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ARTICLE INFO ABSTRACT

Keywords: Renewable and sustainable energy production systems offer promising perspectives for the future, as their
Maintenance production and maintenance prices decrease, and their efficiency and reliability increase, favouring the
Wind farm

competitiveness of this industry. Thereby, wind energy is one of the most used and developed as renewable
energy, since it is a cost-effective way to generate clean and sustainable energy. Wind energy is divided into
onshore and offshore depending on the wind farm location. Offshore wind energy is increasing its use. However,
the offshore industry requires more maintenance, which is also more complicated to do because of the envi-
ronmental conditions. Setting the best maintenance strategy becomes a complicated optimization problem with
several objectives and constraint functions. In this paper, a novel multi-objective optimization problem is defined
and solved for real case studies by using Genetic Algorithms and Particle Swarm Optimization to minimize
operational costs and maximize performance of the wind turbines. The results of both algorithms are compared
considering several scenarios in a real case study. These results show a better performance of Particle Swarm
Optimization for optimal cost achieved, and less computational cost to solve it. Finally, the influence of the
model parameters is studied by performing a sensitivity study, that shows the importance of preventive main-
tenance and the reduction of corrective maintenance tasks.

Offshore
Genetic Algorithms (GA)
Particle Swarm Optimization (PSO)

components, reducing their availability [8], leading to regular shut
downs and inspections, and causing costs and power losses [4,9]. These
costs can be reduced by applying maintenance optimization manage-
ment, aimed at ensuring acceptable levels of energy production [10,11]
and reducing false alarms [12,13]. Research on the applications of
Artificial Intelligence (AI) for wind turbine maintenance has signifi-
cantly increased in the last two decades [14-17], with an exponential
growth in publications, mostly dedicated to modelling and optimizing
management using methods such as statistical methods, trend analysis,
time and frequency-domain and Fourier transforms [14,17]. In general,
Maintenance Optimization Management using Al generally focuses on
decision making, maintenance optimization and fault detection.
Decision making and maintenance optimization focus on minimizing
maintenance costs and downtimes due to inspections and faults [18],
with most faults and delays concentrated in the turbine gearbox,
generator and blades. Optimization functions are usually associated

Introduction

Wind power is one of the largest growing sectors in energy produc-
tion as it is based on a non-pollutant energy production technology
[1-3]. Wind power is divided into onshore and offshore based on the
location of the wind farm. Generally, offshore wind farms generate more
power, are less environmentally impactful, and have the possibility to be
larger in size. They require larger initial investments and operation and
maintenance costs [4,5]. Energy production using wind turbines shows
an increasing trend, see Fig. 1, from less than 10 GW in the early 2000 s
to more than 50 GW in 2018 [6] (in blue), with production predicted to
be increased even more (in orange). More than 90% of the production is
onshore, the rest being offshore [7].

Wind turbines are complex machines subjected to random environ-
mental and mechanical loads that cause wear and damage in their
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Nomenclature

GA Genetic Algorithm

PSO Particle Swarm Optimization

ANN Artificial Neural Network

A Failure rate [-]

r Downtime [h]

A Availability [-]

T; Time interval [h]

N; Number of failures occurred during the time interval [-]
X; Number of turbines reported for the time interval [-]
ri Productive hours lost during the time interval [h]
Crm Cost of preventive maintenance tasks [€]

Cem Cost of corrective maintenance tasks [€]

Cpg Penalty cost of additional maintenance work [€]

ClLoss Cost due to production loss when the system stops [€]

Cr Total maintenance and production costs [€]

[of Duration of the preventive maintenance task [h]

CJP M Hourly cost for performing preventive maintenance [€/h]
B Number of corrective maintenance tasks [-]

Ccma Average cost for performing corrective maintenance [€]
ne, Supplementary hours of maintenance [h]

Cpen Penalty cost of additional maintenance work [€]

Co Cost of electricity production [€]

ECMA Average energy loss due to corrective maintenance [kWh]
G Number of generations [-]

P}’ M Power loss due to preventive maintenance of task j [kW]
p Population [-]

Py Power generated by the wind turbine i [kW]

ri Downtime of the turbine i [h]

with economic variables such as related costs due to power losses, power
production income or fault occurrence, producing a large variety of
models applied for this [18,19]. Hajej et al. [20] modelled the rela-
tionship between variation of energy production and failure rate of wind
turbines considering a Weibull distribution for power production, aim-
ing to optimize their maintenance strategy following their production
policies. Nachimuthu et al. [21] proposed a statistical model assuming
known fault occurrence probabilities by taking time spent on inspection
and repairing into account for uncertainties in condition monitoring.
They obtained cost savings above 80% compared to traditional practice.
Other approximations to select a maintenance strategy include:
component monitoring, considering the lifetime costs associated to
maintenance, inspection and repair of each component [22]; Identifi-
cation of the defect position and severity to evaluate the need for in-
spection and repair [23]; and Optimizing the relationship between
preventive and corrective maintenance [10]. It is common to compare
several maintenance strategies in order to obtain the most appropriate
approach, [24,25], or to group individual component maintenance
schedules to improve the general strategy [26]. In summary, most sta-
tistical methods applied for decision making consider fault probability
and system availability to decide the best maintenance policy. This is the
same approach carried out in this paper, but in this paper new variables
and components of the system, employing methods based in Al, are
introduced.

In recent years, the use of Al for both maintenance optimization and

early fault detection has been increasing due to the advantages of these
systems, especially cost reduction, reliability, and versatility [14,27,28].
Configurations based on Artificial Neural Networks (ANN) are the most
common, applied for both short term maintenance considering different
types and components [29], long term planning for maintenance and life
cycle scheduling and costs [30] and wind turbine positioning [31,32],
and production forecasting [33-35], producing notable cost and in-
spection time reductions [36,37]. Fault tree analysis is also applied for
decision making [38,39]. Fuzzy logic is commonly applied for decision
making considering costs and failure modes [40,41], and preventive
maintenance for early fault detection and prediction [42-44]. Genetic
Algorithms (GA) and Particle Swarm Optimization (PSO) are discussed
in Section 2.

Fault detection using Al is frequently combined with Supervisory
Control and Data Acquisition (SCADA) systems. Garcia Marquez et al.
[45] showed the use of ANN to detect gearbox faults using bearing
temperature and wind speed, as well as machine learning [46] for early
ice detection using ultrasounds and EMATSs [47-49]. Marugan et al. [12]
presented a new approach based on ANN to detect false alarms and
prioritize alarms for wind turbines maintenance focused on reliability,
where principal component analysis is employed for filtering the signals
[50]. Benmessaoud et al. [51] applied fuzzy logic to evaluate the state of
a wind farm based on big data and a SCADA system. Their approach
reduced false alarms, and hence led to an optimization of the wind farm.
False alarms were also studied by Peco et al. [52] on the main bearing of

Wind energy capacity

N a1 o ~
o o S o
L J
]
[ ]

Production [GW]
w
o

07 o—o

0

2002 2004 2006 2008 2010 2012
Year

2014 2016 2018 2020 2022 2024

Fig. 1. Evolution of wind energy capacity (blue) and its projection (orange) [6].
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the wind turbines. They modelled the temperature of the gearbox
bearing versus wind speed to study false alarms by data partitioning and
data mining centres. In summary, the combination of SCADA systems
with AI makes up a robust method to detect and evaluate false alarms in
wind power systems.

In this paper the use of GA and PSO is proposed to optimize main-
tenance tasks of a wind turbine, which is not a scientific novelty. The
novelty of this research lies in the application of a real case study using
the failure rate of different components from an offshore wind turbine to
optimize the scheduling and defining of maintenance regimes, consid-
ering both preventive and predictive maintenance. Therefore, reliability
and costs are also taken into account for a new complex and robust
model. This optimization is carried out by using component failure rate
and availability, the costs associated to perform preventive and
corrective maintenance tasks, and costs due to production losses. The
response of the model is evaluated using both PSO and GA, in order to
assess their advantages and disadvantages and to validate the results.
Furthermore, a sensitivity study is performed to evaluate the influence
of the model parameters in the costs.

The rest of the paper is structured as follows: Section 2 explains the
background of GA and PSO for wind turbine maintenance management;
The cost model is presented in Section 3 by applying component avail-
ability and costs derived from maintenance and downtime; Section 4
shows the real case study; The cost model is then evaluated in Section 5
with a case study and a comparison between GA and PSO in several
scenarios, as well as a sensitivity study; Statistical analysis of GA and
PSO is done in Section 6; Finally, Section 7 presents the conclusions of
this research.

Genetic algorithms and Particle Swarm optimization
backgrounds

This section presents the fundaments of the algorithms applied in the
research, both GA and PSO, as well as their applications for wind energy
condition monitoring.

Genetic algorithms

GA are proposed as one of the most common approaches used for
wind turbine maintenance optimization problems. GA are evolutionary
algorithms that use a technology inspired by evolutionary biology such
as selection, reproduction, mutation, crossover and hybridization,
which gives them the ability and the robustness to find optimal solu-
tions, i.e., fitness function [53]. GA adapt to the environment initiating a
modelling of the collective evolution process of the individuals. The
state of each individual is schematized by a point in the space [54]. Each
successive generation is generated by selecting a percentage of the
existing chromosomes based on the preference of the optimization
function, by a process named reproduction. This process is finalized with
the occurrence of one of the finishing causes producing the fitness
function [55]. The main objective of GA is to improve the robustness and
to balance performance and costs required for survival in many different
environments [54]. Fig. 2 presents the structure of a GA, adapted from
[56].

GA for wind turbine monitoring are generally oriented towards
maintenance optimization, defining an objective function to balance
Operation and Maintenance costs and component availability. As each
optimization problem is unique, there are different optimization ap-
proaches, and authors often compare them to obtain the most appro-
priate one for their requirements [57]. Researchers generally convert
operations into economical terms to homogenise the optimization
problem, considering also scheduling and availability into the formu-
lations [58,59]. Other approaches consider aspects such as the Levelized
Cost of Energy [60], environmental aspects, or even personality traits of
inspectors [59]. The application of GA to optimize scheduling has
proven beneficial for both energy production [61] and cost reduction
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Fig. 2. Flow chart of a Genetic Algorithm, .
adapted from [56]

[62], hence the utility of this technique to optimize wind farm moni-
toring and maintenance. This paper applied GA to solve the novel and
robust problem presented in Section 3, which has not been studied in the
literature yet.

Particle Swarm optimization

PSO follows a similar approach to GA, in which a group of particles,
named population, is located at random positions, that are updated
aiming to optimize a given problem. PSO simulates animal social
behaviour cooperating to find food, where each member of the swarm
changes the search pattern considering its own experience and other
members as well [63]. The group behaviour is based on five principles
(proximity, quality, diverse response, stability and adaptability) that
make the guiding principles to stablish the swarm life system [64]. Fig. 3
presents the schematics of a PSO, adapted from [63].

PSO is frequently merged with other AI techniques, and aimed at
optimizing different aspects of WT design and maintenance manage-
ment such as power dispatch [65,66], maintenance planning [67,68],
and gearbox condition monitoring using temperature [69] or vibration
signals [70]. Microgrid size optimization is another recurrent applica-
tion of PSO, considering both economic [71,72] and environmental as-
pects [73,74]. Researchers have shown that the combination of GA and
PSO is currently one of the most powerful algorithms [65,73,75]. Other
combinations are with fuzzy logic [76] and Monte Carlo methods [77].
Similar to GA, PSO is used to solve the novel and robust problem
considered, which is new according to the state of the art. The validation
of this research lies in the comparison between GA and PSO for the case
study presented in Section 4 in terms of objective optimization and time
required for convergence, as well as other aspects presented in the dis-
cussion of results.

Model approach
Maintenance parameters

The model approach is based on the main maintenance parameters
given for offshore wind turbines: failure rate (A), downtime (r) and
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Fig. 3. Schematics of a Particle Swarm Optimization algorithm, .
adapted from [63]

availability (A), given by equations (1), (2) and (3) respectively.

The failure rate A is understood as a measure of the occurrence of
turbine failures along time. It is expressed as the number of failures per
turbine per year and defined by equation (1).

PI

A= ¢))
i XiTi
where N; is the number of failures occurred during the time interval;
X; is the number of turbines reported for the time interval, and; T; is the
time interval. The downtime r is understood as the average amount of
hours lost due to failures, defined by equation (2).
|:)I
r—piels @
iz XiTi
where r; is the amount of productive hours lost during the time in-
terval T; due to failures. The average availability A is understood as the
mean time between failures and the total time of operation of the wind
turbine. It is defined by equation (3), this parameter combines A with r to
give an estimation of the availability of the wind turbine.

1

[ — 3
1+ M @

Total cost model and optimization function

The total cost of the model (Cr) is calculated using the following
costs: cost of preventive maintenance tasks (Cpy); Cost of corrective
maintenance tasks (Ccy); Penalty cost of additional maintenance work
(Cpg); and Cost due to production loss when the system stops (Cress). Ceum
is the total cost derived from performing each preventive maintenance
task, and is given by equation (4),

Com = a;A-CPM )

j=1

where ; is the duration of the preventive maintenance task in hours
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[h], and C7™ is the hourly cost for performing preventive maintenance

[€=h]. Ccy is the cost derived from performing corrective maintenance
tasks, expressed in equation (5).

Cem = By:Cema 5)

where [, is the number of corrective maintenance tasks, and Cey is
the average cost for performing corrective maintenance [€]. Cpg is the
cost due to losses associated to corrective maintenance tasks, given by
equation (6),

CPE = neA'Cpen (6)

where n, are the hours supplementary of maintenance at time t and
Cpen is the penalty cost of additional maintenance work [€=h].Cy, is the

production loss cost due to the wind system stops, given by equation (7).
1

Closs = GA-PPM 4+ BAEM ACy (7)

j=1

where C, is the electricity cost [E=kWh]; P'™ is the power loss due to

preventive maintenance of task j [kW], and; E°M4 is the average energy
loss due to corrective maintenance [kWh]. This equation can be
simplified, obtaining equation (8):

Closs = |:’tiA'riA'cel ®

1

where P, is the power generated by the wind turbine i and r; is the
downtime of the turbine i.

The total cost equation is obtained as the sum of costs presented in

equations (4), (5), (6) and (8). This cost results in given by equation (9).

<, <

i1 PiA-riA-Cy ©)]

CT = (XJ'A'CJ-PM + Bk:CCMA + neCpen +
Considering the variables and functions previously stated, the cost
minimization given by equation (9) is the objective function. Hence, the
optimization objective is given by equation (10).
¢ X<y =< 2
j:lGjA'CJ' + BK:CCMA + rlecpen + IDliA'riA'CeI (10)

min Cy; =

Equation (10) is to be optimized given the constraints (11-14), in
which the limits for each constraint are explained in [78,79], and in
Section 4:

0 >81<j<Jjed (1mn
Be>1L1<k<KK=>1 (12)
ne >0 13)
Tmin < Ti < Foax a4

The variables presented in this section are summarized in Table 1,
and also described in the nomenclature. These are the variables to be
optimized so as to minimize the total cost.

The application of the cost model and optimization function through
a real case study and discussing the results are presented in Section 4
Table 2.

Case study

Wind turbines are formed by four major systems: foundation and
tower, blade system, electrical components (generator and related
components), and power train [80,81]. The tower supports the nacelle,
which generates energy via the rotation of the blades caused by the
wind. This rotation is transformed into electricity in the generator by the
power train and transferred to the network. These components are
subject to faults and, therefore, need to be regularly inspected and
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Table 1

Variables considered for the optimization problem.
Variable  Description Type Units
A Failure rate Continuous [-]
r Downtime Continuous [h]
A Availability Continuous  [-]
T; Time interval Continuous [h]
N; Failures occurred during T; Discrete [-1
Xi Turbines reported for the time interval Discrete [-1
T Productive hours lost during the time interval Continuous [h]
Cpm Cost of preventive maintenance tasks Continuous [€]
Cem Cost of corrective maintenance tasks Continuous [€]
Cpp Penalty cost of additional maintenance work Continuous [€]
ClLoss Cost due to production loss when the system Continuous [€]

stops

Cr Total maintenance and production costs Continuous [€]
a; Duration of the preventive maintenance task Continuous [h]
By Number of corrective maintenance tasks Discrete [-]
ne Supplementary hours of maintenance Continuous  [h]
Cpen Penalty cost of additional maintenance work Continuous [€]
Ce Cost of electricity production Continuous  [€]
Py Power generated by the wind turbine i Continuous kW]
T Downtime of the turbine i Continuous [h]

Table 2

Failure rate and downtime for each turbine component over 24 months.

Component Failure Downtime Risk factor ~ Normalized risk
rate [-] [h] factor

Gearbox 0.625 136.925 85.578125  0.419

Generator 0.4 101.625 40.65 0.199

Electrical 0.7 33.907 23.7349 0.116
System

Blade 0.617 36.9 22.7673 0.111

Hydraulic 0.5 19.075 9.5375 0.0467
System

Control System 0.507 12.567 6.371469  0.0312

Pitch System 0.375 11.175 4.190625  0.0205

Sensors 0.327 11 3.597 0.0176

Others 0.433 7.2 3.1176 0.0153

Wind 0.217 11.725 2.544325 0.0124
Measurement

Mechanical 0.5 2.5 1.25 6.12¢-3
Brake

Yaw System 0.15 5.5 0.825 4.04e-3

Shaft/Bearing 0.1 2 0.2 9.7%-4

Tower 0.02 1 0.02 9.7%e-5

repaired when necessary.

The wind turbines used in this case study are three 1.65 MW Vestas
V66 types. The SCADA data employed corresponds to the European
project OPTIMUS. The data were collected every 10 min in the period of
24 months. There are twelve preventive maintenance tasks to be per-
formed on each wind turbine, with an approximate duration of 8 h each
[78,79]. In this case, maintenance work can be performed without
stopping the system. The simulation parameters are assumed as
follows:C]‘-’ M = 85€=h;CM = 1500€=h;Cy = 0:83€=MWh;Cpen =
20€=h;P; = 1:65MW;J = 36. The failure rate and downtime of each
wind turbine component over 24 months are shown in Table 1, where
the limit values extracted from it are Ay, = 0:02; Apax = 0:625, ripin =
1h; Tmgx = 136:925h.

Fig. 4 shows these variables in a Pareto chart to demonstrate the
relative importance of the main components.

Table 3 and Fig. 4 show that the gearbox is the component with the
highest risk factor, more than 40% of the total. It is followed by the
generator, focusing almost 20% of the total, and the electrical system
and blade, being 11% each. These four main components concentrate
more than 80% of the risk factor and associated downtime, therefore,
they should be monitored and inspected with a higher frequency than
the others.
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Table 3
GA and PSO parameters considered for the optimization problem.
Parameter Description Range Type Units
name
P Population 5-500 Discrete [-1
G Number of generations 1-1000  Discrete [-]
a; Duration of preventive 8-50 Continuous [h]
maintenance task
Br Duration of corrective 1-6 Continuous  [h]
maintenance task
ne Supplementary hours of 1-20 Continuous  [h]
maintenance
T Turbine downtime 1-137 Continuous [h]

Results and discussion

This section shows the results obtained from the optimization pro-
cess using GA and PSO. This optimization has been carried out using:
non-defined fitness limit; Limited maximum number of iterations; Fixed
population size; Constraint tolerance equal to zero; Termination toler-
ance equal to zero; and Lower and upper bounds to define variable in-
tervals. The results are obtained by optimizing equation (10), varying
the maximum number of iterations and population size for both GA and
PSO ranging from 5 to 500 particles, and 1 to 1000 iterations, with
higher resolution at the lower end of both ranges. The parameters used
for approaching the problem are presented in Table 3.

A comparison between these two algorithms is presented after the
best selection is decided for each of them. Finally, a sensitivity study is
carried out to evaluate the variation of the cost model respect to the
parameters composing it.

Results for Genetic algorithm

Fig. 5 shows the optimization results using GA given the conditions
stated above. Top subfigures show, respectively in a heatmap, the
minimum cost obtained in 1000x [€] (a), and the time required in sec-
onds (b) to reach that cost given certain population size and maximum
iterations. Bottom left shows a normalized value combining both cost
and time (c), in which an increasing value means a worsening result.
Thus, the blue zones correspond to better results and the yellow ones to
worse, respectively. Bottom right shows the evolution of cost results and
time required (d), using darkening tones of blue to represent the
increasing population size of each test.

The main findings extracted from the results are:
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(b) Time required
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Fig. 5. Results for problem optimization using GA. Minimum cost obtained (a), time required (b), normalized value (c) and optimization results (d).

- Costs do not show convergence to the minimum value until the
population is high enough, above 100 individuals, showing the low
accuracy of GA for the optimization problem.

The time required to reach the final result for each population size
and maximum iteration number is relatively low, less than 15 s in the
most requiring case, showing the high speed of the algorithm.

The normalized values show that a configuration with relatively high
population and low number of iterations is preferrable to others, as
the results already converged but the computation time increases.
Population values beyond 300 individuals show few changes in cost
evolution, although computational time tends to increase. Hence, a
value beyond that would imply higher computational costs and
below would imply less convergence to minimum, meaning that a
population size close to 300 individuals is optimal for the problem.
Results beyond 400 iterations do not show significant reductions in
cost, but increase time required to finish the process. Hence, this
value can be considered as optimal for the problem.

Considering the aforementioned findings, it can be concluded that a
population size of 300 individuals with a maximum of 400 iterations is
the optimal combination for the problem. This combination obtains a
minimum total cost of 108,600 € approx.

Results for Particle Swarm optimization

Fig. 6 presents the optimization results using PSO in the same
manner as Fig. 5.

The main findings from Fig. 6 are:

- Costs quickly converge before 100 iterations to the optimal value of
90,628 €, independently from the population size, showing the high
accuracy of PSO for this problem.

- The increment in computation time for a higher population is more
noticeable than for GA, showing higher computational requirements
compared to it.

- The best normalized values are in low population ranges, indepen-
dently from the maximum number of iterations. Even so, a low
number of iterations is preferrable to reduce computational costs and
resolution time.

- With a population size above 40 there is low variation of optimal
costs but increment computational time. Therefore, there is no need
to increase population beyond that point.

- For any population size, most results reach the optimum point at 600
iterations or before. Therefore, there is no need to advance beyond
that point.

Hence the best combination is a population size of 40 particles and a
maximum of 600 iterations, obtaining an optimal result of 90,628 €.

Validation of results

This section presents a validation of the results employing the two
best population sizes of GA (300 particles) and PSO (40 particles) in
terms of computational time required, convergence, and optimal value
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Fig. 6. Results for problem optimization using PSO. Minimum cost obtained (a), time required (b), normalized value (c) and optimization results (d).

obtained. Fig. 7 shows the comparison between GA and PSO for both
optimal cost (top), and computational time required (bottom) for the
optimal population size.

Fig. 7 shows that PSO is clearly superior to GA in both convergences:
optimization costs and computational time. After only 100 iterations, it

5 %10° Cost optimization results
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Fig. 7. Result comparison between GA and PSO.

already converged to a result close to the optimal (90;628¢€) in less than
a second. However, GA needed 600 iterations to approach that value
and, even after 1000, it did not reach it, requiring a relatively higher
computational time than PSO.

This section shows that, though GA generally requires less compu-
tational time than PSO for the same population size, it requires larger
population size and iterations, and thus more computational resources
to reach to the optimal value. Hence, PSO is concluded to be the best
suited algorithm for this optimization problem. As it requires lower
population size, iterations and thus computational time to reach the
optimal value.

The maintenance strategy for each wind turbine consists then of 12
scheduled preventive maintenance tasks of 8h each and one corrective
maintenance task of 1h, with an overall cost of 20;190 € per wind
turbine.

Sensitivity study

A sensitivity study has been carried out to evaluate the response of
the cost model to a + 10% variation of the following parameters: min(a),
min(B), min(n), min(r), Cpmh, Cema, Cet and Cpe, on the following model
parameters: 0, B, n, r and Cr.

Table 4 shows the results as follows: the columns show the variable
variation respect to the + 10% variation of the value of the row variable
(e.g., the range of values of min(Q) is 8 +10%, which is equal to
[7:2; 8:8]). Results are shown in percentage values.

The observations extracted from the results are as follows:
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Table 4
Relative parameter variation for sensitivity study.
Variable Variation o B n r Cr
min(a) + 10% 10 0 0 0 2.7
—10% -10 0 0 0 -2.7
min(p) +10% 0 10 0 10 7.3
—10% 0 -10 0 -10 -7.3
min(n) + 10% 0 0 10 10 0.0022
—10% 0 0 -10 -10 —0.0022
min(r) +10% 0 0 0 0 0
—10% 0 0 0 0 -2.7
Py + 10% 10 0 0 0 6.8
—10% 0 0 0 0 —6.8
Comh +10% 10 0 0 0 2.7
—-10% 0 0 0 0 -2.7
Cema + 10% 0 0 0 0 0.5
—10% 0 0 0 0 -0.5
Cu +10% 0 0 0 0 6.8
—-10% 0 0 0 0 —6.8
Cyen +10% 0 0 0 0 0.0022
—10% 0 0 0 0 —0.0022

- Variations of min(a), min(B) and min(n) cause variations of the final
values of 0, B and n, respectively. This occurs because of these values
already reach the lower boundary for the optimization problem,
independently of the constraint. Opposite to them, variation of
min(r) causes no variation on the final value of r, because this value
did not reach the lower boundary of the optimization problem.

- All cost parameter variations (Cpmn; Cema; Cel; Cpen) cause only sym-
metrical variations in Cr of a larger or smaller magnitude. The other
parameters, however, show interactions between them, such as 8 and
n, causing r to change in the same magnitude as them.

- Variations in Cr are mostly due to B causing a 7.3% variation of costs
when their value change at 10%. The second most important source
of variation are P and C, causing a 6.8% variation. The rest of pa-
rameters cause variations lower than 3% in the total costs. r is
remarkable as its variation does not cause symmetrical changes in
total costs, as occurring with the rest of parameters. 0 and C,,, cause
exactly the same variation, most likely due to the localization of
these parameters in the same term of the cost model. This happens as
well with n and Cpen, and P and C,.

- The results show the importance in reduction of corrective mainte-

nance activities, as they cause large increments of costs when per-

formed. It would be then possible to increase preventive
maintenance time without increasing total costs as much.

Although power output is not likely to show large variations by

design, a larger production means larger maintenance costs, but

these can be mitigated by the incomes generated by the power
generated itself.

This section presented the main results and observations of this
study. Previous research already addressed maintenance optimization
considering parameters such as costs, energy output, and environmental
variables [65,72,73]. This work addressed these parameters by con-
verting them to costs, thus simplifying the optimization problem and
accelerating the obtention of the optimal results. Combinations of GA
and PSO with other AI techniques proved their use for power dispatch
optimization, and for hybrid system configuration [66,71,74,75].
Compared to them, this study demonstrated how both GA and PSO are
good methods to optimize maintenance scheduling formulated as opti-
mization problems, being PSO superior to GA in computational cost and
obtainment of the best results. The sensitivity study, not found in the
literature, highlighted the usefulness of preventive maintenance, as it
can be increased without causing as much cost increments as corrective
maintenance.
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Statistical analysis of GA and PSO

Non-parametric analysis such as Quade and Friedman Test [82,83]
were conducted based on the results shown in Section 5. For these tests,
it is started by preparing an average error. It has been done by deducting
the minimum value of the superior algorithm, i.e., in this case PSO, from
the mean values of GA. It was named a hypothetical situation Hy, ac-
cording to which there is no difference between the algorithms used and
they are all one and the same. A contradictory hypothetical situation Hy
states that there are distinct differences between the algorithms used,
PSO and GA. If the p-value generated by the non-parametric statistical
tests is more than significance level, i.e., 0.05, the hypothesis Hy is
discarded. As per the data generated by Quade test, the lowest of the sum
of the ranks is gained by proposed PSO making it the best among the rest
of the algorithms. Also, the Q-statistic value is greater than the critical
value as mentioned in reference [84], and p-value of Quade test less than
0.05, all points towards the elimination of the null hypothesis Hj.
Similar observations were made from the Friedman ANOVA test.

The least ranks were maintained by the proposed algorithm for all
the scenarios thus making it the superior among the rest. The Chi-Square
value obtained from Friedman ANOVA test is less than the critical value
mentioned in reference [85], and the p-value is less than 0.05, thus
proving the null hypothesis obsolete.

Conclusions

This paper has presented the context of wind turbines maintenance
management using Artificial Intelligence (AI) techniques to optimize the
maintenance scheduling of wind turbines. A case study based on the
scheduling optimization of three wind turbines has been presented,
which used preventive and corrective maintenance, as well as the costs
due to these activities, formulating the system as a cost minimization
problem to be solved by Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO). The results show the benefits and disadvantages of
each technique, as well as a comparison between them. The conclusions
of the research are summarized as follows:

- GA and PSO are already settled as a common practice to assess
maintenance in wind farms, as well as other Al-based techniques
discussed in the introduction. GA is generally less computationally
expensive, but it provides less optimal results compared to PSO. The
use of one or other technique should be discussed depending on the
application, complexity and objective of the problem.

PSO is selected as the best algorithm as it, in comparison, reaches the
optimal solution faster and with less computational cost. The main-
tenance strategy achieves an optimal cost of 141,050 € for the whole
system. This strategy considers 12 preve