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Article

Performance of methods for
meta-analysis of diagnostic test
accuracy with few studies or
sparse data

Yemisi Takwoingi,1 Boliang Guo,2

Richard D Riley3 and Jonathan J Deeks1

Abstract

Hierarchical models such as the bivariate and hierarchical summary receiver operating characteristic

(HSROC) models are recommended for meta-analysis of test accuracy studies. These models are

challenging to fit when there are few studies and/or sparse data (for example zero cells in contingency

tables due to studies reporting 100% sensitivity or specificity); the models may not converge, or give

unreliable parameter estimates. Using simulation, we investigated the performance of seven hierarchical

models incorporating increasing simplifications in scenarios designed to replicate realistic situations for

meta-analysis of test accuracy studies. Performance of the models was assessed in terms of estimability

(percentage of meta-analyses that successfully converged and percentage where the between study

correlation was estimable), bias, mean square error and coverage of the 95% confidence intervals. Our

results indicate that simpler hierarchical models are valid in situations with few studies or sparse data. For

synthesis of sensitivity and specificity, univariate random effects logistic regression models are appropriate

when a bivariate model cannot be fitted. Alternatively, an HSROC model that assumes a symmetric SROC

curve (by excluding the shape parameter) can be used if the HSROC model is the chosen meta-analytic

approach. In the absence of heterogeneity, fixed effect equivalent of the models can be applied.

Keywords

Diagnostic accuracy, meta-analysis, hierarchical models, HSROC model, bivariate model, sensitivity,

specificity, diagnostic odds ratio, sparse data, random effects

1 Introduction

Meta-analysis of test accuracy studies aims to produce reliable evidence about the diagnostic
accuracy of a medical test from multiple studies addressing the same question. The bivariate
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model1 and the hierarchical summary receiver operating characteristic (HSROC) model2 are the two
approaches recommended for meta-analysis when a sensitivity and specificity pair is available for
each study.3–5 These hierarchical models possess theoretical advantages over simpler methods for
meta-analysis of test accuracy studies but fitting them is not trivial. The models are often fitted using
a frequentist approach that relies on likelihood based methods for the estimation of five parameters.
Solving the likelihood equations requires an iterative process and in certain circumstances, for
instance when there are few studies and/or sparse data (e.g. zero cells due to perfect sensitivity
and/or specificity) in a meta-analysis, the models fail to converge or they converge but give
unreliable parameter estimates with one or more missing standard errors. These issues are often
encountered by meta-analysts6 and there is uncertainty about how to proceed with meta-analysis in
such situations.

Academic illustrations of the application of hierarchical methods have typically involved large
meta-analyses.1,2,4,7–13 In contrast, our experience of supporting Cochrane and non-Cochrane
diagnostic test accuracy review authors suggest that small meta-analyses or sparse data often
occur and pose a challenge to these data hungry hierarchical models. Others have also noted the
problem of non-convergence.8,10,14–16 Despite the increasing uptake of these models, a recent survey
has suggested a lack of clarity about recommended methods for meta-analysis and a need for
guidance.16 In this paper, using simulation, we evaluate the performance of hierarchical models
for meta-analysis of diagnostic accuracy studies, and we develop recommendations for their use.
Because sensitivity and specificity are the test accuracy measures most commonly used in meta-
analyses,17 we consider only methods for synthesis of these measures. Other measures such as
likelihood ratios can be derived from functions of the bivariate or HSROC model parameters.

The outline of this paper is as follows. In section 2 we briefly describe common methods used for
meta-analysis when each study contributes a single 2 x 2 table of the results of an index test cross
classified with a reference standard. In section 3 we outline two motivating examples where the
bivariate model failed to converge, and we apply simpler forms of the hierarchical models to resolve
this. In section 4 we describe the simulation study and present the results for full and simplified
hierarchical models. In section 5 we discuss our findings and conclude with recommendations for
selecting an appropriate meta-analytic approach in practice.

2 Methods for meta-analysis of diagnostic accuracy studies

2.1 Univariate pooling methods

Univariate fixed effect or random effects meta-analytic methods pool sensitivity and specificity
separately, ignoring any correlation that may exist between the two measures. Fixed effect models
assume homogeneity while random effects models assume variability in test accuracy beyond
sampling error alone by allowing each study to have its own test accuracy, i.e. the model includes
a between study variance component (�2). Let �Ai and �Bi be the logit sensitivity and logit
specificity, and �2Ai and �

2
Bi their variances for the ith study (i¼ 1, 2, . . . ,N), then the models for

sensitivity and specificity are specified as

�Ai � N �A, �
2
A

� �
, �Bi � N �B, �

2
B

� �
ð1Þ

The simplest and most commonly used random effects method is the DerSimonian and Laird
approach which uses a normal distribution to model within study variability. Logit transformed
sensitivity or specificity and the within study variance are undefined when there are zero cells. A
continuity correction (typically 0.5) is applied, leading to a downward bias in test accuracy.6
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Therefore, univariate methods that use a binomial distribution to model within study variability are
preferred. However, these logistic models are seldom used in practice probably due to lack of
awareness of the methods or software limitations.

2.2 Summary receiver operating characteristic regression

The summary receiver operating characteristic (SROC) curve approach developed by Moses et al.18

accounts for possible heterogeneity in threshold. It uses a logistic transformation of the true positive
and false positive rates (TPR and FPR) and linear regression to model the relationship between test
accuracy and the proportion test positive (related to threshold). If accuracy does not depend on
threshold, the SROC curve is symmetric and can be described by a constant diagnostic odds ratio
(DOR). The DOR is a single measure of test accuracy defined as the ratio of the odds of positivity in
those who have the target condition relative to the odds of positivity in those without the condition.
Therefore, a test with high TPR and low FPR will have a high DOR. This SROC approach is a fixed
effect method in which variation is attributed solely to threshold effect and sampling error. The
approach has methodological limitations which lead to inaccurate standard errors, thus rendering
formal statistical inference invalid.10,13 Similar to the DerSimonian and Laird approach, zero cell
corrections may be required.

2.3 Hierarchical models

Hierarchical models (also known as mixed or multilevel models) take into account correlation
between sensitivity and specificity across studies while also allowing for variation in test
performance between studies through the inclusion of random effects. The two main approaches
– the bivariate model and the HSROC model – differ in parameterizations, but the models are
mathematically equivalent when no covariates are included.19 The choice of approach is often
determined by variation in the thresholds reported in the included studies and the focus of
inference – a summary point or a SROC curve.

2.3.1 Bivariate random effects model

van Houwelingen et al.20 proposed a bivariate approach to meta-analysis that was adapted by
Reitsma et al.1 for test accuracy meta-analysis. This bivariate model is a linear mixed model that
enables joint analysis of sensitivity and specificity and takes the form

�Ai

�Bi

� �
� N

�A

�B

� �
,
X

AB

� �
with

X
AB

¼
�2A �AB

�AB �2B

 !
ð2Þ

The model assumes a bivariate normal distribution with mean �A and variance �2A for the logit
sensitivities, mean �B and variance �2B for the logit specificities and �AB the covariance between
�Ai and �Bi across studies. Instead of the covariance, the model can be parameterized using the
between study correlation, �AB. Therefore, the bivariate model without a covariate has the following
five parameters: �A, �B, �

2
A, �

2
B and �AB (or �AB). Chu and coworkers7,12 have shown that a binomial

likelihood should be used for modelling within study variability (especially when data are sparse) as
follows:

yAi � Binomial nAi, g
�1 �Aið Þ

� �
, yBi � Binomial nBi, g

�1 �Bið Þ
� �

ð3Þ
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where yAi and yBi represent the number of true positives and true negatives, nAi and nBi the number
of diseased and non-diseased subjects and g�1 �Aið Þ and g�1 �Bið Þ the sensitivity and specificity in the
ith study, respectively. The logit link g :ð Þ is commonly used but other link functions can be
applied.12,13 The random effects also follow a bivariate normal distribution in this generalized
linear mixed model. If this bivariate model is simplified by assuming the covariance or correlation
is zero (i.e. an independent variance–covariance structure), the model reduces to two univariate
random effects logistic regression models (UREMs) for sensitivity and specificity.

2.3.2 HSROC model

The Rutter and Gatsonis HSROC model represents a general framework for meta-analysis of test
accuracy studies and can be viewed as an extension of the Moses SROC approach in which the TPR
and FPR for each study are modelled directly.21 The HSROC model is a nonlinear generalized
mixed model and takes the form

logit �ij
� �
¼ �i þ �idisij
� �

exp ��disij
� �

ð4Þ

where �ij is the proportion of test positives, true or false positives depending on disease status.
Disease status is represented by disij which is coded �0.5 for the non-diseased (j¼ 0) and 0.5 for the
diseased group (j¼ 1) in the ith study. The implicit threshold �i (threshold parameter or positivity
criteria) and diagnostic accuracy �i (accuracy parameter) for each study are modelled as random
effects with independent normal distributions �i � N �, �2�

� �
and �i � N �, �2�

� �
, respectively. The

model also includes a shape or scale parameter � which enables asymmetry in the SROC curve by
allowing accuracy to vary with implicit threshold. Therefore, the SROC curve is symmetric if � ¼ 0
or asymmetric if � 6¼ 0. Each study contributes a single point in ROC space and so the estimation of
� requires information from all studies included in the meta-analysis. Thus � is modelled as a fixed
effect. The HSROC model has the following five parameters: �, �, �, �2� and �

2
� . The model reduces

to a fixed effect model if �2� ¼ 0 and �2� ¼ 0. Other specifications for SROC curves based on
functions of the bivariate model have been proposed10,22 but in this paper we focus only on the
more established and commonly used Rutter and Gatsonis model.

3 Motivating examples

3.1 Non-contrast computed tomography for diagnosing appendicitis

Hlibczuk et al.23 reviewed the diagnostic accuracy of non-contrast computed tomography (CT) for
emergency department evaluation of adults with suspected appendicitis. Seven studies, evaluating
1060 patients of whom 389 had appendicitis, were included in the review. The prevalence of
appendicitis in the studies ranged from 20% to 84%, with a median of 39%. The forest plot
(Figure 1) shows between study variation in the sensitivities and specificities, though specificity
was perfect (100%) in four studies. The authors attempted to fit the bivariate model in SAS but
the model failed to converge.

3.2 CT for diagnosing scaphoid fractures

Yin et al.24 assessed the diagnostic accuracy of CT for diagnosing suspected scaphoid fractures. Six
studies, evaluating 211 patients of whom 44 had a scaphoid fracture, were included in the review.
The prevalence of scaphoid fractures in the studies ranged from 12% to 38%, with a median of 20%.
Figure 1 shows the estimates of sensitivity and specificity with almost no between study variation;
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five of the six studies reported 100% sensitivity while all studies reported 100% specificities. The
authors pooled sensitivity, specificity and the DOR using a random effects model (method not
specified).

3.3 Results from reanalysis of the two example datasets

We reanalyzed the two datasets by fitting univariate, bivariate and HSROC models using the
NLMIXED procedure in the SAS software package (version 9.2; SAS Institute, Cary, NC).
UREMs for sensitivity and specificity were simultaneously obtained by setting the covariance
parameter in a bivariate generalized linear mixed model equal to zero. This is equivalent to
assuming an independent variance–covariance structure. Additional summary measures such as
likelihood ratios and DORs were produced using the ESTIMATE statement within NLMIXED.
The ESTIMATE statement computes additional estimates as a function of parameter values and
produces standard errors and confidence intervals (CIs) using the delta method. Despite numerous
attempts with different starting values and optimization algorithms, the bivariate model failed to
converge for both datasets. In addition, the HSROC model containing all five parameters failed to
converge for the scaphoid fractures dataset. The models fitted and results obtained for both datasets
are summarised in Table 1. For the appendicitis dataset, the complete HSROC model successfully
converged and produced reliable estimates only when boundary constraints (�2� 0) were specified
for �2� and �

2
� ; the boundary constraint for �2� was activated (estimation truncated at zero) and the

between study correlation was estimated as þ1. This is due to the maximum likelihood estimator
truncating the between-study covariance matrix on the boundary of its parameter space.15 A
bivariate model with a correlation of þ1 corresponds to an HSROC model with �2� truncated at
zero, and a correlation of �1 corresponds to an HSROC model with �2� truncated at zero.

Since the maximum likelihood estimation problems encountered with the bivariate model are
most likely due to boundary estimation of the variance and/or covariance parameters, we attempted
plotting the profile log likelihood for the covariance parameter (maximized with respect to the other
4 parameters). We were unable to produce a plot for the scaphoid fracture example because the

Figure 1. Forest plot of sensitivity and specificity estimates from studies included in the two motivating examples.

FN: false negative; FP: false positive; TN: true negative; TP: true positive.
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bivariate model failed even with fixed values for the covariance. This is unsurprising since there was
almost no between study variation in sensitivity and specificity.

Figure 2 shows the profile log likelihood for the covariance parameter for the appendicitis
example. The likelihood is flat with very little change in the profile log likelihood. The maximum
of the profile log likelihood was achieved at a covariance of 0.02 (dashed line). For covariances
above 0.02, the bivariate model failed to converge or was unstable, but values between �0.05 and
0.02 appear to be supported by the data. The dotted line shows the value of the log likelihood for a
covariance of zero, i.e. independence between sensitivity and specificity. This suggests that UREMs
would be appropriate for pooling sensitivity and specificity in this example.

The two examples illustrate the problem of model convergence, poor parameter estimation and
the need for simpler models. There were only subtle differences in summary estimates and 95% CIs
for sensitivity, specificity and the negative likelihood ratio between models fitted to the appendicitis
dataset. In contrast, clear differences were observed for the positive likelihood ratio and the DOR.
For the scaphoid fractures dataset, there were differences in summary estimates and 95% CI for
sensitivity and specificity from the univariate fixed effect model and the HSROC models with both
fixed accuracy and threshold parameters compared to the other models. These examples show that
results can differ between models, and the differences may not be negligible. Therefore, the
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Figure 2. Profile log-likelihood function of the covariance parameter in the bivariate model applied to the

appendicitis example.
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identification of simpler meta-analytic methods that give valid answers in situations where complex
models fail is of practical importance.

4 Simulation study

4.1 Simulation methods

We conducted a simulation study to compare the performance of aUREMand theHSROCmodel with
various simplifications (by removing model parameters). Given the mathematical equivalence of the
HSROC and bivariate models when no covariate is included, there was no need to examine the
performance of both models. We chose the HSROC model because it has greater flexibility for
introducing model parsimony by dropping parameters than the bivariate model.19 Since several
authors7–9,15 have shown that approximate methods for modelling within study variability are biased,
we only investigated methods that use a binomial likelihood. The specifications for the scenarios were
devised to replicate realistic situations encountered in meta-analysis of diagnostic accuracy studies. We
investigated the effect of these factors: 1) number of studies; 2) magnitude of diagnostic accuracy
(DOR); 3) prevalence of disease; 4) between study variation in accuracy and threshold; and 5)
asymmetry in the SROC curve. We modified the simulation approach used in a previous study25 to
define the simulation scenarios and generate the simulated datasets as described below.

4.1.1 Generation of simulated data

To determine diagnostic accuracy, we used the standardised distance between the means �1 and �2

(where �2 4�1) of the logistic distributions for non-diseased and diseased, respectively. We selected
the diagnostic threshold, t, as the average of the means of the two distributions, i.e. t ¼ �1 þ �2ð Þ=2.
If the two distributions have different standard deviations (�1 6¼ �2), sensitivity 6¼ specificity at t and
the SROC curve has an asymmetric shape. The DOR at t can be calculated as follows:

DOR ¼ exp

ffiffiffiffiffi
�2

3

r
�2 � t

�2
�
�1 � t

�1

� �" #
ð5Þ

The sensitivity and specificity at t can be obtained using the following:

Sensitivity ¼

exp
ffiffiffiffi
�2

3

q
�2�t
�2

� �	 


1� exp
ffiffiffiffi
�2

3

q
�2�t
�2

� �	 
 ,

Specificity ¼ 1�

exp
ffiffiffiffi
�2

3

q
�1�t
�1

� �	 


1þ exp
ffiffiffiffi
�2

3

q
�1�t
�1

� �	 

ð6Þ

When the distributions of test results for the diseased and non-diseased have the same standard
deviation (�1 ¼ �2 ¼ �), sensitivity ¼ specificity at t and the SROC curve has a symmetric shape. For
scenarios where �1 ¼ �2 ¼ �, we investigated values of diagnostic accuracy that correspond to the
following:

(1) �2 � �1ð Þ=� ¼ 2 (log DOR¼ 3.63, DOR¼ 38; sensitivity¼ specificity¼ 0.86);
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(2) �2 � �1ð Þ=� ¼ 3 (log DOR¼ 5.44, DOR¼ 231; sensitivity¼ specificity¼ 0.94)

For scenarios where �2 ¼ 2�1, using the same �2 and �1 as in (1) and (2) above, the DOR of 38
reduces to 15 (sensitivity¼ 0.71 and specificity¼ 0.86) and the DOR of 231 reduces to 59
(sensitivity¼ 0.80 and specificity¼ 0.94).

We investigated meta-analyses with different number of studies (k¼ 5, 10, 20). The size of a study
in each meta-analysis, nj, was randomly sampled from a uniform distribution, U(20,200). We varied
nj between 20 and 200 because diagnostic accuracy studies are often small in size.17,26 Given an
underlying prevalence p, individuals within each study were randomly classified as diseased or non-
diseased, and assigned a continuous test result value, x, which was randomly sampled from the
logistic distributions. For each study, we used t to determine the outcome of an individual’s test
result; positive if xij 4 t, or negative if xij � t. To create the 2 x 2 table for each study, individuals
were then classified as true positives, false negatives, false positives or true negatives based on test
result and disease status.

To begin we assumed zero between study variation in both accuracy and threshold. We then
introduced between study variation in diagnostic accuracy by adding a value 	 sampled from a
normal distribution with zero mean and standard deviation 0.3�1. This value was added to the
difference in means (�2 � �1) for each study. We introduced between study variation in
diagnostic threshold by also sampling from a normal distribution with the average threshold t
as the mean and standard deviation 0.3�1. We generated 10,000 independent meta-analysis
datasets for each scenario to enable precise estimation of model performance even if a large
proportion of models fail to converge. If all 10,000 datasets for each scenario successfully
converged, they will give a standard error of 0.0022 for the estimation of 95% CI coverage
probability.27 However if only 1000 datasets converged, the standard error will be 0.0069. The
datasets were created using Stata version 10.1 (Stata-Corp, College Station, TX). Table 2
summarises the different scenarios investigated. The meta-analysis dataset for the base scenario
for each DOR contained five studies with an underlying prevalence of 5% and no heterogeneity
in accuracy or threshold.

4.1.2 Meta-analytic models fitted to each dataset

Throughout the rest of this paper, we refer to an HSROC model that contained all five
parameters as a complete HSROC model. We fitted the following seven models to each meta-
analysis dataset.

(1) UREM – includes �A and �2A for the logit sensitivities, and �B and �2B for the logit specificities.
Note this is a simplification of the bivariate generalized mixed model achieved by setting the
covariance or correlation parameter to zero (see section 2.3.1). For brevity, from here on we will
refer to this model simply as the univariate random effects model.

(2) Complete HSROC model – includes all five parameters �, �, �, �2� and �2�
(3) Symmetric HSROC model – includes �, �, �2� and �2�
(4) HSROC model with fixed threshold – includes �, �, � and �2�
(5) HSROC model with fixed accuracy – includes �, �, � and �2�
(6) HSROC model with fixed accuracy and threshold – includes �, � and � (allows for asymmetry

in the SROC curve)
(7) Symmetric HSROC model with fixed accuracy and threshold parameters – includes only two

parameters � and �
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As shown by Harbord et al.,19 the five parameters of the bivariate model can be expressed in terms of
those of the HSROC model as follows:

�A ¼ exp �
�

2

� �
�þ

�

2

� �
, �B ¼ � exp

�

2

� �
��

�

2

� �
ð7Þ

�2A ¼ exp ��ð Þ �2� þ
1

4
�2�

� �
, �2B ¼ exp �ð Þ �2� þ

1

4
�2�

� �
, �AB ¼ � �2� �

1

4
�2�

� �
ð8Þ

For the fixed accuracy threshold and symmetric fixed accuracy threshold models, �2� ¼ 0 and �2� ¼ 0.
Thus �2A ¼ 0, �2B ¼ 0 and �AB ¼ 0, and both models are equivalent to simultaneously fitting two
univariate fixed effect logistic regression models for sensitivity and specificity (see results for these
models in Table 1). Henceforth, we refer to them as fixed effect models; the models can be considered
a special case of the random effects models where the variances of the random effects are zero. We
used the SAS NLMIXED procedure to fit each of the seven meta-analytic models because Stata does
not have an inbuilt or user defined command for fitting non-linear generalized mixed models. Note
that because of the mathematical relationship between the bivariate and HSROC model, it is
possible in Stata to obtain estimates for the five parameters of the HSROC model using functions
of parameters from the bivariate model fitted.19 We computed additional estimates by using the
ESTIMATE statement. We computed the log DOR at the average operating point (summary
sensitivity and specificity). This log DOR is exactly the same value as � if the SROC curve is
symmetric.

Table 2. Scenarios evaluated in the simulation.a

Scenario Prevalence (%) DOR

Heterogeneity in

accuracy and threshold

Asymmetry in

SROC curve

1–3 5 38 No No

4–6 25 38 No No

7–9 50 38 No No

10–12 5 38 Yes No

13–15 25 38 Yes No

16–18 50 38 Yes No

19–21 5 231 No No

22–24 25 231 No No

25–27 50 231 No No

28–30 5 231 Yes No

31–33 25 231 Yes No

34–36 50 231 Yes No

37–39 5 15 Yes Yes

40–42 25 15 Yes Yes

43–45 50 15 Yes Yes

46–48 5 59 Yes Yes

49–51 25 59 Yes Yes

52–54 50 59 Yes Yes

aEach subset of 3 scenarios corresponds to 5, 10 and 20 studies.
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4.1.3 Facilitating convergence of hierarchical models

To aid convergence, we provided a wide range of starting values for model parameters by specifying
a grid of points for a grid search of starting values. We used a quasi-Newton optimization technique
(the NLMIXED default) because it provides an appropriate balance between computation speed
and stability (SAS Institute Inc. SAS OnlineDoc� 9.1.3. Cary, NC, 2004). To prevent estimation of
negative variances and to reduce computational problems, we specified boundary constraints
(�2� 0) for the variance parameters in the models. To reduce the number of models that failed to
converge, we refitted models by trying a new set of starting values and/or changing the optimization
technique to a Newton-Raphson technique. To obtain a new set of starting values, we fitted a model
with no random effects and used the new parameter estimates together with the original grid of
points for the variance parameters. Thus for some datasets, we made up to four attempts to fit a
hierarchical model.

4.1.4 Assessment of model convergence and stability

Because a model that meets a convergence criterion may be unstable or have missing standard errors
due to issues with model identifiability, we assessed convergence in two stages. First, we checked
whether the convergence criterion was met and also whether the additional estimates defined in the
ESTIMATE statements were produced. Second, because standard errors are computed from the
final Hessian matrix, we calculated eigenvalues of the Hessian to detect if there were problems. At a
true minimum, eigenvalues will all be positive, i.e. positive definite. Therefore, for convergence to be
deemed successful, the model had to meet the convergence criterion, produce additional estimates,
and the Hessian had to be positive definite.

4.1.5 Assessment of performance of meta-analytic models

We assessed performance of the methods by examining estimates of the following measures of
diagnostic accuracy: log DOR, logit sensitivity and logit specificity. We assessed estimability as
the percentage of meta-analyses that successfully converged and the percentage where the
between study correlation was not estimated as �1 or þ1. We computed the latter for only the
complete HSROC model. For each scenario, we used only the results from meta-analyses that
successfully converged as defined above to calculate (a) the difference between the average
parameter estimate and the true parameter value to determine bias; (b) the average standard
error and mean square error (MSE incorporates both bias and variability) to assess model
accuracy; and (c) the coverage of the 95% CIs by computing the percentage of meta-analyses for
which the true parameter value was within the 95% CI.

4.2 Simulation results

Altogether we explored 54 scenarios. We can only show results for the log DOR in this article but
results for logit sensitivity and logit specificity are briefly mentioned. Because homogeneous
accuracy and threshold are the exception rather than the norm for meta-analysis of test accuracy
studies, to illustrate key findings, we present results mainly for scenarios with heterogeneity at a
DOR of 231 (sparse data are of interest and zero false positives and/or false negatives are more likely
to occur when diagnostic accuracy is high).

4.2.1 Estimability

Zero cells occurred frequently especially when diagnostic accuracy was high (Table 3). Convergence
rates were higher for the complete HSROC model in scenarios with heterogeneity compared to
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scenarios without heterogeneity. This is likely due to the inclusion of heterogeneity parameters in the
HSROC model that become problematic to estimate when the true heterogeneity is zero.
Convergence increased with increasing number of studies and prevalence, and with decreasing
diagnostic accuracy. Convergence decreased in scenarios with asymmetry in the SROC curve
(data not shown). Across scenarios, non-convergence and problems with model identifiability
were more common with the complete HSROC and fixed threshold models compared to the
other hierarchical models (Table 4); the symmetric fixed accuracy threshold model always
converged. The complete HSROC model often poorly estimated the correlation between the logit
transformed sensitivities and specificities as þ1 or �1 (Table 3); estimation as �1 occurred much
more frequently than þ1. The correlation was more likely to be estimated between �1 and þ1 when
there was heterogeneity in accuracy and threshold, greater prevalence of disease and more studies in
a meta-analysis.

4.2.2 Bias

In the base scenario for a DOR of 231, the symmetric HSROC model gave the least percentage bias
for the DOR (4.32%); bias was highest for the fixed threshold (37.8%) and fixed accuracy (36.2%)
models (Table 4). These rankings were consistent as the number of studies increased. As prevalence
increased, the two fixed effect models became the least biased while the fixed accuracy model
remained the most biased.

Table 3. Convergence and estimability of the complete HSROC model applied to 10,000 datasets in 36 different

scenarios.a

DOR N

Prevalence

(%)

No heterogeneity in accuracy and threshold Heterogeneity in accuracy and threshold

Meta-

analyses

with a zero

cellb (%)

Successful

model fit

(positive

definite) (%)

% �̂AB

¼�1

% �̂AB

¼þ1

% �̂AB

6¼�1 or

þ1

Meta-

analyses

with a zero

cellb (%)

Successful

model fit

(positive

definite) (%)

% �̂AB

¼�1

% �̂AB

¼þ1

% �̂AB

6¼�1 or

þ1

38 5 5 48 18 14 2.6 1.8 50 36 21 0.6 14

38 5 25 50 18 15 1.7 1.6 51 54 31 0.2 22

38 5 50 52 18 15 1.4 2.0 53 60 34 0.2 26

38 10 5 60 25 17 3.7 4.4 60 52 21 0.2 31

38 10 25 65 24 18 2.4 3.8 67 77 24 0.0 54

38 10 50 72 25 18 2.6 4.1 73 85 24 0.0 61

38 20 5 75 32 20 5.8 6.4 77 70 20 0.0 50

38 20 25 77 30 20 3.7 6.3 78 93 12 0.0 82

38 20 50 82 28 20 3.1 5.8 84 97 10 0.0 88

231 5 5 96 18 11 5.7 1.4 97 30 18 2.4 10

231 5 25 97 21 14 5.0 1.6 98 43 29 2.1 13

231 5 50 99 21 15 4.7 1.9 99 48 31 2.3 14

231 10 5 99 23 13 7.7 3.0 99 41 21 1.3 19

231 10 25 99 29 17 7.6 4.1 100 62 29 0.9 33

231 10 50 100 29 18 6.7 4.1 100 71 32 0.9 39

231 20 5 100 29 15 9.7 4.8 100 54 20 0.3 34

231 20 25 100 35 20 9.2 6.2 100 80 23 0.2 57

231 20 50 100 35 20 9.2 6.5 100 88 22 0.1 66

�̂AB: estimated between study correlation; DOR: diagnostic odds ratio; N: number of studies.
aAll results are presented as percentages and are based on 10,000 meta-analysis datasets.
bThe percentage of meta-analyses out of 10,000 where at least one study included a zero cell.
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When heterogeneity was introduced, each of the seven models produced the largest bias for the
DOR at the lowest prevalence, though the univariate random effects model gave the least biased
DOR. For all models, bias decreased as prevalence and the number of studies increased. However,
the decrease in bias resulted in a change from overestimation to underestimation for the two fixed
effect models. For bias in the estimates of sensitivity, we observed results similar to those of the
DOR, but the relationship with prevalence was reversed for bias in the estimates of specificity (data
not shown). Bias in specificity was very small compared to that of the DOR or sensitivity. For the
three measures, in scenarios with heterogeneity and asymmetry in the SROC curve, bias was lower
than in the corresponding symmetric model.

4.2.3 Model accuracy

A MSE of zero indicates that the model estimated the parameter of interest with perfect accuracy, i.e.
no bias and no variability in the estimation. The MSE of the DOR was highest for the symmetric fixed
accuracy threshold model (40.7) but lowest for the symmetric HSROCmodel (4.26) in the base scenario
(Table 4). At higher prevalence, the two fixed effect models had the lowest MSE. For all models, the
MSE of the DOR decreased as the number of studies and prevalence increased. When heterogeneity
was introduced, the univariate random effects model had the lowest MSE at 5% prevalence but the
symmetric HSROC model had slightly lower MSE than the univariate random effects model at higher
values of prevalence. As the number of studies and prevalence increased, the MSE for all models
decreased and became almost identical except for those of the two fixed effect models. Results for
sensitivity were similar to those for the DOR. The MSE for specificity was generally very low and
increased slightly with increasing prevalence. For the asymmetric SROC curve scenarios, the findings
for the three measures were similar to those of the corresponding symmetric scenarios.

4.2.4 Coverage

For a DOR of 231, the symmetric HSROC models gave the best coverage of the 95% CIs for
estimation of the DOR (95.5%) in the base scenario. With the exception of the symmetric fixed
accuracy threshold model, all models were conservative as shown by coverage greater than 95%.
The coverage of 88% for the symmetric fixed accuracy threshold model implied over-confidence in
the estimates but coverage increased as prevalence or the number of studies increased. In contrast,
introduction of heterogeneity led to very poor coverage for the two fixed effect models with coverage
becoming lower as prevalence increased. The univariate random effects model and symmetric
HSROC model often showed good coverage, although the latter tended to show under-coverage
as prevalence increased. For sensitivity, the results were comparable to those of the DOR. Across all
models, coverage was low for specificity when there was heterogeneity unlike scenarios without
heterogeneity. The asymmetric SROC curve scenarios produced similar results to the symmetric
SROC curve scenarios.

4.2.5 Summary of simulation results and application to motivating examples

The following key points were observed:

. Hierarchical models are more likely to converge if there is heterogeneity in accuracy and
threshold.

. Convergence is also affected by number of studies, prevalence and magnitude of diagnostic
accuracy.

. Correlation between sensitivity and specificity across studies is often poorly estimated as þ1
or �1.
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. In the absence of heterogeneity, the two fixed effect models were the least biased with low MSE
and good coverage properties for studies with moderate to high prevalence. The symmetric fixed
accuracy threshold model may be of greater utility because it always converged. The symmetric
HSROC model performed better than both fixed effect models when prevalence was low and
there were few studies, but this finding was based on a convergence rate as low as 13%.

. When heterogeneity was present, the univariate random effects model and the symmetric HSROC
model were often the least biased with low MSE and good coverage (however, there is a risk of
selection bias in these results for scenarios with lower prevalence with smaller numbers of studies
where as few as 34% of simulations converged).

In the simulation, the fixed threshold model often gave biased and imprecise results. However, for
the appendicitis example, the fixed threshold model gave results similar to the complete HSROC
model. The results can be explained by the fact that the estimation of �2� was truncated at zero in the
complete model and so removing �2� from the HSROC model was appropriate in this example unlike
in the simulation scenarios. The results in Table 1 indicate that while the univariate random effects
model and symmetric HSROC model appear to be generally applicable when there is heterogeneity,
other models like the fixed threshold or fixed accuracy can be considered if it is apparent the variance
parameter for threshold or accuracy cannot be estimated.

For the scaphoid fractures example, the results of the simulation indicate that using a univariate
fixed effect model (including the equivalent fixed accuracy threshold and symmetric fixed accuracy
threshold models) was valid because there was no heterogeneity in the specificities (all six studies
reported 100% specificity) and very limited heterogeneity in the sensitivities (five of the studies
reported 100% sensitivity). Even for the fixed effect models, computation of the positive
likelihood ratio and DOR were problematic because of the perfect specificity.

5 Discussion

In this study we simulated meta-analyses under a number of scenarios and evaluated hierarchical
models for meta-analysis of diagnostic accuracy studies. Our findings indicate that simplifying
hierarchical models is valid when there are few studies or sparse data. Our recommendations for
selecting alternative models when bivariate or HSROC models fail to converge or converge but give
unreliable estimates, are outlined in Box 1. If estimation of an average operating point (summary
sensitivity and specificity) is of interest instead of a SROC curve, we recommend a univariate logistic
regression approach with or without random effects depending on the extent to which sensitivity
and/or specificity vary between studies. These methods are an appropriate alternative for obtaining
independent summaries of sensitivity and specificity with CIs. However, joint inferences cannot be
made about sensitivity and specificity through confidence and prediction regions around the average
operating point. These regions account for correlation between sensitivity and specificity, and are
useful for illustrating uncertainty around the average operating point and the extent of
heterogeneity. If interest lies in the estimation of a SROC curve, the symmetric HSROC model or
its fixed effect equivalent should be considered instead. The symmetric HSROC model is equivalent
to fitting a bivariate model with an exchangeable covariance structure, where the variance of the
random effects for the logit sensitivities is assumed to be the same as that of the logit specificities. In
extreme situations with no heterogeneity and sparse data, such as the scaphoid fractures example,
even the simplest models may fail to produce usable summary estimates.

Given the poor performance of simpler models like the fixed accuracy and fixed threshold models
in the simulation, we urge meta-analysts to carefully explore their data and visually inspect forest
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plots and SROC plots before undertaking meta-analyses. Such preliminary analyses will provide an
indication of the degree of heterogeneity and the pattern of scatter of the study points in ROC space.
These analyses and the output from unstable or failed models should inform the approach for
simplifying hierarchical models as shown by the appendicitis example. Although more complex
and seldom used in practice, a Bayesian approach is an alternative to the maximum likelihood
approach. In an empirical evaluation, both approaches were found to be similar although
Bayesian methods suggested greater uncertainty (wide credible intervals) around the point
estimates.6

A normal distribution is typically assumed for the random effects in hierarchical meta-analytic
models; violation of this assumption may contribute to non-convergence. Heavy tailed distributions
such as t or Cauchy distributions may be used instead of a normal distribution,2,11 but random
effects are restricted to be normally distributed in SAS NLMIXED and Stata. A Bayesian approach
allows alternative distributions though a normal distribution is often assumed in practice.21 As the
models are often fitted using a maximum likelihood approach, our intention was to offer solutions

Box 1. Recommendations for selecting alternative models when bivariate or HSROC models fail.a

Plot the data

Visual inspection of forest plots and SROC plots may help to identify whether heterogeneity exists.

For example, one may observe complete or near complete lack of variability between estimates of sensitivity

and/or specificity, indicating no heterogeneity in one or both parameters (sensitivity and/or specificity equal

to 100%), or conversely wide variability in observed estimates (e.g. non-overlapping confidence intervals)

indicating large heterogeneity.

Analyses

Select a simpler hierarchical fixed effect or random effects model based on inference of interest (summary

points or SROC curve), observation from the data plot, and previous output from the failed bivariate or

HSROC model

Note: when prevalence is very low and the number of studies is very small, there is potential for bias and the

results of the meta-analysis should be interpreted with caution.

Focus of inference

Heterogeneity

Summary point (summary

sensitivity and specificity) SROC curve

Variability in sensitivity and/or

specificity between studies

observed on the plot

Univariate random effects

logistic regression models

Symmetric HSROC model

Minimal or no variability in

sensitivity and/or specificity

between studies observed on

the plot

Univariate fixed effect logistic

regression modelsb
Symmetric fixed accuracy and

threshold model

A symmetric SROC curve can be described using the diagnostic odds ratio (exponent of the value of the

accuracy parameter).

Section 4.1.3 contains suggestions for facilitating convergence of hierarchical models.

aBivariate or HSROC models either failed to converge or converged (i.e. met the convergence criterion) but gave unreliable

estimates (e.g. with no standard errors, or dependent on starting values).
bThe symmetric fixed accuracy threshold model is equivalent to simultaneously fitting two univariate fixed effect logistic regression

models for sensitivity and specificity.
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within the hierarchical framework recommended for meta-analysis, using one of the software
packages that have made meta-analysis of test accuracy studies more accessible to meta-analysts.
A composite likelihood approach (implemented in R using the glmmML package) that offers some
robustness to model misspecifications was recently proposed.28 Results from the simulation study
where the composite likelihood method and the bivariate generalized mixed model were applied to
data generated from a bivariate t distribution suggested the methods were insensitive to the heavy
tailed distribution under the logit link function. We used only the logit link in our models.

Our simulations and application to motivating examples support and extend empirical evidence
suggesting that univariate methods generate summary results similar to those derived using full
hierarchical methods.4,6,29 Our findings also agree with a recent simulation study evaluating the
performance of the bivariate model.30 However, our study is more comprehensive including
application to real motivating examples, investigation of a broad array of possible models,
suggestions for improving model convergence and guidance on how to select an appropriate
model. Furthermore, we do not prescribe a limit on the number of studies required to fit a
hierarchical model, rather the merit of applying a particular model should be carefully assessed as
we have illustrated with our examples.

Our study has some limitations. First, we were not able to fully explore the effect of heterogeneity or
varying the threshold. We addressed factors we considered vital, and varied the sample size of studies
in a meta-analysis to reflect reality. According to Begg,31 the statistical properties of hierarchical
models are likely to be most vulnerable when the number of studies is small, and also when sample
sizes are highly variable. Second, analyses of the simulated datasets were conducted only in SAS and
convergence rates may differ between software packages because of differences in obtaining starting
values and model fitting options. Nonetheless, SAS is the software most often used to fit HSROC
models in frequentist analyses and we were able to explore several options for improving convergence.
Third, when comparingmodels, we did not limit analyses to datasets that converged across all models.
Non-convergence occurred more frequently in challenging datasets where poor model
performance (bias, MSE and coverage) can be expected. Therefore, more complex methods with
poor convergence rates may be biased or give imprecise estimates. The performance of simpler
models with better convergence rates should also be affected but if the models give unbiased and
precise estimates, then simpler models are robust and applicable in such situations.

In summary, random effects logistic models should be the default approach for test accuracy
meta-analyses. We recommend UREMs for sensitivity and specificity if a bivariate model fails, or a
symmetric HSROC model if estimation of a SROC curve is required and the HSROC model fails. If
homogeneity can be assumed, the two models can be further simplified to their fixed effect
equivalent. However, when prevalence is very low and the number of studies is very small, the
results of any meta-analysis should be interpreted with caution.

Acknowledgements

We thank the two referees for their valuable comments which helped to improve this paper.

Funding

This work was supported by the United Kingdom National Institute for Health Research [DRF-2011-04-135].

18 Statistical Methods in Medical Research 0(0)

 at UNIV OF BIRMINGHAM on July 10, 2015smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


References

1. Reitsma JB, Glas AS, Rutjes AWS, et al. Bivariate analysis
of sensitivity and specificity produces informative
summary measures in diagnostic reviews. J Clin Epidemiol
2005; 58: 982–990.

2. Rutter CM and Gatsonis C. A hierarchical
regression approach to meta-analysis of
diagnostic test accuracy evaluations. Stat Med 2001; 20:
2865–2884.

3. Leeflang MMG, Deeks JJ, Gatsonis C, et al. Cochrane
Diagnostic Test Accuracy Working Group. Systematic
reviews of diagnostic test accuracy. Ann Intern Med 2008;
149: 889–897.

4. Harbord RM, Whiting P, Sterne JAC, et al. An empirical
comparison of methods for meta-analysis of diagnostic
accuracy showed hierarchical models are necessary. J Clin
Epidemiol 2008; 61: 1095–1103.

5. Macaskill P, Gatsonis C, Deeks JJ, et al. Chapter 10:
analysing and presenting results. In: Deeks JJ, Bossuyt PM
and Gatsonis C (eds) Cochrane handbook for systematic
reviews of diagnostic test accuracy. Version 1.0. The
Cochrane Collaboration, 2010. http://srdta.cochrane.org/

6. Dahabreh IJ, Trikalinos TA, Lau J, et al. An empirical
assessment of bivariate methods for meta-analysis of test
accuracy. Rockville, MD: Agency for Healthcare Research
and Quality (US), 2012. Publication No. 12(13)-EHC136-
EF.

7. Chu H and Cole SR. Bivariate meta-analysis for sensitivity
and specificity with sparse data: a generalized linear mixed
model approach (letter to the Editor). J Clin Epidemiol
2006; 59: 1331.

8. Hamza TH, Reitsma JB and Stijnen T. Meta-analysis of
diagnostic studies: a comparison of random intercept,
normal-normal and binomial-normal bivariate Summary
ROC approaches. Med Decis Making 2008; 28: 639–649.

9. Hamza TH, van Houwelingen HC and Stijnen T. The
binomial distribution of meta-analysis was preferred to
model within-study variability. J Clin Epidemiol 2008; 61:
41–51.

10. Arends LR, Hamza TH, van Houwelingen JC, et al.
Bivariate random effects meta-analysis of ROC curves.
Med Decis Making 2008; 28: 621–638.

11. Verde PE. Meta-analysis of diagnostic test data: a
bivariate Bayesian modeling approach. Stat Med 2010; 29:
3088–3102.

12. Chu H, Guo H and Zhou Y. Bivariate random effects
meta-analysis of diagnostic studies using generalized linear
mixed models. Med Decis Making 2010; 30: 499–508.

13. Ma X, Nie L, Cole SR, et al. Statistical methods for
multivariate meta-analysis of diagnostic tests: an overview
and tutorial. Stat Methods Med Res. Epub ahead of print
26 June 2014.

14. Paul M, Riebler A, Bachmann LM, et al. Bayesian
bivariate meta-analysis of diagnostic test studies using
integrated nested Laplace approximations. Stat Med 2010;
29: 1325–1329.

15. Riley R, Abrams K, Sutton A, et al. Bivariate random-
effects meta-analysis and the estimation of between-study
correlation. BMC Med Res Methodol 2007; 7: 3.

16. Ochodo EA, Reitsma JB, Bossuyt PM, et al. Survey
revealed a lack of clarity about recommended methods for
meta-analysis of diagnostic accuracy data. J Clin
Epidemiol 2013; 66: 1281–1288.

17. Dahabreh IJ, Chung M, Kitsios GD, et al. Comprehensive
overview of methods and reporting of meta-analyses of test
accuracy. Rockville, MD: Agency for Healthcare Research
and Quality (US), 2012. Publication No. 12-EHC044-EF.

18. Moses LE, Shapiro D and Littenberg B. Combining
independent studies of a diagnostic test into a summary
ROC curve: data-analytic approaches and some additional
considerations. Stat Med 1993; 12: 1293–1316.

19. Harbord RM, Deeks JJ, Egger M, et al. A unification of
models for meta-analysis of diagnostic accuracy studies.
Biostatistics 2007; 8: 239–251.

20. van Houwelingen HC, Zwinderman KH and Stijnen T. A
bivariate approach to meta-analysis. Stat Med 1993; 12:
2273–2284.

21. Macaskill P. Empirical Bayes estimates generated in a
hierarchical summary ROC analysis agreed closely with
those of a full Bayesian analysis. J Clin Epidemiol 2004; 57:
925–932.

22. Chappell FM, Raab GM and Wardlaw JM. When are
summary ROC curves appropriate for diagnostic meta-
analyses? Stat Med 2009; 28: 2653–2668.

23. Hlibczuk V, Dattaro JA, Jin Z, et al. Diagnostic accuracy
of noncontrast computed tomography for appendicitis in
adults: a systematic review. Ann Emerg Med 2010; 55:
51–59.

24. Yin ZG, Zhang JB, Kan SL, et al. Diagnosing suspected
scaphoid fractures: a systematic review and meta-analysis.
Clin Orthop Relat Res 2010; 468: 723–734.

25. Deeks JJ, Macaskill P and Irwig L. The performance of
tests of publication bias and other sample size effects in
systematic reviews of diagnostic test accuracy was assessed.
J Clin Epidemiol 2005; 58: 882–893.

26. Bachmann LM, Puhan MA, ter Riet G, et al. Sample sizes
of studies on diagnostic accuracy: literature survey. BMJ
2006; 332: 1127–1129.

27. Burton A, Altman DG, Royston P, et al. The design of
simulation studies in medical statistics. Stat Med 2006; 25:
4279–4292.

28. Chen Y, Liu Y, Ning J, et al. A composite likelihood
method for bivariate meta-analysis in diagnostic
systematic reviews. Stat Methods Med Res. Epub ahead of
print 14 December 2014. DOI: 10.1177/0962280214562146.

29. Simel DL and Bossuyt PMM. Differences between
univariate and bivariate models for summarizing
diagnostic accuracy may not be large. J Clin Epidemiol
2009; 62: 1292–1300.

30. Diaz M. Performance measures of the bivariate random
effects model for meta-analyses of diagnostic accuracy.
Comput Stat Data Anal 2015; 83: 82–90.

31. Begg CB. Meta-analysis methods for diagnostic accuracy.
J Clin Epidemiol 2008; 61: 1081–1082.

Takwoingi et al. 19

 at UNIV OF BIRMINGHAM on July 10, 2015smm.sagepub.comDownloaded from 

http://srdta.cochrane.org/
http://smm.sagepub.com/

