

University of Birmingham

On investigation of interdependence between sub-
problems of the Travelling Thief Problem
Mei, Yi; Li, Xiaodong; Yao, Xin

DOI:
10.1007/s00500-014-1487-2

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Mei, Y, Li, X & Yao, X 2016, 'On investigation of interdependence between sub-problems of the Travelling Thief
Problem', Soft Computing, vol. 20, no. 1, pp. 157-172. https://doi.org/10.1007/s00500-014-1487-2

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. Jan. 2022

https://doi.org/10.1007/s00500-014-1487-2
https://doi.org/10.1007/s00500-014-1487-2
https://birmingham.elsevierpure.com/en/publications/8e851b6a-d36b-42e8-bdb4-1fda4e0e86c2

Soft Comput (2016) 20:157–172
DOI 10.1007/s00500-014-1487-2

METHODOLOGIES AND APPLICATION

On investigation of interdependence between sub-problems
of the Travelling Thief Problem

Yi Mei · Xiaodong Li · Xin Yao

Published online: 17 October 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract In this paper, the interdependence between sub-
problems in a complex overall problem is investigated using a
benchmark problem called Travelling Thief Problem (TTP),
which is a combination of Travelling Salesman Problem
(TSP) and Knapsack Problem (KP). First, the analysis on
the mathematical formulation shows that it is impossible to
decompose the problem into independent sub-problems due
to the non-linear relationship in the objective function. There-
fore, the algorithm for TTP is not straightforward although
each sub-problem alone has been investigated intensively.
Then, two meta-heuristics are proposed for TTP. One is the
Cooperative Co-evolution (CC) that solves the sub-problems
separately and transfers the information between them in
each generation. The other is the Memetic Algorithm (MA)
that solves TTP as a whole. The comparative results showed
that MA consistently obtained much better results than both
the standard and dynamic versions of CC within compara-
ble computational budget. This indicates the importance of
considering the interdependence between sub-problems in an
overall problem like TTP.

Communicated by V. Loia.

Y. Mei (B) · X. Li
School of Computer Science and Information Technology,
RMIT University, Melbourne, VIC 3000, Australia
e-mail: yi.mei@rmit.edu.au

X. Li
e-mail: xiaodong.li@rmit.edu.au

X. Yao
School of Computer Science, University of Birmingham,
Birmingham B15 2TT, UK
e-mail: x.yao@cs.bham.ac.uk

Keywords Combinatorial optimization · Evolutionary
computation · Cooperative Co-evolution · Travelling Thief
Problem · Interdependence

1 Introduction

Real-world problems often involve a large number of deci-
sion variables and constraints, making it impossible to find
the global optimal solution within the given time budget.
When tackling large-scale optimization problems, the divide-
and-conquer approach is commonly adopted to decompose
the overall problem into smaller sub-problems (Boyd et al.
2007; Omidvar et al. 2014; Mei et al. 2014a). For many
real-world problems, the sub-problems are naturally defined.
For example, in supply chain management (Thomas and
Griffin 1996; Stadtler 2005; Melo et al. 2009), each stage
or operation such as procurement, production and distribu-
tion can correspond to a sub-problem. However, it is often
inevitable that such sub-problems are still interdependent on
each other. As mentioned in Michalewicz (2012), one of the
main complexity of real-world problems is the interdepen-
dence between sub-problems, which makes many conven-
tional approaches ineffective. As a result, even if each sub-
problem has been intensively investigated, it is still an open
question how to integrate the high-quality partial solutions
for the sub-problems to obtain a global optimum or at least
a high-quality solution for the overall problem. Therefore, it
is important to investigate how to tackle the interdependence
between sub-problems.

To facilitate such investigation, Bonyadi et al. (2013)
recently defined a benchmark problem called Travelling
Thief Problem (TTP). TTP is a combination of two well-
known combinatorial optimization problems, i.e., Travel-
ling Salesman Problem (TSP) and Knapsack Problem (KP).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-014-1487-2&domain=pdf

158 Y. Mei et al.

Specifically, a thief is to visit a set of cities and pick some
items from the cities to put in a rented knapsack. Each item
has a value and a weight. The knapsack has a limited capac-
ity that cannot be exceeded by the total weight of the picked
items. In the end, the thief has to pay the rent for the knapsack,
which depends on the travel time. TTP aims to find a tour for
the thief to visit all the cities exactly once, pick some items
along the way and finally return to the starting city, so that the
benefit of the visit, which is the total value of the picked items
minus the rent of the knapsack, is maximized. Since TSP and
KPhave been intensively investigated, TTP facilitates to con-
centrate on the interdependence between sub-problems.

An example of potential relevant real-world applications
of TTP is the capacitated arc routing problem (Dror 2000)
with service profit. Although there have been extensive stud-
ies for solving various forms of the capacitated arc routing
problem depending on different practical scenarios [e.g., the
classic model (Mei et al. 2009a, b; Tang et al. 2009; Fu et al.
2010), the multi-objective model (Mei et al. 2011a), the sto-
chasticmodel (Mei et al. 2010), the periodicmodel (Mei et al.
2011b) and the large-scalemodel (Mei et al. 2013, 2014a, b)],
two important practical issues have been overlooked so far.
One is the service profit, which is the profit that can be gained
by serving the customers. Each customer may have a differ-
ent profit/demand ratio. Thus, given the limited capacity of
the vehicle, one may need to serve only a subset of the cus-
tomerswith higher profit/demand ratios tomaximize the final
benefit. The other factor is the dependency of the travel cost
of the vehicle on its load. Obviously, a heavier load of the
vehicle leads to a higher consumption of petrol, and thus a
higher travel cost. In this case, it would be more desirable to
serve the customers with a higher demand first to save the
travel cost of the subsequent route. With the above factors
taken into account, the resultant arc routing problem can be
modelled as a TTP.

In this paper, the interdependence of TSP and KP in TTP
is investigated both theoretically and empirically. First, the
mathematical formulation of TTP is developed and analysed
to show how the two sub-problems interact with each other.
Then, a Cooperative Co-evolution algorithm (CC) (including
a standard and a dynamic version) and a Memetic Algorithm
(MA) are developed. CC solves TSP and KP separately, and
transfers the information between them in each generation.
MA solves TTP as a whole. Standard crossover and mutation
operators are employed. The proposed algorithms were com-
pared on the benchmark instances proposed in Bonyadi et al.
(2013), and the results showed that MA managed to obtain
much better solutions than CC for all the test instances. In
other words, with the same crossover and mutation opera-
tors for each sub-problem, a more proper way of integrating
the optimization process of the sub-problems can result in a
significantly better solution. This demonstrates that consider-
ing the interdependence between sub-problems is important

for obtaining high-quality solution for the overall problem.
Moreover, the theoretical analysis establishes the fundamen-
tal understanding of the problem.

The rest of the paper is organized as follows: TTP is for-
mulated and analysed in Sect. 2. After that, CC and MA are
depicted in Sect. 3. Then, the experimental studies are car-
ried out in Sect. 4. Finally, the conclusion and future work
are described in Sect. 5.

2 Travelling Thief Problem

In this section, TTP is introduced. The mathematical for-
mulation is first described in Sect. 2.1 and then analysed
in Sect. 2.2, particularly in terms of the interdependence
between the TSP and KP decision variables in the objective
function.

2.1 Mathematical formulation

TTP is a combination of TSP andKP. In TSP, n cities with the
distance matrix of Dn×n are given, where di j is the distance
from city i to j . In KP, there are m items. Each item i has
a weight wi , a value bi and a set of available cities Ai . For
example, Ai = {1, 2, 5} implies that item i canonly bepicked
from city 1, 2 or 5. A thief aims to visit all the cities exactly
once, pick items on the way and finally come back to the
starting city. The thief rents a knapsack to carry the items,
which has a capacity of Q. The rent of the knapsack is R per
time unit. The speed of the thief decreases linearly with the
increase of the total weight of carried items and is computed
by the following formula:

v = vmax − (vmax − vmin)
w̄
Q

, (1)

where 0 ≤ w̄ ≤ Q is the current total weight of the picked
items. When the knapsack is empty (w̄ = 0), the speed is
maximized (v = vmax). When the knapsack is full (w̄ = Q),
the speed is minimized (v = vmin). Then, the benefit gained
by the thief is defined as the total value of the picked items
minus the rent of the knapsack.

Figure 1 illustrates an example of a TTP solution that
travels through the path A–B–C–D–A, picking items 1 and
2 at cities A and C, respectively. The weights and values of
the items are w1 = b1 = 2 and w2 = b2 = 1. The numbers
associated with the arcs indicate the distances between the
cities. The total value of the picked items is b1+b2 = 3. The
travel speeds between each pair of cities are vAB = vBC =
4 − 3 · 2/3 = 2 and vCD = vDA = 1. Then, the total travel
time is (2+1.5)/2+ (1+1.5)/1 = 4.25. Finally, the benefit
of the travel is 3 − 1 · 4.25 = −1.25 (a loss of 1.25).

To develop a mathematical formulation for TTP, the 0–1
decision variables of xi j (i, j = 1, . . . , n), yi (i = 1, . . . , n)

123

Investigation of interdependence 159

Fig. 1 An example of a TTP solution

and zi j (i = 1, . . . , m; j = 1, . . . n) are defined. The TSP
decision variables xi j takes 1 if there is a path from city i
to j , and 0 otherwise. The starting city decision variables yi
equals 1 if city i is the starting city, and 0 otherwise. The KP
decision variables zi j takes 1 if item i is picked in city j , and
0 otherwise. Then, TTP can be formulated as follows:

max G(x, y, z) (2)

s.t.:
n�

i=0,i �= j

xi j = 1, j = 1, . . . , n (3)

n�

j=0, j �=i

xi j = 1, i = 1, . . . , n (4)

ui − u j + nxi j ≤ n − 1, 1 ≤ i �= j ≤ n (5)
n�

i=1

yi = 1 (6)

�

j∈Ai

zk j ≤ 1, k = 1, . . . , m (7)

�

j /∈Ai

zk j = 0, k = 1, . . . , m (8)

m�

k=1

n�

j=1

wi zk j ≤ Q (9)

xi j , yi , zk j ∈ {0, 1}, ui ≥ 0,
i, j = 1, . . . n; k = 1, . . . , m (10)

The objective (2) is tomaximize the benefitG(x, y, z), whose
definition is complex and thus will be described in details
later. The constraints (3)–(5) are standard constraints that
ensure the validity of the TSP solution. In Eq. (5), the ui ’s
(i = 1, . . . , n) are non-negative artificial variables to avoid
solutions with sub-tours. The constraint (6) indicates that
the tour has exactly one starting city. The constraints (7)–
(9) imply that each item is picked at most once from its set
of available cities, and the total weight of the picked items
cannot exceed the capacity of the knapsack. The constraint
(10) defines the domain of the variables.

In Eq. (2), G(x, y, z) is defined as follows:

G(x, y, z) =
m�

i=1

n�

j=1

bi zi j − R · T, (11)

where T is the total travelling time that is calculated as

T =
n�

j=1

y j Tj (12)

Tj =
n�

l=1

Pjl − Pj (l−1)

vmax − (vmax − vmin)w̄ jl/Q
(13)

Pjl =
l�

k1,...,kl=1
k1 �=···�=kl

(d jk1 + dk1k2 + · · · + dkl−1kl)

×x jk1xk1k2 . . . xkl−1kl (14)

w̄ jl =
l�

k1,...,kr =1
k1 �=···�=kr

� l�

r=1

m�

i=1

wi zikr

�

x jk1xk1k2 . . . xkl−1kl (15)

InEq. (12), T is defined as the total travelling time Tj start-
ing from city j where y j = 1. In Eq. (13), Pjl stands for the
distance of the path with l links starting from city j , and w̄ jl
is the current total weight of the picked items after visiting
l cities excluding the starting city j . They are calculated by
Eqs. (14) and (15), respectively.Note that x jk1xk1k2 . . . xkl−1kl

equals 1 if x jk1 = xk1k2 = · · · = xkl−1kl = 1, i.e., the solution
(x, y, z) includes an l-length path (j, k1, . . . , kl), and 0 oth-
erwise. Therefore, Eq. (14) only counts in the total distance
of the existing path in the solution (x, y, z), and Eq. (15) only
sums up the weights of the items picked along such path.

2.2 Problem analysis

From Eqs. (3)–(10), one can see that in the constraints,
the decision variables x, y and z are independent of each
other. Obviously, Eqs. (3)–(5) only consist of x, Eq. (6) only
includes y, and Eqs. (7)–(9) solely involve z. However, as
shown in Eqs. (11)–(15), there is a non-linear relationship
between the variables in the objective G(x, y, z). For exam-
ple, Eq. (15) includes the product of the zi j ’s and xi j ’s, and
Eq. (13) involves the quotient of the xi j ’s and zi j ’s. In the
above formulation, it is difficult to find an additively sep-
aration of G(x, y, z), if not impossible. That is, one can-
not find the functions G1(x), G2(y) and G3(z) such that
G(x, y, z) = G1(x) + G2(y) + G3(z). In other words, it is
impossible to decompose the overall problem P(x, y, z) into
independent sub-problems P1(x), P2(y) and P3(z) such that
OBJ (P) = OBJ (P1) + OBJ (P2) + OBJ (P3), where
OBJ (P) stands for the objective function of the problem P .

The above analysis enables us to better understand the rea-
son why solving the sub-problems individually can hardly
lead to high-quality solutions. Take TTP as an example, in

123

160 Y. Mei et al.

Bonyadi et al. (2013), a simple decomposition of TTP into
TSP and KP was designed by setting G1(x, y) = G(x, y, 0) ·
vmax/R = −td(x) and G3(z) = �m

i=1
�n

j=1 bi zi j , where
td(x) stands for the total distance of the TSP tour x, which
is independent of the starting city decision variables y. In
other words, TTP was decomposed into TSP and KP with
standard objective functions (minimizing total distance for
TSP and maximizing total value for KP). However, the pre-
liminary experimental results showed that such decomposi-
tion cannot lead to good TTP solutions. Based on the above
analysis, the reason is that the original objective G(x, y, z) is
not the summation of the G1(x, y) and G3(z). Thus, optimiz-
ing G1(x, y) and G3(z) is not directly related to optimizing
G(x, y, z) itself.

To summarize, the mathematical formulation of TTP
shows that the objective G(x, y, z) is not additively sepa-
rable. Therefore, one cannot expect that solving the TSP and
KP sub-problems individually will obtain competitive TTP
solutions since their objectives are not fully correlated. In
this paper, each solution is evaluated directly with respect to
the original objective G(x, y, z) provided that there is no TSP
and KP objective functions strongly correlated to G(x, y, z)
so far.

3 Solving TTP with meta-heuristics

According to the mathematical formulation described in
Sect. 2.1, it is seen that TTP is a complex nonlinear inte-
ger optimization problem. It is also obvious that TTP is NP-
hard, since it can be reduced to the TSP when wi = bi =
0,∀i = 1, . . . , m, which has been proved to be NP-hard
(Papadimitriou 1977). In this situation, meta-heuristics are
good alternatives as it has been demonstrated to be able
to obtain competitive solutions within a reasonable com-
putational budget for various NP-hard combinatorial opti-
mization problems (Mei et al. 2009a, 2011a, b; Tang et al.
2009; Fuellerer et al. 2010; Bolduc et al. 2010; De Giovanni
and Pezzella 2010; Sbihi 2010). In the following, two meta-
heuristic approaches are proposed for solving TTP. The for-
mer is a Cooperative Co-evolution algorithm (CC) (Potter
and De Jong 1994) that optimizes the TSP and KP decision
variables separately and exchange the information between
them regularly. The latter is a Memetic Algorithm (MA)
(Moscato 1989) which considers TTP as a whole and opti-
mizes all the decision variables simultaneously. Next, the two
algorithms are described respectively. Then, their computa-
tional complexities are analysed.

3.1 Cooperative Co-evolution

The two sub-problemsofTTP, i.e., TSPandKP, are bothwell-
known combinatorial optimization problems. They have

been investigated intensively, and various algorithms have
been proposed for solving them (Lin and Kernighan 1973;
Dorigo and Gambardella 1997; Horowitz and Sahni 1974;
Fidanova 2007). However, the algorithm for TTP is not
straightforward due to the interdependence between the
TSP and KP decision variables in the objective. In this
case, an intuitive approach is to optimize the TSP and KP
decision variables separately and transfer the information
between them during the optimization. The Cooperative Co-
evolution (CC) (Potter and De Jong 1994) is a standard
approach to this end. It decomposes the decision variables
into a number of subcomponents and evolves them sepa-
rately. The transfer of information is conducted by the col-
laboration between the subcomponents occurring in evalu-
ation. When evaluating an individual of a subcomponent,
it is combined with the collaborators (e.g., the individ-
ual with the best fitness value) that are selected from the
other subcomponents. Then, its fitness is set corresponding
to that of the combined individual(s) of the overall prob-
lem.

Asmentioned inWiegand et al. (2001), when selecting the
collaborators, there are three main issues that affect the per-
formance of the CC: collaborator selection pressure, collab-
oration pool size and collaboration credit assignment. They
are described as follows:

– Collaborator selection pressure: The degree of greedi-
ness of selecting a collaborator. In general, if the subcom-
ponents are independent from each other, then one should
set the strongest selection pressure, i.e., select the best-
so-far individuals as collaborators. On the other hand, for
the non-linearly interdependent subcomponents, a weak
selection pressure is more promising, e.g., selecting the
collaborators randomly (Wiegand et al. 2001). Another
empirical study (Stoen 2006) also showed that propor-
tional selection performs better than random selection.

– Collaboration pool size: The number of collaborators
selected from each other subcomponent. A larger pool
size leads to a more comprehensive exploration of the
solution space and thus a better final solution quality.
However, it induces a higher time complexity since it
requires more fitness evaluations to obtain the fitness of
an individual. A better alternative is to adaptively change
the pool size during the optimization process (Panait and
Luke 2005).

– Collaboration credit assignment: The method of assign-
ing the fitness value based on the objective values
obtained together with the collaborators. The empirical
studies (Wiegand et al. 2001) showed that the optimistic
strategy that assigns the fitness of an individual as the
objective value of its best collaboration generally leads
to the best results.

123

Investigation of interdependence 161

Algorithm 1 The CC for TTP
1: procedure CC- TTP(k)
2: Randomly initialize the subpopulations X(0) = {x(0)

1 , . . . , x(0)
N }

for TSP and Z(0) = {z(0)
1 , . . . , z(0)

N } for KP;
3: Randomly select CX(0) = {cx(0)

1 , . . . , cx(0)
k } ⊆ X(0);

4: Randomly select CZ(0) = {cz(0)
1 , . . . , cz(0)

k } ⊆ Z(0);
5: Set g = 0;
6: while Stopping criteria are not met do
7: (X(g+1),CX(g+1)) = solveTSP(X(g),CZ(g));
8: (Z(g+1),CZ(g+1)) = solveKP(Z(g),CX(g));
9: g ← g + 1;
10: end while
11: return (x(g)

1 , z(g)
1);

12: end procedure

Based on the previous studies, the collaboration strategy
in the proposedCC for TTP is set as follows:when evaluating
an individual of TSP (KP, resp.), the best k individuals of KP
(TSP, resp.) are selected to be collaborators. Then, the fitness
of the individual is set as the best objective value among the
k objective values.

The issue of collaboration in CC has been overlooked so
far, and most of the limited studies are focused on continu-
ous optimization problems (Potter and De Jong 1994; Potter
1997;Wiegand et al. 2001; Bull 2001; Panait and Luke 2005;
Stoen 2006). For the combinatorial optimization problems,
Bonyadi and Moghaddam (2009) proposed a CC for multi-
processor task scheduling, in which the collaboration pool
size equals the population size, i.e., all the individuals are
selected as collaborators. Ibrahimov et al. (2012) proposed a
CC for a simple two-silo supply chain problem,which selects
the best individual plus two random individuals for collabo-
ration.

The CC for TTP is depicted in Algo. 1. In lines 7 and
8, solveTSP() and solveKP() are described in Algos. 2 and
3, which have the same framework. First, two parents are
selected randomly and the crossover operator is applied to
them. Then, the local search process is conducted with the
probability of Pls . Finally, all the generated offsprings are
combined with the original population and the best N (k,
resp.) individuals are selected to form the new population
(collaborators, resp.). In the algorithm, the fitness function
F() returns the best objective value of all the collaborations,
i.e.,

F(x,CZ) = max
l∈{1,...,k}{G(x, czl)} (16)

F(z,CX) = max
l∈{1,...,k}{G(cxl , z)} (17)

Note that in Eqs. (16) and (17), the objective function
G(x, z) does not take the starting city decision variables y
into account. This is because in the algorithm, a TTP solution

Algorithm 2 Solve the TSP for one generation
1: procedure solveTSP(X,CZ)
2: X′ ← X;
3: for i = 1 → Nof f do � Nof f is the number of offsprings
4: Y = ∅;
5: Randomly pick two individuals xp1 and xp2 from X;
6: xxover = OX(xp1 , xp2);
7: if xxover is different from all the individuals in X′ then
8: Y = {xxover };
9: end if
10: Randomly sample r between 0 and 1;
11: if r < Pls then
12: xls = xxover ;
13: repeat
14: xnt = argmax{F(xnb,CZ)|xnb ∈ 2-opt(xls)};
15: if F(xnt ,CZ) > F(xls ,CZ) then
16: xls ← xnt ;
17: end if
18: until there is no improvement on xls
19: if xls is different from all the individuals in X′ then
20: Y = {xls};
21: end if
22: end if
23: X′ ← X′ ∪ Y;
24: end for
25: Sort X′ in the decreasing order of F(·) to obtain X′′;
26: Xnt = {x′′

1 , . . . , x
′′
N }, CXnt = {x′′

1 , . . . , x
′′
k };

27: return (Xnt ,CXnt);
28: end procedure

Algorithm 3 Solve the KP for one generation
1: procedure solveKP(Z,CX)
2: Z′ ← Z;
3: for i = 1 → Nof f do � Nof f is the number of offsprings
4: Y = ∅;
5: Randomly pick two individuals zp1 and zp2 from Z;
6: zxover = OPX(zp1 , zp2);
7: if zxover is different from all the individuals in Z′ then
8: Y = {zxover };
9: end if
10: Randomly sample r between 0 and 1;
11: if r < Pls then
12: zls = zxover ;
13: repeat
14: z f li p = argmax{F(znb,CX)|znb ∈ Flip(zls)};
15: zex = argmax{F(znb,CX)|znb ∈ EX(zls)};
16: znt = argmax{F(z f li p,CX), F(zex ,CX)};
17: if F(znt ,CX) > F(zls ,CX) then
18: zls ← znt ;
19: end if
20: until there is no improvement on zls
21: if zls is different from all the individuals in Z′ then
22: Y = {zls};
23: end if
24: end if
25: Z′ ← Z′ ∪ Y;
26: end for
27: Sort Z′ in the decreasing order of F(·) to obtain Z′′;
28: Znt = {z′′

1, . . . , z
′′
N }, CZnt = {z′′

1, . . . , z
′′
k };

29: return (Znt ,CZnt);
30: end procedure

123

162 Y. Mei et al.

Algorithm 4 Calculation of the benefit of a TTP solution
G(x, z)
1: procedure G(x, z)
2: Set w̄ = 0, T̄ = 0, b̄ = 0;
3: for i = 1 → n − 1 do
4: for j = 1 → m do
5: if z j = i then
6: w̄ ← w̄ + w j , b̄ ← b̄ + b j ;
7: end if
8: end for
9: T̄ ← T̄ + dxi ,xi+1/(vmax − (vmax − vmin)w̄/Q);
10: end for
11: T̄ ← T̄ + dxn ,x1/(vmax − (vmax − vmin)w̄/Q);
12: G(x, z) = b̄ − R · T̄ ;
13: return G(x, z);
14: end procedure

(x, z) is represented as the combination of a TSP tour x =
(x1, . . . , xn) and a KP picking plan z = (z1, . . . , zm). x is
a permutation of the n cities, with xi ∈ {1, . . . , n},∀i =
1, . . . , n, and zi ∈ Ai ∪{0},∀i = 1, . . . , m indicates the city
to pick the item i . zi = 0 implies that item i is not picked
throughout the way. The TSP tour naturally starts from city
x1. Thus, the starting city is implicitly determined by x, and
y can be eliminated. Given a TTP solution (x, z), its benefit
is computed by Algo. 4. The computational complexity of
G(x, z) is O(nm).

Conventional crossover and mutation operators for the
TSP and KP are adopted here. Specifically, the ordered
crossover (Oliver et al. 1987) and 2-opt (Croes 1958) oper-
ators are used for the TSP, and the traditional one-point
crossover, flip and exchange operators are used for the KP.
They are described in details as follows:

Ordered Crossover (OX): Given two tours x1 = (x11, . . . ,
x1n) and x2 = (x21, . . . , x2n), two cutting positions 1 ≤
p ≤ q ≤ n are randomly selected, and (x1p, . . . , x1q)
is copied to the corresponding positions of the offspring
(x ′

p, . . . , x ′
q). After that, x2 is scanned from position q + 1

to the end and then from beginning to position q. The
unduplicated elements are placed one after another in x′
from position q + 1 to the end, and then from beginning
to position p − 1. The complexity of the OX operator
is O(n).

2-opt: Given a tour x = (x1, . . . , xn), two cutting
positions 1 ≤ p < q ≤ n are chosen and the sub-
tour in between is inverted. The offspring is x′ = (x1,
. . . , xp−1, xq , xq−1, . . . , xp, xq+1, . . . , xn).During the local
search, the neighbourhood size defined by the 2-opt operator
is O(n2).

One-Point Crossover (OPX): Given two picking plans
z1 = (z11, . . . , z1m) and z2 = (z21, . . . , z2m), a cutting posi-
tion 1 ≤ p ≤ m is picked, and then the offspring is set to
z′ = (z11, . . . z1(p−1), z2p, . . . z2m). The OPX operator has a
computational complexity of O(m).

Algorithm 5 The MA for solving the overall TTP
1: procedure MA- TTP
2: Randomly initialize (X(0),Z(0))={(x(0)

1 , z(0)
1), . . . , (x(0)

N , z(0)
N)};

3: Set g = 0;
4: while Stopping criteria are not met do
5: (X(g+1),Z(g+1)) = solveTTP(X(g),Z(g));
6: g ← g + 1;
7: end while
8: return (x(g)

1 , z(g)
1);

9: end procedure

Flip: Given a picking plan z = (z1, . . . , zm), a position
1 ≤ p ≤ m is selected, and z p is replaced by a different value
z′

p ∈ Ap ∪ {0}. During the local search, the neighbourhood
size defined by the Flip operator is O(

�m
i=1 |Ai |) = O(nm).

Exchange (EX): Given a picking plan z = (z1, . . . , zm),
two positions 1 ≤ p < q ≤ m are selected, and the values
of z p and zq are exchanged. To keep feasibility, it is required
that zq ∈ Ap ∪ {0} and z p ∈ Aq ∪ {0}. During the local
search, the neighbourhood size defined by the EX operator
is O(m2).

Besides the above CC, which will be referred to as the
Standard CC (SCC) for the sake of clarity, a variation named
the Dynamic CC (DCC) that dynamically updates the col-
laborators within each generation is developed. From lines
7 and 8 of Algo. 1, one can see that the collaborators are
updated after all the sub-problems have been solved. There-
fore, within each generation, the latter sub-problem (i.e., KP)
cannot use the updated collaborators obtained by the former
sub-problem (i.e., TSP). To increase efficiency, theDCC sim-
ply replaces line 8 with the following codes:

(Z(g+1),CZ(g+1)) = solveKP(Z(g),CX(g+1));
In other words, the old collaborators CX(g) is replaced by
the updated ones CX(g+1).

3.2 Memetic Algorithm

Based on the above crossover and local search operators, a
MA is proposed for the overall problem. In the MA, the TSP
andKP are solved together by combining the aforementioned
operators. To be specific, the crossover of a TTP solution
is conducted by applying the OX and OPX operators to its
tour and picking plan simultaneously. Then, during the local
search, the neighbourhood of the current solution is defined
as the union of the neighbourhoods induced by all the 2-opt,
Flip and EX operators.

The framework of the proposed MA is described in Algo.
5. In line 5, solveTTP() is described in Algo. 6. The only dif-
ference between solveTTP() and solveTSP() or solveKP() is
in lines 6–7 and lines 15–18, which are the crossover and
neighbourhood definition during the local search, respec-
tively.

123

Investigation of interdependence 163

Algorithm 6 Solve TTP for one generation
1: procedure solveTTP(X,Z)
2: (X′,Z′) ← (X,Z);
3: for i = 1 → Nof f do � Nof f is the number of offsprings
4: Y = ∅;
5: Randomly pick (xp1 , zp1) and (xp2 , zp2) from (X,Z);
6: xxover = OX(xp1 , xp2);
7: zxover = OPX(zp1 , zp2);
8: if (xxover , zxover) is not a clone in (X′,Z′) then
9: Y = {(xxover , zxover)};
10: end if
11: Randomly sample r between 0 and 1;
12: if r < Pls then
13: (xls , zls) = (xxover , zxover);
14: repeat
15: xopt = argmax{G(xnb, zls)|xnb ∈ 2-opt(xls)};
16: z f li p = argmax{G(xls , znb)|znb ∈ Flip(zls)};
17: zex = argmax{G(xls , znb)|znb ∈ EX(zls)};
18: (xnt , znt) = argmax{G(xopt , zls), G(xls , z f li p),

G(xls , zex)};
19: if G(xnt , znt) > G(xls , zls) then
20: (xls , zls) ← (xnt , znt);
21: end if
22: until there is no improvement on (xls , zls)
23: if (xls , zls) is not a clone in (X′,Z′) then
24: Y = {(xls , zls)};
25: end if
26: end if
27: (X′,Z′) ← (X′,Z′) ∪ Y;
28: end for
29: Sort (X′,Z′) in the decreasing order of G(·) to obtain (X′′,Z′′);
30: Xnt = {x′′

1 , . . . , x
′′
N }, Znt = {z′′

1, . . . , z
′′
N };

31: return (Xnt ,Znt);
32: end procedure

3.3 Computational complexity analysis

The computational complexities of the proposed algorithms
are as follows:

O(CC) = gmax(O(solveTSP) + O(solveKP)) (18)

O(solveTSP) = Nof f (O(OX) + O(F) + Pls L1S1Ols(F))
+O(sort) (19)

O(solveKP) = Nof f (O(OPX) + O(F) + Pls L2S2Ols(F))
+O(sort) (20)

O(MA) = gmaxO(solveTTP) (21)

O(solveTTP) = Nof f (O(OX) + O(OPX) + 2O(G)
+Pls L3S3Ols(G)) + O(sort), (22)

where gmax is the maximal number of generations, and
Nof f is the number of offsprings generated in each gener-
ation. L1, L2 and L3 stand for the average number of local
search steps for TSP, KP and TTP, and S1, S2 and S3 are
the neighbourhood sizes of the local search processes in
TSP, KP and TTP, respectively. O(·) stands for the com-
plexity of the corresponding algorithm or operation, and
Ols(·) indicates the complexity of evaluating a neighbour-

ing solution with respect to F or G during the local search.
Given the current solution s and G(s), the evaluation for
each neighbouring solution may be much faster by com-
puting the difference on G caused by the modification, i.e.,
G(s′) = G(s)+�G(s, s′). For example, when applying the 2-
opt operator to TSP thatminimizes the total distance,we have
Ols(tc(s′)) = O(�tc(s, s′)) = O(1), which is much lower
than O(tc(s)) = O(n). However, in TTP, Ols(G) = O(G) =
O(nm), since it is still necessary to calculate the speed
between each pair of adjacent cities in the tour. Then, based
on Eqs. (16) and (17), we have O(F) = kO(G) = kO(nm)
and Ols(F) = kOls(G) = kO(nm).

Besides, we already have

S1 = S(2-opt) = O(n2) (23)

S2 = S(Flip) + S(EX) = O(nm) + O(m2) (24)

S3 = S(2-opt) + S(Flip) + S(EX)
= O(n2) + O(nm) + O(m2) (25)

It is also known that O(OX) = O(n), O(OPX) = O(m)
and O(sort) = O(Nof f log Nof f). Clearly, the complexities
of the algorithms are dominated by that of the local search.
Then, we have

O(CC) = kgmaxNof f Pls(L1O(n3m)
+L2O(n2m2) + L2O(nm3))) (26)

O(MA) = gmaxNof f Pls(L3O(n3m)
+L3O(n2m2) + L3O(nm3))) (27)

Under the assumption that L1, L2 and L3 are nearly the same,
the computational complexity ofCC is approximately k times
as that of MA. In other words, when k = 1, CC and MA is
expected to have comparable computational complexity. This
will be verified in the experimental studies.

4 Experimental studies

In this section, the proposed CC andMAare compared on the
TTP benchmark instances to investigate their performance.

4.1 Experimental settings

A representative subset of the TTP benchmark instances gen-
erated by Bonyadi et al.1 is selected to compare the per-
formance of the proposed algorithms. The benchmark set
includes instances with various features with the number of
cities n from 10 to 100 and number of items m from 10 to
150. For each parameter setting of the problem, 10 instances
were generated randomly. As a result, there are totally 540

1 The benchmark instances can be downloaded from http://cs.adelaide.
edu.au/~ec/research/ttp.php.

123

http://cs.adelaide.edu.au/~ec/research/ttp.php
http://cs.adelaide.edu.au/~ec/research/ttp.php

164 Y. Mei et al.

instances. For the sake of simplicity, for each parameter set-
ting with 10 ≤ n, m ≤ 100, only the first instance is cho-
sen from the 10 generated instances as a representative. The
selected subset consists of 39 instances. Note that for some
instances, the benefit may be negative due to the insufficient
values of the items compared to the knapsack rent.

The complete parameter settings of the compared algo-
rithms are given in Table 1. The population size, number
of offsprings and probability of local search are set in the
standard way that has been verified to be effective on sim-

Table 1 The parameter settings of the compared algorithms

Parameter Description Value

k Number of collaborators in
CC

1, 3

N Population (subpopulation
for CC) size

30

Nof f Number of offsprings 6 · psi ze
Pls Probability of local search 0.2
gmax Maximal generations 100 for MA;

100/k for CCs

Table 2 Mean and standard
deviation of the benefits
obtained by the 30 independent
runs of the proposed algorithms
on the benchmark instances
from 10-10-1-25 to 20-30-1-75

The result of the algorithm that
performed significantly better
than the other compared
algorithms is marked in bold

Instance k = 1 k = 3 MA

SCC DCC SCC DCC

10-10-1-25
Mean −17,115.3 −17,192.8 −16,820.7 −16,773.1 −16,566.3
SD 461.5 427.1 406.6 322.5 0.0

10-10-1-50
Mean 1,887.2 1,775.1 1,925.8 1,904.8 1,994.5
SD 134.7 192.5 66.1 59.2 0.0

10-10-1-75
Mean −2,258.4 −2,629.4 −1,925.7 −1,980.2 −1,877.6
SD 402.5 417.1 137.9 223.0 0.0

10-15-1-25
Mean 217.6 111.7 349.2 260.7 389.4
SD 154.6 196.6 65.2 115.3 0.0

10-15-1-50
Mean 1,028.6 846.7 1,188.2 1,119.6 1,295.1
SD 270.7 287.6 144.2 197.1 0.0

10-15-1-75
Mean −6,525.7 −6,680.0 −6,332.4 −6,341.8 −6,261.8
SD 390.0 345.1 97.3 92.5 0.0

20-10-1-25
Mean 721.3 620.6 683.8 662.5 901.6
SD 141.5 99.4 47.9 70.1 0.0

20-10-1-50
Mean 1,995.5 1,955.7 1,939.4 1,933.5 2,238.2
SD 148.9 180.4 87.6 96.6 1.0

20-10-1-75
Mean −1,935.1 −2,105.2 −1,729.8 −1,859.7 −1,596.7
SD 249.2 306.4 180.5 256.3 0.0

20-20-1-25
Mean −1,777.8 −1,920.3 −1,644.1 −1,800.5 −1,581.7
SD 202.8 361.8 106.1 192.3 0.0

20-20-1-50
Mean −2,518.9 −2,635.6 −2,048.0 −2,037.7 −1,685.8
SD 603.7 612.4 394.9 469.6 0.0

20-20-1-75
Mean −44,352.9 −45,522.7 −44,058.3 −44,309.7 −43,541.8
SD 933.4 1,386.7 542.3 756.7 0.0

20-30-1-25
Mean −1,624.3 −1,814.8 −1,350.0 −1,515.0 −1,219.5
SD 543.6 500.9 111.8 329.9 4.8

20-30-1-50
Mean −1,013.0 −989.3 −598.6 −760.0 −337.0
SD 708.6 803.3 316.8 409.6 0.0

20-30-1-75
Mean −18,494.8 −19,204.0 −18,393.9 −18,640.2 −17,226.9
SD 1,186.5 1,443.7 852.4 1,171.0 135.1

123

Investigation of interdependence 165

Table 3 Mean and standard
deviation of the benefits
obtained by the 30 independent
runs of the proposed algorithms
on the benchmark instances
from 50-15-1-25 to 50-75-1-75

The result of the algorithm that
performed significantly better
than the other compared
algorithms is marked in bold

Instance k = 1 k = 3 MA

SCC DCC SCC DCC

50-15-1-25
Mean −1,266.1 −1,493.3 −1,326.6 −1,358.1 −1,151.7
SD 136.1 217.5 112.9 142.9 15.6

50-15-1-50
Mean −1,476.9 −1,775.1 −1,474.4 −1,709.2 −1,100.2
SD 232.4 347.4 222.7 297.8 62.9

50-15-1-75
Mean −23,999.8 −24,523.5 −24,104.9 −24,372.0 −23,221.5
SD 431.7 525.1 305.5 470.5 0.0

50-25-1-25
Mean −12,569.7 −12,964.8 −12,393.4 −12,363.0 −11,701.4
SD 523.7 599.8 415.4 412.2 0.0

50-25-1-50
Mean −153,764.3 −154,996.7 −153,233.6 −154,297.0 −150,781.9
SD 1,766.8 943.0 1,962.8 1,746.6 210.8

50-25-1-75
Mean −27,582.0 −27,816.8 −27,460.2 −27,311.9 −26,022.0
SD 667.3 884.9 708.3 814.9 153.0

50-50-1-25
Mean −20,895.9 −21,536.8 −20,599.1 −21,280.3 −19,495.6
SD 1,002.3 1,120.2 971.7 980.2 283.6

50-50-1-50
Mean −125,718.1 −126,632.7 −124,665.5 −125,709.3 −123,097.5
SD 1,759.2 3,111.9 1,347.8 2,246.2 344.1

50-50-1-75
Mean −258,700.5 −262,492.2 −257,906.2 −259,926.5 −253,588.4
SD 3,610.6 4,451.3 4,150.0 4,269.2 930.4

50-75-1-25
Mean −57,809.0 −59,733.5 −57,730.3 −58,590.6 −56,247.7
SD 1,651.9 1,631.1 1,507.8 2,077.8 615.9

50-75-1-50
Mean −11,871.2 −13,018.4 −11,549.8 −12,519.2 −8,988.6
SD 1,899.1 2,085.6 2,094.8 2,028.2 47.4

50-75-1-75
Mean 17,035.7 15,965.1 17,174.0 16,964.9 18,931.6
SD 1,445.8 1,772.3 870.0 948.1 73.6

ilar combinatorial optimization problems (Tang et al. 2009;
Mei et al. 2011a). For CC, k = 1 and k = 3 are tested to
investigate the effect of k on the performance of CC. The
number of generations is set to 100 for MA and CC with
k = 1. For CC with k = 3, the number of generations is
set to 100/k = 34 to make the compared algorithms have
similar total number of fitness evaluations. Each algorithm
is run 30 times independently.

4.2 Results and discussions

First, the average performance of the proposed algorithms are
compared. Tables 2, 3, 4 show the mean and standard devia-
tion of the final benefits obtained by the 30 independent runs
of SCC, DCC and MA on the benchmark instances, whose
features are included in their names. For an instance named
n–m–ID–� , n andm stand for the number of cities and items,
ID is the identity of the instance (all are 1’s here, since they

are the first instance in each category), and � indicates the
tightness of the capacity constraint, which is the capacity of
the knapsack over the total weight of the items. For each
instance, the result of the algorithm that performed signifi-
cantly better than the other compared algorithms using the
Wilcoxon’s rank sum test (Wilcoxon 1945) under the confi-
dence level of 0.05 is marked in bold.

It can been seen that MA obtained significantly better
results than SCC and DCC with both k = 1 and k = 3 on all
the 39 benchmark instances, with larger mean and smaller
standard deviation. This implies that MA can obtain better
solutions more reliably. For both tested k values, SCC gen-
erally obtained better solutions than DCC, which indicates
that it is better to update the collaborators after solving all the
sub-problems. This is because updating the collaborators too
frequently will mislead the search to a local optimum quickly
and make it difficult to jump out of the local optimum due to
the strong selection pressure.

123

166 Y. Mei et al.

Table 4 Mean and standard
deviation of the benefits
obtained by the 30 independent
runs of the proposed algorithms
on the benchmark instances
from 100-10-1-25 to
100-100-1-75

The result of the algorithm that
performed significantly better
than the other compared
algorithms is marked in bold

Instance k = 1 k = 3 MA

SCC DCC SCC DCC

100-10-1-25
Mean −1,598.6 −1,603.8 −1,521.1 −1,550.6 −1,452.0
SD 104.0 81.1 58.4 71.8 8.7

100-10-1-50
Mean −1,708.5 −1,919.0 −1,940.0 −1,965.5 −1,620.0
SD 77.0 202.0 90.2 108.0 36.0

100-10-1-75
Mean −9,974.2 −10,270.7 −9,838.7 −9,835.8 −9,420.8
SD 318.8 326.5 254.7 266.9 38.1

100-25-1-25
Mean −17,731.5 −17,990.0 −17,534.1 −17,734.0 −16,916.2
SD 440.9 705.2 320.3 414.5 92.3

100-25-1-50
Mean −12,558.3 −12,861.6 −12,474.2 −12,642.6 −11,708.5
SD 450.9 593.0 321.2 422.2 147.1

100-25-1-75
Mean −83,477.8 −84,017.5 −83,679.1 −83,612.2 −81,099.3
SD 765.9 1,064.0 754.0 1,319.4 597.7

100-50-1-25
Mean −89,396.4 −89,761.7 −89,699.0 −89,785.8 −87,898.0
SD 1,090.1 956.5 1,241.0 1,232.4 477.6

100-50-1-50
Mean −26,801.8 −27,615.3 −26,980.4 −27,363.8 −25,571.8
SD 745.9 1,262.0 652.4 969.4 95.2

100-50-1-75
Mean −47,060.8 −47,577.0 −47,162.0 −47,789.6 −44,965.7
SD 1,046.4 1,492.4 1,255.3 1,107.5 296.5

100-100-1-25
Mean 1,222.8 1,148.5 957.8 829.8 2,282.0
SD 795.3 845.4 429.9 505.3 150.1

100-100-1-50
Mean −66,873.1 −67,377.2 −66,590.0 −67,453.6 −62,986.7
SD 1,885.5 2,244.6 1,776.7 2,199.2 729.8

100-100-1-75
Mean −141,786.2 −141,796.0 −141,958.2 −142,773.6 −135,169.7
SD 3,118.6 3,503.9 3,435.2 3,688.5 1,237.0

Among the proposed CC algorithms, SCC and DCC with
k = 3 outperformed the ones with k = 1 for all the instances
except the large ones (n = 100 and m ≥ 50). This shows
that for the instances with small or medium solution space,
a larger k can lead to a better result since it has a wider
neighborhood and thus is stronger in exploration. On the
other hand, for the large-scale instances, a smaller k is a
better option to allow more generations given a fixed total
number of fitness evaluations.

Tables 5, 6, 7 show the benefits of the best solution and
average number of fitness evaluations of the proposed algo-
rithms on the benchmark instances. The best benefits among
the compared ones are marked in bold. During the local
search, each computation of the objective value of the neigh-
bouring solutions is considered as a complete fitness evalua-
tion, given that there is no simplified evaluation as in TSP or
KP alone.

From the tables, one can see that the best performance of
the algorithms is consistent with the average performance.

MA performed the best. It managed to obtain the best solu-
tions on all the benchmark instances. SCC with k = 1
comes next, obtaining the best solutions on 25 out of the
39 instances. DCC with k = 1 performed worse than the
corresponding SCC, only achieving the best solutions on 15
instances. Both SCC and DCC with k = 3 obtained the best
solutions on 13 instances. In terms of computational effort,
one can see that the compared algorithms have compara-
ble average number of fitness evaluations when the prob-
lem size is not large. This is consistent with the analysis in
Eqs. (26) and (27) and indicates that the average number of
local search steps L1, L2 and L3 are nearly the same for the
small- and medium-sized instances. For the larger instances
(m, n ≥ 50), SCCs require much more fitness evaluations
than the other compared algorithms. Note that DCC gener-
ally needs less fitness evaluations than SCC, especially on
the larger instances. This is because the dynamic change of
the collaborators speeds up the convergence of the search
process and thus reduces the number of steps (L1 and L2

123

Investigation of interdependence 167

Table 5 The benefits of the best
solution and average number of
fitness evaluations of the
proposed algorithms from
10-10-1-25 to 20-30-1-75

The best benefits among the
compared ones are marked in
bold

Instance k = 1 k = 3 MA

SCC DCC SCC DCC

10-10-1-25
Benefit −16,566.3 −16,566.3 −16,566.3 −16,566.3 −16,566.3
No. eval 1.82e+06 2.08e+06 1.59e+06 1.64e+06 1.78e+06

10-10-1-50
Benefit 1,994.5 1,994.5 1,963.6 1,963.6 1,994.5
No. eval 1.88e+06 1.88e+06 1.57e+06 1.47e+06 2.17e+06

10-10-1-75
Benefit −1,877.6 −1,877.6 −1,877.6 −1,877.6 −1,877.6
No. eval 2.28e+06 2.62e+06 1.89e+06 1.70e+06 2.41e+06

10-15-1-25
Benefit 389.4 389.4 389.4 389.4 389.4
No. eval 3.10e+06 3.39e+06 2.57e+06 2.39e+06 3.53e+06

10-15-1-50
Benefit 1,295.1 1,241.8 1,295.1 1,241.8 1,295.1
No. eval 3.53e+06 3.99e+06 2.51e+06 2.25e+06 3.41e+06

10-15-1-75
Benefit −6,261.8 −6,261.8 −6,261.8 −6,317.3 −6,261.8
No. eval 4.57e+06 5.61e+06 3.27e+06 2.67e+06 5.24e+06

20-10-1-25
Benefit 901.6 828.7 716.8 709.2 901.6
No. eval 4.74e+06 4.44e+06 5.05e+06 4.68e+06 5.03e+06

20-10-1-50
Benefit 2,238.4 2,238.4 2,064.8 2,064.8 2,238.4
No. eval 6.18e+06 5.73e+06 5.66e+06 5.22e+06 6.53e+06

20-10-1-75
Benefit −1,596.7 −1,596.7 −1,596.7 −1,596.7 −1,596.7
No. eval 5.82e+06 5.88e+06 5.56e+06 4.87e+06 8.71e+06

20-20-1-25
Benefit −1,581.7 −1,581.7 −1,581.7 −1,581.7 −1,581.7
No. eval 8.63e+06 1.12e+07 8.34e+06 7.54e+06 1.17e+07

20-20-1-50
Benefit −1,685.8 −1,685.8 −1,685.8 −1,685.8 −1,685.8
No. eval 9.41e+06 8.90e+06 1.05e+07 7.40e+06 1.16e+07

20-20-1-75
Benefit −43,541.8 −43,541.8 −43,541.8 −43,541.8 −43,541.8
No. eval 1.24e+07 1.49e+07 1.11e+07 8.43e+06 1.26e+07

20-30-1-25
Benefit −1,218.3 −1,237.3 −1,218.3 −1,218.3 −1,218.3
No. eval 1.63e+07 2.21e+07 1.47e+07 1.04e+07 2.22e+07

20-30-1-50
Benefit −337.0 −337.0 −337.0 −337.0 −337.0
No. eval 1.85e+07 2.31e+07 1.73e+07 1.17e+07 1.34e+07

20-30-1-75
Benefit −17,191.4 −17,191.4 −17,191.4 −17,191.4 −17,191.4
No. eval 2.42e+07 1.78e+07 2.41e+07 1.14e+07 1.28e+07

in Eq. (26)) to reach the local optimum. Besides, given the
same number of generations, the number of fitness eval-
uations increases significantly with the increase of n and
m, which is mainly induced by the increase of the neigh-
bourhood sizes S1 = O(n2), S2 = O(nm) + O(m2) and
S3 = O(n2) + O(nm) + O(m2).

The convergence curves of the compared algorithms on
selected representative instances are shown in Figs. 2, 3, 4,
5, 6, 7, 8, where the x-axis and y-axis stand for the fitness
evaluations and the average benefit of the best-so-far solu-
tions of different runs, respectively. The selected instances

include the following four diversified categories: (1) small n
and m; (2) small n and large m; (3) large n and small m and
(4) large n and m. Obviously, MA performed significantly
better than the CC algorithms. In almost all the instances, the
curve ofMA is consistently above that of the other compared
algorithms. Since MA solves TTP as a whole, its outperfor-
mance over the CC algorithms verifies the importance of
considering the interdependence between the sub-problems
of TTP.

Between the CC algorithms, one can see that DCC con-
verges much faster, but generally obtained worse final results

123

168 Y. Mei et al.

Table 6 The benefits of the best
solution and average number of
fitness evaluations of the
proposed algorithms from
50-15-1-25 to 50-75-1-75

The best benefits among the
compared ones are marked in
bold

Instance k = 1 k = 3 MA

SCC DCC SCC DCC

50-15-1-25
Benefit −1,136.1 −1,160.6 −1,213.4 −1,236.9 −1,136.1
No. eval 4.12e+07 2.92e+07 4.12e+07 3.36e+07 4.30e+07

50-15-1-50
Benefit −1,059.5 −1,189.2 −1,194.9 −1,294.1 −1,059.5
No. eval 4.85e+07 3.10e+07 4.43e+07 3.24e+07 4.36e+07

50-15-1-75
Benefit −23,221.5 −23,542.6 −23,347.0 −23,221.5 −23,221.5
No. eval 3.94e+07 3.32e+07 3.63e+07 3.10e+07 4.26e+07

50-25-1-25
Benefit −11,701.4 −11,701.4 −11,893.3 −11,893.3 −11,701.4
No. eval 5.19e+07 4.26e+07 5.52e+07 3.89e+07 5.90e+07

50-25-1-50
Benefit −150,705.8 −154,033.0 −150,729.4 −150,729.4 −150,705.8
No. eval 3.73e+07 3.01e+07 3.99e+07 3.64e+07 3.60e+07

50-25-1-75
Benefit −26,017.8 −26,259.9 −26,017.8 −25,911.7 −25,911.7
No. eval 6.07e+07 5.47e+07 5.40e+07 4.12e+07 7.47e+07

50-50-1-25
Benefit −19,391.0 −19,410.1 −19,646.6 −19,674.5 −19,391.0
No. eval 1.18e+08 5.73e+07 1.10e+08 5.62e+07 8.86e+07

50-50-1-50
Benefit −123,524.3 −122,964.5 −122,793.1 −122,793.1 −122,793.1
No. eval 1.30e+08 5.26e+07 1.47e+08 6.65e+07 9.26e+07

50-50-1-75
Benefit −253,204.8 −254,506.7 −253,247.2 −253,247.2 −253,204.8
No. eval 1.53e+08 5.03e+07 1.33e+08 6.39e+07 7.39e+07

50-75-1-25
Benefit −55,895.0 −56,600.1 −56,005.5 −55,931.8 −55,836.8
No. eval 1.92e+08 5.08e+07 1.91e+08 6.79e+07 1.04e+08

50-75-1-50
Benefit −8,961.4 −8,961.4 −9,441.9 −9,403.1 −8,961.4
No. eval 3.64e+08 9.42e+07 3.53e+08 9.55e+07 1.52e+08

50-75-1-75
Benefit 18,952.0 18,952.0 17,998.9 17,998.9 18,952.0
No. eval 4.37e+08 4.01e+08 4.74e+08 1.25e+08 1.43e+08

than the corresponding SCC. This implies that the combina-
tion of k = 1 and dynamic update of the collaborators leads
to such a strong selection pressure that the search process
become stuck in a local optimum at very early stage and
can hardly jump out of it. In most of the instances, the CC
algorithms with k = 3 converged slower than the ones with
k = 1 at the earlier stage of the search. This is due to the
much larger number of fitness evaluations (nearly k times)
within each generation. However, their curves intersect the
ones with k = 1 (e.g., Figs. 4, 7), and finally outperformed
the CCs with k = 1.

In summary, the competitiveness of the proposed MA
sheds a light on developing algorithms for complex real-
world problems consisting of interdependent sub-problems.
First, by solving TTP as a whole, MA can be seen as consid-
ering the interdependence between the sub-problems more
comprehensively than CC. Second, the properly designed
framework and employed operators leads to a comparable
computational complexity with CC. In other words, MA

explores the solution space more effectively than CC by
choosing better “directions” during the search process. This
is similar to the ideas of the numerical optimization methods
that use the gradient information such as the steepest descent
and Quasi-Newton methods, and CMA-ES (Hansen 2006) in
the evolutionary computation field. This implies that when
tackling the interdependence between the sub-problems, the
major issues should be designing a proper measure that can
reflect the gradient or dependence of the objective value on
the change of decision variables in the complex combina-
torial solution space, based on which one can find the best
“direction” during the search process.

5 Conclusion

This paper investigates the interdependence between sub-
problems of a complex problem in the context of TTP,
which is a simple but representative benchmark problem.

123

Investigation of interdependence 169

Table 7 The benefits of the best
solution and average number of
fitness evaluations of the
proposed algorithms from
100-10-1-25 to 100-100-1-75

The best benefits among the
compared ones are marked in
bold

Instance k = 1 k = 3 MA

SCC DCC SCC DCC

100-10-1-25
Benefit −1,450.3 −1,448.0 −1,445.4 −1,440.1 −1,437.2
No. eval 1.65e+08 1.11e+08 1.94e+08 1.64e+08 1.40e+08

100-10-1-50
Benefit −1,589.3 −1,619.8 −1,805.4 −1,800.5 −1,589.3
No. eval 2.10e+08 1.29e+08 2.34e+08 1.95e+08 1.69e+08

100-10-1-75
Benefit −9,423.4 −9,663.8 −9,485.5 −9,460.3 −9,331.3
No. eval 1.91e+08 1.39e+08 2.51e+08 2.16e+08 1.99e+08

100-25-1-25
Benefit −16,866.6 −16,858.7 −17,039.0 −17,008.3 −16,817.0
No. eval 2.10e+08 1.31e+08 2.19e+08 1.86e+08 1.92e+08

100-25-1-50
Benefit −11,710.2 −11,624.1 −11,910.4 −11,878.1 −11,562.8
No. eval 2.53e+08 1.50e+08 2.69e+08 2.09e+08 2.34e+08

100-25-1-75
Benefit −82,287.8 −82,290.6 −82,378.5 −80,833.9 −80,596.2
No. eval 2.41e+08 1.26e+08 2.51e+08 1.93e+08 2.35e+08

100-50-1-25
Benefit −87,315.8 −87,931.1 −87,674.8 −87,933.0 −87,229.0
No. eval 2.73e+08 1.37e+08 3.36e+08 2.03e+08 2.29e+08

100-50-1-50
Benefit −25,511.2 −25,590.5 −25,751.7 −25,719.4 −25,504.9
No. eval 4.30e+08 2.13e+08 4.26e+08 2.29e+08 3.90e+08

100-50-1-75
Benefit −44,720.3 −45,194.4 −44,990.5 −45,700.9 −44,524.1
No. eval 4.67e+08 2.25e+08 4.47e+08 2.31e+08 3.43e+08

100-100-1-25
Benefit 2,044.5 2,199.2 1,498.4 1,577.6 2,434.0
No. eval 9.27e+08 6.11e+08 1.09e+09 3.82e+08 6.92e+08

100-100-1-50
Benefit −63,072.6 −63,160.9 −63,343.3 −64,201.6 −61,957.9
No. eval 1.25e+09 2.39e+08 1.25e+09 3.66e+08 6.66e+08

100-100-1-75
Benefit −134,104.9 −135,781.0 −134,622.6 −135,440.8 −133,676.2
No. eval 9.48e+08 2.76e+08 1.10e+09 4.17e+08 7.48e+08

(a) (b) (c)

Fig. 2 Convergence curves of the compared algorithms on the TTP instances with n = 10 and m = 10

The analysis is conducted both theoretically and empirically.
At first, the mathematical formulations of TTP show that the
non-linear interdependence of the sub-problems lying in the
objective function makes it difficult to decompose the prob-
lem into independent sub-problems, if not impossible. The
NP-hardness also makes the exact methods only applicable

for small-sized instances. Then, a CC, which further consists
of a standard and a dynamic version, and a MA is proposed
to solve the problem approximately. The former optimizes
the sub-problems separately and exchanges the information
in each generation, while the latter solves the problem as a
whole. The outperformance of MA over CC on the bench-

123

170 Y. Mei et al.

(a) (b) (c)

Fig. 3 Convergence curves of the compared algorithms on the TTP instances with n = 20 and m = 10

(a) (b) (c)

Fig. 4 Convergence curves of the compared algorithms on the TTP instances with n = 20 and m = 30

(a) (b) (c)

Fig. 5 Convergence curves of the compared algorithms on the TTP instances with n = 50 and m = 15

mark instances illustrates the importance of considering the
interdependence between sub-problems. The significance of
the research reported here may go beyond just TTP because
there are other similar problems that are composed of two or
more sub-problems, each of which is an NP-hard problem.
For example, Gupta and Yao (2002) described a combined
Vehicle Routing with Time Windows and Facility Location
Allocation Problem, which is composed of Vehicle Routing
with Time Windows and Facility Location Allocation. The
research in this paper will help to understand and solve the
above problem as well.

In the future, more sophisticated operators such as the 3-
opt and Lin–Kernighan (LK) heuristic Lin and Kernighan
(1973) can be employed in an attempt to enhance the search
capability of the algorithm. More importantly, measures that
take the interdependence between the sub-problems into
account to reflect the dependence of the objective value on
the change of the decision variables are to be designed so that
frameworks can be developed more systematically by iden-
tifying the best “direction” during the optimization process
rather than heuristically.

123

	On investigation of interdependence between sub-problems of the Travelling Thief Problem
	Abstract
	1 Introduction

