensitivity study; Statistical analysis of GA and 
PSO is done in Section 6; Finally, Section 7 presents the conclusions of 
this research. 

Genetic algorithms and Particle Swarm optimization 
backgrounds 

This section presents the fundaments of the algorithms applied in the 
research, both GA and PSO, as well as their applications for wind energy 
condition monitoring. 

Genetic algorithms 

GA are proposed as one of the most common approaches used for 
wind turbine maintenance optimization problems. GA are evolutionary 
algorithms that use a technology inspired by evolutionary biology such 
as selection, reproduction, mutation, crossover and hybridization, 
which gives them the ability and the robustness to find optimal solu
tions, i.e., fitness function [53]. GA adapt to the environment initiating a 
modelling of the collective evolution process of the individuals. The 
state of each individual is schematized by a point in the space [54]. Each 
successive generation is generated by selecting a percentage of the 
existing chromosomes based on the preference of the optimization 
function, by a process named reproduction. This process is finalized with 
the occurrence of one of the finishing causes producing the fitness 
function [55]. The main objective of GA is to improve the robustness and 
to balance performance and costs required for survival in many different 
environments [54]. Fig. 2 presents the structure of a GA, adapted from 
[56]. 

GA for wind turbine monitoring are generally oriented towards 
maintenance optimization, defining an objective function to balance 
Operation and Maintenance costs and component availability. As each 
optimization problem is unique, there are different optimization ap
proaches, and authors often compare them to obtain the most appro
priate one for their requirements [57]. Researchers generally convert 
operations into economical terms to homogenise the optimization 
problem, considering also scheduling and availability into the formu
lations [58,59]. Other approaches consider aspects such as the Levelized 
Cost of Energy [60], environmental aspects, or even personality traits of 
inspectors [59]. The application of GA to optimize scheduling has 
proven beneficial for both energy production [61] and cost reduction 

[62], hence the utility of this technique to optimize wind farm moni
toring and maintenance. This paper applied GA to solve the novel and 
robust problem presented in Section 3, which has not been studied in the 
literature yet. 

Particle Swarm optimization 

PSO follows a similar approach to GA, in which a group of particles, 
named population, is located at random positions, that are updated 
aiming to optimize a given problem. PSO simulates animal social 
behaviour cooperating to find food, where each member of the swarm 
changes the search pattern considering its own experience and other 
members as well [63]. The group behaviour is based on five principles 
(proximity, quality, diverse response, stability and adaptability) that 
make the guiding principles to stablish the swarm life system [64]. Fig. 3 
presents the schematics of a PSO, adapted from [63]. 

PSO is frequently merged with other AI techniques, and aimed at 
optimizing different aspects of WT design and maintenance manage
ment such as power dispatch [65,66], maintenance planning [67,68], 
and gearbox condition monitoring using temperature [69] or vibration 
signals [70]. Microgrid size optimization is another recurrent applica
tion of PSO, considering both economic [71,72] and environmental as
pects [73,74]. Researchers have shown that the combination of GA and 
PSO is currently one of the most powerful algorithms [65,73,75]. Other 
combinations are with fuzzy logic [76] and Monte Carlo methods [77]. 
Similar to GA, PSO is used to solve the novel and robust problem 
considered, which is new according to the state of the art. The validation 
of this research lies in the comparison between GA and PSO for the case 
study presented in Section 4 in terms of objective optimization and time 
required for convergence, as well as other aspects presented in the dis
cussion of results. 

Model approach 

Maintenance parameters 

The model approach is based on the main maintenance parameters 
given for offshore wind turbines: failure rate (λ), downtime (r) and 

S

Generate initial random 
population

Calculate individual fitness

Crossover operator:  select 
two individuals and swap a 

section of gene between 
them

Mutation operator: select 
one individual and mutate 

the genes in it

Selection of individuals

Selection of genetic 
operator

S

Start

Stop

Satisfy stop 
criteria?

Yes

No

+ +

Fig. 2. Flow chart of a Genetic Algorithm, . 
adapted from [56] 
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availability (A), given by equations (1), (2) and (3) respectively. 
The failure rate λ is understood as a measure of the occurrence of 

turbine failures along time. It is expressed as the number of failures per 
turbine per year and defined by equation (1). 

λ =

∑I
i=1Ni

∑I
i=1xiTi

(1) 

where Ni is the number of failures occurred during the time interval; 
xi is the number of turbines reported for the time interval, and; Ti is the 
time interval. The downtime r is understood as the average amount of 
hours lost due to failures, defined by equation (2). 

r =

∑I
i=1ri

∑I
i=1xiTi

(2) 

where ri is the amount of productive hours lost during the time in
terval Ti due to failures. The average availability A is understood as the 
mean time between failures and the total time of operation of the wind 
turbine. It is defined by equation (3), this parameter combines λ with r to 
give an estimation of the availability of the wind turbine. 

A =
1

1 + λÂ⋅r
(3)  

Total cost model and optimization function 

The total cost of the model (CT) is calculated using the following 
costs: cost of preventive maintenance tasks (CPM); Cost of corrective 
maintenance tasks (CCM); Penalty cost of additional maintenance work 
(CPE); and Cost due to production loss when the system stops (CLoss). CPM 
is the total cost derived from performing each preventive maintenance 
task, and is given by equation (4), 

CPM =
∑J

j=1
αjÂ⋅CPM

j (4) 

where αj is the duration of the preventive maintenance task in hours 

[h], and CPM
j is the hourly cost for performing preventive maintenance 

[€/h]. CCM is the cost derived from performing corrective maintenance 
tasks, expressed in equation (5). 

CCM = βk.CCMA (5) 

where βk is the number of corrective maintenance tasks, and CCMA is 
the average cost for performing corrective maintenance [€]. CPE is the 
cost due to losses associated to corrective maintenance tasks, given by 
equation (6), 

CPE = neÂ⋅Cpen (6) 

where ne are the hours supplementary of maintenance at time t and 
Cpen is the penalty cost of additional maintenance work [€/h].CLoss is the 
production loss cost due to the wind system stops, given by equation (7). 

CLoss =

(
∑J

j=1
αjÂ⋅PPM

j + βkÂ⋅ECMA

)

Â⋅Cel (7) 

where Cel is the electricity cost [€/kWh]; PPM
j is the power loss due to 

preventive maintenance of task j [kW], and; ECMA is the average energy 
loss due to corrective maintenance [kWh]. This equation can be 
simplified, obtaining equation (8): 

CLoss =
∑

i
PtiÂ⋅riÂ⋅Cel (8) 

where Pti is the power generated by the wind turbine i and ri is the 
downtime of the turbine i. 

The total cost equation is obtained as the sum of costs presented in 
equations (4), (5), (6) and (8). This cost results in given by equation (9). 

CT =
∑J

j=1
αjÂ⋅CPM

j + βk.CCMA + neCpen +
∑

i
PtiÂ⋅riÂ⋅Cel (9) 

Considering the variables and functions previously stated, the cost 
minimization given by equation (9) is the objective function. Hence, the 
optimization objective is given by equation (10). 

min

{

CT =
∑J

j=1
αjÂ⋅CPM

j + βk.CCMA + neCpen +
∑

i
PtiÂ⋅riÂ⋅Cel

}

(10) 

Equation (10) is to be optimized given the constraints (11–14), in 
which the limits for each constraint are explained in [78,79], and in 
Section 4: 

αj ≥ 8; 1 ≤ j ≤ J; j ∈ J (11)  

βk ≥ 1; 1 ≤ k ≤ K;K > 1 (12)  

ne ≥ 0 (13)  

rmin ≤ ri ≤ rmax (14) 

The variables presented in this section are summarized in Table 1, 
and also described in the nomenclature. These are the variables to be 
optimized so as to minimize the total cost. 

The application of the cost model and optimization function through 
a real case study and discussing the results are presented in Section 4 
Table 2. 

Case study 

Wind turbines are formed by four major systems: foundation and 
tower, blade system, electrical components (generator and related 
components), and power train [80,81]. The tower supports the nacelle, 
which generates energy via the rotation of the blades caused by the 
wind. This rotation is transformed into electricity in the generator by the 
power train and transferred to the network. These components are 
subject to faults and, therefore, need to be regularly inspected and 

S
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Evaluate particle fitness

Calculate individual historical optimal 
position

d

Calculate swarm historical optimal 
position

Start

Update particle velocity and position 
according to velocity and position 

updating equation

Satisfy ending 
condition?

End

Fig. 3. Schematics of a Particle Swarm Optimization algorithm, . 
adapted from [63] 
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repaired when necessary. 
The wind turbines used in this case study are three 1.65 MW Vestas 

V66 types. The SCADA data employed corresponds to the European 
project OPTIMUS. The data were collected every 10 min in the period of 
24 months. There are twelve preventive maintenance tasks to be per
formed on each wind turbine, with an approximate duration of 8 h each 
[78,79]. In this case, maintenance work can be performed without 
stopping the system. The simulation parameters are assumed as 
follows:CPM

j = 85€/h;CCM
k = 1500€/h;Cel = 0.83€/MWh;Cpen =

20€/h;Pti = 1.65 MW;J = 36. The failure rate and downtime of each 
wind turbine component over 24 months are shown in Table 1, where 
the limit values extracted from it are λmin = 0.02; λmax = 0.625, rmin =

1h; rmax = 136.925h. 
Fig. 4 shows these variables in a Pareto chart to demonstrate the 

relative importance of the main components. 
Table 3 and Fig. 4 show that the gearbox is the component with the 

highest risk factor, more than 40% of the total. It is followed by the 
generator, focusing almost 20% of the total, and the electrical system 
and blade, being 11% each. These four main components concentrate 
more than 80% of the risk factor and associated downtime, therefore, 
they should be monitored and inspected with a higher frequency than 
the others. 

Results and discussion 

This section shows the results obtained from the optimization pro
cess using GA and PSO. This optimization has been carried out using: 
non-defined fitness limit; Limited maximum number of iterations; Fixed 
population size; Constraint tolerance equal to zero; Termination toler
ance equal to zero; and Lower and upper bounds to define variable in
tervals. The results are obtained by optimizing equation (10), varying 
the maximum number of iterations and population size for both GA and 
PSO ranging from 5 to 500 particles, and 1 to 1000 iterations, with 
higher resolution at the lower end of both ranges. The parameters used 
for approaching the problem are presented in Table 3. 

A comparison between these two algorithms is presented after the 
best selection is decided for each of them. Finally, a sensitivity study is 
carried out to evaluate the variation of the cost model respect to the 
parameters composing it. 

Results for Genetic algorithm 

Fig. 5 shows the optimization results using GA given the conditions 
stated above. Top subfigures show, respectively in a heatmap, the 
minimum cost obtained in 1000x [€] (a), and the time required in sec
onds (b) to reach that cost given certain population size and maximum 
iterations. Bottom left shows a normalized value combining both cost 
and time (c), in which an increasing value means a worsening result. 
Thus, the blue zones correspond to better results and the yellow ones to 
worse, respectively. Bottom right shows the evolution of cost results and 
time required (d), using darkening tones of blue to represent the 
increasing population size of each test. 

The main findings extracted from the results are: 

Table 1 
Variables considered for the optimization problem.  

Variable Description Type Units 

λ Failure rate Continuous [-] 
r Downtime Continuous [h] 
A Availability Continuous [-] 
Ti Time interval Continuous [h] 
Ni Failures occurred during Ti Discrete [-] 
xi Turbines reported for the time interval Discrete [-] 
ri Productive hours lost during the time interval Continuous [h] 
CPM Cost of preventive maintenance tasks Continuous [€] 
CCM Cost of corrective maintenance tasks Continuous [€] 
CPE Penalty cost of additional maintenance work Continuous [€] 
CLoss Cost due to production loss when the system 

stops 
Continuous [€] 

CT Total maintenance and production costs Continuous [€] 
αj Duration of the preventive maintenance task Continuous [h] 
βk Number of corrective maintenance tasks Discrete [-] 
ne Supplementary hours of maintenance Continuous [h] 
Cpen Penalty cost of additional maintenance work Continuous [€] 
Cel Cost of electricity production Continuous [€] 
Pti Power generated by the wind turbine i Continuous [kW] 
ri Downtime of the turbine i Continuous [h]  

Table 2 
Failure rate and downtime for each turbine component over 24 months.  

Component Failure 
rate [-] 

Downtime 
[h] 

Risk factor Normalized risk 
factor 

Gearbox  0.625 136.925  85.578125  0.419 
Generator  0.4 101.625  40.65  0.199 
Electrical 

System  
0.7 33.907  23.7349  0.116 

Blade  0.617 36.9  22.7673  0.111 
Hydraulic 

System  
0.5 19.075  9.5375  0.0467 

Control System  0.507 12.567  6.371469  0.0312 
Pitch System  0.375 11.175  4.190625  0.0205 
Sensors  0.327 11  3.597  0.0176 
Others  0.433 7.2  3.1176  0.0153 
Wind 

Measurement  
0.217 11.725  2.544325  0.0124 

Mechanical 
Brake  

0.5 2.5  1.25  6.12e-3 

Yaw System  0.15 5.5  0.825  4.04e-3 
Shaft/Bearing  0.1 2  0.2  9.79e-4 
Tower  0.02 1  0.02  9.79e-5  
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Fig. 4. Pareto chart ranking component risk factors.  

Table 3 
GA and PSO parameters considered for the optimization problem.  

Parameter 
name 

Description Range Type Units 

P Population 5–500 Discrete [-] 
G Number of generations 1–1000 Discrete [-] 
αj Duration of preventive 

maintenance task 
8–50 Continuous [h] 

βk Duration of corrective 
maintenance task 

1–6 Continuous [h] 

ne Supplementary hours of 
maintenance 

1–20 Continuous [h] 

ri Turbine downtime 1–137 Continuous [h]  
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- Costs do not show convergence to the minimum value until the 
population is high enough, above 100 individuals, showing the low 
accuracy of GA for the optimization problem.  

- The time required to reach the final result for each population size 
and maximum iteration number is relatively low, less than 15 s in the 
most requiring case, showing the high speed of the algorithm.  

- The normalized values show that a configuration with relatively high 
population and low number of iterations is preferrable to others, as 
the results already converged but the computation time increases.  

- Population values beyond 300 individuals show few changes in cost 
evolution, although computational time tends to increase. Hence, a 
value beyond that would imply higher computational costs and 
below would imply less convergence to minimum, meaning that a 
population size close to 300 individuals is optimal for the problem.  

- Results beyond 400 iterations do not show significant reductions in 
cost, but increase time required to finish the process. Hence, this 
value can be considered as optimal for the problem. 

Considering the aforementioned findings, it can be concluded that a 
population size of 300 individuals with a maximum of 400 iterations is 
the optimal combination for the problem. This combination obtains a 
minimum total cost of 108,600 € approx. 

Results for Particle Swarm optimization 

Fig. 6 presents the optimization results using PSO in the same 
manner as Fig. 5. 

The main findings from Fig. 6 are:  

- Costs quickly converge before 100 iterations to the optimal value of 
90,628 €, independently from the population size, showing the high 
accuracy of PSO for this problem.  

- The increment in computation time for a higher population is more 
noticeable than for GA, showing higher computational requirements 
compared to it. 

- The best normalized values are in low population ranges, indepen
dently from the maximum number of iterations. Even so, a low 
number of iterations is preferrable to reduce computational costs and 
resolution time.  

- With a population size above 40 there is low variation of optimal 
costs but increment computational time. Therefore, there is no need 
to increase population beyond that point.  

- For any population size, most results reach the optimum point at 600 
iterations or before. Therefore, there is no need to advance beyond 
that point. 

Hence the best combination is a population size of 40 particles and a 
maximum of 600 iterations, obtaining an optimal result of 90,628 €. 

Validation of results 

This section presents a validation of the results employing the two 
best population sizes of GA (300 particles) and PSO (40 particles) in 
terms of computational time required, convergence, and optimal value 
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Fig. 5. Results for problem optimization using GA. Minimum cost obtained (a), time required (b), normalized value (c) and optimization results (d).  

A. Peinado Gonzalo et al.                                                                                                                                                                                                                     



�6�X�V�W�D�L�Q�D�E�O�H �(�Q�H�U�J�\ �7�H�F�K�Q�R�O�R�J�L�H�V �D�Q�G �$�V�V�H�V�V�P�H�Q�W�V ���� ������������ ������������

obtained. Fig. 7 shows the comparison between GA and PSO for both 
optimal cost (top), and computational time required (bottom) for the 
optimal population size. 

Fig. 7 shows that PSO is clearly superior to GA in both convergences: 
optimization costs and computational time. After only 100 iterations, it 

already converged to a result close to the optimal (90,628€) in less than 
a second. However, GA needed 600 iterations to approach that value 
and, even after 1000, it did not reach it, requiring a relatively higher 
computational time than PSO. 

This section shows that, though GA generally requires less compu
tational time than PSO for the same population size, it requires larger 
population size and iterations, and thus more computational resources 
to reach to the optimal value. Hence, PSO is concluded to be the best 
suited algorithm for this optimization problem. As it requires lower 
population size, iterations and thus computational time to reach the 
optimal value. 

The maintenance strategy for each wind turbine consists then of 12 
scheduled preventive maintenance tasks of 8h each and one corrective 
maintenance task of 1h, with an overall cost of 20, 190 € per wind 
turbine. 

Sensitivity study 

A sensitivity study has been carried out to evaluate the response of 
the cost model to a ± 10% variation of the following parameters: min(α), 
min(β), min(n), min(r), Cpmh, Ccma, Cel and Cpen on the following model 
parameters: α, β, n, r and CT. 

Table 4 shows the results as follows: the columns show the variable 
variation respect to the ± 10% variation of the value of the row variable 
(e.g., the range of values of min(α) is 8 ± 10%, which is equal to 
[7.2, 8.8]). Results are shown in percentage values. 

The observations extracted from the results are as follows: 
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Fig. 6. Results for problem optimization using PSO. Minimum cost obtained (a), time required (b), normalized value (c) and optimization results (d).  
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- Variations of min(α), min(β) and min(n) cause variations of the final 
values of α, β and n, respectively. This occurs because of these values 
already reach the lower boundary for the optimization problem, 
independently of the constraint. Opposite to them, variation of 
min(r) causes no variation on the final value of r, because this value 
did not reach the lower boundary of the optimization problem. 

- All cost parameter variations (Cpmh, Ccma, Cel, Cpen) cause only sym
metrical variations in CT of a larger or smaller magnitude. The other 
parameters, however, show interactions between them, such as β and 
n, causing r to change in the same magnitude as them.  

- Variations in CT are mostly due to β causing a 7.3% variation of costs 
when their value change at 10%. The second most important source 
of variation are P and Cel, causing a 6.8% variation. The rest of pa
rameters cause variations lower than 3% in the total costs. r is 
remarkable as its variation does not cause symmetrical changes in 
total costs, as occurring with the rest of parameters. α and Cpmh cause 
exactly the same variation, most likely due to the localization of 
these parameters in the same term of the cost model. This happens as 
well with n and Cpen, and P and Cel. 

- The results show the importance in reduction of corrective mainte
nance activities, as they cause large increments of costs when per
formed. It would be then possible to increase preventive 
maintenance time without increasing total costs as much.  

- Although power output is not likely to show large variations by 
design, a larger production means larger maintenance costs, but 
these can be mitigated by the incomes generated by the power 
generated itself. 

This section presented the main results and observations of this 
study. Previous research already addressed maintenance optimization 
considering parameters such as costs, energy output, and environmental 
variables [65,72,73]. This work addressed these parameters by con
verting them to costs, thus simplifying the optimization problem and 
accelerating the obtention of the optimal results. Combinations of GA 
and PSO with other AI techniques proved their use for power dispatch 
optimization, and for hybrid system configuration [66,71,74,75]. 
Compared to them, this study demonstrated how both GA and PSO are 
good methods to optimize maintenance scheduling formulated as opti
mization problems, being PSO superior to GA in computational cost and 
obtainment of the best results. The sensitivity study, not found in the 
literature, highlighted the usefulness of preventive maintenance, as it 
can be increased without causing as much cost increments as corrective 
maintenance. 

Statistical analysis of GA and PSO 

Non-parametric analysis such as Quade and Friedman Test [82,83] 
were conducted based on the results shown in Section 5. For these tests, 
it is started by preparing an average error. It has been done by deducting 
the minimum value of the superior algorithm, i.e., in this case PSO, from 
the mean values of GA. It was named a hypothetical situation H0, ac
cording to which there is no difference between the algorithms used and 
they are all one and the same. A contradictory hypothetical situation H1 
states that there are distinct differences between the algorithms used, 
PSO and GA. If the p-value generated by the non-parametric statistical 
tests is more than significance level, i.e., 0.05, the hypothesis H0 is 
discarded. As per the data generated by Quade test, the lowest of the sum 
of the ranks is gained by proposed PSO making it the best among the rest 
of the algorithms. Also, the Q-statistic value is greater than the critical 
value as mentioned in reference [84], and p-value of Quade test less than 
0.05, all points towards the elimination of the null hypothesis H0. 
Similar observations were made from the Friedman ANOVA test. 

The least ranks were maintained by the proposed algorithm for all 
the scenarios thus making it the superior among the rest. The Chi-Square 
value obtained from Friedman ANOVA test is less than the critical value 
mentioned in reference [85], and the p-value is less than 0.05, thus 
proving the null hypothesis obsolete. 

Conclusions 

This paper has presented the context of wind turbines maintenance 
management using Artificial Intelligence (AI) techniques to optimize the 
maintenance scheduling of wind turbines. A case study based on the 
scheduling optimization of three wind turbines has been presented, 
which used preventive and corrective maintenance, as well as the costs 
due to these activities, formulating the system as a cost minimization 
problem to be solved by Genetic Algorithms (GA) and Particle Swarm 
Optimization (PSO). The results show the benefits and disadvantages of 
each technique, as well as a comparison between them. The conclusions 
of the research are summarized as follows:  

- GA and PSO are already settled as a common practice to assess 
maintenance in wind farms, as well as other AI-based techniques 
discussed in the introduction. GA is generally less computationally 
expensive, but it provides less optimal results compared to PSO. The 
use of one or other technique should be discussed depending on the 
application, complexity and objective of the problem.  

- PSO is selected as the best algorithm as it, in comparison, reaches the 
optimal solution faster and with less computational cost. The main
tenance strategy achieves an optimal cost of 141,050 € for the whole 
system. This strategy considers 12 preventive maintenance tasks and 
one corrective maintenance task as the optimal solution.  

- The sensitivity study shows how preventive maintenance time can be 
increased with minimal increased costs as compared to corrective 
maintenance. Power production also causes cost variation, but it is 
naturally mitigated by the incomes from the power generated itself.  

- The novelty of this research lies in the application of a real case study 
considering several wind turbines, and mainly the comparison be
tween GA and PSO, two AI-based techniques applied to optimize a 
large range of problems, as well as the use of a sensitivity study to 
evaluate the variability of the optimization problem. 

This study compared the performance of two of the most applied AI 
techniques for maintenance optimization. Both the population size and 
maximum number of iterations have been used to optimize the formu
lated problem, as well as the constraints for the sensitivity analysis. 
However, there are other parameters that could be analysed to improve 
the efficiency of the algorithms, such as the variables considered, the 
number of preventive and corrective maintenance tasks, or changes over 
time, such as energy prices and maintenance costs, or component wear. 

Table 4 
Relative parameter variation for sensitivity study.  

Variable Variation α β n r CT 

min(α) + 10% 10 0 0 0 2.7 
− 10% − 10 0 0 0 − 2.7 

min(β) + 10% 0 10 0 10 7.3 
− 10% 0 − 10 0 − 10 − 7.3 

min(n) + 10% 0 0 10 10 0.0022 
− 10% 0 0 − 10 − 10 − 0.0022 

min(r) + 10% 0 0 0 0 0 
− 10% 0 0 0 0 − 2.7 

Pti + 10% 10 0 0 0 6.8 
− 10% 0 0 0 0 − 6.8 

Cpmh + 10% 10 0 0 0 2.7 
− 10% 0 0 0 0 − 2.7 

Ccma + 10% 0 0 0 0 0.5 
− 10% 0 0 0 0 − 0.5 

Cel + 10% 0 0 0 0 6.8 
− 10% 0 0 0 0 − 6.8 

Cpen + 10% 0 0 0 0 0.0022 
− 10% 0 0 0 0 − 0.0022  
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