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The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2
poses a severe threat to humanity and demands the redirection of scientific efforts and
criteria to organized research projects. The internationalCOVID19-NMR consortium seeks
to provide such new approaches by gathering scientific expertise worldwide. In particular,
making available viral proteins and RNAs will pave the way to understanding the SARS-
CoV-2 molecular components in detail. The research in COVID19-NMR and the resources
provided through the consortium are fully disclosed to accelerate access and exploitation.
NMR investigations of the viral molecular components are designated to provide the
essential basis for further work, including macromolecular interaction studies and high-
throughput drug screening. Here, we present the extensive catalog of a holistic SARS-
CoV-2 protein preparation approach based on the consortium’s collective efforts. We
provide protocols for the large-scale production of more than 80% of all SARS-CoV-2
proteins or essential parts of them. Several of the proteins were produced in more than one
laboratory, demonstrating the high interoperability between NMR groups worldwide. For
the majority of proteins, we can produce isotope-labeled samples of HSQC-grade.
Together with several NMR chemical shift assignments made publicly available on
covid19-nmr.com, we here provide highly valuable resources for the production of
SARS-CoV-2 proteins in isotope-labeled form.

Keywords: COVID-19, SARS-CoV-2, nonstructural proteins, structural proteins, accessory proteins, intrinsically
disordered region, cell-free protein synthesis, NMR spectroscopy

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2,
SCoV2) is the cause of the early 2020 pandemic coronavirus lung
disease 2019 (COVID-19) and belongs to Betacoronaviruses, a
genus of the Coronaviridae family covering the α−δ genera (Leao
et al., 2020). The large RNA genome of SCoV2 has an intricate,
highly condensed arrangement of coding sequences (Wu et al.,
2020). Sequences starting with the main start codon contain an
open reading frame 1 (ORF1), which codes for two distinct, large
polypeptides (pp), whose relative abundance is governed by the
action of an RNA pseudoknot structure element. Upon RNA
folding, this element causes a −1 frameshift to allow the
continuation of translation, resulting in the generation of a
7,096-amino acid 794 kDa polypeptide. If the pseudoknot is
not formed, expression of the first ORF generates a 4,405-
amino acid 490 kDa polypeptide. Both the short and long
polypeptides translated from this ORF (pp1a and pp1ab,
respectively) are posttranslationally cleaved by virus-encoded

proteases into functional, nonstructural proteins (nsps). ORF1a
encodes eleven nsps, and ORF1ab additionally encodes the nsps
12–16. The downstream ORFs encode structural proteins (S, E,
M, and N) that are essential components for the synthesis of new
virus particles. In between those, additional proteins (accessory/
auxiliary factors) are encoded, for which sequences partially
overlap (Finkel et al., 2020) and whose identification and
classification are a matter of ongoing research (Nelson et al.,
2020; Pavesi, 2020). In total, the number of identified peptides or
proteins generated from the viral genome is at least 28 on the
evidence level, with an additional set of smaller proteins or
peptides being predicted with high likelihood.

High-resolution studies of SCoV and SCoV2 proteins have
been conducted using all canonical structural biology approaches,
such as X-ray crystallography on proteases (Zhang et al., 2020)
and methyltransferases (MTase) (Krafcikova et al., 2020), cryo-
EM of the RNA polymerase (Gao et al., 2020; Yin et al., 2020), and
liquid-state (Almeida et al., 2007; Serrano et al., 2009; Cantini
et al., 2020; Gallo et al., 2020; Korn et al., 2020a; Korn et al., 2020b;
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TABLE 1 | SCoV2 protein constructs expressed and purified, given with the genomic position and corresponding PDBs for construct design.

Protein
genome position (nt)a

Trivial name
construct expressed

Size (aa) Boundaries MW (kDa) Homol. SCoV
(%)b

Template PDBc SCoV2 PDBd

nsp1 Leader 180 19.8 84
266–805

Full-length 180 1–180 19.8 83
Globular domain (GD) 116 13–127 12.7 85 2GDT 7K7P

nsp2 638 70.5 68
806–2,719

C-terminal IDR (CtDR) 45 557–601 4.9 55
nsp3 1,945 217.3 76
2,720–8,554
a Ub-like (Ubl) domain 111 1–111 12.4 79 2IDY 7KAG
a Ub-like (Ubl) domain + IDR 206 1–206 23.2 58
b Macrodomain 170 207–376 18.3 74 6VXS 6VXS
c SUD-N 140 409–548 15.5 69 2W2G
c SUD-NM 267 409–675 29.6 74 2W2G
c SUD-M 125 551–675 14.2 82 2W2G
c SUD-MC 195 551–743 21.9 79 2KQV
c SUD-C 64 680–743 7.4 73 2KAF
d Papain-like protease PLpro 318 743–1,060 36 83 6W9C 6W9C
e NAB 116 1,088–1,203 13.4 87 2K87
Y CoV-Y 308 1,638–1,945 34 89

nsp5 Main protease (Mpro) 306 33.7 96
10,055–10,972

Full-lengthe 306 1–306 33.7 96 6Y84 6Y84
nsp7 83 9.2 99
11,843–12,091

Full-length 83 1–83 9.2 99 6WIQ 6WIQ
nsp8 198 21.9 98
12,092–12,685

Full-length 198 1–198 21.9 97 6WIQ 6WIQ
nsp9 113 12.4 97
12,686–13,024

Full-length 113 1–113 12.4 97 6W4B 6W4B
nsp10 139 14.8 97
13,025–13,441

Full-length 139 1–139 14.8 97 6W4H 6W4H
nsp13 Helicase 601 66.9 100
16,237–18,039

Full-length 601 1–601 66.9 100 6ZSL 6ZSL
nsp14 Exonuclease/

methyltransferase
527 59.8 95

18,040–19,620
Full-length 527 1–527 59.8 95 5NFY
MTase domain 240 288–527 27.5 95

nsp15 Endonuclease 346 38.8 89
19,621–20,658

Full-length 346 1–346 38.8 89 6W01 6W01
nsp16 Methyltransferase 298 33.3 93
20,659–21,552

Full-length 298 1–298 33.3 93 6W4H 6W4H
ORF3a 275 31.3 72
25,393–26,220

Full-length 275 1–275 31.3 72 6XDC 6XDC
ORF4 Envelope (E) protein 75 8.4 95
26,245–26,472

Full-length 75 1–75 8.4 95 5X29 7K3G
ORF5 Membrane

glycoprotein (M)
222 25.1 91

26,523–27,387
Full-length 222 1–222 25.1 91

ORF6 61 7.3 69
27,202–27,387

Full-length 61 1–61 7.3 69
(Continued on following page)
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Kubatova et al., 2020; Tonelli et al., 2020) and solid-state NMR
spectroscopy of transmembrane (TM) proteins (Mandala et al.,
2020). These studies have significantly improved our
understanding on the functions of molecular components, and
they all rely on the recombinant production of viral proteins in
high amount and purity.

Apart from structures, purified SCoV2 proteins are required
for experimental and preclinical approaches designed to
understand the basic principles of the viral life cycle and
processes underlying viral infection and transmission.
Approaches range from studies on immune responses
(Esposito et al., 2020), antibody identification (Jiang et al.,
2020), and interactions with other proteins or components of
the host cell (Bojkova et al., 2020; Gordon et al., 2020). These
examples highlight the importance of broad approaches for the
recombinant production of viral proteins.

The research consortium COVID19-NMR founded in 2020
seeks to support the search for antiviral drugs using an NMR-
based screening approach. This requires the large-scale
production of all druggable proteins and RNAs and their
NMR resonance assignments. The latter will enable solution
structure determination of viral proteins and RNAs for
rational drug design and the fast mapping of compound
binding sites. We have recently produced and determined
secondary structures of SCoV2 RNA cis-regulatory elements in
near completeness by NMR spectroscopy, validated by DMS-

MaPseq (Wacker et al., 2020), to provide a basis for RNA-
oriented fragment screens with NMR.

We here compile a compendium of more than 50 protocols
(see Supplementary Tables SI1–SI23) for the production and
purification of 23 of the 30 SCoV2 proteins or fragments thereof
(summarized in Tables 1, 2). We defined those 30 proteins as
existing or putative ones to our current knowledge (see later
discussion). This compendium has been generated in a
coordinated and concerted effort between >30 labs worldwide
(Supplementary Table S1), with the aim of providing pure mg
amounts of SCoV2 proteins. Our protocols include the rational
strategy for construct design (if applicable, guided by available
homolog structures), optimization of expression, solubility, yield,
purity, and suitability for follow-up work, with a focus on
uniform stable isotope-labeling.

We also present protocols for a number of accessory and
structural E and M proteins that could only be produced using
wheat-germ cell-free protein synthesis (WG-CFPS). In SCoV2,
accessory proteins represent a class of mostly small and
relatively poorly characterized proteins, mainly due to their
difficult behavior in classical expression systems. They are
often found in inclusion bodies and difficult to purify in
quantities adequate for structural studies. We thus here
exploit cell-free synthesis, mainly based on previous reports
on production and purification of viral membrane proteins in
general (Fogeron et al., 2015b; Fogeron et al., 2017; Jirasko

TABLE 1 | (Continued) SCoV2 protein constructs expressed and purified, given with the genomic position and corresponding PDBs for construct design.

Protein
genome position (nt)a

Trivial name
construct expressed

Size (aa) Boundaries MW (kDa) Homol. SCoV
(%)b

Template PDBc SCoV2 PDBd

ORF7a 121 13.7 85
27,394–27,759

Ectodomain (ED) 66 16–81 7.4 85 1XAK 6W37
ORF7b 43 5.2 85
27,756–27,887

Full-length 43 1–43 5.2 85
ORF8 121 13.8 32
27,894–28,259
ORF8 Full-length 121 1–121 13.8 32
ΔORF8 w/o signal peptide 106 16–121 12 41 7JTL 7JTL

ORF9a Nucleocapsid (N) 419 45.6 91
28,274–29,533

IDR1-NTD-IDR2 248 1–248 26.5 90
NTD-SR 169 44–212 18.1 92
NTD 136 44–180 14.9 93 6YI3 6YI3
CTD 118 247–364 13.3 96 2JW8 7C22

ORF9b 97 10.8 72
28,284–28,574

Full-length 97 1–97 10.8 72 6Z4U 6Z4U
ORF14 73 8 n.a
28,734–28,952

Full-length 73 1–73 8 n.a
ORF10 38 4.4 29
29,558–29,674

Full-length 38 1–38 4.4 29

aGenome position in nt corresponding to SCoV2 NCBI reference genome entry NC_045512.2, identical to GenBank entry MN908947.3.
bSequence identities to SCoV are calculated from an alignment with corresponding protein sequences based on the genome sequence of NCBI Reference NC_004718.3.
cRepresentative PDB that was available at the beginning of construct design, either SCoV or SCoV2.
dRepresentative PDB available for SCoV2 (as of December 2020).
eAdditional point mutations in fl-construct have been expressed.
n.a.: not applicable.
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TABLE 2 | Summary of SCoV2 protein production results in Covid19-NMR.

Construct
expressed

Yields (mg/L)a

or (mg/ml)b
Results Comments BMRB Supplementary

Material

nsp1 SI1
fl 5 NMR

assigned
Expression only at >20°C; after 7 days at 25°C partial proteolysis 50620d

GD >0.5 HSQC High expression; mainly insoluble; higher salt increases stability
(>250 mM)

nsp2 SI2
CtDR 0.7–1.5 NMR

assigned
Assignment with His-tag shown in (Mompean et al., 2020) 50687c

nsp3 SI3
UBl 0.7 HSQC Highly stable over weeks; spectrum overlays with Ubl + IDR
UBl + IDR 2–3 NMR

assigned
Highly stable for >2 weeks at 25°C 50446d

Macrodomain 9 NMR
assigned

Highly stable for >1 week at 25°C and > 2 weeks at 4°C 50387d

50388d

SUD-N 14 NMR
assigned

Highly stable for >10 days at 25°C 50448d

SUD-NM 17 HSQC Stable for >1 week at 25°C
SUD-M 8.5 NMR

assigned
Significant precipitation during measurement; tendency to dimerize 50516d

SUD-MC 12 HSQC Stable for >1 week at 25°C
SUD-C 4.7 NMR

assigned
Stable for >10 days at 25°C 50517d

PLpro 12 HSQC Solubility-tag essential for expression; tendency to aggregate
NAB 3.5 NMR

assigned
Highly stable for >1 week at 25°C; stable for >5 weeks at 4°C 50334d

CoV-Y 12 HSQC Low temperature (<25°C) and low concentrations (<0.2 mM) favor
stability; gradual degradation at 25°C; lithium bromide in final buffer
supports solubility

nsp5 SI4
fl 55 HSQC Impaired dimerization induced by artificial N-terminal residues

nsp7 SI5
fl 17 NMR

assigned
Stable for several days at 35°C; stable for >1 month at 4°C 50337d

nsp8 SI6
fl 17 HSQC Concentration dependent aggregation; low concentrations favor

stability
nsp9 SI7
fl 4.5 NMR

assigned
Stable dimer for >4 months at 4°C and >2 weeks at 25°C 50621d

50622d

50513
nsp10 SI8
fl 15 NMR

assigned
Zn2+ addition during expression and purification increases protein
stability; stable for >1 week at 25°C

50392

nsp13 SI9
fl 0.5 HSQC Low expression; protein unstable; concentration above 20 µM not

possible
nsp14 SI10
fl 6 Pure

protein
Not above 50 µM; best storage: with 50% (v/v) glycerol; addition of
reducing agents

MTase 10 Pure
protein

As fl nsp14; high salt (>0.4 M) for increased stability; addition of
reducing agents

nsp15 SI11
fl 5 HSQC Tendency to aggregate at 25°C

nsp16 SI12
fl 10 Pure

protein
Addition of reducing agents; 5% (v/v) glycerol favorable; highly
unstable

ORF3a SI13
fl 0.6 Pure

protein
Addition of detergent during expression (0.05% Brij-58); stable
protein

E protein SI14
fl 0.45 Pure

protein
Addition of detergent during expression (0.05% Brij-58); stable
protein

(Continued on following page)
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et al., 2020b). Besides yields compatible with structural studies,
ribosomes in WG extracts further possess an increased folding
capacity (Netzer and Hartl, 1997), favorable for those more
complicated proteins.

We exemplify in more detail the optimization of protein
production, isotope-labeling, and purification for proteins with
different individual challenges: the nucleic acid–binding (NAB)
domain of nsp3e, the main protease nsp5, and several auxiliary
proteins. For the majority of produced and purified proteins, we
achieve >95% purity and provide 15N-HSQC spectra as the
ultimate quality measure. We also provide additional suggestions
for challenging proteins, where our protocols represent a unique
resource and starting point exploitable by other labs.

MATERIALS AND METHODS

Strains, Plasmids, and Cloning
The rationale of construct design for all proteins can be found
within the respective protocols in Supplementary Tables
SI1–SI23. For bacterial production, E. coli strains and
expression plasmids are given; for WG-CFPS, template

vectors are listed. Protein coding sequences of interest
have been obtained as either commercial, codon-optimized
genes or, for shorter ORFs and additional sequences,
annealed from oligonucleotides prior to insertion into the
relevant vector. Subcloning of inserts, adjustment of
boundaries, and mutations of genes have been carried out
by standard molecular biology techniques. All expression
plasmids can be obtained upon request from the
COVID19-NMR consortium (https://covid19-nmr.com/),
including information about coding sequences, restriction
sites, fusion tags, and vector backbones.

Protein Production and Purification
For SCoV2 proteins, we primarily used heterologous
production in E. coli. Detailed protocols of individual full-
length (fl) proteins, separate domains, combinations, or
particular expression constructs as listed in Table 1 can be
found in the (Supplementary Tables SI1–SI23).

The ORF3a, ORF6, ORF7b, ORF8, ORF9b, and ORF14
accessory proteins and the structural proteins M and E were
produced by WG-CFPS as described in the Supplementary
Material. In brief, transcription and translation steps have

TABLE 2 | (Continued) Summary of SCoV2 protein production results in Covid19-NMR.

Construct
expressed

Yields (mg/L)a

or (mg/ml)b
Results Comments BMRB Supplementary

Material

M Protein SI15
fl 0.33 Pure

protein
Addition of detergent during expression (0.05% Brij-58); stable
protein

ORF6 SI16
fl 0.27 HSQC Soluble expression without detergent; stable protein; no expression

with STREP-tag at N-terminus
ORF7a SI17
ED 0.4 HSQC Unpurified protein tends to precipitate during refolding, purified

protein stable for 4 days at 25°C
ORF7b SI18
fl 0.6 HSQC Tendency to oligomerize; solubilizing agents needed
fl 0.27 HSQC Addition of detergent during expression (0.1% MNG-3); stable

protein
ORF8 SI19
fl 0.62 HSQC Tendency to oligomerize
ΔORF8 0.5 Pure

protein
N protein SI20
IDR1-NTD-
IDR2

12 NMR
assigned

High salt (>0.4 M) for increased stability 50618, 50619,
50558, 50557d

NTD-SR 3 HSQC
NTD 3 HSQC 34511
CTD 2 NMR

assigned
Stable dimer for >4 months at 4°C and >3 weeks at 30°C 50518d

ORF9b SI21
fl 0.64 HSQC Expression without detergent, protein is stable

ORF14 SI22
fl 0.43 HSQC Addition of detergent during expression (0.05% Brij-58); stable in

detergent but unstable on lipid reconstitution
ORF10 SI23
fl 2 HSQC Tendency to oligomerize; unstable upon tag cleavage

aYields from bacterial expression represent the minimal protein amount in mg/L independent of the cultivation medium. Italic values indicate yields from CFPS.
bYields from CFPS represent the minimal protein amount in mg/ml of wheat-germ extract.
cCOVID19-nmr BMRB depositions yet to be released.
dCOVID19-nmr BMRB depositions.
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been performed separately, and detergent has been added for
the synthesis of membrane proteins as described previously
(Takai et al., 2010; Fogeron et al., 2017).

NMR Spectroscopy
All amide correlation spectra, either HSQC- or TROSY-based, are
representative examples. Details on their acquisition parameters
and the raw data are freely accessible through https://covid19-
nmr.de or upon request.

RESULTS

In the following, we provide protocols for the purification of
SCoV2 proteins sorted into 1) nonstructural proteins and 2)
structural proteins together with accessory ORFs. Table 1
shows an overview of expression constructs. We use a
consequent terminology of those constructs, which is guided
by domains, intrinsically disordered regions (IDRs) or other
particularly relevant sequence features within them. This study
uses the SCoV2 NCBI reference genome entry NC_045512.2,
identical to GenBank entry MN908947.3 (Wu et al., 2020),
unless denoted differently in the respective protocols. Any
relevant definition of boundaries can also be found in the SI
protocols.

As applicable for a major part of our proteins, we further
define a standard procedure for the purification of soluble
His-tagged proteins that are obtained through the sequence
of IMAC, TEV/Ulp1 Protease cleavage, Reverse IMAC, and
Size-exclusion chromatography, eventually with individual
alterations, modifications, or additional steps. For convenient
reading, we will thus use the abbreviation IPRS to avoid
redundant protocol description. Details for every protein,

including detailed expression conditions, buffers, incubation
times, supplements, storage conditions, yields, and stability,
can be found in the respective Supplementary Tables
SI1–SI23 (see also Supplementary Tables S1, S2) and
Tables 1, 2.

Nonstructural Proteins
We have approached and challenged the recombinant
production of a large part of the SCoV2 nsps (Figure 1),
with great success (Table 2). We excluded nsp4 and nsp6
(TM proteins), which are little characterized and do not reveal
soluble, folded domains by prediction (Oostra et al., 2007;
Oostra et al., 2008). The function of the very short (13 aa)
nsp11 is unknown, and it seems to be a mere copy of the
nsp12 amino-terminal residues, remaining as a protease
cleavage product of ORF1a. Further, we left out the RNA-
dependent RNA polymerase nsp12 in our initial approach
because of its size (>100 kDa) and known unsuitability for
heterologous recombinant production in bacteria. Work on
NMR-suitable nsp12 bacterial production is ongoing, while
other expert labs have succeeded in purifying nsp12 for cryo-
EM applications in different systems (Gao et al., 2020; Hillen
et al., 2020). For the remainder of nsps, we here provide
protocols for fl-proteins or relevant fragments of them.

nsp1
nsp1 is the very N-terminus of the polyproteins pp1a and pp1ab
and one of the most enigmatic viral proteins, expressed only in α-
and β-CoVs (Narayanan et al., 2015). Interestingly, nsp1 displays
the highest divergence in sequence and size among different
CoVs, justifying it as a genus-specificmarker (Snijder et al., 2003).
It functions as a host shutoff factor by suppressing innate
immune functions and host gene expression (Kamitani et al.,

FIGURE 1 | Genomic organization of proteins and current state of analysis or purification. Boxes represent the domain boundaries as outlined in the text and in
Table 1. Their position corresponds with the genomic loci. Colors indicate whether the pure proteins were purified (yellow), analyzed by NMR using only HSQC (lime), or
characterized in detail, including NMR resonance assignments (green).
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2006; Narayanan et al., 2008; Schubert et al., 2020). This
suppression is achieved by an interaction of the
nsp1 C-terminus with the mRNA entry tunnel within the 40 S
subunit of the ribosome (Schubert et al., 2020; Thoms et al.,
2020).

As summarized in Table 1, fl-domain boundaries of nsp1
were chosen to contain the first 180 amino acids, in analogy to
its closest homolog from SCoV (Snijder et al., 2003). In
addition, a shorter construct was designed, encoding only
the globular core domain (GD, aa 13–127) suggested by the
published SCoV nsp1 NMR structure (Almeida et al., 2007).
His-tagged fl nsp1 was purified using the IPRS approach.
Protein quality was confirmed by the available HSQC
spectrum (Figure 2). Despite the flexible C-terminus, we
were able to accomplish a near-complete backbone
assignment (Wang et al., 2021).

Interestingly, the nsp1 GD was found to be problematic in
our hands despite good expression. We observed
insolubility, although buffers were used according to the

homolog SCoV nsp1 GD (Almeida et al., 2007).
Nevertheless, using a protocol comparable to the one for
fl nsp1, we were able to record an HSQC spectrum proving a
folded protein (Figure 2).

nsp2
nsp2 has been suggested to interact with host factors involved
in intracellular signaling (Cornillez-Ty et al., 2009; Davies
et al., 2020). The precise function, however, is insufficiently
understood. Despite its potential dispensability for viral
replication in general, it might be a valuable model to gain
insights into virulence due to its possible involvement in the
regulation of global RNA synthesis (Graham et al., 2005). We
provide here a protocol for the purification of the C-terminal
IDR (CtDR) of nsp2 from residues 557 to 601, based on
disorder predictions [PrDOS (Ishida and Kinoshita, 2007)].
The His-Trx-tagged peptide was purified by IPRS. Upon
dialysis, two IEC steps were performed: first anionic and
then cationic, with good final yields (Table 1). Stability and

FIGURE 2 | 1H, 15N-correlation spectra of investigated nonstructural proteins. Construct names according to Table 1 are indicated unless fl-proteins are shown. A
representative SDS-PAGE lane with final samples is included as inset. Spectra for nsp3 constructs are collectively shown in Figure 3.
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purity were confirmed by an HSQC spectrum (Figure 2) and a
complete backbone assignment (Mompean et al., 2020;
Table 2).

nsp3
nsp3, the largest nsp (Snijder et al., 2003), is composed of a
plethora of functionally related, yet independent, subunits.
After cleavage of nsp3 from the fl ORF1-encoded
polypeptide chain, it displays a 1945-residue multidomain
protein, with individual functional entities that are
subclassified from nsp3a to nsp3e followed by the
ectodomain embedded in two TM regions and the very
C-terminal CoV-Y domain. The soluble nsp3a-3e domains
are linked by various types of linkers with crucial roles in the
viral life cycle and are located in the so-called viral
cytoplasm, which is separated from the host cell after
budding off the endoplasmic reticulum and contains the
viral RNA (Wolff et al., 2020). Remarkably, the nsp3c
substructure comprises three subdomains, making nsp3

the most complex SCoV2 protein. The precise function
and eventual RNA-binding specificities of nsp3 domains
are not yet understood. We here focus on the nsp3 domains
a–e and provide elaborated protocols for additional constructs
carrying relevant linkers or combinations of domains (Table 1).
Moreover, we additionally present a convenient protocol for the
purification of the C-terminal CoV-Y domain.

nsp3a
The N-terminal portion of nsp3 is comprised of a ubiquitin-
like (Ubl) structured domain and a subsequent acidic IDR.
Besides its ability to bind ssRNA (Serrano et al., 2007), nsp3a
has been reported to interact with the nucleocapsid (Hurst
et al., 2013; Khan et al., 2020), playing a potential role in
virus replication. We here provide protocols for the
purification of both the Ubl (aa 1–111) and fl nsp3a (aa
1–206), including the acidic IDR (Ubl + IDR Table 1).
Domain boundaries were defined similar to the published
NMR structure of SCoV nsp3a (Serrano et al., 2007). His-

FIGURE 3 | 1H, 15N-correlation spectra of investigated constructs from nonstructural protein 3. Construct names of subdomains according to Table 1
are indicated unless fl-domains are shown. A representative SDS-PAGE lane with final samples is included as inset. Red boxes indicate protein bands of
interest.
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tagged nsp3a Ubl + IDR and GST-tagged nsp3a Ubl were
each purified via the IPRS approach. nsp3a Ubl yielded mM
sample concentrations and displayed a well-dispersed HSQC
spectrum (Figure 3). Notably, the herein described protocol
also enables purification of fl nsp3a (Ubl + IDR) (Tables 1,
2). Despite the unstructured IDR overhang, the excellent
protein quality and stability allowed for near-complete
backbone assignment [Figure 3, (Salvi et al., 2021)].

nsp3b
nsp3b is an ADP-ribose phosphatase macrodomain and
potentially plays a key role in viral replication. Moreover,
the de-ADP ribosylation function of nsp3b protects SCoV2
from antiviral host immune response, making nsp3b a
promising drug target (Frick et al., 2020). As summarized
in Table 1, the domain boundaries of the herein investigated
nsp3b are residues 207–376 of the nsp3 primary sequence and
were identical to available crystal structures with PDB entries
6YWM and 6YWL (unpublished). For purification, we used
the IPRS approach, which yielded pure fl nsp3b (Table 2). Fl
nsp3b displays well-dispersed HSQC spectra, making this
protein an amenable target for NMR structural studies. In
fact, we recently reported near-to-complete backbone
assignments for nsp3b in its apo and ADP-ribose–bound
form (Cantini et al., 2020).

nsp3c
The SARS unique domain (SUD) of nsp3c has been described
as a distinguishing feature of SCoVs (Snijder et al., 2003).
However, similar domains in more distant CoVs, such as
MHV or MERS, have been reported recently (Chen et al.,
2015; Kusov et al., 2015). nsp3c comprises three distinct
globular domains, termed SUD-N, SUD-M, and SUD-C,
according to their sequential arrangement: N-terminal
(N), middle (M), and C-terminal (C). SUD-N and SUD-M
develop a macrodomain fold similar to nsp3b and are
described to bind G-quadruplexes (Tan et al., 2009), while
SUD-C preferentially binds to purine-containing RNA
(Johnson et al., 2010). Domain boundaries for SUD-N and
SUD-M and for the tandem-domain SUD-NM were defined
in analogy to the SCoV homolog crystal structure (Tan et al.,
2009). Those for SUD-C and the tandem SUD-MC were
based on NMR solution structures of corresponding SCoV
homologs (Table 1) (Johnson et al., 2010). SUD-N, SUD-C,
and SUD-NM were purified using GST affinity
chromatography, whereas SUD-M and SUD-MC were
purified using His affinity chromatography. Removal of
the tag was achieved by thrombin cleavage and final
samples of all domains were prepared subsequent to size-
exclusion chromatography (SEC). Except for SUD-M, all
constructs were highly stable (Table 2). Overall protein
quality allowed for the assignment of backbone chemical
shifts for the three single domains (Gallo et al., 2020) amd
good resolved HSQC spectra also for the tandem domains
(Figure 3).

nsp3d
nsp3d comprises the papain-like protease (PLpro) domain of
nsp3 and, hence, is one of the two SCoV2 proteases that are
responsible for processing the viral polypeptide chain and
generating functional proteins (Shin et al., 2020). The
domain boundaries of PLpro within nsp3 are set by residues
743 and 1,060 (Table 1). The protein is particularly
challenging, as it is prone to misfolding and rapid
precipitation. We prepared His-tagged and His-SUMO-
tagged PLpro. The His-tagged version mainly remained in
the insoluble fraction. Still, mg quantities could be purified
from the soluble fraction, however, greatly misfolded. Fusion
to SUMO significantly enhanced protein yield of soluble PLpro.
The His-SUMO-tag allowed simple IMAC purification,
followed by cleavage with Ulp1 and isolation of cleaved
PLpro via a second IMAC. A final purification step using gel
filtration led to pure PLpro of both unlabeled and 15N-labeled
species (Table 2). The latter has allowed for the acquisition of a
promising amide correlation spectrum (Figure 3).

nsp3e
nsp3e is unique to Betacoronaviruses and consists of a nucleic
acid–binding domain (NAB) and the so-called group 2-specific
marker (G2M) (Neuman et al., 2008). Structural information is
rare; while the G2M is predicted to be intrinsically disordered (Lei
et al., 2018); the only available experimental structure of the nsp3e
NAB was solved from SCoV by the Wüthrich lab using solution
NMR (Serrano et al., 2009). We here used this structure for a
sequence-based alignment to derive reasonable domain
boundaries for the SCoV2 nsp3e NAB (Figures 4A,B). The
high sequence similarity suggested using nsp3 residues
1,088–1,203 (Table 1). This polypeptide chain was encoded in
expression vectors comprising His- and His-GST tags, both
cleavable by TEV protease. Both constructs showed excellent
expression, suitable for the IPRS protocol (Figure 4C). Finally, a
homogenous NAB species, as supported by the final gel of pooled
samples (Figure 4D), was obtained. The excellent protein quality
and stability are supported by the available HSQC (Figure 3) and
a published backbone assignment (Korn et al., 2020a).

nsp3Y
nsp3Y is the most C-terminal domain of nsp3 and exists in all
coronaviruses (Neuman et al., 2008; Neuman, 2016). Together,
though, with its preceding regions G2M, TM 1, the ectodomain,
TM2, and the Y1-domain, it has evaded structural investigations
so far. The precise function of the CoV-Y domain remains
unclear, but, together with the Y1-domain, it might affect
binding to nsp4 (Hagemeijer et al., 2014). We were able to
produce and purify nsp3Y (CoV-Y) comprising amino acids
1,638–1,945 (Table 1), yielding 12 mg/L with an optimized
protocol that keeps the protein in a final NMR buffer
containing HEPES and lithium bromide. Although the protein
still shows some tendency to aggregate and degrade (Table 2),
and despite its relatively large size, the spectral quality is excellent
(Figure 3). nsp3 CoV-Y appears suitable for an NMR backbone
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assignment carried out at lower concentrations in a deuterated
background (ongoing).

nsp5
The functional main protease nsp5 (Mpro) is a dimeric cysteine
protease (Ullrich and Nitsche, 2020). Amino acid sequence and
3D structure of SCoV [PDB 1P9U (Anand et al., 2003)] and
SCoV2 (PDB 6Y2E [Zhang et al., 2020)] homologs are highly
conserved (Figures 5A,B). The dimer interface involves the
N-termini of both monomers, which puts considerable
constraints on the choice of protein sequence for construct
design regarding the N-terminus.

We thus designed different constructs differing in the
N-terminus: the native N-terminus (wt), a GS mutant with the
additional N-terminal residues glycine and serine as His-SUMO

fusion, and a GHM mutant with the amino acids glycine,
histidine, and methionine located at the N-terminus with His-
tag and TEV cleavage site (Figure 5C). Purification of all proteins
via the IPRS approach (Figures 5D,E) yielded homogenous and
highly pure protein, analyzed by PAGE (Figure 5G), mass
spectrometry, and 2D [15N, 1H]-BEST TROSY spectra
(Figure 5H). Final yields are summarized in Table 2.

nsp7 and nsp8
Both nsp7 and nsp8 are auxiliary factors of the polymerase
complex together with the RNA-dependent RNA polymerase
nsp12 and have high sequence homology with SCoV (100% and
99%, respectively) (Gordon et al., 2020). For nsp7 in complex
with nsp8 or for nsp8 alone, additional functions in RNA
synthesis priming have been proposed (Tvarogova et al., 2019;

FIGURE 4 | Rationale of construct design, expression, and IPRS purification of the nsp3e nucleic acid–binding domain (NAB). (A) NMR structural ensemble of the
homologous SCoV nsp3e (Serrano et al., 2009). The domain boundaries as displayed are given. (B) Sequence alignment of SCoV and SCoV2 regions representing the
nsp3e locus. Arrows indicate the sequence stretch as used for the structure in panel (A). The analogous region was used for the design of the two protein expression
constructs shown (C). Left, SDS-PAGE showing the expression of nsp3e constructs from panel (B) over 4 h at two different temperatures. Middle, SDS-PAGE
showing the subsequent steps of IMAC. Right, SDS-PAGE showing steps and fractions obtained before and after TEV/dialysis and reverse IMAC. Boxes highlight the
respective sample species of interest for further usage (D) SEC profile of nsp3e following steps in panel (C) performed with a Superdex 75 16/600 (GE Healthcare)
column in the buffer as denoted in Supplementary Table SI3. The arrow indicates the protein peak of interest containing monomeric and homogenous nsp3e NAB
devoid of significant contaminations of nucleic acids as revealed by the excellent 280/260 ratio. Right, SDS-PAGE shows 0.5 µL of the final NMR sample used for the
spectrum in Figure 3 after concentrating relevant SEC fractions.
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Konkolova et al., 2020). In a recent study including an RNA-
substrate-bound structure (Hillen et al., 2020), both proteins
(with two molecules of nsp8 and one molecule of nsp7 for
each nsp12 RNA polymerase) were found to be essential for
polymerase activity in SCoV2. For both fl-proteins, a previously
established expression and IPRS purification strategy for the
SCoV proteins (Kirchdoerfer and Ward, 2019) was
successfully transferred, which resulted in decent yields of

reasonably stable proteins (Table 2). Driven by its intrinsically
oligomeric state, nsp8 showed some tendency toward
aggregation, limiting the available sample concentration. The
higher apparent molecular weight and limited solubility are
also reflected in the success of NMR experiments. While we
succeeded in a complete NMR backbone assignment of nsp7
(Tonelli et al., 2020), the quality of the spectra obtained for nsp8 is
currently limited to the HSQC presented in Figure 2.

FIGURE 5 | Rationale of construct design, expression, and purification of different nsp5 constructs. (A) Sequence alignment of SCoV and SCoV2 fl nsp5. (B) X-ray
structural overlay of the homologous SCoV (PDB 1P9U, light blue) and SCoV2 nsp5 (PDB 6Y2E, green) in cartoon representation. The catalytic dyad (H41 and C145) is
shown in stick representation (magenta). (C) Schematics of nsp5 expression constructs involving purification and solubilization tags (blue), different N-termini and
additional aa after cleavage (green), and nsp5 (magenta). Cleavage sites are indicated by an arrow. (D, E) An exemplary purification is shown for wtnsp5. IMAC (D)
and SEC (E) chromatograms (upper panels) and the corresponding SDS PAGE (lower panels). Black bars in the chromatograms indicate pooled fractions. Gel samples
are as follows: M: MW standard; pellet/load: pellet/supernatant after cell lysis; FT: IMAC flow-through; imidazole: eluted fractions with linear imidazole gradient; eluate:
eluted SEC fractions from input (load). (F) SEC-MALS analysis with ∼0.5 µg of wtnsp5 without additional aa (wtnsp5, black) with GS (GS-nsp5, blue) and with GHM
(GHM-nsp5, red)) in NMR buffer on a Superdex 75, 10/300 GL (GE Healthcare) column. Horizontal lines indicate fractions of monodisperse nsp5 used for MW
determination. (G) A SDS-PAGE showing all purified nsp5 constructs. The arrow indicates nsp5. (H) Exemplary [15N, 1H]-BEST-TROSY spectra measured at 298 K for
the dimeric wtnsp5 (upper spectrum) and monomeric GS-nsp5 (lower spectrum). See Supplementary Table SI4 for technical details regarding this figure.
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nsp9
The 12.4 kDa ssRNA-binding nsp9 is highly conserved among
Betacoronaviruses. It is a crucial part of the viral replication
machinery (Miknis et al., 2009), possibly targeting the 3’-end
stem-loop II (s2m) of the genome (Robertson et al., 2005). nsp9
adopts a fold similar to oligonucleotide/oligosaccharide-binding
proteins (Egloff et al., 2004), and structural data consistently
uncovered nsp9 to be dimeric in solution (Egloff et al., 2004;
Sutton et al., 2004; Miknis et al., 2009; Littler et al., 2020). Dimer
formation seems to be a prerequisite for viral replication (Miknis
et al., 2009) and influences RNA-binding (Sutton et al., 2004),
despite a moderate affinity for RNA in vitro (Littler et al., 2020).

Based on the early available crystal structure of SCoV2 nsp9
(PDB 6W4B, unpublished), we used the 113 aa fl sequence of
nsp9 for our expression construct (Table 1). Production of either
His- or His-GST-tagged fl nsp9 yielded high amounts of soluble
protein in both natural abundance and 13C- and 15N-labeled
form. Purification via the IPRS approach enabled us to separate fl
nsp9 in different oligomer states. The earliest eluted fraction
represented higher oligomers, was contaminated with nucleic
acids and was not possible to concentrate above 2 mg/ml. This
was different for the subsequently eluting dimeric fl nsp9 fraction,
which had a A260/280 ratio of below 0.7 and could be
concentrated to >5 mg/ml (Table 2). The excellent protein
quality and stability are supported by the available HSQC
(Figure 2), and a near-complete backbone assignment (Dudas
et al., 2021).

nsp10
The last functional protein encoded by ORF1a, nsp10, is an
auxiliary factor for both the methyltransferase/exonuclease
nsp14 and the 2′-O-methyltransferase (MTase) nsp16.
However, it is required for the MTase activity of nsp16
(Krafcikova et al., 2020), it confers exonuclease activity to
nsp14 in the RNA polymerase complex in SCoV (Ma et al.,
2015). It contains two unusual zinc finger motifs (Joseph et al.,
2006) and was initially proposed to comprise RNA-binding
properties. We generated a construct (Table 1) containing an
expression and affinity purification tag on the N-terminus as
reported for the SCoV variant (Joseph et al., 2006). Importantly,
additional Zn2+ ions present during expression and purification
stabilize the protein significantly (Kubatova et al., 2020). The
yield during isotope-labeling was high (Table 2), and tests in
unlabeled rich medium showed the potential for yields exceeding
100 mg/L. These characteristics facilitated in-depth NMR
analysis and a backbone assignment (Kubatova et al., 2020).

nsp13
nsp13 is a conserved ATP-dependent helicase that has been
characterized as part of the RNA synthesis machinery by
binding to nsp12 (Chen et al., 2020b). It represents an
interesting drug target, for which the available structure (PDB
6ZSL) serves as an excellent basis (Table 1). The precise
molecular function, however, has remained enigmatic since it
is not clear whether the RNA unwinding function is required for
making ssRNA accessible for RNA synthesis (Jia et al., 2019) or
whether it is required for proofreading and backtracking (Chen

et al., 2020b). We obtained pure protein using a standard
expression vector, generating a His-SUMO-tagged protein.
Following Ulp1 cleavage, the protein showed limited protein
stability in the solution (Table 2).

nsp14
nsp14 contains two domains: an N-terminal exonuclease
domain and a C-terminal MTase domain (Ma et al., 2015).
The exonuclease domain interacts with nsp10 and provides
part of the proofreading function that supports the high
fidelity of the RNA polymerase complex (Robson et al.,
2020). Several unusual features, such as the unusual zinc
finger motifs, set it apart from other DEDD-type
exonucleases (Chen et al., 2007), which are related to both
nsp10 binding and catalytic activity. The MTase domain
modifies the N7 of the guanosine cap of genomic and
subgenomic viral RNAs, which is essential for the
translation of viral proteins (Thoms et al., 2020). The
location of this enzymatic activity within the RNA synthesis
machinery ensures that newly synthesized RNA is rapidly
capped and thus stabilized. As a strategy, we used
constructs, which allow coexpression of both nsp14 and
nsp10 (pRSFDuet and pETDuet, respectively). Production of
isolated fl nsp14 was successful, however, with limited yield
and stability (Table 2). Expression of the isolated MTase
domain resulted in soluble protein with 27.5 kDa mass that
was amenable to NMR characterization (Figure 2), although
only under reducing conditions and in the presence of high
(0.4 M) salt concentration.

nsp15
The poly-U-specific endoribonuclease nsp15 was one of the very
first SCoV2 structures deposited in the PDB [6VWW, (Kim et al.,
2020)]. Its function has been suggested to be related to the
removal of U-rich RNA elements, preventing recognition by
the innate immune system (Deng et al., 2017), even though
the precise mechanism remains to be established. The exact
role of the three domains (N-terminal, middle, and C-terminal
catalytic domain) also remains to be characterized in more detail
(Kim et al., 2020). Here, the sufficient yield of fl nsp15 during
expression supported purification of pure protein, which,
however, showed limited stability in solution (Table 2).

nsp16
The MTase reaction catalyzed by nsp16 is dependent on nsp10 as
a cofactor (Krafcikova et al., 2020). In this reaction, the 2’-OH
group of nucleotide +1 in genomic and subgenomic viral RNA is
methylated, preventing recognition by the innate immune
system. Since both nsp14 and nsp16 are in principle
susceptible to inhibition by MTase inhibitors, a drug targeting
both enzymes would be highly desirable (Bouvet et al., 2010).
nsp16 is the last protein being encoded by ORF1ab, and only its
N-terminus is formed by cleavage by the Mpro nsp5. Employing a
similar strategy to that for nsp14, nsp16 constructs were designed
with the possibility of nsp10 coexpression. Expression of fl nsp16
resulted in good yields, when expressed both isolated and
together with nsp10. The protein, however, is in either case
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unstable in solution and highly dependent on reducing buffer
conditions (Table 2). The purification procedures of nsp16 were
adapted with minor modifications from a previous X-ray
crystallography study (Rosas-Lemus et al., 2020).

Structural Proteins and Accessory ORFs
Besides establishing expression and purification protocols for
the nsps, we also developed protocols and obtained pure mg
quantities of the SCoV2 structural proteins E, M, and N, as well
as literally all accessory proteins. With the exception of the
relatively well-behaved nucleocapsid (N) protein, SCoV2 E, M,

and the remaining accessory proteins represent a class of
mostly small and relatively poorly characterized proteins,
mainly due to their difficult behavior in classical expression
systems.

We used wheat-germ cell-free protein synthesis (WG-
CFPS) for the successful production, solubilization,
purification, and, in part, initial NMR spectroscopic
investigation of ORF3a, ORF6, ORF7b, ORF8, ORF9b, and
ORF14 accessory proteins, as well as E and M in mg quantities
using the highly efficient translation machinery extracted
from wheat-germs (Figures 6A–D).

FIGURE 6 |Cell-free protein synthesis of accessory ORFs and structural proteins E andM. (A) Screening for expression and solubility of different ORFs using small-
scale reactions. The total cell-free reaction (CFS), the pellet after centrifugation, and the supernatant (SN) captured on magnetic beads coated with Strep-Tactin were
analyzed. All tested proteins were synthesized, with the exception of ORF3b. MW, MW standard. (B) Detergent solubilization tests using three different detergents, here
at the example of the M protein, shown by SDS-PAGE andWestern Blot. (C) Proteins are purified in a single step using a Strep-Tactin column. For ORF3a (and also
for M), a small heat-shock protein of the HSP20 family is copurified, as identified by mass spectrometry (see also * in PanelD). (D) SDS-PAGE of the 2H, 13C, 15N-labeled
proteins used as NMR samples. Yields were between 0.2 and 1 mg protein per mL wheat-germ extract used. (E) SEC profiles for two ORFs. Left, ORF9b migrates as
expected for a dimer. Right, OFR14 shows large assemblies corresponding to approximately 9 protein units and the DDM detergent micelle. (F) 2D [15N, 1H]-BEST-
TROSY spectrum of ORF9b, recorded at 900 MHz in 1 h at 298 K, on less than 1 mg of protein. See Supplementary Tables SI13–SI19 and Supplementary Tables
SI19, SI20 for technical and experimental details regarding this figure.
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ORF3a
The protein from ORF3a in SCoV2 corresponds to the accessory
protein 3a in SCoV, with homology of more than 70% (Table 1).
It has 275 amino acids, and its structure has recently been
determined (Kern et al., 2020). The structure of SCoV2 3a
displays a dimer, but it can also form higher oligomers. Each
monomer has three TM helices and a cytosolic β-strand rich
domain. SCoV2 ORF3a is a cation channel, and its structure has
been solved by electron microscopy in nanodiscs. In SCoV, 3a is a
structural component and was found in recombinant virus-like
particles (Liu et al., 2014), but is not explicitly needed for their
formation. The major challenge for NMR studies of this largest
accessory protein is its size, independent of its employment in
solid state or solution NMR spectroscopy.

As most other accessory proteins described in the
following, ORF3a has been produced using WG-CFPS and
was expressed in soluble form in the presence of Brij-58
(Figure 6C). It is copurified with a small heat-shock protein
of the HSP20 family from the wheat-germ extract. The
protocol described here is highly similar to that of the
other cell-free synthesized accessory proteins. Where
NMR spectra have been reported, the protein has been
produced in a 2H, 13C, 15N uniformly labeled form;
otherwise, natural abundance amino acids were added to
the reaction. The proteins were further affinity-purified in
one step using Strep-Tactin resin, through the Strep-tag II
fused to their N- or C-terminus. For membrane proteins,
protein synthesis and also purification were done in the
presence of detergent.

About half a milligram of pure protein was generally obtained
per mL of extract, and up to 3 ml wheat-germ extract have been
used to prepare NMR samples.

ORF3b
The ORF3b protein is a putative protein stemming from a
short ORF (57 aa) with no homology to existing SCoV proteins
(Chan et al., 2020). Indeed, ORF3b gene products of SCoV2
and SCoV are considerably different, with one of the
distinguishing features being the presence of premature stop
codons, resulting in the expression of a drastically shortened
ORF3b protein (Konno et al., 2020). However, the SCoV2
nucleotide sequence after the stop codon shows a high
similarity to the SCoV ORF3b. Different C-terminal
truncations seem to play a role in the interferon-
antagonistic activity of ORF3b (Konno et al., 2020). ORF3b
is the only protein that, using WG-CFPS, was not synthesized
at all; i.e., it was neither observed in the total cell-free reaction
nor in supernatant or pellet. This might be due to the
premature stop codon, which was not considered.
Constructs of ORF3b thus need to be redesigned.

ORF4 (Envelope Protein, E)
The SCoV2 envelope (E) protein is a small (75 amino acids),
integral membrane protein involved in several aspects of the
virus’ life cycle, such as assembly, budding, envelope formation,
and pathogenicity, as recently reviewed in (Schoeman and
Fielding, 2020). Structural models for SCoV (Surya et al.,

2018) and the TM helix of SCoV2 (Mandala et al., 2020) E
have been established. The structural models show a pentamer
with a TM helix. The C-terminal part is polar, with charged
residues interleaved, and is positioned on the membrane surface
in SCoV. E was produced in a similar manner to ORF3a, using the
addition of detergent to the cell-free reaction.

ORF5 (Membrane Glycoprotein, M)
The M protein is the most abundant protein in the viral
envelope and is believed to be responsible for maintaining
the virion in its characteristic shape (Huang et al., 2004). M is a
glycoprotein and sequence analyses predict three domains: A
C-terminal endodomain, a TM domain with three predicted
helices, and a short N-terminal ectodomain. M is essential for
viral particle assembly. Intermolecular interactions with the
other structural proteins, N and S to a lesser extent, but most
importantly E (Vennema et al., 1996), seem to be central for
virion envelope formation in coronaviruses, as M alone is not
sufficient. Evidence has been presented that M could adopt two
conformations, elongated and compact, and that the two forms
fulfill different functions (Neuman et al., 2011). The lack of
more detailed structural information is in part due to its small
size, close association with the viral envelope, and a tendency
to form insoluble aggregates when perturbed (Neuman et al.,
2011). The M protein is readily produced using cell-free
synthesis in the presence of detergent; as ORF3a, it is
copurified with a small heat-shock protein of the HSP20
family (Figure 6B). Membrane-reconstitution will likely be
necessary to study this protein.

ORF6
The ORF6 protein is incorporated into viral particles and is
also released from cells (Huang et al., 2004). It is a small
protein (61 aa), which has been found to concentrate at the
endoplasmic reticulum and Golgi apparatus. In a murine
coronavirus model, it was shown that expressing ORF6
increased virulence in mice (Zhao et al., 2009), and results
indicate that ORF6 may serve an important role in the
pathogenesis during SCoV infection (Liu et al., 2014). Also,
it showed to inhibit the expression of certain STAT1-genes
critical for the host immune response and could contribute to
the immune evasion. ORF6 is expressed very well in WG-
CFPS; the protein was fully soluble with detergents and
partially soluble without them and was easily purified in the
presence of detergent, but less efficiently in the absence
thereof. Solution NMR spectra in the presence of detergent
display narrow but few resonances, which correspond, in
addition to the C-terminal STREP-tag, to the very
C-terminal ORF6 protein residues.

ORF7a
SCoV2 protein 7a (121 aa) shows over 85% homology with
the SCoV protein 7a. While the SCoV2 7a protein is produced
and retained intracellularly, SCoV protein 7a has also been
shown to be a structural protein incorporated into mature
virions (Liu et al., 2014). 7a is one of the accessory proteins, of
which a (partial) structure has been determined at high
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resolution for SCoV2 (PDB 6W37). However, the very
N-terminal signal peptide and the C-terminal membrane
anchor, both highly hydrophobic, have not been
determined experimentally yet.

Expression of the ORF7a ectodomain (ED) with a GB1 tag
(Bogomolovas et al., 2009) was expected to produce reasonable
yields. The IPRS purification resulted in a highly stable protein, as
evidenced by the NMR data obtained (Figure 7).

ORF7b
Protein ORF7b is associated with viral particles in a SARS context
(Liu et al., 2014). Protein 7b is one of the shortest ORFs with 43
residues. It shows a long hydrophobic stretch, which might
correspond to a TM segment. It shows over 93% sequence
homology with a bat coronavirus 7b protein (Liu et al., 2014).
There, the cysteine residue in the C-terminal part is not
conserved, which might facilitate structural studies. ORF7b has
been synthesized successfully both from bacteria and by WG-
CFPS in the presence of detergent and could be purified using a
STREP-tag (Table 2). Due to the necessity of solubilizing agent

and its obvious tendency to oligomerize, structure determination,
fragment screening, and interaction studies are challenging.
However, we were able to record the first promising HSQC, as
shown in Figure 7.

ORF8
ORF 8 is believed to be responsible for the evolution of
Betacoronaviruses and their species jumps (Wu et al.,
2016) and to have a role in repressing the host response
(Tan et al., 2020). ORF 8 (121 aa) from SCoV2 does not
apparently exist in SCoV on the protein level, despite the
existence of a putative ORF. The sequences of the two
homologs only show limited identity, with the exception of
a small 7 aa segment, where, in SCoV, the glutamate is
replaced with an aspartate. It, however, aligns very well
with several coronaviruses endemic to animals, including
Paguma and Bat (Chan et al., 2020). The protein
comprises a hydrophobic peptide at its very N-terminus,
likely corresponding to a signal peptide; the remaining
part does not show any specific sequence features. Its

FIGURE 7 | 1H, 15N-correlation spectra of investigated structural and accessory proteins. Construct names according to Table 1 are indicated unless fl-proteins
are shown. A representative SDS-PAGE lane with final samples is included as inset.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 65314816

Altincekic et al. Large-Scale Production of SARS-CoV-2 Proteome

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


structure has been determined (PDB 7JTL) and shows a
similar fold to ORF7a (Flower et al., 2020). In this study,
ORF8 has been used both with (fl) and without signal peptide
(ΔORF8). We first tested the production of ORF8 in E. coli,
but yields were low because of insolubility. Both ORF8
versions have then been synthesized in the cell-free system
and were soluble in the presence of detergent. Solution NMR
spectra, however, indicate that the protein is forming either
oligomers or aggregates.

ORF9a (Nucleocapsid Protein, N)
The nucleocapsid protein (N) is important for viral genome
packaging (Luo et al., 2006). The multifunctional RNA-
binding protein plays a crucial role in the viral life cycle
(Chang et al., 2014) and its domain architecture is highly
conserved among coronaviruses. It comprises the N-terminal
intrinsically disordered region (IDR1), the N-terminal RNA-
binding globular domain (NTD), a central serine/arginine-
(SR-) rich intrinsically disordered linker region (IDR2), the
C-terminal dimerization domain (CTD), and a C-terminal
intrinsically disordered region (IDR3) (Kang et al., 2020).

N represents a highly promising drug target. We thus focused
our efforts not exclusively on the NTD and CTD alone, but, in
addition, also provide protocols for IDR-containing constructs
within the N-terminal part.

N-Terminal Domain
The NTD is the RNA-binding domain of the nucleocapsid (Kang
et al., 2020). It is embedded within IDRs, functions of which have
not yet been deciphered. Recent experimental and bioinformatic
data indicate involvement in liquid-liquid phase separation
(Chen et al., 2020a).

For the NTD, several constructs were designed, also
considering the flanking IDRs (Table 1). In analogy to the
available NMR [PDB 6YI3, (Dinesh et al., 2020)] and crystal
[PDB 6M3M, (Kang et al., 2020)] structures of the SCoV2
NTD, boundaries for the NTD and the NTD-SR domains
were designed to span residues 44–180 and 44–212,
respectively. In addition, an extended IDR1-NTD-IDR2
(residues 1–248) construct was designed, including the
N-terminal disordered region (IDR1), the NTD domain,
and the central disordered linker (IDR2) that comprises
the SR region. His-tagged NTD and NTD-SR were purified
using IPRS and yielded approx. 3 mg/L in 15N-labeled
minimal medium. High protein quality and stability are
supported by the available HSQC spectra (Figure 7).

The untagged IDR1-NTD-IDR2 was purified by IEC and
yielded high amounts of 13C, 15N-labeled samples of 12 mg/L
for further NMR investigations. The quality of our
purification is confirmed by the available HSQC
(Figure 7), and a near-complete backbone assignment of
the two IDRs was achieved (Guseva et al., 2021; Schiavina
et al., 2021). Notably, despite the structurally and
dynamically heterogeneous nature of the N protein, the
mentioned N constructs revealed a very good long-term
stability, as shown in Table 2.

C-Terminal Domain
Multiple studies on the SCoV2 CTD, including recent crystal
structures (Ye et al., 2020; Zhou et al., 2020), confirm the domain
as dimeric. Its ability to self-associate seems to be necessary for
viral replication and transcription (Luo et al., 2006). In addition,
the CTD was shown to, presumably nonspecifically, bind ssRNA
(Zhou et al., 2020).

Domain boundaries for the CTD were defined to comprise
amino acids 247–364 (Table 1), in analogy to the NMR structure
of the CTD from SCoV (PDB 2JW8, [Takeda et al., 2008)]. Gene
expression of His- or His-GST-tagged CTD yielded high amounts
of soluble protein. Purification was achieved via IPRS. The CTD
eluted as a dimer judged by its retention volume on the size-
exclusion column and yielded good amounts (Table 2). The
excellent protein quality and stability are supported by the
available HSQC spectrum (Figure 7) and a near-complete
backbone assignment (Korn et al., 2020b).

ORF9b
Protein 9b (97 aa) shows 73% sequence homology to the SCoV
and also to bat virus (bat-SL-CoVZXC21) 9b protein (Chan et al.,
2020). The structure of SCoV2 ORF9b has been determined at
high resolution (PDB 6Z4U). Still, a significant portion of the
structure was not found to be well ordered. The protein shows a
β-sheet-rich structure and a hydrophobic tunnel, in which bound
lipid was identified. How this might relate to membrane binding
is not fully understood at this point. The differences in sequence
between SCoV and SCoV2 are mainly located in the very
N-terminus, which was not resolved in the structure (PDB
6Z4U). Another spot of deviating sequence not resolved in the
structure is a solvent-exposed loop, which presents a potential
interacting segment. ORF9b has been synthesized as a dimer
(Figure 6E) using WG-CFPS in its soluble form. Spectra show a
well-folded protein, and assignments are underway (Figure 6F).

ORF14 (ORF9c)
ORF14 (73 aa) remains, at this point in time, hypothetical. It
shows 89% homology with a bat virus protein (bat-SL-
CoVZXC21). It shows a highly hydrophobic part in its
C-terminal region, comprising two negatively charged residues
and a charged/polar N-terminus. The C-terminus is likely
mediating membrane interaction. While ORF14 has been
synthesized in the wheat-germ cell-free system in the presence
of detergent and solution NMR spectra have been recorded, they
hint at an aggregated protein (Figure 6E). Membrane-
reconstitution of ORF14 revealed an unstable protein, which
had been degraded during detergent removal.

ORF10
The ORF10 protein is comprised of 38 aa and is a hypothetical
protein with unknown function (Yoshimoto, 2020). SCoV2
ORF10 displays 52.4% homology to SCoV ORF9b. The protein
sequence is rich in hydrophobic residues, rendering expression
and purification challenging. Expression of ORF10 as His-Trx-
tagged or His-SUMO tagged fusion protein was possible;
however, the ORF10 protein is poorly soluble and shows
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partial unfolding, even as an uncleaved fusion protein. Analytical
SEC hints at oligomerization under the current conditions.

DISCUSSION

The ongoing SCoV2 pandemic and its manifestation as the
COVID-19 disease call for an urgent provision of therapeutics
that will specifically target viral proteins and their interactions
with each other and RNAs, which are crucial for viral
propagation. Two “classical” viral targets have been addressed
in comprehensive approaches soon after the outbreak in
December 2019: the viral protease nsp5 and the RNA-
dependent RNA polymerase (RdRp) nsp12. While the latter
turned out to be a suitable target using the repurposed
compound Remdesivir (Hillen et al., 2020), nsp5 is undergoing
a broad structure-based screen against a battery of inhibitors in
multiple places (Jin et al., 2020; Zhang et al., 2020), but with, as of
yet, the limited outcome for effective medication. Hence, a
comprehensive, reliable treatment of COVID-19 at any stage
after the infection has remained unsuccessful.

Further viral protein targets will have to be taken into
account in order to provide inhibitors with increased
specificity and efficacy and preparative starting points for
following potential generations of (SARS-)CoVs. Availability
of those proteins in a recombinant, pure, homogenous, and
stable form in milligrams is, therefore, a prerequisite for
follow-up applications like vaccination, high-throughput
screening campaigns, structure determination, and mapping
of viral protein interaction networks. We here present, for the
first time, a near-complete compendium of SCoV2 protein
purification protocols that enable the production of large
amounts of pure proteins.

The COVID19-NMR consortium was launched with the
motivation of providing NMR assignments of all SCoV2
proteins and RNA elements, and enormous progress has
been made since the outbreak of COVID-19 for both
components [see Table 2 and (Wacker et al., 2020)].
Consequently, we have put our focus on producing proteins
in stable isotope-labeled forms for NMR-based applications,
e.g., the site-resolved mapping of interactions with compounds
(Li and Kang, 2020). Relevant to a broad scientific community,
we here report our protocols to suite perfectly any downstream
biochemical or biomedical application.

Overall Success and Protein Coverage
As summarized in Table 2, we have successfully purified 80%
of the SCoV2 proteins either in fl or providing relevant
fragments of the parent protein. Those include most of the
nsps, where all of the known/predicted soluble domains have
been addressed (Figure 1). For a very large part, we were able
to obtain protein samples of high purity, homogeneity, and
fold for NMR-based applications. We would like to point out
a number of CoV proteins that, evidenced by their HSQCs,
for the first time, provide access to structural information,
e.g., the PLpro nsp3d and nsp3Y. Particularly for the nsp3
multidomain protein, we here present soluble samples of

almost the complete cytosolic region with more than
120 kDa in the form of excellent 2D NMR spectra
(Figure 3), a major part of which fully backbone-assigned.
We thus enable the exploitation of the largest and most
enigmatic multifunctional SCoV2 protein through
individual domains in solution, allowing us to study their
concerted behavior with single residue resolution. Similarly,
for nsp2, we provide a promising starting point for studying
the so far neglected, often uncharacterized, and apparently
unstructured proteins.

Driven by the fast-spreading COVID-19, we initially left out
proteins that require advanced purification procedures (e.g.,
nsp12 and S) or where a priori information was limited (nsp4
and nsp6). This procedure seems justified with the time-saving
approach of our effort in favor of the less attended proteins.
However, we are in the process of collecting protocols for the
missing proteins.

Different Complexities and Challenges
The compilation of protein production protocols, initially guided
by information from CoV homologs (Table 1), has confronted us
with very different levels of complexity. With some prior
expectation toward this, we have shared forces to quickly
“work off” the highly conserved soluble and small proteins
and soon put focus into the processing of the challenging
ones. The difficulties in studying this second class of proteins
are due to their limited sequence conservation, no prior
information, large molecular weights, insolubility, and so forth.

The nsp3e NAB represents one example where the available
NMR structure of the SCoV homolog provided a bona fide
template for selecting initial domain boundaries (Figure 4).
The transfer of information derived from SCoV was
straightforward; the transferability included the available
protocol for the production of comparable protein amounts
and quality, given the high sequence identity. In such cases,
we found ourselves merely to adapt protocols and optimize yields
based on slightly different expression vectors and E. coli strains.

However, in some cases, such transfer was unexpectedly not
successful, e.g., for the short nsp1 GD. Despite intuitive domain
boundaries with complete local sequence identity seen from the
SCoV nsp1 NMR structure, it took considerable efforts to purify
an analogous nsp1 construct, which is likely related to the
impaired stability and solubility caused by a number of
impacting amino acid exchanges within the domain’s flexible
loops. In line with that, currently available structures of SCoV2
nsp1 have been obtained by crystallography or cryo-EM and
include different buffers. As such, our initial design was
insufficient in terms of taking into account the parameters
mentioned above. However, one needs to consider those
particular differences between the nsp1 homologs as one of
the most promising target sites for potential drugs as they
appear to be hotspots in the CoV evolution and will have
essential effects for the molecular networks, both in the virus
and with the host (Zust et al., 2007; Narayanan et al., 2015; Shen
et al., 2019; Thoms et al., 2020).

A special focus was put on the production of the SCoV2 main
protease nsp5, for which NMR-based screenings are ongoing. The
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main protease is critical in terms of inhibitor design as it appears
under constant selection, and novel mutants remarkably
influence the structure and biochemistry of the protein (Cross
et al., 2020). In the present study, the expression of the different
constructs allowed us to characterize the protein in both its
monomeric and dimeric forms. Comparison of NMR spectra
reveals that the constructs with additional amino acids (GS and
GHM mutant) display marked structural differences to the wild-
type protein while being structurally similar among themselves
(Figure 5H). The addition of two residues (GS) interferes with the
dimerization interface, despite being similar to its native
N-terminal amino acids (SGFR). We also introduced an active
site mutation that replaces cysteine 145 with alanine (Hsu et al.,
2005). Intriguingly, this active site mutation C145A, known to
stabilize the dimerization of the main protease (Chang et al.,
2007), supports dimer formation of the GS added construct (GS-
nsp5 C145A) shown by its 2DNMR spectrum overlaying with the
one of wild-type nsp5 (Supplementary Table SI4). The NMR
results are in line with SEC-MALS analyses (Figure 5F). Indeed,
the additional amino acids at the N-terminus shift the
dimerization equilibrium toward the monomer, whereas the
mutation shifts it toward the dimer despite the N-terminal aa
additions. This example underlines the need for a thorough and
precise construct design and the detailed biochemical and NMR-
based characterization of the final sample state. The presence of
monomers vs. dimers will play an essential role in the inhibitor
search against SCoV2 proteins, as exemplified by the particularly
attractive nsp5 main protease target.

Exploiting Nonbacterial Expression
As a particular effort within this consortium, we included the so
far neglected accessory proteins using a structural genomics
procedure supported by wheat-germ cell-free protein synthesis.
This approach allowed us previously to express a variety of
difficult viral proteins in our hands (Fogeron et al., 2015a;
Fogeron et al., 2015b; Fogeron et al., 2016; Fogeron et al.,
2017; Wang et al., 2019; Jirasko et al., 2020a). Within the
workflow, we especially highlight the straightforward
solubilization of the membrane proteins through the addition
of detergent to the cell-free reaction, which allowed the
production of soluble protein in milligram amounts
compatible with NMR studies. While home-made extracts
were used here, very similar extracts are available
commercially (Cell-Free Sciences, Japan) and can thus be
implemented by any lab without prior experience. Also, a
major benefit of the WG-CFPS system for NMR studies lies in
the high efficiency and selectivity of isotopic labeling. In contrast
to cell-based expression systems, only the protein of interest is
produced (Morita et al., 2003), which allows bypassing extensive
purification steps. In fact, one-step affinity purification is in most
cases sufficient, as shown for the different ORFs in this study.
Samples could be produced for virtually all proteins, with the
exception of the ORF3b construct used. With new recent insight
into the stop codons present in this ORF, constructs will be
adapted, which shall overcome the problems of ORF3b
production (Konno et al., 2020).

For two ORFs, 7b and 8, we exploited a paralleled production
strategy, i.e., both in bacteria and via cell-free synthesis. For those
challenging proteins, we were, in principle, able to obtain pure
samples from either expression system. However, for ORF7b, we
found a strict dependency on detergents for follow-up work from
both approaches. ORF8 showed significantly better solubility
when produced in WG extracts compared to bacteria. This
shows the necessity of parallel routes to take, in particular, for
the understudied, biochemically nontrivial ORFs that might
represent yet unexplored but highly specific targets to consider
in the treatment of COVID-19.

Downstream structural analysis of ORFs produced with CFPS
remains challenging but promising progress is being made in the
light of SCoV2. Some solution NMR spectra show the expected
number of signals with good resolution (e.g., ORF9b). As expected,
however, most proteins cannot be straightforwardly analyzed by
solution NMR in their current form, as they exhibit too large objects
after insertion intomicelles and/or by inherent oligomerization. Cell-
free synthesized proteins can be inserted into membranes through
reconstitution (Fogeron et al., 2015a; Fogeron et al., 2015b; Fogeron
et al., 2016; Jirasko et al., 2020a; Jirasko et al., 2020b). Reconstitution
will thus be the next step for many accessory proteins, but also forM
and E, which were well produced byWG-CFPS.We will also exploit
the straightforward deuteration in WG-CFPS (David et al., 2018;
Wang et al., 2019; Jirasko et al., 2020a) that circumvents proton
back-exchange, rendering denaturation and refolding steps obsolete
(Tonelli et al., 2011). Nevertheless, the herein presented protocols for
the production of non-nsps by WG-CFPS instantly enable their
employment in binding studies and screening campaigns and thus
provide a significant contribution to soon-to-come studies on
SCoV2 proteins beyond the classical and convenient drug targets.

Altogether and judged by the ultimate need of exploiting
recombinant SCoV2 proteins in vaccination and highly
paralleled screening campaigns, we optimized sample amount,
homogeneity, and long-term stability of samples. Our freely
accessible protocols and accompanying NMR spectra now
offer a great resource to be exploited for the unambiguous and
reproducible production of SCoV2 proteins for the intended
applications.
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GLOSSARY

aa Amino acid

BEST Band-selective excitation short-transient

BMRB Biomagnetic resonance databank

CFPS Cell-free protein synthesis

CoV Coronavirus

CTD C-terminal domain

DEDD Asp-Glu-Glu-Asp

DMS Dimethylsulfate

E Envelope protein

ED Ectodomain

fl Full-length

GB1 Protein G B1 domain

GD Globular domain

GF Gel filtration

GST Glutathione-S-transferase

His Hisx-tag

HSP Heat-shock protein

HSQC Heteronuclear single quantum coherence

IDP Intrinsically disordered protein

IDR Intrinsically disordered region

IEC Ion exchange chromatography

IMAC Immobilized metal ion affinity chromatography

IPRS IMAC-protease cleavage-reverse IMAC-SEC;

M Membrane protein

MERS Middle East Respiratory Syndrome

MHV Murine hepatitis virus

Mpro
Main protease

MTase Methyltransferase

N Nucleocapsid protein

NAB Nucleic acid–binding domain

nsp Nonstructural protein

NTD N-terminal domain

PLpro Papain-like protease

RdRP RNA-dependent RNA polymerase

S Spike protein

SARS Severe Acute Respiratory Syndrome

SEC Size-exclusion chromatography

SUD SARS unique domain

SUMO Small ubiquitin-related modifier

TEV Tobacco etch virus

TM Transmembrane

TROSY Transverse relaxation-optimized spectroscopy

Trx Thioredoxin

Ubl Ubiquitin-like domain

Ulp1 Ubiquitin-like specific protease 1

WG Wheat-germ.
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