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Data-driven interatomic potentials have emerged as a powerful class of surrogate models for
ab initio potential energy surfaces that are able to reliably predict macroscopic properties with
experimental accuracy. In generating accurate and transferable potentials the most time-consuming
and arguably most important task is generating the training set, which still requires significant
expert user input. To accelerate this process, this work presents hyperactive learning (HAL), a
framework for formulating an accelerated sampling algorithm specifically for the task of training
database generation. The overarching idea is to start from a physically motivated sampler (e.g.,
molecular dynamics) and a biasing term that drives the system towards high uncertainty and thus to
unseen training configurations. Building on this framework, general protocols for building training
databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, fast
(<100 µs/atom/cpu-core) ACE potentials for AlSi10 are created that able to predict the melting
temperature with good accuracy by fitting to a minimal HAL-generated database containing 88
configurations (32 atoms each) in 17 seconds using 8 cpu threads. For polymers, a HAL database is
built using ACE able to determine the density of a long polyethylene glycol (PEG) polymer formed
of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers
with sizes ranging from 2 to 32.

I. INTRODUCTION

Over the last decade there has been rapid
progress in the development of data-driven in-
teratomic potentials, see the review papers
[1–6]. Many systems are often too complex
to be modelled by an empirical description
yet inaccessible to electronic structure methods
due to prohibitive computational cost. Richly
parametrised data-driven interatomic poten-
tials bridge this gap and are able to successfully
describe the underlying chemistry and physics
by approximating the potential energy surface
(PES) with quantum mechanical accuracy [7–
9]. This approximation is done by regressing
a high-dimensional model to training data col-
lected from electronic structure calculations.

∗ casv2@cam.ac.uk

Over the years many approaches have been
explored using a range of different model archi-
tectures. These include Artificial Neural Net-
works (ANN) based on atom centered symme-
try functions[10] and have been used in models
such as ANI[11, 12] and DeepMD [13]. Another
widely used approach is Gaussian Process Re-
gression (GPR) implemented in models such as
SOAP/GAP [14, 15], FCHL [16] and sGDML
[17]. Linear approximations of the PES have
also been introduced initially by using permu-
tation invariant polynomials (PIPs) [18] and
the more recent atomic PIPs variant[19, 20].
Other linear models include spectral neighbour
analysis potentials [21] based on the bispec-
trum [22], moment tensor potentials [23] and
the atomic cluster expansion (ACE) [24–26].
More recently, message passing neural network
(MPNN) architectures have been introduced
[27–34] the most recent of which have been able
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to outperform any of the previously mentioned
models regarding accuracy on benchmarks such
as MD17 [35] and ISO17 [36]. Central to all of
these models is that they are fitted to a train-
ing database comprised of configurations R la-
belled with observations comprising total en-
ergy ER, forces FR and perhaps virial stresses
VR, obtained from electronic structure simu-
lations. By performing a regression on the
training data model predictions E of the total
energy, and estimates of the respective forces
Fi = −∇iE can be determined. Here, the ∇i
operator denotes the gradient with respect to
the position of atom i.

Building suitable training databases remains
a challenge and the most time consuming task
in developing general data-driven interatomic
potentials [37–39]. Databases such as MD17
and ISO17 are typically created by performing
Molecular Dynamics (MD) simulations on the
structures of interest and selecting decorrelated
configurations along the trajectory. This ap-
proach samples the potential energy surface ac-
cording to its Boltzmann distribution. Once the
training database contains sufficient number of
configurations, a high dimensional model may
be regressed in order to accurately interpolate
its potential energy surface. The interpolation
accuracy can be improved by further sampling,
albeit with diminishing returns. However, it is
by no means clear that the Boltzmann distribu-
tion is the optimal measure, or even a “good”
measure, from which to draw samples for an
ML training database. Indeed, it likely results
in severe undersampling of configurations corre-
sponding to defects and transition states, par-
ticularly for material systems with high barri-
ers, which nevertheless have a profound effect
on material properties and are often the sub-
ject of intense study.

A lack of training data in a sub-region can
lead to deep unphysical energy minima in
trained models, sometimes called “holes”, which
are well known to cause catastrophic problems
for MD simulations: the trajectory can get
trapped in these unphysical minima or even be-
come unstable numerically for normal step sizes.
A natural strategy to prevent such problems

is active learning (AL): the simulation is aug-
mented with a stopping criterion aimed at de-
tecting when the model encounters a configura-
tion for which the prediction is unreliable. In-
tuitively, one can think of such configurations
as being “far” from the training set. When this
situation occurs, a ground-truth evaluation is
triggered, the training database extended, and
the model refitted to the enlarged database. In
the context of data-driven interatomic poten-
tials, this approach was successfully employed
by the linear moment tensor potentials [40, 41]
and the Gaussian process (GP) based methods
FLARE [42, 43] and GAP [44] which both use
site energy uncertainty arising from the GP to
formulate a stopping criterion in order to detect
unreliable predictions during simulations.

The key contribution of this work is the intro-
duction of the hyperactive learning framework.
Rather than relying on normal MD to sample
the potential energy and wait until an unreli-
able prediction appears (which may take a very
long time once the model is decent), we contin-
ually bias the MD simulation towards regions
of high uncertainty. By balancing the physical
MD driving force with such a bias we accelerate
the discovery of unreliably predicted configura-
tions but retain the overall focus on low energy
regions that are important for modelling.

Concretely, given some measure of model un-
certainty σ, the HAL framework replaces the
energy landscape E in an MD simulation with
the HAL potential energy surface EHAL

EHAL = E − τσ. (1)

This biases the MD towards configurations
with high associated uncertainty. The biasing
strength τ balances the strength of the biasing
potential with the physical potential energy E.
In order to ensure that configurations along the
HAL-MD trajectory remain energetically sen-
sible, some judicious setting of τ is required;
on-the-fly auto-tuning of τ is presented in the
Methods section. Conceptually, the introduc-
tion of a biasing potential that accelerates the
exploration of relevant configurations is reminis-
cent of adaptive biasing strategies such as meta-
dynamics [45, 46], umbrella sampling [47, 48],
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and similar methods (e.g., [49, 50]), which were
developed to accelerate free-energy computa-
tion. While the biasing force in these methods
is implicitly specified by the choice of a collec-
tive variable, the direction of the biasing force
in HAL is the result of the choice of the uncer-
tainty measure σ.

It should also be noted that in balancing low
energy against uncertainty, EHAL takes a sim-
ilar role in our framework as the acquisition
function in Bayesian Optimisation (BO) [51].
BO is designed to optimise an expensive black
box function by balancing exploration and ex-
ploitation [52]. It has been shown to yield
state-of-the-art results for optimisation prob-
lems while simultaneously minimising incurred
computational costs by requiring few evalua-
tions of the black box function [53]. In HAL, the
equivalent to the black box function is an ab ini-
tio calculation, yet we do not seek to minimise
but rather to explore the black box, guided or
accelerated by the biasing term.

We make the general HAL concept concrete
in the context of the ACE framework [24, 25],
however, the methods we propose are immedi-
ate applicable to linear models and to Gaussian
process type models, and are in principle also
extendable to any other ML potential, includ-
ing deep neural network models. In the context
of linear ACE models, described in detail in the
Methods section, the site energy is defined as a
linear combination of basis functions,

Ei = c ·Bi. (2)

and total energy, E =
∑
iEi = c · B where

B =
∑
i Bi.

The prediction of the uncertainty σ can, for
example, be obtained through the use of a en-
semble. Different methods of setting up such
ensembles for linear, GP or NN frameworks can
be used, such as dropout [54], or bootstrapping
[55]. In this work, we leverage the linearity of
the ACE model and adopt a Bayesian view of
the regression problem to obtain a rigorous com-
mittee: Assuming an isotropic Gaussian prior
on the model parameters and Gaussian indepen-
dent and identically distributed (i.i.d) noise on
observations, yields an explicit posterior distri-

bution π(c) of the parameters from which one
can deduce the variance σ2

E of the posterior-
predictive distribution of total energies,

σ2
E =

1

λ
+BTΣB, (3)

where the covariance matrix Σ is defined as

Σ−1 = αI + λΨTΨ. (4)

Here, α, λ are hyperparameters whose treat-
ment is detailed in the Methods section, and Ψ
is the corresponding design matrix of the linear
regression problem and depends on the obser-
vations to which the ACE model is fitted.

The evaluation of the uncertainty or variance
σ2
E in equation (3) is computationally expen-

sive for a large basis B; scaling as O(N2
basis).

To improve computational efficiency, σ2
E can be

approximated by using an ensemble {ck}Kk=1 ob-
tained by sampling from the posterior π(c) (see
Methods for further details), resulting in

σ̃2
E =

1

λ
+

1

K

K∑
k=1

(Ek − Ē)2, (5)

where Ē = c̄·B with c̄ being the posterior mean
of the posterior distribution whose closed form
is provided in (22) of the methods section. This
is computationally efficient to evaluate, requir-
ing a single basis evaluation B followed by K
dot-products with the ensemble parameters.

Throughout the remainder of this article we
will fix the choice of uncertainty measure an
its’ approximation to σ = σE and σ̃ = σ̃E , re-
spectively, in the definition of the HAL energy
to be the standard deviation of the posterior-
predictive distribution of energy as outline
above. From both a theoretical and modelling
perspective, it would be of interest to consider
other measures of uncertainty as biasing terms.
Further discussion of this aspect is provided in
the methods section.

Having introduced HAL-MD it remains to
specify a stopping criterion that can be used to
terminate the dynamics and extract new train-
ing configurations. To that end we introduce a
relative force uncertainty, fi, which is attractive
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from a modelling perspective, as for instance
liquid and phonon properties require vastly dif-
ferent absolute force accuracy but similar rel-
ative force accuracy, typically on the order of
3-10%. Given the model committee we intro-
duced to define σ̃ we define

fi =
1
K

∑K
k=1 ‖F ki − F̄i‖
‖F̄i‖+ ε

, (6)

where F̄i is the mean force prediction. Further,
ε is a regularising constant to prevent diver-
gence of the fraction, and to be specified by the
user, often set to the typical force magnitude
as predicted by ‖F̄‖. During HAL simulations,
fi provides a computationally efficient means to
detect emerging local (force) uncertainties and
trigger new ab initio calculations once it exceeds
a predefined tolerance,

max
i
fi > f tol. (7)

The specification of ftol is both training data
and model specific, and often requires careful
tuning to achieve good performance. Too low
f tol keeps triggering unnecessary ab initio cal-
culations, whereas too high leads to generation
of unphysical high energy configurations. To
avoid manual tuning and aid generality, we nor-
malise fi onto [0, 1] through the application of
the softmax function s(fi), resulting in the new
stopping criterion

max
i

exp fi∑
i exp fi

> stol, (8)

where we use the default tolerance stol = 0.5.
The paper is structured as follows. Follow-

ing an initial discussion of the performance of
the relative force error measure fi, its abil-
ity to predict true error is investigated and
its performance benchmarked by assembling
a reduced diamond structure silicon database.
Next, the HAL framework is used to build train-
ing databases for an alloy (AlSi10) and polymer
(polyethylene glycol or PEG) from scratch and
the ability of the resulting ACE models are able
to accurately predict the AlSi10 melting tem-
perature and PEG density as shown.

Note that just a few days before our submis-
sion to the arXiv preprint server, the preprint
[56] appeared and follows a very similar strategy
to ours.

II. RESULTS AND DISCUSSION

A. Filtering an existing training set

Before illustrating the HAL algorithm itself,
we first demonstrate the ability of the relative
force error estimate fi in Eq. (6) to detect true
relative force errors. To that end, we will use the
estimator to significantly reduce a large training
set while maintaining accurate model properties
relative to the DFT reference. The database we
use for this demonstration was originally devel-
oped for a Si GAP model [38] covering a wide
range of structures ranging from bulk crystals in
various phases, amorphous, liquid and vacancy
configurations. The filtering process builds a re-
duced database by starting from a single config-
uration and selecting configurations containing
the maximum fi from the remaining test config-
urations. Iterating this process accelerates the
learning rate and rapidly converges model prop-
erties with respect to the DFT reference. The
models we train in this was are linear ACE mod-
els containing basis functions up to correlation
order ν=3, polynomial degree 20, outer cutoff
set to 5.5 �A and inner cutoff set to the closest
interatomic distance in the training database.
An auxiliary pair potential basis was used us-
ing polynomial degree 3 and outer cutoff 7.0 �A
and no inner cutoff. The weights for the en-
ergy wE , forces wF and virials wV , which are
described in detail in the Methods section, were
set to 5.0/1.0/1.0. The size of the committees
used to determine fi was K = 32.

1. Si diamond: error correlation and convergence

Prior to training database reduction the abil-
ity of the relative force error estimate fi to pre-
dict relative force error is investigated. Fig. 1a
compares the maximum relative force error in
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FIG. 1: a) Maximum relative force error
estimate max fi versus error correlation plots
for silicon diamond containing 4 and 10
training configurations. b) Learning rate
comparison between filtering and random
selection for silicon diamond.

a configuration against the maximum of fi for
two different training databases, containing 4
and 10 silicon diamond configurations respec-
tively. The test configurations are the remain-
ing configurations contained in the 489 silicon
diamond configurations as part of the entire
silicon database (totalling 16708 local environ-
ments). The regularising constant ε was set to
the mean force magnitude as predicted by the
mean parameterisation. Both figures show good
correlation between maximum relative force er-
ror and max fi, therefore making it a suitable
criterion to be monitored during (H)AL strate-
gies.

By leveraging the correlation of fi with true
relative force error the existing silicon diamond
database can be reduced by iteratively select-
ing configurations containing the largest rela-
tive force uncertainty as part of a greedy al-

gorithms strategy. To demonstrate this a sin-
gle configuration from the 489 silicon diamond
configurations contained in the silicon database
was chosen first and fitted. Next, fi was de-
termined over the remaining configurations and
the configuration containing the largest max fi
added to the training database. This process
was repeated and the train and test error of
this filtering procedure for silicon diamond is
shown in Fig. 1b. It is benchmarked against
performing random selection whereby, starting
from the same initial configuration, test config-
urations were chosen at random from the pool
of remaining test configurations. The result in-
dicates that fi accurately detects configurations
with large errors and manages to accelerate the
learning rate significantly relative to random se-
lection. Good generalisation between training
and test errors is achieved by using around 5%
of the total environment contained in the origi-
nal silicon diamond database.

2. Si diamond: property convergence

The significant acceleration of the learning
rate shown in Fig. 1b shows that generalisation
between train and test error is rapidly achieved,
in turn suggesting that property convergence
is accelerated too. This is investigated by us-
ing the fitted linear ACE models during the
filtering process and examining their predicted
properties and comparing to the DFT refer-
ence. These investigated properties included:
elastic constants, energy volume curves, phonon
spectrum and thermal properties for bulk sili-
con diamond. Three linear ACE models were
chosen containing 3%, 4% and 5% percent of
the original total of silicon diamond environ-
ments, effectively slicing Fig. 1b along the x-
axis. These models were fitted to 9 configu-
rations (424 environments), 13 configurations
(460 environments) and 17 configurations (608
environments) of silicon diamond respectively.

Fig. 2 demonstrates that indeed property con-
vergence for the energy volume curves, phonon
spectrum and thermal properties are rapidly
achieved by fitting to a fraction of the orig-
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B [GPa] c11 [GPa] c12 [GPa] c44 [GPa]
ACE 3% envs 98.2 [+19%] 188.1 [+28%] 53.3 [+6%] 79.7 [+8%]
ACE 4% envs 84.2 [+2%] 159.8 [+9%] 46.4 [-8%] 75.7 [+3%]
ACE 5% envs 82.5 [0%] 148.7 [+1%] 49.3 [-2%] 73.7 [+1%]
DFT 82.6 147.2 50.3 73.1

TABLE I: Convergence of the elastic moduli (GPa) of the filtered ACE models relative to the
CASTEP DFT reference.

inal database. Fitting to 5% of the original
database reaches sufficient accuracy to describe
all properties with good accuracy with respect
to the DFT reference. This is again confirmed
by elastic constants as predicted by the respec-
tive models as shown in Table. I. The conver-
gence of the phonon spectrum in Fig. 2 is par-
ticularly is noteworthy as relative errors on the
order of a few percent on small forces ∼ 0.01
eV/�A are required to be described accurately
in order to describe the phonon spectrum well.
This is achieved be designing fi to consider rel-
ative force errors, which the greedy algorithm
manages to detect and suppresses during the
filtering process.

B. AlSi10

This section outlines the general HAL proto-
col for building training databases for alloys and
demonstrates how an AlSi10 linear ACE model
is built from scratch in an automated fashion.
By using the relative force error estimate fi
previously discussed as a stopping criterion to
trigger ab initio evaluations it will be shown
how an ACE model is created for AlSi10 using
HAL. The HAL generated ACE model will be
able to accurately model the liquid-solid phase
transition and predict its melting temperature
with excellent accuracy. The ACE models used
in this section contained basis functions upto
ν = 2 and polynomial degree 13 as well as an
outer cutoff 5.5 �A. The ACE inner cutoff was
set to 1.5 �A during the HAL stage of collecting
data and moved towards the closest interatomic
distance once all training data had been gener-
ated. An auxiliary pair potential V2 added to

aid stability also added to the basis including
functions up to polynomial degree 13 and an
outer cutoff of 6.0 �A. The weights for the en-
ergy wE , forces wF and virials wV were set to
15.0/1.0/1.0.

The HAL procedure of building ACE models
for alloys first creates a random alloy database,
before melting the alloy configurations and gen-
erating a liquid alloy database. The solid and
liquid databases are afterwards combined in or-
der to create a model accurately described both
phases. Building the random alloy training
database starts off by first creating a small ini-
tial random alloy database from which HAL dy-
namics is started. This initial random alloy
database was formed of 32-atom FCC lattice
configurations populated with 29 Al and 3 Si
atoms, equivalent to 9.7 weight percent Si. The
initial random alloy starting database contained
10 configurations with lattice constants ranging
from 3.80 �A to 4.04 �A evaluated using DFT.
The main parameters chosen for the DFT cal-
culations in this section for CASTEP [58] are as
follows: plane-wave cutoff 300 eV, kpoint spac-
ing 0.04 �A−1, 0.1 eV smearing, Pulay density
mixing scheme and finite basis correction.

An adaptive biasing parameter τr=0.05 was
chosen (for explicit definition see Methods sec-
tion) and the temperature set to Tsolid=800K in
order to build the random solid alloy database
starting from the 10 initial structures previ-
ously described. Besides running biased dy-
namics, HAL performed cell volume adjusting
(adding Gaussian noise to cell vectors) and el-
ement swapping Monte Carlo (MC) steps dur-
ing the simulation on the HAL potential energy
surface EHAL. These steps were accepted or re-
jected according to the Metropolis-Hastings al-
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α′ Nbasis Performance Fit Training Error Test Error
(µs/atom (s) E F E F

/core) (meV/at) (eV/�A) (meV/at) (eV/�A)
1k 38 62 2 7.693 0.135 8.006 0.147
10k 116 83 3 4.199 0.095 6.229 0.104
80k 295 85 17 2.401 0.080 5.131 0.089
300k 621 99 63 1.869 0.074 5.188 0.095

TABLE II: Train/test error splits for HAL generated AlSi10 database for varying ARD tolerance
α′. Larger ARD tolerance α′ includes more basis functions but increases performance and fitting
time.

gorithm [59].

During HAL dynamics the (softmax nor-
malised) relative force estimate si is evaluated
and a ground-truth evaluation triggered once a
predefined tolerance of stol=0.5 is met. A total
of 42 HAL configurations were sampled as the
HAL dynamics at this stage was stable for 5000
steps reliably. The pressure P , temperature T
and fi are shown in Fig. 3 for four iterations
with the first three being included in the train-
ing database, e.g. below or equal to iteration 42.
The strong oscillations in the pressure P are due
to the volume and element swapping MC steps
being accepted. A fourth iteration, referred to
as iteration 43, is shown on the far right demon-
strating that increasing the biasing strength to
τr=0.10 accelerates the HAL dynamics to fail-
ure more rapidly accelerating the discovery of
uncertain configurations exhibiting large rela-
tive force errors and resulting model failure.

Increasing the temperature to Tliquid=3000K
a liquid random alloy training database was as-
sembled using the HAL generated random alloy
training database as initial starting configura-
tions. No volume or swap MC steps were per-
formed during this simulation, but a barostat
was added and set to 0.1 GPa in order to con-
trol the pressure during the simulation. After
generating generating 46 liquid alloy configura-
tions using HAL the dynamics was stable for
5000 steps reliably and HAL dynamics termi-
nated.

Combining the 42 HAL generated random al-
loy configurations and 46 HAL generated liq-
uid configurations formed the complete training

database used to create AlSi10 linear ACE mod-
els. Using the previously described ACE pa-
rameters the design matrix Ψ assembled shaped
Nobs×Nbasis was 9064 × 723. Fitting was per-
formed using ARD regression with various dif-
ferent thresholds α′ and details are shown in Ta-
ble II. Both the contents and shape of the design
matrix Ψ as well as ARD are discussed in the
Methods section. Increasing α′ lowers the rel-
evance criterion for the linear ACE basis func-
tions in turn decreasing sparsity. A clear trade-
off between sparsity and training error can be
seen in Table II which also includes model eval-
uation performance and fitting times. The test
set was assembled by continuing HAL iterations
for both the random alloy and liquid and con-
tained 14 HAL solid and 14 HAL liquid configu-
rations. Increasing α′ not only decreases train-
ing error but also test set error up to α′ = 300k
for which the test set error increases, a sign of
overfitting. Due to the relatively small train-
ing database size the fitting time remains low,
around a minute or less using 8 threads on In-
tel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz.
Performance testing was done using LAMMPs
and the PACE evaluator [60] on the exact same
processor and show that all models are within
100 µs/atom/core per MD step.

Further analysis of the ARD fitted models
was done by examining the absolute value of
the coefficients |ci|. ARD performs feature se-
lection by determining the relevance of the basis
functions and weighting them accordingly in the
regression. Basis functions with a relevance be-
low the predefined threshold are pruned away
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FIG. 2: Property convergence for the energy
volume (top), thermal properties (middle) and
phonon spectrum (bottom) for filtering silicon
diamond ACE models.

as can be seen in Fig. 4. Large coefficients
are given to the pair interactions described by
the auxiliary basis V2 and two-body compo-
nents of the ACE basis for all models, which
is intuitive as most binding energy is stored in
these pair interactions. Increasing α′ results in
more (less relevant) basis functions being in-
cluded with relatively smaller coefficients. For
α′ = 300k many of these low relevance coef-
ficients of around 10−4 are included in the fit
indicating a degree of overfitting - as confirmed
by the test set error increase in Table II.

Next the melting temperature for each of the
previously ARD fitted AlSi10 ACE models is
determined. This was done using Nested Sam-
pling (NS) which approximates the partition
function of an atomic system by exploring the
potential energy surface over decreasing energy
(or enthalpy) levels, in turn determining the cu-
mulative density of states [61]. From the parti-
tion function any thermodynamic quantity can
be derived such as the heat capacity. The heat
capacity exhibits a signature peak for first-order
phase transitions, which includes the liquid-
solid transition occurring at the melting tem-
perature. Extensive previous work has shown
that NS is an accurate and reliable method for
determining the melting temperature [62, 63].
As it explores the entirety of configurational
space including gas, liquid and solid phases NS
also serves as an excellent test for model robust-
ness. This robustness is partly achieved by the
addition of the auxiliary pair potential previ-
ously described as V2 which is added in order to
ensure close range repulsion between atoms.

The NS simulations were carried using 896
walkers formed of 32 atom cells (29 Al and 3 Si)
using the PYMATNEST software [64]. Starting
from the gas phase (initial cell volume of 500
�A3/atom) the walkers explored the potential en-
ergy surface by iteratively cloning and decor-
relating walkers at decreasing enthalpy levels,
passing through the liquid phase and ending up
at the ground structure. The decorrelation was
done by running MD for 6 timesteps using a 0.1
fs timestep and a total of 1024 MC steps by
changing the cell volume, shearing/stretching
the cell and swapping atoms (ratio 6:6:6:6) were
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FIG. 3: HAL dynamics for several iterations for the AlSi10 random alloy showing softmax
normalised relative force error estimate si(f), temperature and pressure. DFT calculations are
triggered if the tolerance in red is reached. Pressure fluctuations are due to swap/volume MC
steps on HAL potential energy surface EHAL.

performed. The NS cell pressure was set to 0.1
GPa and the minimum aspect ratio of the cell
set to 0.85. By summing the enthalpies from
the NS simulation the constant pressure par-
tition function is determined from which the
heat capacity can be derived through postpro-
cessing. Three independent runs for the each
of the ARD models fitted to the AlSi10 HAL
database were performed and shown in Fig. 5.
All models predicted the expected FCC ground
structure, but a difference in predicted melting
temperature for varying α′ can be seen. Only
the α′ = 300k and α′ = 80k models accurately
determine the melting temperature of 867K as
predicted by Thermo-Calc with the TCAL4
database [65]. Comparing to Table II demon-
strates the relationship between the train/test
set error and melting temperature estimates

and suggests that around test set accuracy of
5 meV/atom is required in order to determine
the melting temperature accurately.

C. Polyethylene glycol (PEG)

This section presents the application
of HAL to build databases for polymers.
Polyethylene glycol (PEG) has the formula
H
[
OCH2CH2

]
nOH, where n is the number

of monomer units[66]. From a modelling
perspective these polymers are challenging
to simulate in vacuum as they form config-
urations ranging from tightly coiled up to
fully stretched out structures. Due to the OH
group at the end the polymer can also exhibit
hydrogen bonding, which further complicates
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contained in these interactions.

its description. These hydrogen bonds typically
correspond to low energy configurations and
are frequently formed and broken during long
MD simulations. This section first presents
a benchmark of HAL against AL followed by
a demonstration HAL finding configurations
exhibiting large errors. Finally, the potential
fitted to small polymer units in vacuum is used
to predict the density of a long PEG(n=200)
polymer in bulk with excellent accuracy relative
to experiment. All DFT reference calculations
in this section are carried out with the ORCA
code [67] using the ωB97X DFT exchange
correlation functional[68] and 6-31G(d) basis
set.

1. PEG(n=2): HAL vs AL

In order to test whether HAL accelerates
training database assembly relative to standard
AL, a benchmark test was performed. An ini-
tial database containing 20 PEG(n=2) poly-

mers was created by running 500 K NVT molec-
ular dynamics simulation using the general pur-
pose ANI-2x forcefield [11] sampling every 7 ps.
This database was fitted using an ACE basis
containing basis functions up to correlation or-
der ν=3 and polynomial degree 10 with an outer
cutoff 4.5 �A and inner cutoff 0.5 �A. The aux-
iliary pair potential basis up to polynomial de-
gree 10 and outer cutoff 5.5 �A and did not have
an inner cutoff. The weights for the energy
wE , forces wF were set to 15.0 and 1.0 and re-
main constant throughout this seciton on PEG.
AL (non-biasing, or τ=0.0) and HAL simula-
tions with varying biasing strengths τr were per-
formed using a timestep of 0.5 fs at 500K. Con-
figurations were evaluated using ORCA DFT
once stol=0.5 was reached.

The linear ACE models generated during the
AL/HAL simulations were saved and subse-
quently used in a regular MD stability test and
ran for 1 million MD steps at 500 K using a 1
fs timestep for 100 separate runs. A MD sim-
ulation was deemed stable if the CC and CO
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FIG. 5: NS determined heat capacity for ARD fitted linear AlSi10 ACE models (left) and
schematic phase diagram for AlSi10 [57] (right). Excellent agreement with the melting
temperature is demonstrated for fits with large α′.

bonds along the chain where within 1.0-2.0�A
and the CH and OH bonds within 0.8-2.0�A dur-
ing the simulation. The minimum number of
stable MD timesteps out of the 100 different
simulations is shown in Fig.6 and demonstrates
that up to τr=0.20 a total of 80 (H)AL itera-
tions are required in order to achieve a mini-
mum MD stability of 1 million steps. The large
biasing strength of τr=0.25 results in unstable
MD dynamics as too strong biasing causes the
generation of exceedingly high energy configura-
tion far away from the desired potential energy
surface to be included in the training database.
Fitting to these configurations leads to a poorly
performing model as many unphysical configu-
rations enter the training database resulting.

The HAL run using a biasing strength of
τr=0.20, achieves minimum 1 million step MD
stability after an order of magnitude fewer ex-
ploratory MD timesteps compared to standard
AL.

2. PEG(n=4): rare events

Using PEG(n=4) polymers this section will
investigate the ability of HAL to generate and
detect configurations with large errors. First
a training database was built using the gen-
eral purpose ANI-2x forcefield [11] at 500K and
800K using a timestep of 1 fs. Configurations
were sampled every 7000 timesteps (7 ps), and
used to assemble 500K and 800K databases.
The 500K database was divided into 750 train
configurations and 250 test configurations. The
800K training and test databases both con-
tained 250 configurations. The linear ACE
model was extended to include basis functions
up to 12 for both the ACE and pair potential,
while keeping the cutoffs and correlation order
the same (ν=3) too compared to the previous
section on PEG(n=2).

Using the 500K MD sampled training
database HAL was started using τr=0.10 and a
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FIG. 6: HAL vs AL benchmark comparing MD stability for 1 million MD steps over 100 seeds.
Turning on biasing (non-zero τr) creates ACE models achieving stable 100 million MD timestep
faster than standard AL by up to an order of magnitude.

FIG. 7: Energy scatter plots for the 500K (left), 500K+800K (middle) and 500K+HAL (right)
ACE models. HAL configuration mostly exhibit (double) hydrogen bonding, or rare events, not
contained in the MD 500K/800K decorrelated samples.

timestep of 0.5 fs. The stopping criterion stol set
to 0.5. A total of 200 HAL configurations were
generated and formed a HAL database used for
both a train and test set. Using the previously
described basis three models were created fit-
ted to: 500K, 500K+800K and a 500K+HAL.
Energy scatter plots for these three models are
shown in Fig. 7 demonstrating that the errors
on the HAL-found configurations are large for

both the 500K and 500K+800K fits, despite the
fact that the these HAL-found configurations
are also low in energy! Only by including the
HAL configurations in the training database can
the errors on these configurations be reduced
as shown in Table. III. Inspection of the HAL
generated structures exposes a shared charac-
teristic: most of them contain (double) hydro-
gen bonding across the polymer an example of
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No. 500K 500K+800K 500K+HAL
configs E F E F E F

500K train 750 30.2 58.3 32.9 60.8 32.4 59.6
500K test 250 49.2 79.3 48.8 76.7 41.6 71.0
800K train 250 - - 40.0 76.4 - -
800K test 250 72.7 187.2 67.6 107.7 67.9 102.6

HAL 200 310.9∗ 427.2∗ 311.9∗ 404.6∗ 47.8† 63.4†

TABLE III: Train and test errors for energies (E) in meV and forces (F) in meV/�A for the 500K,
500K+800K and 500K+HAL databases using ACE. † is train error. ∗ is test error.

which is shown in Fig. 7. Such hydrogen-bond
formation is a rare event in this system, because
only the two ends of the molecule are capable
of hydrogen bonding. It is difficult to find these
configurations using regular MD (even when us-
ing elevated temperatures), whereas HAL finds
them easily.

3. Bulk PEG(n=200) density

As a final investigation the density of a
PEG(n=200) polymer containing 1400 atoms
is determined using an ACE model fitted to a
HAL generated PEG training database contain-
ing polymer sizes ranging from n=2 to n=32
monomer units. This database contained con-
figurations from the previous PEG sections and
extended using configurations sized n = 8,
n = 16 and n = 32. The training database
included standard ANI MD sampled config-
urations at 500K including 1000 PEG(n=4)
configurations (from the previous section), as
well as 50 PEG(n=2), 100 PEG(n=8), 100
PEG(n=16) and 18 PEG(n=32) configurations.
Starting from this data HAL was used to gener-
ate an extra 64 PEG(n=16) and 91 PEG(n=32)
HAL configurations until dynamics was deemed
stable. The linear ACE basis used for the re-
gression task was identical to the ACE in the
previous section on PEG(n=4), and any force
components with greater than 20 eV/�A were ex-
cluded from the fit.

Using the ACE model a PEG(n=200) poly-
mer was simulated in LAMMPS [70] with the
PACE evaluator pair style with periodic bound-

ary conditions. Since the training database only
contained small polymers segments in vacuum
this periodic simulation demonstrates a large
degree of extrapolation to configurations far
away from the training database. Furthermore,
the DFT code used to evaluate the training
energies and forces does not support periodic
boundary conditions making DFT simulation of
the 1400 atom PEG(n=200) simulation box not
just computationally infeasible, but practically
impossible in this case.

The resulting linear ACE model was timed
at 220 µs/atom/core per MD step. LAMMPs
NPT simulations were performed at 1 bar using
a 1 fs timestep at 300K, 400K, 500K and 600K.
The recorded density as a function of simulation
time is plotted in Fig. 8. Using the last 500
ps from the 300K simulation the density was
determined to be 1.238 g/cm3. This value is
around 3% higher than the experimental value
of 1.2 g/cm3 [69].

III. METHODS

A. Hyperactive Learning (HAL)

The HAL potential energy EHAL as defined
in (1) biases MD simulations during the explo-
ration step in AL towards uncertainty by shift-
ing the potential energy surface and assigning
lower energies to configurations with high un-
certainty. We have shown that when σ is the
standard deviation of the posterior-predictive
uncertainty of Energy, it can be computation-
ally cheaply approximated by a Monte-Carlo es-
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FIG. 8: HAL protocol for building linear ACE PEG model accurately determining PEG(n=200)
density within experimental accuracy of 1.2 g/cm3 at 297K (shaded area) [69]. Training database
only included small polymers ranging from n=2 to n=32 in isolation.

timate σ̃; see (5). Likewise, the derivative of σ̃
can be computed as

∇σ̃ =
∇σ̃2

2σ̃
(9)

where

∇σ̃2 =
2

K

K∑
k=1

(
Ek − Ē

) (
∇Ek −∇Ē

)
=

2

K

K∑
k=1

(
Ek − Ē

) (
F̄ − F k

) (10)

and F k = −∇Ek, F̄ = −∇Ē. These predic-
tions are obtained by ensemble parameterisa-
tions {ck}Kk=1, while c̄ is the analytic mean of
the posterior distribution as specified in (22).
The sum over K is over the ensemble or com-
mittee of models, which in this work was chosen
to be linear (ACE) models. Other architectures
such as neural networks ensembles may be con-
sidered in future work. This quantity in essence

is a computationally cheap method of determin-
ing the gradient towards (total) energy uncer-
tainty and may be interpreted as a conservative
biasing force,

F σ̃ := ∇σ̃. (11)

HAL dynamics adds this biasing force to MD
in order to accelerate the generation of configu-
rations with high uncertainty, which sets HAL
apart from AL. Setting τ=0 recovers standard
MD dynamics, and in this sense, HAL general-
izes AL. Interestingly, previous work employed a
biasing force using a neural network interatomic
potential [71] but biased away from uncertainty
in order to stabilise the MD dynamics.

The biasing strength τ can either be set as a
constant or adapted during the HAL simulation.
Controlling the biasing strength is important as
too strong biasing can quickly lead to unphys-
ical configurations, whereas low biasing gener-
ates valuable configurations at a slow rate. The
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adaptive biasing works by first setting τr and
performing a burn-in period to record the mag-
nitudes (or, norms) of F σ̃ and F̄ . Typically, the
burn-in period is set to the latest 100 timesteps
δt. The biasing strength τ is then determined
by satisfying

τr =
τ
∑100
m=1 ‖F̄ (t−m∆t)‖∑100

m=1 ‖F σ̃(t−m∆t)‖
. (12)

The new parameter τr is generally set be-
tween 0.05 and 0.25. It can be understood as
the approximate relative average strength of the
biasing force in comparison to the average force
of the fitted model. Using this adaptive bi-
asing term aids usability and tunes the bias-
ing strength to ensure that HAL gently drives
MD towards high uncertainty. The value may
loosely be interpreted as the relative magnitude
of the biasing force compared to the true gra-
dient of the potential energy surface. Larger τr
increases the biasing strength and rate at which
configurations with high uncertainty are gener-
ated. In order to sample configurations at de-
sired pressures and temperatures a proportional
control barostat was added as well as a Langevin
thermostat.

B. Atomic Cluster Expansion (ACE)

The ACE model decomposes the total energy
E of a configuration R as a sum of parame-
terised atomic energies,

E(c;R) =
∑
i∈R

Ei(c;R). (13)

The atomic energies Ei are then parameterised
by a linear model, Ei = c · Bi, where Bi de-
notes the ACE basis. The present work em-
ploys a particularly simple variant, which we
review briefly: Given relative atomic positions
rji = rj − ri and associated chemical elements
one evaluates a one-particle basis

φznlm(rji, zj) = δzzjRn(rji)Ylm(r̂ji), (14)

followed by a pooling operation resulting in fea-
tures

Aiznml =
∑
j

φznlm(rji, zj), (15)

that are denoted the atomic basis in the context
of the ACE model. Taking a ν order (tensor)
product results in many-body correlation func-
tions incorporating (ν+1) body-order interac-
tions,

Aiznlm =

ν∏
t=1

Aiztntltmt
. (16)

The A-basis is a complete basis of permutation-
invariant functions but does not incorporate ro-
tation or reflection symmetry. An isometry in-
variant basis B is constructed by averaging over
rotations and reflections. Representation the-
ory of the orthogonal group O(3) shows that
this can be expressed as a sparse linear opera-
tion and results in

Bi = CAi, (17)

where C contains generalised Clebsch-Gordan
coefficients; we refer to [24, 25] for further de-
tails.

A major benefit of the linear ACE model is
that the computational cost of evaluating a site
energy Ei scales only linearly with the number
of neighbouring atoms, as well as with the body
order ν + 1.

C. (Bayesian) Linear Regression

The parameters of linear ACE models are fit-
ted by solving a linear regression problem. The
associated squared loss function L(c) to be min-
imised over configurations R in training set R
with corresponding (DFT) observations for en-
ergy ER, forces FR is

L(c) =
∑
R∈R

(wE |E(c;R)− ER|2

+wF |F (c;R)−FR|2)

(18)
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where wE and wF are weights specifying the
relative importance of the DFT observations.
When fitting materials a third term is added
wV |V (c;R)− VR|2 referring to the virial stress
components of the configuration R. This min-
imisation problem can be recast in the standard
form

arg min
c

‖y −Ψc‖2 + η‖c‖2, (19)

where Ψ is the design matrix and y collects the
observations to which the parameters are fitted.
Here, we also added a Tychonov regularisation
with regularisation parameter η > 0 which is
commonly determined through a model selec-
tion criterion such as cross-validation.

This linear regression model can be cast in a
Bayesian framework by specifying a prior distri-
bution p(c) over the regression parameters, and
an (additive) probabilistic error model ε, which
gives rise to the generative model

y = Ψc + ε. (20)

In the context of this work ε models random
perturbations of DFT calculations and is as-
sumed to be mainly present due to the local-
ity assumption and DFT convergence proper-
ties, e.g. k-point sampling. For simplicity the
noise ε is in this work assumed to be statistically
independent across observations and Gaussian
distributed with zero mean and precision (in-
verse variance) λ, but in principle extensions to
other noise models can be made. This noise
model gives rise to the likelihood function

p(y|R, c, λ) =

Nobs∏
i=1

N (yi|M(c;R), λ−1)

=

(
λ

2π

)Nobs/2

exp

{
−λ

2
‖y −Ψc‖2

}
(21)

where M(c;R) refers to the corresponding re-
gression function for energy, force or virial.

By restricting ourselves to a Gaussian error
model, and assuming the prior to be Gaus-
sian as well, i.e., p(c) = N (c; 0,Σ0), it is en-
sured that the posterior distribution, π(c) =

p(c|R,y,Σ0, λ), is Gaussian with closed form
expressions for both the distribution mean c̄
and variance Σ,

c̄ = λΣΨTy

Σ−1 = Σ−10 + λΨTΨ.
(22)

In the context of this work, having closed form
expressions for both these quantities is desirable
as it (i) allows for conceptual easy and fast gen-
eration of independent samples {ck}Kk=1 from
the posterior distribution, and (ii) allows for a
parametrisation of the fitted model with the ex-
act mean, c̄, of the posterior distribution.

In what follows we briefly describe two
Bayesian regression techniques, Bayesian Ridge
Regression (BRR), which we use to produce
Bayesian fits during the HAL data generation
phase, and the more expensive Automatic Rel-
evance Determination (ARD), which we use to
obtain a final model fit after the data generation
is complete.

D. Bayesian Ridge Regression (BRR)

In Bayesian Ridge Regression the covariance
of the prior is assumed to be isotropic, i.e.,

p(c|α) = N (c|0, α−1I), (23)

for some hyper-parameter α > 0, the precision
of the prior distribution.

Under this choice of prior, the logarithm of
the posterior distribution takes the form

lnπ(c) = −λ
2
‖y −Ψc‖2 − α

2
‖c‖2 + C, (24)

where C is some constant. Thus, maximis-
ing the (log-)posterior for this choice of prior,
is equivalent to solving the regularised least
square problem Eq. 24 with ridge penalty η =
α/λ. This shows that the prior naturally gives
rise to a regularised solution, keeping coefficient
parameters small.

The determination of the hyper-parameters
α and λ in BRR is achieved by optimising the
marginal log likelihood also known as evidence
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maximisation [72]. One first defines the evi-
dence function as

p(y|α, λ) =

∫
p(y|c, β)p(c|α)dc (25)

which marginalises out the coefficients c and
describes the likelihood of observing the data
given the hyperparameters α and λ. Using the
previously defined definitions the evidence func-
tion can be expressed as

p(y|α, λ) =

(
λ

2π

)Nobs/2 ( α
2π

)Nbasis/2

∫
exp

{
−λ

2
‖y −Ψc‖2 − α

2
‖c‖2

} (26)

where Nbasis is the dimensionality of c. Com-
pleting the square in the exponent and taking
the log gives rise to the marginal log likelihood

ln p(y|α, λ) =
Nbasis

2
lnα+

Nobs

2
lnλ

−λ
2
‖y −Ψc‖2 − α

2
‖c‖2+

1

2
ln ‖Σ‖ − N

2
ln(2π)

(27)

which can be maximised with respect to α and
λ in order maximise the marginal likelihood and
obtain the statistically most probably solution
given the basis and data.

E. Automatic Relevance Determination
(ARD)

Automatic Relevance Determination (ARD)
modifies BRR by relaxing the isotropy of the
prior and assigning a hyperparameter αi to in-
dependently regularise each coefficient ci. The
corresponding prior is given by

p(c|α) = N (c|0,A−1)

A = diag(α1, ..., αNbasis
).

(28)

This prior determines the relevance of each pa-
rameter ci, or basis function, which effectively
results in a feature selection. Basis functions are

ranked based on their relevance and are pruned
if determined irrelevant, in turn producing a
sparse solution. In practice, sparse models ob-
tained through ARD often yield better generali-
sation than BRR. Using ARD requires the spec-
ification of a threshold parameter α′ setting the
minimum relevance of basis functions included
in the fit. Adjusting this parameter controls
the balance between accuracy and sparsity of
the model.

F. Posterior Predictive Distribution

A key property of the Bayesian approach is
that it provides a way to quantify uncertainty
in terms of the posterior-predictive distribution,
which accounts both for parameter uncertainty
as given by the posterior distribution as well as
uncertainty due to observation error. For the
observations we consider (energy, forces, and
virials) predictions y of these quantities at a
atomic configuration R can probabilistically be
described as

y = M(c;R) + ε,

ε ∼ N (0, λId),

c ∼ π(c).

(29)

where M(c, R) denotes the respective regression
model and d is the dimension of the predicted
quantity (e.g. d=9, for predictions of virials).
The distribution of the prediction y, denoted as
p(y|R), is referred to as the posterior-predictive
distribution of y and can be verified to have the
generic form

p(y|R) =

∫
p(y|R, c)π(c)dc. (30)

where under the here assumed noise model

p(y|R, c) = N (y|M(c, R), Idλ
−1). (31)

In particular, the integral in Eq. (30) collapses
to the Gaussian density for predictions of en-
ergy, i.e.,

p(E|R) = N (E|c̄ ·B, σ2
E), (32)

where the variance σ2
E is as specified in (3).
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IV. DATA AVAILABILITY

The data will be made available at time of
publication.

V. CODE AVAILABILITY

The HAL code will be made available at time
of publication.
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ing a general-purpose interatomic potential for
silicon. Phys. Rev. X, 8:041048, Dec 2018.

[39] Volker L. Deringer, Miguel A. Caro, and Gábor
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Marius Stan, Gábor Csányi, Chris Benmore,
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