The development of arable cultivation in the south-east of England and its relationship with vegetation cover – a honeymoon period for biodiversity?

Anne de Vareilles¹, Jessie Woodbridge², Ruth Pelling³, Ralph Fyfe⁴, David Smith⁴, Gill Campbell⁴, Wendy Smith⁵, Wendy Carruthers⁵, Stacey Adams⁶, Karine le Hégarat⁷ and Lucy Allot⁷

¹Historic England, London, UK
²School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
³Historic England, Portsmouth, UK
⁴Department of Classics, Ancient History & Archaeology, University of Birmingham, Birmingham, UK
⁵Self-employed, Castellau, Wales, UK
⁶York Archaeology, York, UK
⁷Archaeology South East, London, UK

Abstract

The onset of prehistoric farming brought unprecedented changes to landscapes and their biodiversity. Past biodiversity patterns are broadly understood for different parts of Europe, and demonstrate trajectories that have been linked to prehistoric and historic demographic transitions, and associated land-use practices. To our knowledge, this paper is the first attempt to directly link evidence of agricultural practice from the archaeological record to biodiversity patterns. Records of fossil pollen are used to estimate plant and landscape diversity patterns, and novel approaches are employed to analyse 1194 harmonised archaeobotanical samples (charred plant macrofossil remains) spanning the prehistoric and Roman periods, from an area in the south-east of England. We demonstrate changes in the use of crops and gathered edible plants and non-linear trends in cultivation practices. Whilst, overall, cereal production is characterised by ever larger and extensive regimes, different trajectories are evident for most of early prehistory, the Middle Iron Age and the Late Roman period. Comparisons with the Shannon diversity of fossil pollen records from the same region suggest a positive relationship between developing agricultural regimes and landscape scale biodiversity during the prehistoric period. The Roman period represents a tipping point in the relationship between expanding agriculture and pollen diversity, with declining pollen diversity evident in the records from the region.

Keywords

British prehistory, archaeobotany, biodiversity, palaeoecology, land use and land cover, Southeast England, late Holocene
1. Introduction

Biodiversity is inextricably linked to landscape type and stability. Climate change, human population densities and farming have been major forces that have had an impact on observable early Holocene levels of biodiversity (Redford and Richter, 1999; Giesecke et al., 2019). The latter two factors are interdependent as larger populations necessarily require increased food production, although it has been shown that population growth does not have a predictable, linear impact on vegetation and insect diversity (Woodbridge et al., 2021). How land was used for food production and the different time scales involved in species regeneration need to be considered when interpreting the effects of land use (Watts et al., 2020). Climate change is known to have influenced livelihoods and stages of climatic shifts in prehistory have been linked to population “booms” and “busts”, adaptations in farming practices, and changes in land cover (Woodbridge et al., 2014; Bevan et al., 2017). The Birks et al. (2016) conceptual model on trends in biodiversity during the Holocene in north-west Europe describes how, within fertile soils, woodland clearance for farming had a positive effect on biodiversity through the creation of new habitats. This beneficial effect lasted until a tipping point was reached, after which continued woodland clearance/land use had a detrimental impact upon biodiversity (see also Woodbridge et al., 2021: Fig.1). It remains unclear when the tipping point was reached, and whether this was within prehistory (e.g. with the development of spatially-extensive enclosures (cf. Løvschal 2020)) or as a consequence of the rapid onset of mechanised agriculture in the past 200 years (Ellis 2019).

From the onset of farming across Britain and Ireland in the British Isles at c.4000 BC, vegetation cover has gradually, though not continuously, become more open (Fyfe et al., 2013, 2015; Trondman et al., 2015). A similar pattern is evident in the diversity and evenness of fossil pollen (as a proxy for vegetation change) from the south-east of England, which show a continued increase in diversity between the Bronze Age and the Roman period (Woodbridge et al., 2021: Fig.4). Entomological remains from archaeological sites also indicate changes in habitats through time (Smith et al., 2019, 2020). The presence of synanthropic insect species in Britain increased during early prehistory and taxa associated with pastoral activities were common during the Bronze and Iron Ages. Changes in insect taxa are also associated with the Romanisation of Britain, such as new grain pests indicating denser human settlements and increased agricultural production (Smith et al., 2019, 2020).

In this paper we explore how arable production, evidenced from charred remains of crops, seeds and fruits, changed from its onset in the Neolithic to the Late Roman period and whether such changes coincide with landscape diversity trends inferred from fossil pollen records. The Saxon period is not included as its arable farming regimes have been subject to detailed investigations (McKerracher, 2018, 2019; McKerracher and Hamerow, 2022). Amalgamating data by archaeological period allows general trends in farming practices to be explored and compared to contemporary off-site fossil pollen records. With the aid of multivariate analyses and the ecological signatures of arable weeds, trends in farming practices are identified. Whilst these are common approaches in archaeobotany (De
Vareilles et al., 2021), we are not aware of direct comparisons with fossil pollen records, or studies that attempt to explain how land use drove biodiversity over long time scales. This research therefore represents a novel and important contribution to how we understand the relationship between land use, land cover and biodiversity. The research area covers the region of southern England south of the Thames, excluding the Southwest region other than a cluster of Neolithic sites in Wiltshire close to the border with Hampshire (Fig. 1). This area contains some of the earliest farming sites in Britain and all periods are well represented in the archaeobotanical record.

Whilst acknowledging that cause and effect between climate, farming practices and biodiversity are complex and convoluted, the integration of two archaeological and palaeoecological strands of evidence represents a fundamental and important step to demonstrate, for the first time, how a better understanding of land-use practices can contribute towards explaining changes in land cover and biodiversity.

2. The development of agriculture in England, with a focus on the south-east

The introduction of farming in Britain and Ireland instigated localised and small-scale deforestation of deciduous woodlands (Fyfe et al., 2013; Woodbridge et al., 2014). Land-cover changes correspond well to the summed probability distribution (SPD) of radiocarbon dates which suggest a demographic incline during the ENEOL (Bevan et al., 2017: Fig. 1; Shennan et al., 2013: Fig. 3). Indeed, the correlation between the arrival of farmers and the decline in deciduous woodland has been shown to be statistically significant (Racimo et al., 2020; see also Marquer et al., 2017). The restricted range of Neolithic arable weeds, predominantly annuals, point to permanent plots more than shifting cultivation (e.g.: Jones and Rowley-Conwy, 2007). Isotopic analyses on cereal grains from six sites across central England and Wales suggest both intensive (site in Derbyshire: Bogaard et al., 2013) and extensive (sites in Wales: Treasure et al., 2019) regimes were practised.

A dramatic change in agricultural practice across most of Britain and Ireland is evident from the start of the Middle Neolithic (c.3300 BC). Pollen records point to a regeneration of deciduous woodland (Treasure et al., 2019; Whitehouse et al., 2014) with an associated decline in vegetation diversity. Trends in the SPD of dates on cereal grains show a sharp decline across England, as opposed to the number of dates on hazelnut shells, suggesting that gathered nuts continued to be used whilst the cultivation of cereals was greatly reduced, and even stopped altogether in some regions, such as the south-east of England (Bevan et al., 2017; Stevens and Fuller, 2012, 2015). The rarity of cereals in later Neolithic assemblages has long been recognised (e.g.: Brown, 2007; Jones, 1980, Moffett et al., 1989; Robinson, 2000), even though animal domesticates, particularly cattle, continued to be an important dietary element (Serjeantson, 2011). A transition from mainly fixed, agricultural communities to a reduced population of mobile pastoralists is therefore likely (Rowley-Conwy et al., 2020; Worley et al., 2019). The shift in lifestyle and decline in human demographics may have been triggered by unstable, colder and wetter climatic conditions (Bevan et al., 2017; Stevens and Fuller, 2015; Whitehouse et al., 2014). Additionally, crop
The resurgence in arable agriculture at around 1600 BC has been termed the Middle Bronze Age agricultural revolution (Stevens and Fuller, 2012), and is associated with renewed and repeated migrations from the European continent (Patterson et al., 2022). Fossil pollen records indicate a sharp decrease in woodland cover (Woodbridge et al., 2014), which coincide with the development of field systems and drove-ways, particularly in southern and eastern Britain (Bradley et al., 2016; Yates, 2007). The latter are suggestive of an inclusive use of enclosures, perhaps on a seasonal rotation system, to benefit crops and farm animals, as well as disturbance-tolerant weeds. Indeed, the increase in grassland perennials during the LBA is indicative of the cultivation of fields that had previously been under pasture (Stevens and Fuller 2018: 31). Spelt is a hardier wheat than emmer and its adoption from the MBA has been argued to reflect a change to more extensive arable cultivation (Van der Veen and Palmer, 1997). The change in regime is thought to have been in response to a need for increased cereal production and the quantity and type of farm animals (Van der Veen, 2016: 302). The Bronze Age in southern Britain sees a rise in sheep at the expense of cattle (Hambleton, 2008: 56), animals which cannot provide the same level of manuring or be used to plough fields. It is likely that spelt was initially mixed with emmer, but that, as a result of demographic growth, changes in animal husbandry, its greater adaptability to poorer growing conditions and its higher yielding capacity, spelt became the dominant cereal (Lambrick with Robinson, 2009: 258; Van der Veen, 1995: 342; 2016: 301-302). The Bronze Age agricultural intensification is also evident from agricultural tools and features, such as granaries (Bradley et al., 2016). Wells and waterholes enabled farmers to settle away from main waterways in permanent settlements, thereby expanding the agricultural potential of landscapes (Yates, 2007: 34), and increasing habitat diversity further inland. Insects chart a change from mostly wooded landscapes during the Neolithic and EBA, to open ground associated with pasture and fodder production during the later Bronze Age and Iron Age (Smith et al., 2019, 2020).
Britain became more insular towards the end of the LBA, with limited evidence for foreign contacts from both archaeological and palaeogenomic evidence (Cunliffe, 2013; Patterson et al., 2022). A population decline (Bevan et al., 2017) would have led to reduced arable production and the abandonment of settlements/fields. In southern England, the MIA is a period of significant social change, with the emergence of multivallate hillforts encompassing a greater catchment area, indicating a level of social cohesion and organisation not witnessed in the preceding era and an increased political, or at least communal, control over land use (Jones 1985, 1996, 2008). Hillforts were abandoned by the LIA and a change in land use is once again visible with the scattering of settlements and new agricultural developments (Cunliffe, 1994, 2013).

The Iron Age weed spectrum in central and southern Britain became surprisingly uniform, perhaps indicating that by the LIA agricultural regimes became more influenced by rising market forces or a standardisation in crops and agricultural tools, than by local conditions and choices (Campbell, 2017; Carruthers and Hunter Dowse, 2019: 55). Frequent wild oat and brome grass are assumed to have been an accepted addition to the crop (Knörzer, 1967; Zech-Matterne et al., 2021), whilst ryegrass might have been an early fodder crop around Danebury (Campbell, 2000; see also Lodwick, 2017). Other common weeds include small grasses, vetches/tares, cleavers and clover types (clover, medicks, trefoil), and are suggestive of the use of grass fallow in a rotation regime (Carruthers and Hunter Dowse, 2019: 55). They are also indicative of a full annual agricultural regime, with crops sown in both autumn and spring. An increase in oat (Avena sp.) grains and awns is suggested to represent the LIA cultivation of this potential cereal (Campbell, 2000; Campbell and Straker, 2003). Oat and pea indicate spring sowing, a practice which may have led to growing spelt (in autumn) and spring barley as monocrops rather than as a mixed crop (Campbell and Hamilton, 2000).

Agriculture in southern England during the Roman period is characterised by large-scale, extensive regimes focused on growing spelt wheat (Allen and Lodwick, 2017; Campbell, 2017; Lodwick et al., 2020). Production was scaled-up to feed a growing population, a large army and even export grain to the continent (Allen and Lodwick, 2017; Orengo and Livarda, 2015; Van der Veen, 2016). The Roman period also saw an increase in horticulture and imports, making it sometimes difficult to separate locally grown from imported plant foods (cf. Van der Veen, 2014). Developments in ploughing technology, such as asymmetrical shares, first seen during the LIA, allowed the expansion of cultivation onto new, heavier soils (Jones, 1985, 2009). However, Roman technology is likely to have been restricted to the more Romanised settlements as it was not until the later Saxon and medieval periods that ‘Roman’ weeds became prolific (Allen et al., 2017; Stevens and Fuller, 2018: 33).

During the fall of the Roman Empire a reduction in arable production is traditionally associated with a population decline in Britain, though the dynamics between agricultural production and the changing political and social spheres remains elusive (Van der Veen, 2022). The starkest contrast between Romano-British and Anglo-Saxon cereal production is the almost complete replacement of spelt for free-threshing wheat (McKerracher, 2018; Van der Veen, 2022). The latter is usually considered a crop-contaminant in Roman samples,
though its cultivation may have begun as small-scale productions to produce more refined, white bread for the elite (Van der Veen, 2022: 324-326).

32. Materials and Methods

32.1 Archaeobotanical dataset

Neolithic to rural Romano-British archaeological sites with records of archaeobotanical plant macrofossils (cereal grains and chaff, pulses, fruits, and nuts and seeds of wild plants) were selected from the research area. Data collection was focused on records available online which are biased towards large-scale development projects, such as the Channel Tunnel Rail Link (Fig. 1). As early prehistoric samples tend to be sparser, greater focus was spent finding records from these periods. All plant macrofossils were registered by site in ArboDat 2016 English Version © (Kreuz and Schäfer, 2002), an Access database which associates each taxon with its plant part (e.g. seed, spikelet, awn), level of identification (genus, species, cf. species), preservation status (charred, waterlogged, mineralised), sample volume and flotation mesh size. Each site record has a unique ArboDat reference code (Table 1): these data will be made open access through the Archaeological Data Service. A dataset of 1718 archaeobotanical samples from 110 sites have been added to the ArboDat database.

To explore changes in land use from the Early Neolithic (ENEOL) to the Late Roman (LRO) period, the complete archaeobotanical dataset was filtered to remove:

- waterlogged plant macro-remains (carbonised, mineralised and silicified remains were retained. The latter two make up <5% of total counts and presence by period, and all species are also present in a carbonised state);
- taxa that are unlikely to represent edible plants or arable weeds, such as trees and shrubs with non-edible fruits, heather and ferns;
- unquantifiable plant parts, such as awns, glume fragments, culms, thorns and non-tuberous roots (edible roots of pignut (Conopodium majus) and roots of false oat grass (Arrhenatherum elatius) grass were retained though the former were found to be rare);
- indeterminate remains and taxa identified to cf. family (e.g. cf. Ranunculaceae) (Chenopodiaceae/Caryophyllaceae and Polygonaceae/Cyperaceae were retained);
- items not dated to the early, middle or late span of an archaeological period, either directly or by association. Dates and periods follow Historic England’s Period List, FISH terminology (Updated March 2022: http://www.heritage-standards.org.uk/chronology/).

The filtering process resulted in archaeobotanical data from 1194 samples (93 sites) used in this study (Fig.1, Table 1). In order to further harmonise the data, taxa identified to possible species (e.g. Apium cf. nodiflorum) were recorded as species. Identiﬁcations to possible genus were either retained at genus level or recorded to family level, depending on seed morphology and ecological grouping. For example, cf. Rubus was recorded as Rubus because all British species grow under similar conditions, are edible and are distinct from other
Rosaceae seeds, whereas cf. *Danthonia* was recorded as Poaceae since small grass seeds are difficult to separate taxonomically. The mode value of 10 litres was used as a conservative estimate for missing sample volumes (bulk soil samples from archaeological deposits). Only the estimated volumes for the Early Roman Period (ERO) made up >10% of the total volume (14.5%). Although crop densities per period may have been artificially increased, using the mode value of 10 Litres makes it unlikely that the actual densities differ substantially (Table 2).

The number of samples and the number of identified archaeobotanical remains varies considerably between contemporary sites as well as archaeological periods (Table 2). Inconsistencies also exist in the recording of contextual provenance, with many reports containing poorly defined or missing information. To mitigate against these biases when comparing archaeological periods, all data were amalgamated by period regardless of context and all analyses were produced using presence/absence data, except for Figure 4. Transforming count data to a binary format has enabled us to include estimated as well as unusually large counts and to avoid apparent differences between periods based on seed count, which can reflect the scale of cereal processing and the use/discard of processing waste (Fuller et al., 2014) relate primarily to changes in the management of cereal processing by-products. Presence/absence data also reduces potential biases towards particular arable weeds and their associated ecological conditions; taxa may be more numerous in assemblages either because they produce more seeds or because they are retained with crops until the last stages of processing and are therefore more likely to become burnt as settlement waste (Hillman, 1984).

Figure 4b uses whole counts of plant macroremains and sample volumes to illustrate changes in assemblage concentrations by period. Although changes in assemblage densities reflect changes in settlement patterns and the organisation of crop processing/use, they are also associated with the growth of populations and are here used as a crude measure for the scale of production. The density of assemblages is plotted against the trend in pollen diversity (Shannon index H), further explained in section 3.2. The relationships between trends were tested using Spearman’s Rank, which shows a positive correlation between pollen diversity and concentrations of crop remains (Spearman’s rho = 0.6 and $r^2 = 0.5$, $p<0.005$).

Figure 1: The location of off-site pollen cores (b, colours represent site groups) and on-site archaeobotanical samples (c) used in this study. Note that site numbers refer to Table 1. References to the pollen cores are listed in the supplementary information, Table 1.
<table>
<thead>
<tr>
<th>Site ID</th>
<th>Site name</th>
<th>ArboDat code</th>
<th>BNGeasting</th>
<th>BNGnorthing</th>
<th>Period</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A2 Activity Park</td>
<td>HE-AdV86</td>
<td>566133</td>
<td>170175</td>
<td>LBA, EIA, MIA</td>
<td>Le Hégarat, 2017</td>
</tr>
<tr>
<td>2</td>
<td>A2 Pepperhill-Cobham</td>
<td>HE-AdV58</td>
<td>555652</td>
<td>172311</td>
<td>EIA, MIA, LIA, ERO</td>
<td>Smith, 2012</td>
</tr>
<tr>
<td>3</td>
<td>A2/A282 Improvement Scheme</td>
<td>HE-AdV61</td>
<td>555652</td>
<td>172311</td>
<td>MBA, LBA, MIA, LIA, LRO</td>
<td>Smith, 2011</td>
</tr>
<tr>
<td>4</td>
<td>Aldermaston Wharf</td>
<td>HE-AdV132</td>
<td>460584</td>
<td>168092</td>
<td>LBA</td>
<td>Arthur and Partridge 1980</td>
</tr>
<tr>
<td>5</td>
<td>Beechbrook Wood</td>
<td>HE-AdV99</td>
<td>598500</td>
<td>145600</td>
<td>Beaker, LBA, MIA, ERO</td>
<td>Giorgi, 2006</td>
</tr>
<tr>
<td>6</td>
<td>Belle Tout 68-69</td>
<td>HE-AdV66</td>
<td>555700</td>
<td>95600</td>
<td>Beaker</td>
<td>Arthur, 1970</td>
</tr>
<tr>
<td>7</td>
<td>Bigberry 78-80</td>
<td>HE-AdV137</td>
<td>612000</td>
<td>157000</td>
<td>LIA</td>
<td>Jones, 1983</td>
</tr>
<tr>
<td>8</td>
<td>Black Patch</td>
<td>HE-AdV136</td>
<td>549500</td>
<td>108600</td>
<td>LBA</td>
<td>Hinton, 1982</td>
</tr>
<tr>
<td>9</td>
<td>Bower Road</td>
<td>HE-AdV107</td>
<td>605946</td>
<td>138812</td>
<td>ERO, MBA, LBA</td>
<td>Stevens, 2006</td>
</tr>
<tr>
<td>10</td>
<td>Broadstairs</td>
<td>HE-AdV76</td>
<td>637000</td>
<td>167700</td>
<td>ENEOL, MBA, LIA</td>
<td>Pelling et al., 2008</td>
</tr>
<tr>
<td>11</td>
<td>Chilbolton 86</td>
<td>HE-AdV135</td>
<td>439100</td>
<td>139700</td>
<td>Beaker</td>
<td>Green, 1990</td>
</tr>
<tr>
<td>12</td>
<td>Claypit Lane, Westhampnett</td>
<td>HE-AdV74</td>
<td>488400</td>
<td>106600</td>
<td>ENEOL, LNEOL, EBA, MBA, LBA</td>
<td>Hinton, 2006</td>
</tr>
<tr>
<td>13</td>
<td>Cobham Golf Course</td>
<td>HE-AdV129</td>
<td>568330</td>
<td>169550</td>
<td>MBA, LBA</td>
<td>Davies, 2006</td>
</tr>
<tr>
<td>16</td>
<td>Copse Farm</td>
<td>HE-AdV138</td>
<td>489460</td>
<td>105510</td>
<td>LIA</td>
<td>Hinton, 1985</td>
</tr>
<tr>
<td>17</td>
<td>Cottington Hill (cemetery)</td>
<td>HE-AdV54</td>
<td>633845</td>
<td>164106</td>
<td>LRO</td>
<td>Stevens, 2009</td>
</tr>
<tr>
<td>18</td>
<td>Cottington Rd, Thanet</td>
<td>HE-AdV51</td>
<td>634011</td>
<td>164328</td>
<td>MNEOL</td>
<td>Stevens, 2009</td>
</tr>
<tr>
<td>19</td>
<td>Crowder Terrace (Oram’s Arbour)</td>
<td>HE-AdV70</td>
<td>447595</td>
<td>129450</td>
<td>Beaker</td>
<td>Green, 2004</td>
</tr>
<tr>
<td>20</td>
<td>Cuxton</td>
<td>HE-AdV117</td>
<td>570743</td>
<td>166619</td>
<td>EIA</td>
<td>Davies, 2006</td>
</tr>
<tr>
<td>Site Description</td>
<td>HE-AdV/Number</td>
<td>Grid Reference 1</td>
<td>Grid Reference 2</td>
<td>Externally Managed</td>
<td>Authored By</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Damhead Creek Power Station</td>
<td>HE-AdV87</td>
<td>581140</td>
<td>172802</td>
<td>MBA, LIA, MRO, LRO</td>
<td>Hinton, 2017</td>
<td></td>
</tr>
<tr>
<td>Danebury 78 (hillfort)</td>
<td>HE-AdV77</td>
<td>432500</td>
<td>137500</td>
<td>EIA, MIA, LIA</td>
<td>Jones, 1984</td>
<td></td>
</tr>
<tr>
<td>Dartford Football Club</td>
<td>HE-AdV62</td>
<td>555140</td>
<td>173240</td>
<td>ERO</td>
<td>Pelling, 2011</td>
<td></td>
</tr>
<tr>
<td>Dorney</td>
<td>HE-RP27</td>
<td>492881.4</td>
<td>178047</td>
<td>ENEOL</td>
<td>Robinson, 2000</td>
<td></td>
</tr>
<tr>
<td>Dunkirt Barn, Danebury Environs Project</td>
<td>HE-AdV34</td>
<td>431400</td>
<td>141900</td>
<td>MRO, LRO</td>
<td>Campbell, 2008</td>
<td></td>
</tr>
<tr>
<td>East Kent Access Rd</td>
<td>HE-AdV113</td>
<td>633584</td>
<td>163813</td>
<td>ENEOL, LBA, MIA, LIA, ERO, MRO, LRO</td>
<td>Hunter, 2015</td>
<td></td>
</tr>
<tr>
<td>Easton Lane, 76-77</td>
<td>HE-AdV78</td>
<td>448000</td>
<td>129000</td>
<td>Beaker, MIA</td>
<td>Carruthers, 1989</td>
<td></td>
</tr>
<tr>
<td>Eden Park (Toddington Nurseries)</td>
<td>HE-AdV123</td>
<td>503520</td>
<td>103565</td>
<td>MBA</td>
<td>Pelling, 2012a</td>
<td></td>
</tr>
<tr>
<td>Ellington School</td>
<td>HE-RP2</td>
<td>637166.7</td>
<td>165332.5</td>
<td>ENEOL</td>
<td>Carruthers, 2021</td>
<td></td>
</tr>
<tr>
<td>Eyhorne Street Hollingbourne</td>
<td>HE-AdV128</td>
<td>583600</td>
<td>154302</td>
<td>LNEOL, Beaker</td>
<td>Davies, 2006</td>
<td></td>
</tr>
<tr>
<td>Field Farm</td>
<td>HE-RP4</td>
<td>463226</td>
<td>168612</td>
<td>EBA</td>
<td>Jones and Rowley-Conwy, 2007</td>
<td></td>
</tr>
<tr>
<td>Flint Farm, Danebury Environs Project</td>
<td>HE-AdV32</td>
<td>435000</td>
<td>140500</td>
<td>EIA</td>
<td>Campbell, 2008</td>
<td></td>
</tr>
<tr>
<td>Ford Airfield</td>
<td>HE-AdV111</td>
<td>499426</td>
<td>103067</td>
<td>LBA, LIA, ERO</td>
<td>Hinton, 2004</td>
<td></td>
</tr>
<tr>
<td>Fulberton, Danebury Environs Project</td>
<td>HE-AdV33</td>
<td>437457</td>
<td>140105</td>
<td>LRO</td>
<td>Campbell, 2008</td>
<td></td>
</tr>
<tr>
<td>Grateley South, Danebury Environs Project</td>
<td>HE-AdV31</td>
<td>427600</td>
<td>141000</td>
<td>LIA, ERO, LRO</td>
<td>Campbell, 2008</td>
<td></td>
</tr>
<tr>
<td>Green Park 95</td>
<td>HE-AdV104</td>
<td>469700</td>
<td>169600</td>
<td>LNEOL, MBA LBA</td>
<td>Campbell, 2004</td>
<td></td>
</tr>
<tr>
<td>Greentrees School</td>
<td>HE-RP12</td>
<td>415160</td>
<td>132620</td>
<td>Beaker, MNEOL</td>
<td>Powel and Dinwiddy, 2016</td>
<td></td>
</tr>
<tr>
<td>Guston Roundabout</td>
<td>HE-AdV114</td>
<td>633190</td>
<td>143450</td>
<td>LBA</td>
<td>Pelling, 2002a</td>
<td></td>
</tr>
<tr>
<td>Harlington ICSG and RMC</td>
<td>HE-AdV120</td>
<td>508267</td>
<td>177935</td>
<td>LNEOL, MNEOL, EBA, ERO, MBA, LRO, MRO, LRO</td>
<td>Stevens, 2015</td>
<td></td>
</tr>
<tr>
<td>Hartshill Copse</td>
<td>HE-AdV80</td>
<td>453100</td>
<td>168500</td>
<td>LBA, EIA</td>
<td>Carruthers, 2004</td>
<td></td>
</tr>
<tr>
<td>Hascombe Camp</td>
<td>HE-AdV139</td>
<td>500500</td>
<td>138600</td>
<td>LIA</td>
<td>Murphy, 1979</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site Name</td>
<td>Project Code</td>
<td>Grid Reference</td>
<td>ENEOL, MBA, LBA, MIA, LIA, ERO, LRO</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Heathrow T5</td>
<td>HE-AdV102</td>
<td>505028</td>
<td>175827</td>
<td>ENEOL, Beaker, MBA, LBA, MIA, LIA, MRO, LRO</td>
<td>Carruthers, 2010</td>
</tr>
<tr>
<td>43</td>
<td>Horton Quarry (Kingsmead)</td>
<td>HE-AdV124</td>
<td>501683.3</td>
<td>175294</td>
<td>ENEOL, LNEOL</td>
<td>Chaffey and Brook, 2012</td>
</tr>
<tr>
<td>44</td>
<td>Isle of Grain-Shorne Gas transmission pipeline excavation</td>
<td>HE-AdV88</td>
<td>558620</td>
<td>117550</td>
<td>LBA, LIA, ERO, LRO</td>
<td>Allott, 2017</td>
</tr>
<tr>
<td>45</td>
<td>Itford Hill 49-53</td>
<td>HE-AdV133</td>
<td>544700</td>
<td>105300</td>
<td>LBA</td>
<td>Helbaek, 1957</td>
</tr>
<tr>
<td>46</td>
<td>King’s Barrow Ridge</td>
<td>HE-RP17</td>
<td>413598</td>
<td>142168</td>
<td>MNEOL, LNEOL</td>
<td>Carruthers, 1990</td>
</tr>
<tr>
<td>47</td>
<td>King’s Gate, Amesbury</td>
<td>HE-RP13</td>
<td>416550</td>
<td>140070</td>
<td>MNEOL, LNEOL, Beaker</td>
<td>Wessex Archaeology, 2014</td>
</tr>
<tr>
<td>48</td>
<td>Kingsborough – prehistoric</td>
<td>HE-AdV100</td>
<td>597757</td>
<td>172093</td>
<td>ENEOL, LBA, MIA</td>
<td>Stevens, 2008</td>
</tr>
<tr>
<td>49</td>
<td>Little Stock Farm</td>
<td>HE-AdV116</td>
<td>606646</td>
<td>138531</td>
<td>EIA, LIA</td>
<td>Stevens, 2006</td>
</tr>
<tr>
<td>50</td>
<td>Manston Rd, Ramsgate</td>
<td>HE-AdV56</td>
<td>636175</td>
<td>165500</td>
<td>MNEOL, LNEOL</td>
<td>Hinton, 2009</td>
</tr>
<tr>
<td>51</td>
<td>Manston Rd1, Ramsgate</td>
<td>HE-AdV89</td>
<td>636169</td>
<td>165755</td>
<td>LBA</td>
<td>Allott, 2019</td>
</tr>
<tr>
<td>52</td>
<td>Monkton Road, Minster</td>
<td>HE-AdV119</td>
<td>630580</td>
<td>164625</td>
<td>EBA</td>
<td>Barclay et al., 2011</td>
</tr>
<tr>
<td>53</td>
<td>New Road (Oram’s Arbour)</td>
<td>HE-AdV71</td>
<td>447800</td>
<td>129900</td>
<td>MIA</td>
<td>Green, 2004</td>
</tr>
<tr>
<td>54</td>
<td>Newham</td>
<td>HE-RP1</td>
<td>542500</td>
<td>182000</td>
<td>ENEOL</td>
<td>Pelling, 2012b</td>
</tr>
<tr>
<td>55</td>
<td>Nonington</td>
<td>HE-AdV92</td>
<td>626892</td>
<td>151707</td>
<td>ERO</td>
<td>Carruthers, 2011</td>
</tr>
<tr>
<td>56</td>
<td>Northumberland Bottom</td>
<td>HE-AdV103</td>
<td>563000</td>
<td>171500</td>
<td>ERO, LRO</td>
<td>Davies, 2006</td>
</tr>
<tr>
<td>57</td>
<td>Old Dairy</td>
<td>HE-RP14</td>
<td>416200</td>
<td>142000</td>
<td>MNEOL</td>
<td>Wyles, 2017</td>
</tr>
<tr>
<td>58</td>
<td>Old Sarum Airfield</td>
<td>HE-RP15</td>
<td>415460</td>
<td>133087</td>
<td>MNEOL</td>
<td>Wessex Archaeology, 2015</td>
</tr>
<tr>
<td>59</td>
<td>Old Sarum Spur</td>
<td>HE-RP16</td>
<td>413319</td>
<td>133124</td>
<td>MNEOL</td>
<td>Stevens, 2005</td>
</tr>
<tr>
<td>60</td>
<td>Olympic Park</td>
<td>HE-AdV84</td>
<td>538000</td>
<td>184500</td>
<td>MIA, ERO</td>
<td>Grant et al., 2012</td>
</tr>
<tr>
<td>61</td>
<td>Peacehaven, Lewes</td>
<td>HE-AdV60</td>
<td>542030</td>
<td>101600</td>
<td>ENEOL, EBA, MBA, LBA, MIA</td>
<td>Le Hégarat, 2015; pers. comm.</td>
</tr>
<tr>
<td></td>
<td>Site Name</td>
<td>Area Code</td>
<td>Grid Reference</td>
<td>Project Code</td>
<td>Project Code</td>
<td>Authors</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>62</td>
<td>Princes Road, Dartford</td>
<td>HE-AdV75</td>
<td>554100</td>
<td>173200</td>
<td>MBA</td>
<td>Pelling, 2003</td>
</tr>
<tr>
<td>63</td>
<td>Prospect Park</td>
<td>HE-RP9</td>
<td>505990</td>
<td>178191</td>
<td>LNEOL</td>
<td>Hinton, 1996</td>
</tr>
<tr>
<td>64</td>
<td>Redbridge</td>
<td>HE-AdV24</td>
<td>546830</td>
<td>188810</td>
<td>EIA</td>
<td>Adams, 2018</td>
</tr>
<tr>
<td>65</td>
<td>Regents Park</td>
<td>HE-AdV64</td>
<td>439200</td>
<td>113600</td>
<td>EIA</td>
<td>Biddle, 1996</td>
</tr>
<tr>
<td>66</td>
<td>Robin Hood's Ball</td>
<td>HE-RP25</td>
<td>410300</td>
<td>146100</td>
<td>ENEOL</td>
<td>Carruthers, 1990</td>
</tr>
<tr>
<td>67</td>
<td>Rowbury Farm, Danebury Environ Project</td>
<td>HE-AdV36</td>
<td>435346</td>
<td>140066</td>
<td>EIA, MIA, ERO</td>
<td>Campbell, 2008</td>
</tr>
<tr>
<td>68</td>
<td>Runnymede 78</td>
<td>HE-AdV126</td>
<td>501800</td>
<td>171800</td>
<td>MNEOL, LBA</td>
<td>Greig, 1991</td>
</tr>
<tr>
<td>69</td>
<td>Saltwood Tunnel</td>
<td>HE-AdV115</td>
<td>615750</td>
<td>136900</td>
<td>ENEOL, EBA, MBA, LBA, MIA, LRO</td>
<td>Stevens, 2006</td>
</tr>
<tr>
<td>70</td>
<td>Sandway Road</td>
<td>HE-AdV97</td>
<td>587975</td>
<td>151642</td>
<td>MNEOL</td>
<td>Giorgi, 2006</td>
</tr>
<tr>
<td>71</td>
<td>Springhead Sanctuary</td>
<td>HE-AdV68</td>
<td>561800</td>
<td>172750</td>
<td>LIA, ERO, MRO</td>
<td>Stevens, 2011a</td>
</tr>
<tr>
<td>72</td>
<td>Springhead, 1994 Pipeline</td>
<td>HE-AdV67</td>
<td>561819</td>
<td>172339</td>
<td>ERO</td>
<td>Campbell, 1998</td>
</tr>
<tr>
<td>73</td>
<td>St Anne's Hill</td>
<td>HE-AdV85</td>
<td>560268</td>
<td>99800</td>
<td>LIA</td>
<td>Hinton, 2016</td>
</tr>
<tr>
<td>74</td>
<td>Staple Gardens (Oram's Arbour)</td>
<td>HE-AdV69</td>
<td>447745</td>
<td>129809</td>
<td>EIA, MIA</td>
<td>Green, 2004</td>
</tr>
<tr>
<td>75</td>
<td>Sussex St (Oram's Arbour)</td>
<td>HE-AdV72</td>
<td>447820</td>
<td>129870</td>
<td>MIA</td>
<td>Green, 2004</td>
</tr>
<tr>
<td>76</td>
<td>Thanet Area 16, Weatherlees & Ebbsfleet, Kent</td>
<td>HE-AdV65</td>
<td>490700</td>
<td>182300</td>
<td>ENEOL, EBA, LBA</td>
<td>Robinson, 2009</td>
</tr>
<tr>
<td>77</td>
<td>Thanet Hillfort</td>
<td>HE-AdV65</td>
<td>633330</td>
<td>163000</td>
<td>LBA, LIA, ERO</td>
<td>Stevens, 2009</td>
</tr>
<tr>
<td>78</td>
<td>Thanet Earth</td>
<td>HE-AdV91</td>
<td>628900</td>
<td>166700</td>
<td>ENEOL, LNEOL, Beaker, EBA, MBA, MIA</td>
<td>Carruthers, 2019</td>
</tr>
<tr>
<td>79</td>
<td>The Beehive</td>
<td>HE-RP22</td>
<td>414359</td>
<td>133338</td>
<td>MNEOL</td>
<td>Higgins, 2003</td>
</tr>
<tr>
<td>80</td>
<td>The Portway</td>
<td>HE-RP23</td>
<td>414278</td>
<td>133022</td>
<td>MNEOL</td>
<td>Stevens, 2005</td>
</tr>
<tr>
<td>81</td>
<td>Thrupton Villa, Danebury Environ Project</td>
<td>HE-AdV37</td>
<td>429818</td>
<td>146199</td>
<td>MRO</td>
<td>Summers et al., 2008</td>
</tr>
<tr>
<td>82</td>
<td>Thurnham Roman Villa</td>
<td>HE-AdV59</td>
<td>579954</td>
<td>157111</td>
<td>ERO, MRO, LRO</td>
<td>Smith and Davies, 2006</td>
</tr>
</tbody>
</table>
Table 1: Archaeological sites shown in Figure 1.

<table>
<thead>
<tr>
<th>N°</th>
<th>Sites</th>
<th>Samples</th>
<th>Total vol.</th>
<th>Density</th>
<th>N° crops</th>
<th>N° gathered edibles</th>
<th>N° possible weed taxa* / [seeds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Tilshead nursery school</td>
<td>HE-RP18</td>
<td>403510</td>
<td>148100</td>
<td>MNEOL</td>
<td>Amadio, 2010</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Tutt Hill</td>
<td>HE-AdV98</td>
<td>597520</td>
<td>146600</td>
<td>Beaker, MBA</td>
<td>Giorgi, 2006</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Weir Bank Stud Farm</td>
<td>HE-AdV118</td>
<td>490950</td>
<td>178900</td>
<td>MBA</td>
<td>Clapham, 1995</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>West Amesbury Farm</td>
<td>HE-RP21</td>
<td>414030</td>
<td>141390</td>
<td>MNEOL, LNEOL</td>
<td>Worley et al., 2019</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Westwood Cross</td>
<td>HE-AdV125</td>
<td>636300</td>
<td>167600</td>
<td>ENEO, MBA, LBA</td>
<td>Stevens, 2011b</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>White Horse Stone</td>
<td>HE-AdV127</td>
<td>575300</td>
<td>160410</td>
<td>ENEO, LNEOL, MBA</td>
<td>Giorgi, 2006</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Whitesheet Hill</td>
<td>HE-RP19</td>
<td>380300</td>
<td>134600</td>
<td>ENEOL</td>
<td>Jones and Rowley-Conwy, 2007</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Wickhams Field</td>
<td>HE-AdV131</td>
<td>467500</td>
<td>169700</td>
<td>EIA</td>
<td>Crockett, 1996</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Wickhurst Green</td>
<td>HE-AdV90</td>
<td>514800</td>
<td>130300</td>
<td>MIA, ERO</td>
<td>Vitolo, 2018</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Wilford Down</td>
<td>HE-RP26</td>
<td>410800</td>
<td>140800</td>
<td>ENEOL</td>
<td>Carruthers, 1990</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Winnall Down</td>
<td>HE-AdV79</td>
<td>449893</td>
<td>130370</td>
<td>LBA, EIA, MIA</td>
<td>Monk, 1985</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Summary data of the charred plant macrofossils by archaeological period. Counts are taxa present in ≥5% (<5%) of samples per period (for the EBA and the weeds of the Beaker period (n) is the number of taxa in only one sample); *Identifications to family and genus levels were only counted when more precise identifications were not present.

<table>
<thead>
<tr>
<th>Period</th>
<th>LRO</th>
<th>14</th>
<th>89</th>
<th>1271 [110]</th>
<th>71.3</th>
<th>6 (2)</th>
<th>1 (4)</th>
<th>33 [51] / [6875]</th>
</tr>
</thead>
</table>

32.1.2 Ecological analyses

Seeds of herbaceous wild plants are here analysed as arable weeds. Whilst some may represent species that were eaten or used (as leaves, roots, etc), their presence as charred seeds associated with cereal grains/chaff suggests they grew in arable fields. An autoecological approach, based on modern field observations of individual species’ tolerances to environmental conditions, was adopted for the ecological analysis of the data gathered for the study region (see De Vareilles et al., 2021 for a critique of different ecological approaches to the analysis of archaeobotanical material). The approach was first developed by Heinz Ellenberg, in which he measured plants’ preferences to environmental gradients in Central Europe, using a 9-point scale (Ellenberg, 1988; Ellenberg et al., 1991). Ellenberg numbers, or indicator values, were first defined for, and applied to, the flora of Central Europe, but are now also available for British plants (Bunce et al., 1999; Hill et al., 1999, 2000). Adjusted Ellenberg numbers have been used to record species’ preferences for soil nitrogen (2-3 = low, 4-5 = intermediate, 6-7 = high, 8-9 = very high fertility) and light intensity (6 = shade to well lit, 7 = mostly well lit, 8 = ample light) (Ellenberg et al., 1991).

Ellenberg numbers, or indicator values, were first defined for, and applied to, the flora of Central Europe, but are now also available for British plants (Bunce et al., 1999; Hill et al., 1999, 2000). Adjusted Ellenberg numbers have been used to record species’ preferences for soil nitrogen (2-3 = low, 4-5 = intermediate, 6-7 = high, 8-9 = very high fertility) and light intensity (6 = shade to well lit, 7 = mostly well lit, 8 = ample light) (Ellenberg et al., 1991). The ubiquity charts in Figure 5 are calculated using presence/absence data per sample, not the number of taxa or seeds. Relevant taxa within a given sample (i.e. all those with a score for a particular ecological/biological trait) are reduced to a single occurrence by score. The number of samples is that for which there is information on a given trait. The ubiquity scores by archaeological period are therefore a measure of the frequency of presence of a particular characteristic within an assemblage for...
an ecological/biological trait. The measured characteristics for each species are listed in SM Table 1.

3.1.3 Data analyses

Within this study, several approaches are used to explore the archaeobotanical dataset for patterns of changing land use. As the number of samples varies between archaeological periods, we tested the relationship between plant taxa richness and the number and volume of samples. Both correlations are moderate, with Spearman’s Rho centred around 0.6 and \(r^2 \) around 0.3 (\(p < 0.0005 \) in both cases). Similar results are found when the correlations are calculated by individual time periods, except for the Beaker and Early Bronze Age (EBA) where correlations are weak (\(Rho=0.3/0.2 \) respectively, \(p > 0.3 \)). The latter confirms that the distribution and recovery of Beaker and EBA archaeobotanical finds are unpredictable, making it even more important to sample sites from these periods intensively. Despite variations in site types and sampling strategies, taxa richness is comparable in other periods, validating comparisons made below.

The presence of crops and gathered edible plants per sample across the whole dataset was plotted using ubiquity of taxa per all archaeological periods, to illustrate the changing use of plant foods through time (Fig. 2). The same charts are used to present biological and ecological values. The internal structure of the dataset was explored using two multivariate ordination techniques: correspondence analysis (Smith, 2014) was initially attempted but, as distinct clusters were not evident (see supplementary information Fig. 1), hierarchical cluster analysis (HCA, Fig. 3) was used (Murtagh and Legendre, 2014; Ward, 1963). Both were performed in the ‘Vegan’ R package (Oksanen et al., 2020), after small samples and rare taxa had been removed, i.e. samples with fewer than 30 items (before the transformation to presence/absence data) and taxa occurring in fewer than 2% of samples (n=24). Excluding small samples affected the early prehistoric periods most strongly, removing two thirds to three quarters of the Middle/Late Neolithic, Beaker and EBA samples. HCA groups samples by similarity of composition and visual inspection of outputs and experimentation with different grouping levels suggested that six clusters adequately represent relationships of dissimilarity between different groups. This ordination technique is more commonly used in the field of palynology (e.g. Woodbridge et al., 2018), but has the advantage over Correspondence Analysis of allowing the taxonomic composition of each cluster to be explored as well as a taxon’s frequency based on the cluster group assigned to each sample.

Taxa that occurred in more than \(>50 \% \) of samples within a cluster were identified and are here described as ‘common’ (Table 3).

3.2 Fossil pollen data

The fossil pollen datasets used in this study include 106 datasets from the south-east of England (Woodbridge et al., 2021; in review) (Table SM1). Pollen records (Fyfe et al., 2013; Leydet et al., 2007-2020; Trondman et al., 2015) from individual coring sites have been taxonomically harmonised and summed into 200-year time windows (Woodbridge et al., in review). Shannon diversity indices derived from the pollen datasets, which reflect both taxa...
richness and evenness, are presented in Fig. 4. Quantified land cover was reconstructed from a subset of 98 sites suitable for the application of the REVEALS (Regional Estimates of Vegetation Abundance from Large Sites) approach (Fyfe et al., 2013; Githumbi et al., 2022; Marquer et al., 2014; Sugita, 2007). This approach uses information about the productivity of different plants, the dispersal behaviour (fall speed) of different pollen types, and the site type (lake or peatland/bog) and size to quantify land cover using pollen count data. To produce estimates of regional vegetation using the REVEALS model, pollen sites need to be grouped together. This grouping is based on site type, site size, proximity to other pollen sites, and landscape characteristics. The grouping resulted in five sub-regions in SE England, which are illustrated in Fig. 1b (see Woodbridge et al., in review, for further details). A pairwise Wilcox test for non-normally distributed data was used to test the differences between pollen diversity scores by archaeological period. All comparison periods were shown to be statistically significantly different with a p-value below 0.05. Sites have been grouped into sub-regions according to location and site characteristics (see Woodbridge et al., in review, for further details).

43. Results

Figure 2: The ubiquity of crops (a), fruits and nuts (b) by archaeological period. Only taxa present in >5% of samples in at least one period are represented. Pulses includes *Lens culinaris*, *Pisum sativum*, *Vicia faba* and large Fabaceae; cabbage/mustard includes *Brassica nigra/oleracea/rapa* and *Brassica/Sinapis*; berry includes *Rubus* spp.; *Prunus* includes *Prunus* spp., and acorn all *Quercus* spp.

34.2 The representation of crops, arable weeds and edible fruits and nuts (Fig. 2, Table 2)

Spelt wheat (*Triticum spelta*) and hulled barley (*Hordeum vulgare vulgare*) became the main crops in Britain during prehistory and the Roman period. The trends in ubiquity suggest an overall temporal increase in the range and presence of crops across sites (Fig. 2a). The trend mirrors that of the density of assemblages, showing that crop waste became more numerous and frequent. Exceptions to these trends are evident for the Middle to Late Neolithic (M/LNEOL), Beaker, Middle Iron Age (MIA) and the LRO. The drop in cereal remains in the M/LNEOL and Beaker periods is counteracted with a marked increase in two gathered resources: hazelnut and apples/pears (*Malus/Pyrus*). Compared to the Early Iron Age (EIA), the MIA sees a marked drop in the ubiquity of barley but an increase in that of emmer (*T. dicoccum*) and pulses. The decline in the ubiquity of crops is less marked for the LRO: a decline is visible for emmer, spelt and pulses though the score for free-threshing wheat (*T. aestivum/durum/turgidum*) increases.

The prevalence of wheat (*Triticum* sp.) and barley (*Hordeum vulgare* vulgare) over other crops is visible throughout the archaeological periods, but the relative proportion of barley to wheat is not constant. Barley is tolerant of poorer growing conditions, both edaphic and climatic, and was an important animal feed (Rhiel, 2019). Whether the changing relative representation of barley is associated with changes in climate or animal husbandry cannot
be fully explored here, although these two factors will certainly have influenced arable agriculture. Naked barley (*H. vulgare* var. *nudum*) is infrequent and only present in the early prehistoric samples, as is the pattern across the British Isles United Kingdom and Europe (Lister and Jones, 2013).

Naked/free-threshing cereals are less visible in the charred archaeobotanical record since the grains are less likely to adhere to any surrounding chaff and require less processing (Hillman, 1984). Free-threshing wheat (*T. aestivum/durum/turgidum*) is most frequent in the Neolithic (n=193, 3% of all wheats) and Roman (n=398, 0.04% of all wheats) samples, although the number of remains are low. Rare grains and chaff of tetraploid free-threshing wheat from Thanet Earth (site 78) were radiocarbon dated to 3940-3660 cal. BC (Carruthers, 2019). Conversely, other grains from Neolithic contexts have consistently returned medieval and later dates indicating that their presence is intrusive (Pelling et al., 2015). The richest assemblage was recorded from late Roman samples at Grateley (site 35) and consists of 121 free-threshing wheat grains but only three rachises, amongst thousands of hulled barley and spelt wheat (*T. spelta*) remains. The dataset corroborates current evidence suggesting that free-threshing wheat was not a common crop in Britain before the Anglo-Saxon period (McKerracher, 2018). Similarly, rye (*Secale cereale*) does not appear to have been regularly cultivated in Britain until after the Roman period as it occurs in less than five percent of samples per period (cf. Behre, 1992). Cultivated oat (*Avena sativa*) is also poorly represented in the dataset, its highest occurrence being in the Middle (MIA) and Late (UA) Iron Age (in 3% of samples). However, domesticated oats are difficult to identify without their chaff and are likely to be under-represented in Iron Age and Roman samples, where oat caryopses recorded as *Avena* sp. are present in 40% to 58% of samples per period.

The likelihood of intrusive or residue cereals, particularly in Middle to Late Neolithic (M/LNEOL), Beaker and EBA samples, which tend to contain very few remains, makes interpretations difficult. For example, in contrast to the ENEOL, when emmer wheat (*T. dicoccum*) is well represented, the dataset contains only one grain positively identified to species in the M/LNEOL. Emmer wheat was part of the original suite of domesticated cereals whilst European spelt (*T. spelta*) developed after farmers had settled in central Europe, where it became widespread during the Bronze Age (Blatter et al., 2004; Zohary et al., 2012: 49-50). The earliest British record of spelt is from Monkton Road (site 52) where glume bases, associated with fragments of Celtic bean (*Vicia faba*), were dated to the end of the EBA (1896-1690 cal BC, Martin et al. 2012). Figure 2 clearly shows how spelt became the predominant wheat in the region by the Early Iron Age (EIA).

Early prehistoric finds of cultivated pulses (see Fig. 21 for taxa included in this category) should also be viewed with caution as all directly dated finds from Neolithic contexts pertain to later periods (Pelling et al., 2015; Stevens and Fuller, 2012; Treasure and Church, 2017). Celtic beans first appear during the EBA, becoming more prolific along the south coast and spreading inland from the Middle Bronze Age (MBA) onwards (Treasure and Church 2017). Evidence for pea (*Pisum sativum*) is rarer. Its presence at the Thanet pipeline excavations (sites 17, 18 and 77), along with emmer, spelt, barley and Celtic bean provides evidence for one of the first more complex husbandry regimes in British prehistory (Stevens 2009). The
absence of pulses in the dataset from EIA samples is surprising, but reminiscent of a national
pattern: pulses and flax were not universally grown during the Iron Age, perhaps reflecting
regional cultivation of pulses in areas of poorer soils and the growth of fodder crops (de
Carle, 2014: 160; Treasure and Church, 2017: 120). The frequency of pulses increases during
the Roman period, when the only secure find of lentil (*Lens culinaris*) is recorded (site 71),
although potentially imported. The drop in the ubiquity of pulses during the LRO may reflect
a decline in trade rather than/as well as cultivation.

Flax (*Linum usitatissimum*) was grown for both its fibre and oily seeds and evidence for the
former is confirmed by Bronze Age waterlogged deposits of retting fibres (Carruthers and
Hunter Dowse, 2019: 42). As with cabbage/mustard and opium poppy seeds (*Papaver
somniferum*), the size and oily nature of flax seeds inhibits their survival to charring and
archaeological recovery. Nevertheless, large assemblages, such as the 509 seeds recovered
from MBA Weir Bank Stud Farm (site 85) confirm the importance of seed production from at
least the Bronze Age. Although poppy is only present in the dataset from the EBA, it has
been recovered from Neolithic contexts further north, though only in very small numbers
(Campbell and Robinson, 2007: 24, 33). Both poppy and cabbage/mustard plants were
initially/also crop weeds. This Mediterranean domesticate was cultivated during the
Linearbandkeramic (Salavert et al., 2020) though its first introduction into Britain may have
been as a crop contaminant. Cabbage/mustard (see Fig.1 for taxa included in this category)
seeds were most frequent in the Late Bronze Age (LBA) and EIA samples, with the highest
count being 142 seeds from EIA Hartshill Copse (site 40). While large deposits of charred
black mustard seeds (*Brassica nigra*) are not uncommon from Iron Age sites (e.g. Hartshill
Copse (site 40), Brickley Lane in Wiltshire (Pelling, 2002b) and Balsbury Camp in
Hampshire (De Moulin, 1996) and Down Farm (Murphy, 1977) in Hampshire), the dataset
suggests this practice that cultivating cabbage/mustard may have begun in the LBA in
southern England.

Fruits and nuts are assumed to be wild in the early prehistoric period, but may include
cultivated and imported varieties by the LIA and Roman period. The impact that the
production/consumption of wild resources had on the landscape and its biodiversity cannot
be measured through our dataset. Similarly, the effect of individual crop species is not
known. However, the evident growth in the representation and density of crop assemblages
from the MBA to the Roman period, and its association with increased areas of land under
cultivation, is reflected in changing vegetation cover and diversity (Fig.4). Of the seven
categories of fruits and nuts (Fig.2b), hazelnut (*Corylus avellana*) is the most frequent and
significantly outnumbers cereals in ubiquity in the M/LNEOL and Beaker periods, when crop
production is argued to have been marginal in the south-east of England (Stevens and Fuller,
2012). However, the same trend is not evident for the other gathered edible taxa,
suggesting that the proposed abandonment of cereal cultivation was not visibly replaced by
an enriched diet in gathered plant foods. The hawthorn (*Crataegus monogyna*) peaks in the
Beaker and EBA periods may be misleading due to the low number of samples; it makes a
good leaf fodder and could be associated with the increased focus on pastoralism (Rowley-
Conwy et al., 2020; Worley et al., 2019).
The possible arable weed assemblages will have been shaped by cultivation practices (intensity and scale), cereal processing stages and variations in the use of cereal processing by-products (Hillman, 1984; Stevens, 2014). Cultivation practices are explored in section 3.2 whilst Table 2 clearly demonstrates how taxa and seeds are most numerous in the LBA, ERO and Middle Roman period (MRO). The low representation of ENEOL weeds conforms to the small, low-density assemblages common for that period, and may relate to the practice of intensive cultivation that included careful weeding. The very low representation of weeds in the M/LNEOL, Beaker and EBA periods aligns with the poor representation of crops, though the low number of sites and processed volume of sediments for the Beaker and EBA make comparisons difficult. The MBA sees a significant increase in the representation of weeds and the overall density of samples, demonstrating a renewed emphasis on arable cultivation. This trend peaks in the LBA which, after the Early Roman period (ERO), has the highest range of taxa (n=93). The relatively low quantity of weed seeds, despite a high number of taxa (n=83) in the MIA, and the low overall density of samples, is unexpected. The singular results for the MIA are also evident in the other analyses and are discussed below. Similarly, the drop in the density of LRO samples, despite a comparable volume of samples and a greater number of taxa, is also reflected in the analyses below. Since all taxa are included and given equal weighting in the ecological analyses, the MIA and LRO signals cannot be explained by a poorer representation of arable weeds.

4.2.3 Multivariate Hierarchical Cluster Analyses

Hierarchical cluster analysis (HCA) separated the samples into six clusters with some clear temporal trends (Fig. 3). Clusters 1 and 5 are predominantly composed of early prehistoric samples, whilst cluster 6 contains LIA, ERO and MRO samples. Clusters 2, 3 and 4 suggest later prehistoric samples can be separated into three distinct groups. Cluster 5 is composed of almost half of the M/LNEOL samples and is made up entirely of hazelnut. Hazelnut is also common in cluster 1 where cereals, fruits and nuts also occur, but only four arable weed taxa (*Galium aparine*, *Fallopia convolvulus*, *Rumex* sp. and wild legumes). In contrast clusters 2, 3, 4 and 6 are influenced by cereal remains and each contain over 30 weed taxa. While the number of Beaker and EBA samples is very low and may not be representative, the inclusion of 20% of EBA samples in clusters 2 and 3 is suggestive of a renewed emphasis on cereal cultivation. M/LNEOL, Beaker and EBA samples are excluded from further ecological analyses below owing to the very low representation of possible arable weeds and the low correlation between the number and volume of samples, and taxa richness.

Figure 3: The Hierarchical Cluster Analysis classification of archaeobotanical samples into six clusters.
<table>
<thead>
<tr>
<th>Clusters (samples predominately from..)</th>
<th>Common Taxa [in >50% samples]</th>
<th>N° of other taxa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (early prehistory)</td>
<td>Hazelnut</td>
<td>15</td>
</tr>
<tr>
<td>2 (Iron Age)</td>
<td>Hulled barley grain, bromes, cleavers, indeterminate wild grasses</td>
<td>48</td>
</tr>
<tr>
<td>3 (Bronze Age with some Iron Age, mostly MIA, and Roman)</td>
<td>Emmer/spelt grain and chaff, emmer chaff, spelt chaff, indeterminate wild legumes</td>
<td>44</td>
</tr>
<tr>
<td>4 (Middle Bronze Age, Early to Middle Iron Age and Late Roman, with some Late Bronze Age and Late Iron Age to Middle Roman)</td>
<td>Emmer/spelt chaff, spelt chaff, indeterminate wheat grains, indeterminate wild grasses</td>
<td>62</td>
</tr>
<tr>
<td>5 (Middle/Late Neolithic)</td>
<td>Hazelnut</td>
<td>0</td>
</tr>
<tr>
<td>6 (Late Iron Age to Middle Roman)</td>
<td>Hulled barley grain, Emmer/spelt grain and chaff, spelt chaff, indeterminate cereal grain, indeterminate oat grain, ryegrass, corn gromwell, curly dock (Rumex crispus), indeterminate wild legumes, hazelnut</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 3: Results of the hierarchical cluster analysis by six clusters, showing taxa present in ≥50% of samples within each cluster (see text for latin binomials)

Clusters 3 and 4 include the majority of the MBA to LRO samples. These clusters have similar compositions with spelt and/or emmer chaff present in ≥50% of samples (Table 3SM1). The main difference between the clusters seems to be the presence of emmer, which is less frequent in cluster 4 where IA and Romano-British samples predominate. Both clusters also contain other crops and 32 other weed taxa each, including stinking chamomile (Anthemis cotula), but corncockle (Agrostemma githago) is only present in cluster 4; both species are anthrochores associated with the expansion of cultivation in the Romano-British period (Preston et al., 2004; Stevens and Fuller, 2018). Stinking chamomile is an indicator of clay soils and is associated with the introduction of more robust ploughing technology, such as asymmetrical shares, allowing the expansion of cultivation onto heavier soils (Jones, 1985, 2009). However, Roman technology is likely to have been restricted to the more Romanised settlements as it was not until the later Saxon and medieval periods that ‘Roman’ weeds became prolific (Allen et al., 2017; Stevens and Fuller, 2018: 33). Spelt and emmer grains and chaff are also present in cluster 2, but in fewer than 50% of samples.

Cluster 2, which includes EBA, LBA and IA samples, is characterised by hulled barley grain, cleavers (Galium aparine), brome (Bromus secalinus) and indeterminate wild grass seeds.
Barley is also dominant in cluster 6, but in association with oats and ryegrass (*Lolium perenne*), rather than brome, as well as corn gromwell (*Lithospermum arvense*) which is indicative of light sandy soils, contrasting with the stinking chamomile and hulled wheats in clusters 3 and 4. The changing weed flora between phases 2 and 6 could indicate a development in the cultivation of barley through the Iron Age and Roman periods (cf. Campbell and Straker, 2003). In addition to cereal remains, cluster 6 also contains fruits and nuts, reflecting the rise in horticulture and exotics during the Roman period (Fig. 2a) (cf. Van der Veen, 2014).

Table 2, which lists the number of weed taxa by archaeological period, further helps to understand the classification of samples into clusters. The low representation of ENEOL weeds conforms to the small, low-density assemblages common for that period, and may relate to the practice of intensive cultivation that included careful weeding. The very low representation of weeds in the M/LNEOL, Beaker and EBA periods aligns with the poor representation of crops, though the low number of sites and processed volume of sediments for the Beaker and EBA make comparisons difficult. The MBA sees a significant increase in the representation of weeds and the overall density of samples, demonstrating a renewed emphasis on arable cultivation. This trend peaks in the LBA which, after the Early Roman period, has the highest range of taxa (n=93). The relatively low quantity of weed seeds, despite a high number of taxa (n=83) in the MIA, and the low overall density of samples, is unexpected. The same is true for the LRO where there is a drop in the density of samples, despite a comparable volume and number of taxa to the other Roman periods.

4.3.13 Land cover, pollen diversity and scale of cultivation (Fig.4)

Figure 4: (a) quantified land cover, (each division in the REVEALS and pollen diversity represents a 200 year time step from 11,000 BC to present); (b) the density of crops and gathered fruits and nuts (items per litre of deposit) alongside the Shannon diversity of fossil pollen by archaeological period. Note that the chart for crops uses a logarithmic scale whereas the one for fruits and nuts does not as they occur in much lower densities. The densities/concentrations of crops (number of grains, pulses and chaff per litre of deposit) and edible fruits/nuts represent an approximate illustration of the scales of cultivation and gathering activities between periods. The overall relationship between densities of crop assemblages and pollen Shannon diversity is positive and statistically significant. An increase in cultivation is correlated to an increase in vegetation diversity. The bar chart suggests that this relationship is strongest during Early Prehistory. Although changes in assemblage densities reflect changes in settlement patterns and the organisation of crop processing/use, they are also associated with the growth of populations and are here used as a crude measure for the scale of production. The changing densities data through time compare well to the summed probability distribution of radiocarbon dates (SPD) for southern England, which are used as a proxy for fluctuations in population densities (Bevan et al., 2017: Fig. 2a). With the exception of the MIA, the density scores also compare well to the trends in the Shannon diversity indices of fossil pollen (Fig. 4b). The
plots provide a useful illustration of how cultivation may have contributed to changes in pollen diversity. Clearing land for cultivation and the type of agriculture practiced (e.g. intensive or extensive, household plots or larger community plots; crop rotation with or without animals) had an impact on the openness of landscapes and their vegetation diversity (De Vareilles et al., 2021; Fig.1; Racimo et al., 2020). The quantified vegetation cover derived from the pollen data using the REVEALS model (Fig.4a) clearly illustrates how the proportion of grassland and cereal land cover increased relative to forest cover when farming was introduced and as the scale of cultivation increased from the MBA to the MRO period.

Compared to the Mesolithic, the ENEOL is marked by a decrease in forest cover (Fig.4a). A decline in crop density and increase in the presence of gathered fruits/nuts after the introduction of agriculture is clearly evident (Fig.4b). Whilst this change may represent a shift in human behaviour and depositional activities, it coincides with a slight decline in pollen diversity and increase in forest cover (Fig.4a), suggesting it does reflect a change in landscape use and reduction in arable activity. Crop density then increases from the Beaker period, with a significant increase in the LIA and Roman period. The REVEALS model (Fig.4a) illustrates how the proportion of grassland and cereal land cover increased relative to forest cover when farming was introduced and as the scale of cultivation increased from the MBA to the MRO period. A decline in crop density is seen in the MIA, despite a continued increase in pollen diversity, and again, marginally, during the LRO period. The positive correlation between crop density and pollen diversity appears to change during the LIA when there is a decline in pollen diversity which continues into the LRO.

The trends in pollen diversity follow the direction of the crop densities up to the MIA. The MIA decrease in crop density is surprising given the general trend towards increasing arable production throughout the Iron Age and into the Roman period, as seen in previous studies (Lodwick, 2017; Stevens, 2014; Van der Veen and O’Connor, 1998). The MIA dip is also evident in other results within this study where this pattern compares more clearly with LBA results. As is explained in section 3.1, sample and site numbers cannot explain the decrease in crop density (Table 2). A population decline could explain the MIA offset, but SPDs indicate an earlier decline between the LBA and EIA, possibly owing to a time of climatic deterioration from a farming perspective (Bavan et al., 2017: S2). The flat shape of the radiocarbon calibration curve covering the Iron Age does make it difficult to assess the length and extent of the population downturn, making it possible that the MIA results reflect this period. Pollen diversity increases slightly in the MIA before reducing continually from the LIA onwards; the gradual reforestation of abandoned settlements and arable fields during a population downturn could result in increased vegetation diversity during the successional stages to woodland. Contrary to the early prehistoric trends, crop density and pollen diversity move in opposite directions during the Roman period, possibly even from the LIA.

Commented [DVA5]: Mocvd to discussion
43.4 Biological and ecological traits (Fig. 5)

Charred seeds that are not from edible plants, trees, ferns or heather are here considered as potential arable weeds and used to understand past field ecology (see section 2). Traits were attributed to all species and genus where their species have the same attributes. In the previous sections, we have demonstrated that pollen diversity is affected by the scale of cultivation, i.e. the amount of land under cultivation. In this section, we analyse the possible weed floras to gain a better understanding of agrarian practices. The number of samples by phase in the following figures varies as they only include samples for which data are available.

Figure 5: The ubiquity of measured characteristics by archaeological period, for five biological/ecological traits of the possible arable weeds by archaeological period. ‘Disturbance’ includes plants that flower for no more than 3 months, those that flower for 4 or more months are in the ‘high disturbance’ category. Beaker and EBA samples are not representative (see 2.1.3). The ubiquity is calculated on the number of samples for which data on a particular trait are available.

43.4.1 Life form (Fig. 5a)

Three life forms were detected: annuals, plants that can act as both annuals and hemicryptophyte perennials, and hemicryptophyte perennials (perennials that propagate from stoloniferous or rhizomatous roots and benefit from shallow ploughing/disturbance (Bogaard et al., 1999; Jones et al., 2000)). True perennials (plants that take more than a year to grow from seed and regenerate from the same root stock) are not present in any period indicating that even the ENEOL assemblages are from well-established fields rather than recently cleared vegetation (Bogaard, 2002; Rösch et al., 2002). It is also possible that newly established fields were dutifully weeded of perennials and annuals alike, such that the few ENEOL taxa, most of which are twining, essentially reflect weeding and harvesting techniques. The proportional difference between annuals and hemicryptophyte perennials is similar during the prehistoric and LRO phases, averaging at 25%. This may be an indication of disturbance as well as hand weeding; although shallow cultivation associated with the scratch plough (symmetrical ard that cuts a shallow furrow without inverting the soil) in early prehistory would have encouraged hemicryptophyte perennials, an intensive approach to weeding would have removed visible roots. The difference between life-forms is smallest during the ERO and MRO; perennial roots split and scattered by the plough may not have been removed, enabling them to regrow and seed. The LIA has the highest ubiquity score for annuals (97%) and one of the lowest for hemicryptophyte perennials (60%), suggesting a more careful approach to weeding than in the two preceding and following periods.

43.4.2 Soil texture (Fig. 5b)
While light, free-draining soil indicators are present in all periods, the plants of heavy soils are also ubiquitous, either pointing to the cultivation of clay-rich soils, perhaps out of necessity, or the inadvertent change in soil texture through prolonged shallow ploughing which can increase clay concentrations, even creating impermeable horizons (Jones, 1981: 111). Geoarchaeological analyses in the Thames Valley show how increased flooding events began in the Bronze Age, with continued land clearance resulting in extensive alluviation during the Iron Age (Lambrick with Robinson, 2009: 29-34). The difference between the ratio of indicators of heavy to light and heavy soils starts to decline in the LIA and is reversed in the LRO. This trend corroborates the finds of stinking chamomile from the LIA, commonly used to indicate the expansion of cultivation onto heavier soils enabled by deeper ploughing technology (Allen et al., 2017; Lodwick, 2018: 809).

43.4.53 Light intensity (Fig.5ec)

The increased proportion of weeds favouring ample sunlight coincides with an increasingly deforested landscape evident from fossil pollen (Fig.4a). These arable weeds may indicate that the increased scale of cultivation involved larger arable fields that, by the nature of their size, were less shaded by surrounding vegetation. In contrast, the arable plots of the ENEOL are noticeably more enclosed.

43.4.24 Soil nitrogen (Fig.5bd)

The ENEOL is the only period where weeds favouring very high fertility are the most ubiquitous, which concurs with the intensively managed (i.e. manured) fields deduced from cereal grain isotopic analyses from Lismore Fields, Derbyshire (Bogaard et al., 2013). Indicators of high fertility remain high in all phases, but weeds tolerant of low fertility gradually increase up to the MRO period. The trends suggest that through time soil fertility was not maintained in all arable fields, but that by the LRO though a more intensive approach to manuring may have been adopted during the LRO period. These results corroborate isotopic analyses performed on charred cereal grains from Stanwick (Northamptonshire), that showed a decline in nitrogen isotopes indicative of enriched soils from the MBA to the Roman period (Lodwick et al., 2020). The decline in levels of manuring and associated extensive cultivation practices appears to have begun in the Iron Age and different cereals may have been manured to different extents. Another, not incompatible, explanation for the decline in the ratio of nitrophile to nitrophobe weeds during late prehistory could be an increase in autumn sowing (Stevens, 2011c). Experiments at Rothampsted (Hertfordshire) have shown that soil nitrogen levels are highest in the spring and tend to decrease rapidly if not maintained, suggesting that a gradual change in fertility indicators may not be due to soil exhaustion (ibid.), although little is known of the cumulative effects of different forms of soil management (e.g. crop rotation, green manure, fallow periods, animal fresh/dried manure).
Flowering onset and duration (Fig. 5c)

Autumn and spring sowing appear to have been practiced in all phases. However, there may be a bias towards spring sowing indicators in enriched soils, where spring weeds would be encouraged (Jones et al., 2000), an effect which could have been particularly strong in the ENEOL. There may also be a bias towards spring sowing indicators generated by the possible uneven representation of cereal processing products and by-products in the dataset. Small seeds, which are more heavily represented in crop-processing by-products (threshing and sieving waste), tend to be from nitrophile spring-germinating weeds (Bogaard et al., 2005; Jones, 1992). Caution is therefore needed in interpreting season of sowing, particularly as crop processing waste is better represented through time (see section 4.3.3.2, Table 3).

Taxa tolerant of disturbance, through tilling, weeding, ploughing and/or grazing animals, increase through time up to the LRO period. This signal is reflected in the increased proportion of hemicyryptophyte perennials (Fig. 5a, section 3.4.1). High levels of disturbance are usually associated with small-scale, intensive cultivation rather than the large-scale, extensive regimes described for the Roman period (Allen and Lodwick, 2017). However, Figures 5a&c may be depicting changes in agricultural regimes and the development and increased adoption of agricultural tools and changes to the amount of labour assigned to collecting weeds. Deeper ploughing in the LIA to Roman periods, enabled by iron ploughs and animal traction, would have favoured weeds tolerant of more intrusive disturbance. In early prehistoric garden-type plots neither disturbance tolerant nor intolerant weeds would have been at a competitive advantage from effective weeding. Although ubiquity scores are reduced in the LRO, the ratio between disturbance and high disturbance indicators remains comparable throughout the Roman period.

Discussion

Using presence/absence plant macroremains data and amalgamating all contexts per period into a single assemblage has enabled general temporal trends in land-use to be explored without biases incurred from context and settlement types, and habitation densities. Similarly, calculating the density of crop assemblages by archaeological period provides an indication of changes in the scale of production, and therefore area of land under cultivation as well as land used for all the infrastructure required to process, store and even trade crops. The changing densities data through time compare well to the summed probability distribution of radiocarbon dates (SPD) for southern England, which are used as a proxy for fluctuations in population densities (Bevan et al., 2017: Fig. 2a). The statistically significant positive correlation between the density of crop assemblages and pollen diversity demonstrates that cultivation was one of the major practices to affect land cover in prehistory and the Roman period. By comparing results from the plant macroremain dataset to the off-site fossil pollen records, the relationship between arable agriculture and the natural vegetation can be explored. Previous research has demonstrated that increases in population did not, on their own, explain changes in vegetation diversity; how land was used is a crucial factor (Woodbridge et al., 2021). What follows is a discussion of arable practices and
vegetation diversity by archaeological period, exploring how developments in the scale and method of cultivation affected land-cover.

54.1 Early prehistory

The introduction of farming in the British Isles instigated localised and small-scale deforestation of deciduous woodlands (Fyfe et al., 2013; Woodbridge et al., 2014). Land-cover changes correspond well to the summed probability distribution (SPD) of radiocarbon dates which suggest a demographic incline during the ENEOL (Bevan et al., 2017: Fig. 1; Shennan et al., 2013: Fig.3). Indeed, the correlation between the arrival of farmers and the decline in deciduous woodland has been shown to be statistically significant (Racimo et al., 2020; see also Marquer et al., 2017). The ENEOL dataset has no clear evidence for the cultivation of newly cleared fields or the repeated use of woodland areas left to regenerate between cycles of cultivation (i.e. shifting cultivation). It is possible that samples from the first generations of farmers are not represented. The results support the arguments for a fixed farming regime, including the intensive cultivation (high energy input per unit of land) of relatively small fields (cf. Bogaard et al., 2013; Jones and Bogaard, 2017). Nevertheless, these interpretations are based on a restricted range of arable weeds. This is clearly demonstrated by the HCA which grouped ENEOL samples into cluster 1 where only four weed taxa are present, all of which are very difficult to remove, grow in most conditions, produce thousands of small seeds per plants and/or twine around the straw. Across Britain, a variety of fix-plot regimes may have existed, as, contrary to results from Lismore Fields, isotopic analyse on ENEOL cereal grains from five other sites do not indicate intensive cultivation (Bogaard et al., 2012; Treasure et al., 2019). These agricultural practices created mosaic-type landscapes of more opened and closed vegetation, promoting small-scale niches and driving pollen-diversity ecological novelty (cf. Woodbridge et al., in review). Pollen diversity and grassland vegetation increases after the end of the Mesolithic, suggesting that the onset of farming can therefore be seen to have had a positive effect on landscape biodiversity, reflected in pollen diversity, initiating marking the onset of a honeymoon period between agricultural land use and biodiversity. A dramatic change in agricultural practises across most of the British Isles is evident from the start of the Middle Neolithic (c.3300 BC). Pollen records point to a regeneration of deciduous woodland (Treasure et al., 2019; Whitehouse et al., 2014) with an associated decline in vegetation diversity (Fig.4). Trends in the SPD of dates on cereal grains show a sharp decline across England, as opposed to the number of dates on hazelnut shells, suggesting that gathered nuts continued to be used whilst the cultivation of cereals was greatly reduced, and even stopped altogether in some regions, such as the south-east of England (Bevan et al., 2017; Stevens and Fuller, 2012, 2015). The proposed abandonment of cereal cultivation in the south-east of England during the M/LNEOL is supported by the dataset. This hypothesis is corroborated by the dataset in which the ubiquity and number of hazelnuts clearly predominates, whilst the interpretation of cereals and pulses is further complicated by the likelihood of intrusive materials (Pelling et al., 2015). The rarity of cereals in later Neolithic assemblages has long been recognised (e.g. Brown, 2007; Jones,
cattle, continued to be an important dietary element (Serjeantson, 2011). A transition from
mainly fixed, agricultural communities to a reduced population of mobile pastoralists is
therefore likely. Nevertheless, further work should explain the near absence of edible wild
plants other than hazelnuts, large deposits of which are likely to be associated with
particular behavioural activities. The abandonment of arable plots, promoting woodland
regeneration, presumably resulting from the neglect of arable plots, is associated with a
decline in pollen and habitat diversity (Fig.4). Cattle are better adapted to forested
landscapes than caprines, which may explain the adoption of a cattle-based mobile
pastoralist lifestyle (Serjeantson, 2011; Worley et al, 2019). The shift in lifestyle and decline
in human demographics may have been triggered by unstable, colder and wetter climatic
conditions (Bevan et al., 2017; Stevens and Fuller, 2015; Whitehouse et al., 2014).
Additionally, crop pests and diseases could have contributed towards agricultural collapse
(Antolin and Schäfer, 2020; Dark and Gent, 2001). A deterioration in soil quality has also
been suggested, as a focus on a narrow range of cultigens by an increasing population may
have led to soil depletion and harvest failures (Collidge et al., 2019; Shennan et al., 2013).
However, it is unlikely that good quality soils were not available at the limited number of
Neolithic sites known in the south-east of England, particularly if small-scale intensive
agriculture was practiced.

The Beaker period is marked by a new influx of people of central European ancestry by
around 2400 BC (Olalde et al., 2018). Changes in material culture, such as the introduction
of the Bell Beaker cup, and settlement patterns also attest to a shift in lifestyles (Bradley,
2019: chapter 4). Little is known of Beaker subsistence strategies, primarily due to the lack
of archaeobotanical and zooarchaeological evidence, although a study of the isotopic
signatures in human bone suggests a diet high in terrestrial animal protein with steadfast
consistency across Britain (Parker Pearson et al., 2016). The latter study also evidenced a
high degree of mobility within Britain, supporting the idea that subsistence strategies
continued to be based upon predominantly pastoral lifestyles (Bevan et al., 2017).
Archaeobotanical results for the Beaker period are comparable to those for the preceding
M/LNEOL, though the very low number of samples may not be fully representative. Even
fewer samples are attributed to the EBA and yet the number (and ubiquity) of wheat and
barley remains greatly increased. The classification of EBA samples by the HCA across
clusters 1, 2 and 3 suggests a renewed focus on cereal cultivation (Fig.3), as does the
regained increase in pollen diversity. The resurgence of cultivation is likely associated with
the renewed emphasis on monumentality (e.g. the expansion of Stone Henge), enabled by
increased production and reinforcing the dependable and cooperative communities that
underpin agricultural economies.

The Middle Bronze Age 'agricultural revolution'

The resurgence in arable agriculture at around 1600 BC has been termed the Middle Bronze
Age agricultural revolution (Stevens and Fuller, 2012). It is clearly demonstrated by the
results presented here and is associated with renewed and repeated migrations from the
European continent (Patterson et al., 2022). The intensification in land use is evident from pollen records, which show a sharp decrease in woodland cover during the later Bronze Age and an increase in vegetation types indicated by a further decrease in woodland cover and an increase in pollen diversity (Fig. 4). Results from the analyses mark the MBA as the start in a progression towards larger fields of less intensively grown cereals (less weeding and manuring) in an increasingly open landscape. Manuring may have occurred more naturally, through a rotational system. As fields enlarged and the removal of weeds became less efficient, disturbance-tolerant weeds become more evident in the records. The extent to which an enlarged weed flora contributed to the pollen records cannot be ascertained, although greater floral diversity would have supported a greater range of insects. The Middle and Late BA see the greatest rise in pollen diversity and may represent the periods of greatest harmony between agrarian practices and biodiversity were favoured. The development of field systems and drove-ways during the BA, particularly in southern and eastern Britain (Bradley et al., 2016; Yates, 2007), are suggestive of an inclusive use of enclosures, perhaps on a seasonal rotation system, to benefit crops and farm animals, as well as disturbance-tolerant weeds. Indeed, the increase in grassland perennials during the LBA is indicative of the cultivation of fields that had previously been under pasture (Stevens and Fuller 2018: 31). Spelt is a hardier wheat than emmer and its adoption from the MBA has been argued to reflect a change to more extensive arable cultivation (Van der Veen and Palmer, 1997). The change in regime is thought to have been in response to a need for increased cereal production and the quantity and type of farm animals (Van der Veen, 2016: 302). The Bronze Age in southern Britain sees a rise in sheep at the expense of cattle (Hambleton, 2008: 56), animals which cannot provide the same level of manuring or be used to plough fields. It is likely that spelt was initially mixed with emmer, but that, as a result of demographic growth, changes in animal husbandry, its greater adaptability to poorer growing conditions and its higher yielding capacity, spelt became the dominant cereal (Lambrick with Robinson, 2009: 258; Van der Veen, 1995: 342; 2016: 301-302). The Bronze Age agricultural intensification is also evident from agricultural tools and features, such as granaries, that became increasingly common during the later BA (Bradley et al., 2016). Fixed wells and waterholes enabled farmers to settle away from main waterways in permanent settlements, thereby expanding the agricultural potential of landscapes (Yates, 2007: 34), and increasing habitat diversity further inland. Insects chart a change from mostly wooded landscapes during the Neolithic and EBA, to open ground associated with pasture and fodder production during the later Bronze Age and Iron Age (Smith et al., 2019, 2020).

§4.3 Late prehistory and the Roman period

Britain became more insular towards the end of the LBA, with limited evidence for foreign contacts from both archaeological and palaeogenomic evidence (Cunliffe, 2013; Patterson et al., 2022). A population decline (Bevan et al., 2017) would have led to reduced arable production and the abandonment of settlements/fields, although there is no evidence for a reduction in habitat diversity. The MIA is a period of significant social change, with the
emergence of multivallate hillforts encompassing a greater catchment area, indicating a
level of social cohesion and organisation not witnessed in the preceding era and an
increased political, or at least communal, control over land use in southern Britain (Jones
1985, 1996, 2008). Hillforts were abandoned by the LIA and a change in land use is once
again visible with the scattering of settlements and new agricultural developments (Cunliffe,
1994, 2013). The suggested population decline towards the end of the BA (Bevan et al,
2017) is not corroborated by the datasets; there is no evidence for a reduction in the scale
of production or habitat diversity. The rate of change between periods appears to slow
down, perhaps indicating stability in the scale of production until the MIA. The flat shape of
the radiocarbon calibration curve covering the Iron Age does make it difficult to assess the
length and extent of the population downturn, making it possible that the MIA results
reflect this period. The significant decrease in the density of MIA archaeobotanical
assemblages is surprising and cannot be explained by lower sample or site numbers (Table
2). It either suggests a change in the depositional activities of crop processing waste (cereal
processing and storage may have predominantly occurred in hillforts, but the dataset only
includes one MIA hillfort (Danebury: site 22) as most Iron Age hillfort samples are only dated
to the Iron Age generally), or a reduction in the production of cereals. Either way, the results
suggest that the intensified cereal production indicated for the LIA (Van der Veen and
O’Connor, 2008) was not the culmination of a progressive, linear trajectory. Pollen diversity
increases slightly in the MIA before reducing continually from the LIA onwards; the gradual
reforestation of abandoned settlements and arable fields during a population downturn
could result in increased vegetation diversity during the successional stages to
woodland. Pollen diversity reaches its maximum during the MIA (Fig. 4), suggesting that
complex, resilient and varied ecosystems were maintained throughout the earlier Iron Age.

The Late Iron Age sees a substantial increase in the scale of production and continued
extensive cultivation practices (Figures 4 & 5). The probable cultivation of oat is also evident
in our results, as is the surge in wild legumes, brome grass and ryegrass, all common taxa in
cluster 6 of the HCA. The Iron Age weed spectrum in central and southern Britain became
surprisingly uniform, perhaps indicating that by the LIA agricultural regimes became more
influenced by rising market forces or a standardisation in crops and agricultural tools, than
by local conditions and choices (Carruthers and Hunter Dowse, 2019: 55). The change in
agrarian practices, whereby production became more defined by market forces, may be
reflected in the dip in pollen diversity, which is then maintained into the ERO; results
suggest that increased and standardised arable production removed some of the diversity
present in the prehistoric mosaic of habitats. Wild oat and brome grass became so common
that they are often assumed to have been an accepted addition to the crop (Knörzer, 1967;
Zech-Matterne et al., 2023), whilst ryegrass might have been an early fodder crop around
Danebury (Campbell, 2000). Other common weeds include small grasses, vetches/tares,
cleavers and clover types (clover, medicks, trefoil), and are suggestive of the use of grass
fallow in a rotation regime (Carruthers and Hunter Dowse, 2019: 55). They are also
indicative of a full annual agricultural regime, with crops sown in both autumn and spring.
An increase in oat (Avena sp.) grains and awns is suggested to represent the LIA cultivation
of this potential cereal (Campbell, 2000; Campbell and Straker, 2003). Oat and pea indicate
spring sowing, a practice which may have led to growing spelt (in autumn) and spring barley as monocrops rather than as a mixed crop or maslin (Campbell and Hamilton, 2000).

Table 2 and Figure 4 show a significant increase in the density of Roman samples, suggesting another surge in arable production. The results corroborate evidence for the expansion of cultivation onto new soils and large-scale, extensive regimes described for the Roman period (Allen and Lodwick, 2017; Campbell, 2017). This appears to precipitate a decline in pollen diversity, suggestive of a reduction in the variation of landscape types, at least in the research area. Throughout prehistory pollen diversity increased with the expansion of agriculture, as forests were cleared for mixed agricultural regimes that encouraged floral and entomological biodiversity (cf. Birks et al., 2016). Results suggest that the tipping point between the expansion of open habitats and the growth of biodiversity may have been reached by the Roman period. We suggest that the increased scale and extent of arable cultivation during the LIA and Roman period marks the point in British farming history, when, for the first time, the expansion of cultivation expanded at the expense of had a negative effect on vegetation diversity. The LRO period sees a reduction in arable production associated with the fall of the Roman Empire (Halsall, 2008). The slight increases in the ratio between annuals and perennials and the drop in low fertility indicators in the LRO could suggest a reversal to smaller scale, more intensive cultivation, although this is not matched by a contemporary recovery in levels of pollen diversity (Woodbridge et al., in review). Broad ecological characteristics established during earlier farming regimes may have persisted for longer.

65. Conclusion
The use of large-scale archaeobotanical data, over both time and space, and a novel use of HCA, has revealed new details in the development of arable production during the first 4500 years of agriculture in the south-east of England. Despite differences in behavioural, depositional and taphonomical trajectories between sites and periods, long-term trends in the use of edible plants and cultivation practices are evident. Previously described phenomena, such as the fixed, ‘garden’-type cultivation during the ENEOL, the dramatic change in subsistence strategies during the later Neolithic and the significant increase in arable production during the LIA and Roman period are corroborated. Other results indicate that different strategies for collecting and interpreting archaeobotanical remains from the Beaker, EBA and MIA may be required to adequately interpret shifts in subsistence and economic practices. Sites from the two earlier periods require more comprehensive sampling, whilst MIA evidence for cultivation may be concentrated in specific site types. Closer dating of archaeobotanical assemblages is needed to maximise information about temporal development, particularly during the Iron Age. Additionally, the possible Iron Age cultivation of oat needs to be explored through new analytical procedures, such as geometric morphometrics, to overcome the lack of defining chaff (Bonhomme et al., 2017; Wallace et al., 2018).
Hierarchical cluster analysis separated the samples not only by the frequency of grains and chaff but also according to the association of different taxa. Neolithic and Beaker samples cluster into two groups: one with only hazelnuts and the other where cereals, but very few weeds, are also present. EBA samples straddle across three clusters, showing similarities with the preceding periods in cluster 1 but also a new, barley-focused assemblage (see also Fig. 2a). Clusters 3 and 4 contain assemblages where glume wheat chaff is present in most samples and seem to mark the shift from emmer to spelt cultivation during the Bronze Age. They also demonstrate that crop processing waste is better represented through time. By contrast, clusters 2 and 6 are dominated by barley. The difference between them seems to lie in the presence of brome in cluster 2 and oats and ryegrass in cluster 6, which could indicate a development in the cultivation of barley between the Iron Age and Roman periods.

Increased densities of archaeobotanical remains from the Bronze Age to the Roman period are, to some extent, shaped by depositional behaviours related to growing populations, but they also reflect an emphasis on cereal production for a market economy. The surge in the number and range of arable weeds through time reflect a gradual extensification in cultivation and an increase in floral diversity within arable fields. Comparisons with the Shannon diversity of fossil pollen has revealed that arable agriculture influenced changes in landscape types and indicate that early arable farming was not detrimental to biodiversity. Conversely, the onset of farming, increases in crop production and diverse forms of land use practices (varied cropping systems) resulted in elevated levels of biodiversity, reflected by trends in pollen diversity. This honeymoon period for farming and biodiversity was interrupted in the Roman period, when an expanding agricultural economy grew at the expense of biodiversity.

Acknowledgements

This research was carried out as part of the Biodiversity and Land-Use Change in the British Isles project funded by the Leverhulme Trust (grant reference RPG-2018-357). We would like to extend our sincere thanks to Jessica Viney for the vital help in uploading data.
References

Barclay A, Stevens C and Wyles S (2011) An Early Bronze Age Field System from Monkton Road, Minster, Thanet, and an early date for the cultivation of spelt. PAST 69: 2–3.

https://archaeologydataservice.ac.uk/archives/view/ctrl/reference.cfm

Stevens C (2011b) *An early Neolithic charred cereal deposit from Westwood Cross, Thanet*. Canterbury Archaeology Annual Report, 2009-2010, pp.44.

Stevens C (2011c) Crop-husbandry as seen from the charred botanical samples from Yarnton. In: Hey G, Booth P and Timby J (eds) *Yarnton. Iron Age and Romano-British settlement and...*

Stevens CJ and Fuller DQ (2015) Alternative strategies to agriculture: the evidence for climatic shocks and cereal declines during the British Neolithic and Bronze Age (a reply to Bishop). World Archaeology 47: 856-875.

Trondman AK, Gaillard MJ, Sugita S, et al. (2015) Pollen-based land-cover reconstructions for the study of past vegetation-climate interactions in NW Europe at 0.2 k, 0.5 k, 3 k and 6 k years before present. Global Change Biology 21: 676–697.

