Home-based versus supervised centre-based cardiac rehabilitation
Anderson, L; Sharpe, GA; Norton, RJ; Dalal, Hayes; Dean, Sarah G; Jolly, Kate; Cowie, A; Zawada, Anna; taylor, Rod S
DOI:
10.1002/14651858.CD007130.pub4

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 16/08/2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 26. Oct. 2023
Home-based versus centre-based cardiac rehabilitation (Review)

www.cochranelibrary.com
Table of Contents

- **Header** ... 1
- **Abstract** ... 1
- **Plain Language Summary** 2
- **Summary of Findings for the Main Comparison** 4
- **Background** ... 6
- **Objectives** ... 7
- **Methods** .. 7
 - Figure 1. ... 9
- **Results** .. 11
 - Figure 2. ... 13
 - Figure 3. ... 14
 - Figure 4. ... 16
 - Figure 5. ... 17
 - Figure 6. ... 18
 - Figure 7. ... 20
 - Figure 8. ... 21
- **Discussion** .. 22
- **Authors' Conclusions** 24
- **Acknowledgements** 24
- **References** ... 24
- **Characteristics of Studies** 34
- **Data and Analyses** 106
 - Analysis 1.1. Comparison 1 home-base vs centre-based, Outcome 1 Total mortality. 107
 - Analysis 1.2. Comparison 1 home-base vs centre-based, Outcome 2 Exercise capacity ≤ 12 months. 108
 - Analysis 1.3. Comparison 1 home-base vs centre-based, Outcome 3 Exercise capacity 12 to 24 months. ... 109
 - Analysis 1.4. Comparison 1 home-base vs centre-based, Outcome 4 Completers. 110
 - Analysis 1.5. Comparison 1 home-base vs centre-based, Outcome 5 Total cholesterol 3 to 12 months. ... 111
 - Analysis 1.6. Comparison 1 home-base vs centre-based, Outcome 6 HDL cholesterol 3 to 12 months. 112
 - Analysis 1.7. Comparison 1 home-base vs centre-based, Outcome 7 LDL cholesterol 3 to 12 months. 113
 - Analysis 1.8. Comparison 1 home-base vs centre-based, Outcome 8 Triglycerides 3 to 12 months. 114
 - Analysis 1.9. Comparison 1 home-base vs centre-based, Outcome 9 Systolic blood pressure 3 to 12 months. 115
 - Analysis 1.10. Comparison 1 home-base vs centre-based, Outcome 10 Diastolic blood pressure 3 to 12 months. 116
 - Analysis 1.11. Comparison 1 home-base vs centre-based, Outcome 11 Smoking 3 to 12 months. 117
- **Additional Tables** 117
- **Appendices** .. 133
- **What's New** ... 151
- **History** ... 151
- **Contributions of Authors** 151
- **Declarations of Interest** 152
- **Sources of Support** 152
- **Differences between Protocol and Review** 152
- **Index Terms** .. 153
Home-based versus centre-based cardiac rehabilitation

Lindsey Anderson, Georgina A Sharp, Rebecca J Norton, Hasnain Dalal, Sarah G Dean, Kate Jolly, Aynsley Cowie, Anna Zawada, Rod S Taylor

1 Institute of Health Research, University of Exeter Medical School, Exeter, UK. 2 Peninsula Postgraduate Medical Education, Plymouth, UK. 3 c/o Institute of Health Research, University of Exeter Medical School, University of Exeter, Exeter, UK. 4 Department of Primary Care, University of Exeter Medical School, Truro Campus, Knowledge Spa, Royal Cornwall Hospitals Trust, Truro, UK. 5 University of Exeter Medical School, University of Exeter, Exeter, UK. 6 Department of Public Health and Epidemiology, University of Birmingham, Birmingham, UK. 7 Cardiac Rehabilitation, University Hospital Ayr, Ayr, UK. 8 Agency for Health Technology Assessment and Tariff System, Warsaw, Poland

Contact address: Rod S Taylor, Institute of Health Research, University of Exeter Medical School, Veysey Building, Salmon Pool Lane, Exeter, EX2 4SG, UK. r.taylor@exeter.ac.uk

Editorial group: Cochrane Heart Group.
Publication status and date: New search for studies and content updated (no change to conclusions), published in Issue 6, 2017.

ABSTRACT

Background
Cardiovascular disease is the most common cause of death globally. Traditionally, centre-based cardiac rehabilitation programmes are offered to individuals after cardiac events to aid recovery and prevent further cardiac illness. Home-based cardiac rehabilitation programmes have been introduced in an attempt to widen access and participation. This is an update of a review previously published in 2009 and 2015.

Objectives
To compare the effect of home-based and supervised centre-based cardiac rehabilitation on mortality and morbidity, exercise-capacity, health-related quality of life, and modifiable cardiac risk factors in patients with heart disease.

Search methods
We updated searches from the previous Cochrane Review by searching the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid), Embase (Ovid), PsycINFO (Ovid) and CINAHL (EBSCO) on 21 September 2016. We also searched two clinical trials registers as well as previous systematic reviews and reference lists of included studies. No language restrictions were applied.

Selection criteria
We included randomised controlled trials, including parallel group, cross-over or quasi-randomised designs) that compared centre-based cardiac rehabilitation (e.g. hospital, gymnasium, sports centre) with home-based programmes in adults with myocardial infarction, angina, heart failure or who had undergone revascularisation.

Data collection and analysis
Two review authors independently screened all identified references for inclusion based on pre-defined inclusion criteria. Disagreements were resolved through discussion or by involving a third review author. Two authors independently extracted outcome data and study characteristics and assessed risk of bias. Quality of evidence was assessed using GRADE principles and a Summary of findings table was created.
Main results
We included six new studies (624 participants) for this update, which now includes a total of 23 trials that randomised a total of 2890 participants undergoing cardiac rehabilitation. Participants had an acute myocardial infarction, revascularisation or heart failure. A number of studies provided insufficient detail to enable assessment of potential risk of bias, in particular, details of generation and concealment of random allocation sequencing and blinding of outcome assessment were poorly reported.

No evidence of a difference was seen between home- and centre-based cardiac rehabilitation in clinical primary outcomes up to 12 months of follow up: total mortality (relative risk (RR) = 1.19, 95% CI 0.65 to 2.16; participants = 1505; studies = 11/comparisons = 13; very low quality evidence), exercise capacity (standardised mean difference (SMD) = -0.13, 95% CI -0.28 to 0.02; participants = 2255; studies = 22/comparisons = 26; low quality evidence), or health-related quality of life up to 24 months (not estimable). Trials were generally of short duration, with only three studies reporting outcomes beyond 12 months (exercise capacity: SMD 0.11, 95% CI -0.01 to 0.23; participants = 1074; studies = 3; moderate quality evidence). However, there was evidence of marginally higher levels of programme completion (RR 1.04, 95% CI 1.00 to 1.08; participants = 2615; studies = 22/comparisons = 26; low quality evidence) by home-based participants.

Authors’ conclusions
This update supports previous conclusions that home- and centre-based forms of cardiac rehabilitation seem to be similarly effective in improving clinical and health-related quality of life outcomes in patients after myocardial infarction or revascularisation, or with heart failure. This finding supports the continued expansion of evidence-based, home-based cardiac rehabilitation programmes. The choice of participating in a more traditional and supervised centre-based programme or a home-based programme may reflect local availability and consider the preference of the individual patient. Further data are needed to determine whether the effects of home-and centre-based cardiac rehabilitation reported in the included short-term trials can be confirmed in the longer term and need to consider adequately powered non-inferiority or equivalence study designs.

PLAIN LANGUAGE SUMMARY
Home-based versus supervised centre-based cardiac rehabilitation

Review question
We compared home-based cardiac rehabilitation programmes with supervised centre-based cardiac rehabilitation for adults with myocardial infarction (blood flow to the heart has stopped), angina (chest pain), heart failure or who had undergone revascularisation.

Background
Cardiac rehabilitation aims to restore people with heart disease to health, through a combination of exercise, education and psychological support. Traditionally, centre-based cardiac rehabilitation programmes (e.g. based at a hospital, gymnasium or in sport centre) are offered to people after cardiac events. Home-based cardiac rehabilitation programmes have been introduced to increase access and participation.

Search date
We searched up to September 2016.

Study characteristics
We searched for randomised controlled trials (trials that randomly allocate participants to one of two or more treatment groups) looking at the effectiveness of home-based versus supervised centre-based cardiac rehabilitation programmes, in adults with heart disease.

We included 23 trials (2890 participants). Most trials were relatively small (median 104 participants, range: 20 to 525). The average age of trial participants ranged from 51.6 to 69 years. Women accounted for only 19% of recruited participants; four trials did not include women.

The mix of people recruited to the trials varied; 10 studies included a mixed population of people with coronary heart disease, five studies included people who had had a heart attack, and four studies each recruited people following revascularisation or who had heart failure.

Study funding sources
Home-based versus centre-based cardiac rehabilitation (Review)
Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Sixteen studies reported sources of funding; seven did not. No study reported funding from an agency with commercial interest in the results.

Key results

We found that home- and centre-based cardiac rehabilitation programmes are similar in benefits measured in terms of numbers of deaths, exercise capacity and health-related quality of life. Further data are needed to confirm if these short-term effects of home- and centre-based cardiac rehabilitation can be sustained over time.

Quality of the evidence

Poor reporting made it difficult to assess methodological quality of the included studies and their risk of bias. Evidence quality ranged from very low (total mortality), to moderate (exercise capacity over 12 months and health-related quality of life). The main reasons for the low assessment of quality was poor reporting in the included studies.
SUMMARY OF FINDINGS FOR THE MAIN COMPARISON

Home-based versus supervised centre-based cardiac rehabilitation for heart disease

Patient or population: Patients with heart disease
Settings: Home and rehabilitation centres
Intervention: Home-based cardiac rehabilitation
Comparison: Centre-based cardiac rehabilitation

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Anticipated absolute effects* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>of participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mortality</td>
<td>Risk with centre-based</td>
<td>Risk with home-base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of deaths</td>
<td>Study population</td>
<td></td>
<td>RR 1.19 (0.65 to 2.16)</td>
<td>1505 (11 studies/13 comparisons)</td>
<td>⊗⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗</td>
</tr>
<tr>
<td>Follow-up: up to 12 months</td>
<td>22 per 1,000</td>
<td>26 per 1,000 (14 to 47)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercise capacity ≤ 12 months</td>
<td>Risk with centre-based</td>
<td>Risk with home-base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of deaths</td>
<td>Study population</td>
<td></td>
<td>SM D 0.13 lower (0.28 lower to 0.02 ranged from -2 to 3,509. higher)</td>
<td>-</td>
<td>⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗</td>
</tr>
<tr>
<td>Follow-up: 2 to 12 months</td>
<td>The mean exercise capacity ≤ 12 months</td>
<td></td>
<td>2255 (22 studies/26 comparisons)</td>
<td></td>
<td>Higher score indicates improved activity. A rule of thumb for interpreting SMD is that 0.2 represents a small effect, 0.5 a moderate effect and 0.8 a large effect (Cohen 1988)</td>
</tr>
<tr>
<td>Withdrawal from the intervention group</td>
<td>Risk with centre-based</td>
<td>Risk with home-base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of completers (participants with data at follow-up)</td>
<td>Study population</td>
<td></td>
<td>RR 1.04 (1.00 to 1.08)</td>
<td>2615 (22 studies/26 comparisons)</td>
<td>⊗⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗</td>
</tr>
<tr>
<td>Follow-up: 2 to 72 months</td>
<td>816 per 1,000</td>
<td>848 per 1,000 (816 to 881)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRQoL in home-based cardiac rehabilitation</td>
<td>HRQoL in centre-based cardiac rehabilitation, in 61/67 domains</td>
<td>Not estimable</td>
<td>2079 (14 studies/15 comparison)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; RR: Risk ratio; OR: Odds ratio;

GRADE Working Group grades of evidence

1. Random sequence generation, allocation concealment or blinding of outcome assessors were poorly described in over 50% of included studies; bias likely, therefore quality of evidence downgraded by one level.

2. The 95% CIs includes both no effect, appreciate benefit and appreciable harm (i.e. CI < 0.75 and > 1.25), therefore quality of evidence downgraded by two levels.

3. I² > 50%; heterogeneity may be important and therefore quality of evidence downgraded by one level.
BACKGROUND

Description of the condition

Cardiovascular disease (CVD) is the leading cause of death globally: in 2015 an estimated 17.7 million people died from CVD, representing 31% of all global deaths (WHO 2016). Of these deaths, an estimated 7.4 million were due to coronary heart disease (CHD) and 6.7 million were due to stroke (WHO 2016). Over three quarters of CVD deaths occur in low- and middle-income countries (WHO 2016).

Coronary heart disease is caused by the build-up of plaque inside the coronary arteries (atherosclerosis), causing arterial narrowing and reducing the flow of oxygen-rich blood to the heart. The main manifestations of CHD are angina pectoris (chest pain), myocardial infarction (MI), and heart failure. Myocardial infarction occurs when blood flow to the heart muscle is abruptly cut off as the result of a blockage in one or more of the coronary arteries, causing tissue damage. Over time, CHD can weaken the heart muscle and lead to arrhythmias or heart failure. Coronary heart disease causes significant morbidity and mortality, and as a long term condition it contributes greatly to disability in developed countries, accounting for 19% of total disability adjusted life years lost in European countries (European Cardiovascular Disease Statistics 2017). Coronary heart disease can result in difficulties in functionality and performing everyday activities, and impairs sexual function (Racca 2010), all contributing to a reduction in health-related quality of life (HRQoL) (Gravely-Witte 2007).

In the United Kingdom (UK), an estimated 2.3 million people live with CHD and the condition accounts for one in five deaths in men and one in 10 deaths in women (Nicholls 2012; Townsend 2012). However, with more people surviving MI (WHO 2008) and heart failure (Kostis 1997), an increasing number of people are now living with CHD and may need support to manage their symptoms and improve their prognosis.

Description of the intervention

Although there are many definitions of cardiac rehabilitation, the following describes their combined key elements: “The coordinated sum of activities required to influence favourably the underlying cause of cardiovascular disease, as well as to provide the best possible physical, mental, and social conditions, so that the patients may, by their own efforts, preserve or resume optimal functioning in their community and through improved health behaviour, slow or reverse progression of disease” (BACPR 2012; Buckley 2013). A central component of cardiac rehabilitation is exercise training (Piepoli 1998; Piepoli 2010). However, in addition to exercise, it is recommended that programmes provide lifestyle education on CHD risk factor management plus counselling and psychological support - so-called ‘comprehensive cardiac rehabilitation’ (Corrà 2005).

Cardiac rehabilitation is a complex intervention that involves a variety of therapies, including exercise, risk factor education, behaviour change, psychological support, and strategies that are aimed at targeting traditional risk factors for cardiovascular disease. Cardiac rehabilitation should be considered an essential part of the contemporary treatment of heart disease and is considered a priority in countries with a high prevalence of CHD. Cardiac rehabilitation has been shown to improve health-related quality of life and reduce future morbidity (Anderson 2016; Taylor 2014; Davies 2014). Based on evidence from previous meta-analyses and systematic reviews, exercise-based cardiac rehabilitation following a cardiac event, or for patients with heart failure, is a Class I recommendation from the American College of Cardiology/American Heart Association (Balady 2011; Kulik 2015; Smith 2011; Yancy 2013) and the European Society of Cardiology. (McMurray 2012; Roffi 2015; Steg 2012) and is recommended by the National Institute for Health and Care Excellence (NICE 2010; NICE 2013). Service provision, though predominantly centre-based, varies markedly, and referral, enrolment and completion are sub-optimal, especially among women and older people (Beswick 2004; Clark 2012). Home-based cardiac rehabilitation programmes have been increasingly introduced to widen access and participation (Taylor 2009), and interventions aimed at improving patient uptake and adherence to cardiac rehabilitation programmes have been adopted (Karmali 2014).

How the intervention might work

There are a number of mechanisms by which exercise training benefits patients dependent on the cause of their heart disease. For people with CHD, approximately half of the 28% reduction in cardiac mortality achieved with exercise-based cardiac rehabilitation has been attributed to reductions in major risk factors (e.g. lipids, smoking) (Taylor 2006). For patients with ischaemic causes of heart failure, exercise training appears to improve myocardial perfusion by alleviating endothelial dysfunction thereby dilating coronary vessels, and by stimulating new vessel formation by way of intermittent ischaemia (ExTraMatch 2004). Indeed, Haykowsky 2007 demonstrated that aerobic training in people with heart failure patients improves myocardial contractility and diastolic filling. In their meta-analysis Haykowsky 2007 demonstrated the benefits of exercise training in people with heart failure in terms of cardiac remodelling as measured by ejection fraction, end-diastolic volume, and end-systolic volume. Skeletal muscle dysfunction and wasting may also respond to exercise training (Haykowsky 2007). Regular physical activity by people with heart failure also stimulates vasodilation in the skeletal muscle vasculature and improves oxidative capacity (Hambrecht 1998). The inclusion of psycho-educational interventions may improve patients’ knowledge and risk factor behaviour (Brown 2013; Dickens 2013) and psychological well-being, including levels of depression and anxiety.
Why it is important to do this review

Although the beneficial effects of cardiac rehabilitation have been shown, participation remains sub-optimal (Dalal 2012), particularly so by heart failure patients (Dalal 2012; Piepoli 2015). Two of the main reasons people give for not accepting the invitation to attend cardiac rehabilitation are difficulty with regularly attending sessions at their local hospital and reluctance to take part in group-based classes (Beswick 2004). Home-based cardiac rehabilitation programmes have therefore been introduced in an attempt to improve rates of participation. In the UK, home-based cardiac rehabilitation with a self-help manual - the Heart Manual - supported by a nurse facilitator is a programme of rehabilitation that has been available for over two decades (Lewin 1992). Home-based cardiac rehabilitation programmes can include supervised and unsupervised elements and increasingly use technology or “telehealth” interventions to support or encourage exercise or behaviour change (Artinian 2007; Neubeck 2009) or to overcome barriers of time and distance (Huang 2015). Figures from the National Audit for Cardiac Rehabilitation (NACR) indicate that approximately 5% of UK sites are currently providing the Heart Manual (NACR 2013), with some 14,000 copies given to patients in UK and abroad each year (Heart Manual 2016). The Heart Manual has also been used in many countries across the world, including Singapore, Italy, Canada, China, Ireland and Cayman (Heart Manual 2016), yet facilitated home-based options such as the Heart Manual have not increased their share of cardiac rehabilitation provision in the UK in recent years (NACR 2016).

In the previous version of this Cochrane Review, the authors identified five new head-to-head randomised controlled trials (345 participants) of home- versus centre-based cardiac rehabilitation (Taylor 2015). Unlike most studies in the original version of the review (Dalal 2010; Taylor 2009), these new studies included patients with heart failure. The authors found the two methods of delivery to be equally effective for improving the clinical and health-related quality of life outcomes in low risk patients after MI or revascularisation, or with heart failure (Buckingham 2016; Taylor 2015). On the basis of this evidence, together with the absence of evidence of important differences in healthcare costs between the two approaches, the authors concluded that the expansion of home-based cardiac rehabilitation programmes should continue and that the choice of participating in a more traditional and supervised centre-based programme or a home-based programme should reflect the preference of the individual patient (Taylor 2015). More recently, a systematic review was conducted to assess the effectiveness of home-based cardiac rehabilitation for heart failure compared to either usual medical care (i.e. no cardiac rehabilitation) or centre-based cardiac rehabilitation on mortality, morbidity, exercise capacity, health-related quality of life, drop out, adherence rates, and costs (Zwisler 2016). This review found that home-based cardiac rehabilitation led to short-term improvements in exercise capacity and health-related quality of life of heart failure patients compared to usual care, and the magnitude of outcome improvements were similar to those achieved with centre-based cardiac rehabilitation (Zwisler 2016).

OBJECTIVES

To compare the effect of home-based and supervised centre-based cardiac rehabilitation on mortality and morbidity, exercise-capacity, health-related quality of life, and modifiable cardiac risk factors in patients with heart disease.

METHODS

Criteria for considering studies for this review

Types of studies

Randomised controlled trials (RCTs; individual or cluster level), including parallel group, cross-over or quasi-randomised designs, were eligible for inclusion. Systematic reviews and meta-analyses were identified as a means to identify additional RCTs.

Types of participants

The study population included adults (≥ 18 years) who were post myocardial infarction (MI), have angina, or had undergone revascularisation (coronary artery bypass grafting (CABG), percutaneous transluminal coronary angioplasty or coronary artery stent) or who have had heart failure, who have taken part, or been invited to take part, in cardiac rehabilitation. Studies were excluded if they included participants with heart transplants, those implanted with either cardiac resynchronisation therapy or implantable defibrillators, or those who had previously received cardiac rehabilitation.

Types of interventions

Home-based cardiac rehabilitation is defined as a structured programme (that includes exercise training) with clear objectives for the participants, including monitoring, follow up visits, letters or telephone calls from staff or at least self-monitoring diaries (Jolly 2006). The comparison group was centre-based cardiac rehabilitation based in a variety of settings (e.g. hospital physiotherapy department, university gymnasium, community sports centre). We included cardiac rehabilitation programmes whether they were based solely on exercise or included other intervention elements (comprehensive cardiac rehabilitation).
Types of outcome measures

Primary outcomes
- Total mortality.
- Cardiac events:
 - Re-infarction;
 - Total revascularisations (including CABG and percutaneous coronary intervention (PCI)); and
 - Cardiac associated hospitalisation.
- Exercise capacity assessed by validated outcome measure (e.g. VO\textsubscript{2} peak, 6 minute walk test).
- Validated measures of health-related quality of life (HRQoL) (e.g. Short Form Health Survey (SF-36), Sickness Impact Profile, Nottingham Health Profile).
- Withdrawal from the exercise programme.

Secondary outcomes
- Modifiable coronary risk factors (i.e. blood lipid levels, blood pressure, smoking behaviour).
- Adherence to cardiac rehabilitation.
- Costs and health service use (e.g. use of medication, primary care contacts).

Reporting of outcomes was not an inclusion or exclusion criterion for this update.

Search methods for identification of studies

Electronic searches
The search from the previously published Cochrane review (Taylor 2015) was updated by searching the following bibliographic databases on 21 September 2016:
 - CENTRAL Issue 8, 2016 in the Cochrane Library.
 - Epub Ahead of Print, In-Process & Other Non-Indexed Citations, MEDLINE Daily and MEDLINE (Ovid, 1946 to 21 September 2016).
 - Embase (Ovid, 1980 to 2016 Week 38).
 - PsycINFO (Ovid, 1806 to July Week 4 2016).
 - CINAHL Plus (EBSCO, 1937 to 21 September 2016).

The searches were run twice for this update; once in August 2016 using the search strategies from the last update and again in September 2016 with additional terms added to the strategies. Date limits were applied to the old terms to only retrieve results added since the last search, but not to the newly added terms. The search strategies were designed with reference to those of the previous version of this review (Taylor 2015). We searched the databases using a strategy combining selected MeSH terms and free text terms relating to patient education and coronary heart disease (CHD), with filters applied to limit to RCTs. We used the Cochrane sensitivity-maximising RCT filter for MEDLINE, and for Embase, terms recommended in the Cochrane Handbook for Systematic Reviews of Interventions were applied (Lefebvre 2011). Adaptations of this filter were applied to CINAHL and PsycINFO. We translated the MEDLINE search strategy into the other databases using the appropriate controlled vocabulary as applicable. We imposed no language or other limitations and gave consideration to variations in terms used and spellings of terms in different countries so that studies would not be missed by the search strategy because of such variations. See Appendix 1 for details of the search strategies used.

The reporting of search results was conducted in accordance with PRISMA (Moher 2009). Information about the number of studies identified, included and excluded, and the reasons for exclusion is summarised using a flow diagram (Figure 1).
Searching other resources

We handsearched reference lists of retrieved articles and systematic reviews for any studies not identified by the electronic searches. We also searched clinical trial registers on 7 November 2016; World Health Organization International Clinical Trials Registry Platform (WHO ICTRP; http://www.who.int/ictrp/en) and ClinicalTrials.gov (https://clinicaltrials.gov) for ongoing clinical trials and sought expert advice. Attempts were made to contact all study authors to obtain relevant information not available in the published manuscript.

Data collection and analysis

Selection of studies

We screened (LA and GAS) the titles and abstracts of identified studies, and discarded clearly irrelevant ones. Two review authors (LA and GAS) then obtained and independently assessed the full-text reports of all potentially relevant randomised trials for eligibility, based on the defined inclusion criteria. Any disagreement was resolved by discussion and where uncertainty remained, the opinion of a further author (RST) was taken. Excluded studies and reasons for exclusion are detailed in Characteristics of excluded studies. Where necessary, authors of included studies were contacted for missing information.

Data extraction and management

Two independent review authors (LA and GAS) extracted study characteristics of included RCTs using a standardised data collection form which had been piloted on two RCTs included in the review. Data on participant characteristics (e.g. age, sex, CHD diagnosis) details of the intervention (including duration, frequency and delivery), description of usual care and length of follow-up were extracted. Two independent review authors (LA and GAS) extracted outcome data onto a standardised collection form. If data were presented numerically (in tables or text) and graphically (in figures), the numeric data were used because of possible
measurement error when estimating from graphs. Any discrepancies were resolved by arbitration. One review author (LA) transferred extracted data into Review Manager 5.3 (RevMan 2014), and checked data for accuracy against the data collection forms. If there were multiple reports of the same study, we assessed the duplicate publications for additional data. We extracted outcome results at all follow-up points post-randomisation. We contacted study authors where necessary to provide additional information.

Assessment of risk of bias in included studies
Factors considered included the reporting of random sequence generation and allocation concealment, the description of dropouts and withdrawals (high risk if >20% loss), consideration of blinding of outcome assessors, and degree of selective outcome reporting. In addition, evidence was sought that the groups were balanced at baseline and whether co-interventions were delivered equally across the groups. The risk of bias in eligible trials was assessed by two reviewers independently (LA and GAS).

Measures of treatment effect
We extracted outcome results at follow-up and the focus of this review was the between-group difference in home- versus centre-based groups. Primary outcomes relating to clinical event data were extracted as dichotomous outcomes for each study. Event data were expressed as risk ratios (RR) with associated 95% confidence intervals (CI), and study sample sizes were based on the number randomised to treatment conditions. For continuous variables, mean differences (MD) and 95% CI were calculated for each outcome, with sample sizes based on number completing assessments at each time-point. When the results at follow-up and differences between groups of the individual trials were not reported in the original publication, we calculated P values for the differences using the reported mean and standard deviation with the t-test command in STATA (StataCorp 2013).

Given the variety of exercise capacity measures reported, results for this outcome were expressed as a standardised mean difference (SMD). Where a trial reported more than one exercise capacity endpoint we used the first one reported in the publication. Other continuous outcomes were pooled as weighted mean differences (WMD).

Unit of analysis issues
In accordance with Section 9.3.1 of the Cochrane Handbook for Systematic Reviews of Intervention (Higgins 2011), we ensured that the analysis was appropriate to the level at which randomisation occurred. All studies included in this review were simple parallel group RCTs, and so there were no issues relating to unit of analysis.

Dealing with missing data
We contacted investigators or study sponsors to verify key study characteristics and obtain missing numerical outcome data where possible (for example when a study was identified as abstract only).

Assessment of heterogeneity
Heterogeneity amongst included studies was explored qualitatively (by comparing the characteristics of included studies) and quantitatively (using the Chi² test of homogeneity and I² statistic). Where appropriate, the results from included studies were combined for each outcome to give an overall estimate of treatment effect. A fixed-effect meta-analysis was used except where statistical heterogeneity was indicated by a I² of ≥ 50%, in which case a random-effects model was used.

Assessment of reporting biases
The funnel plot and the Egger test (Egger 1997) were used to examine small study bias for outcomes where there were 10 or more studies contributing data to the analysis.

Data synthesis
We processed data in accordance with the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). Where appropriate and possible, results from included studies were combined for each outcome to give an overall estimate of treatment effect, using either a fixed-effect or random-effects model.

Summary of findings table
Two independent review authors (LA and GS) employed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to interpret result findings and used GRADEpro GDT 2015 to import data from Review Manager to create a ‘Summary of findings table’. We created a ‘Summary of findings’ table using the following outcomes: total mortality, exercise capacity, withdrawal and HRQoL. We used the five GRADE considerations (study limitations, consistency of effect, imprecision, indirectness, and publication bias) to assess the quality of a body of evidence as it relates to the studies that contribute data to the meta-analyses for the prespecified outcomes. We used methods
and recommendations described in Section 8.5 and Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions using GRADEpro software (Higgins 2011). We have justified all decisions to downgrade the quality of studies using footnotes, and have made comments to aid readers’ understanding of the review where necessary.

Subgroup analysis and investigation of heterogeneity

We undertook subgroup analysis using meta-regression to examine potential treatment effect modifiers. We tested the following a priori hypotheses that there may be differences in the effect of home- and centre-based cardiac rehabilitation programmes on total mortality, exercise capacity ≤ 12 months, withdrawal, total cholesterol and blood pressure, across the following subgroups:

- case mix (% MI);
- type of cardiac rehabilitation (exercise-only cardiac rehabilitation versus comprehensive cardiac rehabilitation);
- dose’ of exercise intervention (dose = number of weeks of exercise training x average number of sessions/week x average duration of session in minutes) (dose ≥ 1000 units versus dose < 1000 units);
- follow-up period;
- year of publication;
- sample size;
- risk of bias (low risk in ≥ 4 items versus < 4 items); and
- study location (continent).

Given the relatively small ratio of trials to covariates, multivariable meta-regression was not appropriate, and instead, limited to a univariate analysis (Deeks 2011). The permute option in STATA was used to allow for multiple testing in meta-regression (StataCorp 2013).

RESULTS

Description of studies

No cluster RCTs were identified in our searches and therefore only individual RCTs were included in this review.

Results of the search

The original 2009 version of this Cochrane Review contributed 12 trials to this latest analysis (Arthur 2002; Bell 1998; Carlson 2000; Dalal 2007; Daskapan 2005; Gordon 2002 Community; Gordon 2002 Supervised; Jolly 2007; Kassaian 2000; Marchionni 2003; Miller 1984 Brief; Miller 1984 Expanded; Sparks 1993; Wu 2006). The 2015 update identified one previously included trial with longer follow up (Arthur 2002) and five new trials (Cowie 2012; Karapolat 2009; Moholdt 2012; Oerkild 2011; Piotrowicz 2010) and included a total of 17 trials (28 reports).

For this update, 18,255 records were identified through database searches and 10,482 records were screened following de-duplication. An additional 10 records were identified from other sources. We assessed a total of 62 full text records. We identified one previously included trial with further health-related quality of life (HRQoL) data (Piotrowicz 2010) and six new trials (Aamot 2014 Treadmill; Grace 2016 Mixed; Hadadzadeh 2013; Hadadzadeh 2015; Kassaian 2000; Kraal 2014; Varnfield 2014). Two of these trials compared a home-based programme with two supervised centre-based exercise programmes (Aamot 2014 Treadmill; Grace 2016 Mixed) and this update therefore includes eight additional home- versus centre-based cardiac rehabilitation comparisons.

Two of the studies identified in this update have not yet been published in peer-reviewed journals (Hadadzadeh 2013; Hadadzadeh 2015). Study and outcome data have been provided by the author of these trials, but in the absence of full study details, it was not possible to assess methodological quality using all domains of the Cochrane risk of bias tool, for these studies.

The study selection process is summarised in the PRISMA flow diagram (Figure 1).

Included studies

The 23 trials (27 home- versus centre-based comparisons) included a total of 2890 participants and all used an individual patient randomisation method (there were no quasi-randomised studies). Most trials were relatively small in sample size (median 104 participants, range: 20 to 525). The average age of patients in the trials ranged from 51.6 to 69.0 years. With the exception of four trials (Kassaian 2000; Miller 1984 Brief; Sparks 1993; Wu 2006), all included women. However, women accounted for only 19% of all participants who were recruited in the included studies. The mix of participants recruited to included trials varied, with 10 studies including a mixed population of people with coronary heart disease (CHD) (Aamot 2014 Treadmill; Carlson 2000; Gordon 2002 Community; Grace 2016 Mixed; Hadadzadeh 2015; Jolly 2007; Kassaian 2000; Kraal 2014; Oerkild 2011; Piotrowicz 2010), five studies included patients post-myocardial infarction (MI) (Bell 1998; Dalal 2007; Marchionni 2003; Miller 1984 Brief; Varnfield 2014), four recruited patients following revascularisation (Arthur 2002; Hadadzadeh 2013; Moholdt 2012; Wu 2006), and four studies included participants with heart failure (Cowie 2012; Daskapan 2005; Karapolat 2009; Piotrowicz 2010).

All trials used an individual patient level method for randomisation. Four studies were UK-based (Bell 1998; Cowie 2012; Dalal 2007; Jolly 2007); four were based in the USA (Carlson 2000; Gordon 2002 Community; Miller 1984 Brief; Sparks 1993); two studies each were from Turkey (Daskapan 2005; Karapolat 2009), Norway (Aamot 2014 Treadmill; Moholdt 2012) and Canada (Arthur 2002; Grace 2016 Mixed); and one each from...
Denmark (Oerkild 2011), Italy (Marchionni 2003), Netherlands (Kraal 2014); Poland (Piotrowicz 2010), China (Wu 2006), Iran (Kassaian 2000), India (Hadadzadeh 2013), Australia (Varnfield 2014), India and Iran (Hadadzadeh 2015). Most studies reported outcomes up to six months post-randomisation. Only three studies reported longer-term follow-up at 14 months (Marchionni 2003), 18 months (Arthur 2002) and 24 months (Jolly 2007). Sixteen studies compared comprehensive programmes (i.e. exercise plus education and/or psychological management) and the remainder reported only an exercise intervention (Aamot 2014 Treadmill; Daskapan 2005; Karapolat 2009; Kassaian 2000; Miller 1984 Brief; Wu 2006). Three studies compared a comprehensive home-based programme with an exercise-only centre-based programme (Hadadzadeh 2013; Hadadzadeh 2015; Kraal 2014). The cardiac rehabilitation programmes differed considerably in duration (range: 1 to 6 months), frequency (1 to 5 sessions per week) and session length (20 minutes to 60 minutes per session). Most programmes used individually tailored exercise prescription which makes it difficult to precisely quantify the amount of exercise undertaken. Centre-based programmes typically provided supervised cycle and treadmill exercise, while virtually all home programmes were based on walking, with some level of intermittent nurse or exercise specialist telephone support. Two studies used web-based or smartphone applications to upload recorded exercise data (Kraal 2014) or to monitor health and exercise, and deliver motivational and educational materials (Varnfield 2014). Most studies recruited lower-risk patients following an acute MI or revascularisation, and excluded those with significant arrhythmias, ischaemia, or heart failure. Four studies included individuals (315 participants) with New York Heart Association (NYHA) class II or III heart failure (Cowie 2012; Daskapan 2005; Karapolat 2009; Piotrowicz 2010). Most studies reported sources of trial funding; seven did not (Bell 1998; Carlson 2000; Daskapan 2005; Gordon 2002 Community; Kassaian 2000; Sparks 1993; Wu 2006); and two studies are yet to be published (Hadadzadeh 2013; Hadadzadeh 2015). None of the studies reported that they were funded by an agency with a commercial interest in the results of the study.

Marchionni 2003 reported outcomes for home- versus centre-based care according to three patient age subgroups (i.e. 45 to 65, 66 to 75, > 75 years). Given the data reporting, we pooled these data to obtain single overall outcome results for home- and centre-based groups.

For three studies that report more than one comparator, we reported outcome results separately for each comparison. Gordon et al compared two home-based exercise groups: a physician-supervised nurse-case-managed programme and a community-based programme (Gordon 2002 Supervised; Gordon 2002 Community, respectively), versus a centre-based cardiac rehabilitation programme. The study by Miller et al compared home-versus centre-based cardiac rehabilitation programmes that were either 11 weeks long or 26 weeks long (Miller 1984 Brief; Miller 1984 Expanded, respectively). Grace et al compared a home-based programme with a supervised mixed-sex and a supervised women-only programme (Grace 2016 Mixed), and Aamot et al compared a home-based programme with a supervised group exercise programme and a treadmill exercise programme (Aamot 2014 Treadmill). We used the method for splitting sample size of shared comparator studies in accordance with the Cochrane Handbook for Systematic Reviews of Interventions (chapter 16.5; Higgins 2011).

Details of included studies are listed in Characteristics of included studies.

Excluded studies
We excluded 36 reports (29 studies): 17 studies included a comparator group which did not receive exercise-based cardiac rehabilitation or did not compare home- versus centre-based cardiac rehabilitation; nine studies included an intervention which was not exercise-based; two studies were not RCTs and one study included an inappropriate population. Details of excluded studies are listed in Characteristics of excluded studies.

Risk of bias in included studies
A number of study reports did not contain sufficient detail to assess their potential risk of bias (Figure 2; Figure 3).
Figure 2. Methodological quality summary: review authors’ judgements about each methodological quality item for each included study

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation (selection bias)</th>
<th>Allocation concealment (selection bias)</th>
<th>Blinding of outcome assessment (detection bias)</th>
<th>Incomplete outcome data (attrition bias)</th>
<th>Selective reporting (including bias)</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arold 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arold 2014 Treadmill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthur 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell 1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlson 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowan 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dallal 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Supmarked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grace 2018 Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grace 2018 Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadsitta 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadsitta 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kassapolat 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kassapolat 2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraal 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marchioni 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller 1984 Brief</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller 1984 Expanded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overfell 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piotrowski 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sparks 1953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varnhed 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vuo 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allocation
Details of generation and concealment of random allocation sequence were particularly poorly reported, with only nine studies adequately describing random sequence generation (Aamot 2014 Treadmill; Aamot 2014 Group; Dalal 2007; Grace 2016 Mixed; Grace 2016 Women; Hadadzadeh 2013; Hadadzadeh 2015; Jolly 2007; Moholdt 2012; Oerkild 2011; Varnfield 2014) and 11 studies adequately reporting random sequence concealment (Arthur 2002; Bell 1998; Cowie 2012; Dalal 2007; Grace 2016 Mixed; Grace 2016 Women; Hadadzadeh 2013; Hadadzadeh 2015; Jolly 2007; Karapolat 2009; Moholdt 2012; Oerkild 2011).

Blinding
Given the nature of these trials, it is not possible to blind participants or carers to group allocation; in such situations, blinding outcome assessors to knowledge of allocation is probably of greater importance. However, only 10 studies stated that they took measures to blind outcome assessment (Arthur 2002; Bell 1998; Cowie 2012; Dalal 2007; Grace 2016 Mixed; Grace 2016 Women; Hadadzadeh 2013; Hadadzadeh 2015; Jolly 2007; Marchionni 2003; Wu 2006).

Incomplete outcome data
Loss to follow-up varied considerably among studies and was often asymmetric across home- and centre-based cardiac rehabilitation groups. Only a few trials examined the impact of losses to follow-up or drop out. Five studies were judged to have an unclear risk of attrition bias (Bell 1998; Daskapan 2005; Kassaian 2000; Miller 1984 Brief; Miller 1984 Expanded; Piotrowicz 2010); a further four studies were judged as having a high risk of attrition bias (Carlson 2000; Grace 2016 Mixed; Grace 2016 Women; Kraal 2014; Varnfield 2014).

Selective reporting
We compared the reported outcomes in the results sections to the outcomes described in the methods of the published papers. Most of the included studies fully reported on all the specified outcomes listed in their methods sections; three studies were judged as having an unclear risk of reporting bias (Hadadzadeh 2013; Hadadzadeh 2015; Kassaian 2000). However, the two studies by Hadadzadeh et al have not yet been published and we do not have access to a published protocol or description of the methods, which made reporting bias impossible to assess.

Groups balanced at baseline?

Figure 3. Methodological quality graph: review authors’ judgements about each methodological quality item presented as percentages across all included studies
There was generally good evidence of balance in baseline characteristics between groups. However, in two cases there was objective evidence of imbalances in baseline characteristics (Arthur 2002; Cowie 2012), in one study the baseline characteristics were not reported (Miller 1984 Brief) and two additional studies were judged as having unclear risk of bias because they have not yet been published in full and we did not have access to baseline data (Hadadzadeh 2013; Hadadzadeh 2015).

Groups received same co-interventions?
Most trials were judged to be low risk of bias in terms of whether groups received the same co-interventions. Because the rehabilitation intervention was usually tailored to the individual participant, it is difficult to quantify the precise level of intervention; however, the intensity of the rehabilitation programme often seemed to differ substantively between home- and centre-based arms. For example, the studies by Bell 1998, Carlson 2000 and Jolly 2007 included hospital cardiac rehabilitation programmes which were fixed in terms of frequency and content over the period of the study. In contrast, the home-based intervention in these studies consisted of use of the Heart Manual 2016 where the participants could self-regulate the frequency and nature of rehabilitation sessions they undertook. Kraal 2014 was also judged as having high risk of bias in this domain, as while telephone coaching was offered to the home-based cohort in this study, no coaching was offered to patients receiving centre-based cardiac rehabilitation. The study by Kassaian 2000 was judged as having unclear risk of bias because the home-based programme was not adequately reported, and the two studies by Hadadzadeh et al were judged as unclear risk of bias because the full text was not available (Hadadzadeh 2013; Hadadzadeh 2015).

Effects of interventions

Primary outcomes

Total mortality
Eleven trials (13 comparisons) reported total mortality up to one year following the intervention (Aamot 2014 Treadmill; Aamot 2014 Group; Bell 1998; Dalal 2007; Daskapan 2005; Hadadzadeh 2013; Jolly 2007; Kraal 2014; Miller 1984 Brief; Miller 1984 Expanded; Moholdt 2012; Oerkild 2011; Piotrowicz 2010). A pooled analysis found no evidence of a significant difference in mortality at three to 12 months of follow-up between home- and centre-based cardiac rehabilitation (RR 1.19, 95% CI 0.65 to 2.16; participants = 1505; studies = 11 (13 comparisons); I² = 0%; fixed-effect; very low quality evidence; Analysis 1.1). Jolly 2007 reported there to be no between-group difference in mortality at 24 months follow-up (home group: 6/263; centre group: 3/262, P = 0.32).

Subgroup analyses
Predictors of treatment effect on total mortality were examined across the longest follow-up period of each individual study, using univariate meta-regression. We found no evidence that mortality risk is associated with case mix, type of cardiac rehabilitation, duration of follow-up, year of publication, study location, study location (continent) or sample size (Table 1). Due to lack of data, we were unable to assess the impact of exercise dose.

Small study bias
There was no evidence of funnel plot asymmetry for total mortality (Egger test P = 0.304; Figure 4).
Cardiac events

Only five studies (Arthur 2002; Dalal 2007; Jolly 2007; Oerkild 2011; Piotrowicz 2010) reported cardiac events, including re-infarction, revascularisation (coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI)) or cardiac-associated hospitalisation. While one study identified in this latest update (Aamot 2014 Treadmill; Aamot 2014 Group) reported that there were "no severe adverse events, defined as cardiac arrests or acute MI", none of the other new studies reported the occurrence of cardiac events. Given the differing nature of the events reported it was not possible to pool the data. Dalal 2007 and Jolly 2007 reported no difference in revascularisation or recurrent myocardial infarction (MI) events between home- and centre-based cardiac rehabilitation. Piotrowicz 2010 reported no heart failure-related admissions in either group. Oerkild 2011 stated that "the number and length of acute and non-acute admissions and adverse events (admission for MI, progressive angina, decompensated congestive heart failure, severe bleeding, new malignat disease and performance of (percutaneous coronary intervention)) to be equally distributed (across groups at 12 months follow-up)" but did not report numbers of events. The six-year follow-up report of the Arthur 2002 study described that a total of 46/79 (62%) centre-based cardiac rehabilitation patients experienced a hospitalisation compared to 35/70 (50%) in the home-based group (P = 0.31). However, the total number of hospitalisations in centre-based patients was greater than that in home-based participants (79 versus 42, P < 0.0001).

Subgroup analyses

Due to the small number of studies reporting cardiac events, it was not possible to examine the effects of potential treatment effect modifiers on these outcomes.

Small study bias

Due to the small number of studies reporting cardiac events, it was not possible to examine small study bias.

Exercise capacity

With the exception of Hadadzadeh 2013, all included studies reported on exercise or functional capacity in the short-term (8 weeks to 12 months follow-up); three (Arthur 2002; Jolly 2007; Marchionni 2003) presented longer-term data (> 12 months follow-up) and one reported outcomes at six-year follow-up (Arthur
All studies reported absolute exercise capacity at follow-up, except two trials (3 comparisons; Gordon 2002 Supervised; Gordon 2002 Community; Oerkild 2011) which reported change in exercise capacity at follow-up compared to baseline. Studies reported exercise capacity using a variety of metrics that included direct measures of oxygen uptake, walking distance and workload on a static cycle. The pooled analysis showed no evidence of a difference in short-term exercise capacity between home-based and centre-based cardiac rehabilitation (SMD -0.13, 95% CI -0.28 to 0.02; participants = 2255; studies = 22 (26 comparisons); I² = 63%; random-effects; low quality evidence; Analysis 1.2).

In a pooled analysis of three studies reporting longer-term data (>12 months; Arthur 2002; Jolly 2007; Marchionni 2003), there was no evidence of a difference in exercise capacity following home-based cardiac rehabilitation compared with centre-based cardiac rehabilitation (SMD 0.11, 95% CI -0.01 to 0.23; participants = 1074; studies = 3; I² = 0%; fixed effect; moderate quality evidence; Analysis 1.3). Arthur 2002 reported that mean peak oxygen consumption (VO₂) at six-year follow-up was higher in the 96 participants who had undergone home-based cardiac rehabilitation (1543 mL/min (SD 444)) compared to the 74 participants who had received centre-based cardiac rehabilitation (1412 mL/min (SD 356); P = 0.01).

Subgroup analyses
Predictors of treatment effect on exercise capacity were examined across the longest follow-up of each individual study, using univariate meta-regression. We found no evidence that exercise capacity is associated with case mix, dose of exercise, type of cardiac rehabilitation, duration of follow-up, year of publication, study location, study location (continent) or sample size (Table 2).

Small study bias
There was no evidence of funnel plot asymmetry for exercise capacity (Egger test P = 0.661; Figure 5).

Figure 5. Funnel plot of comparison: 1 home-base vs centre-based, outcome: 1.2 Exercise capacity ≤ 12 months.
Health-related quality of life (HRQoL)

Fourteen of the trials reported validated measures of HRQoL (Table 3). These included four generic HRQoL instruments: EQ-5D (EuroQoL 1990), Nottingham Health Profile (Hunt 1980), Short-Form 36 (SF-36; McHorney 1993), Sickness Impact Profile (Bergner 1976) and two disease-specific instruments (MacNew; Höfer 2004) and the Minnesota Living With Heart Failure Questionnaire (MLWHF; Rector 1993). This wide variation in HRQoL outcomes meant that pooling across studies was inappropriate.

Taking individual findings of all studies into account, there was no strong evidence of a difference in overall HRQoL outcomes or domain scores at follow-up between home- and centre-based cardiac rehabilitation.

Individual studies reported consistent improvements in HRQoL at follow-up with both home- and centre-based cardiac rehabilitation. The notable exception was in two of the three studies which used the EQ-5D and failed to identify significant improvements with home- or centre-based cardiac rehabilitation (Dalal 2007; Jolly 2007). The third study which used the EQ-5D reported a significant improvement at six weeks follow-up for home-based cardiac rehabilitation, but not for centre-based cardiac rehabilitation, and reported no improvements in HRQoL at six months follow-up (Varnfield 2014).

Withdrawal from the intervention programme

Withdrawal from the intervention was inconsistently reported and the reasons were often unclear. Using the number of completers i.e. the number of participants with outcome data at follow-up, we found some limited evidence of a small increase in the level of completion with home-based compared with centre-based programmes (RR 1.04, 95% CI 1.00 to 1.08; participants = 2615; studies = 22 (26 comparisons); I² = 53%; random-effects; low quality evidence; Analysis 1.4).

Subgroup analyses

Predictors of withdrawal were examined across the longest follow-up period of each individual study using univariate meta-regression. We found no evidence that withdrawal risk is associated with case mix, dose of exercise, type of cardiac rehabilitation, duration of follow-up, year of publication, study location, study location (continent), or sample size (Table 4).

Small study bias

There was no evidence of funnel plot asymmetry for withdrawal (Egger test P = 0.440; Figure 6).

Figure 6. Funnel plot of comparison: 1 home-base vs centre-based, outcome: 1.4 Completers.
Secondary outcomes

Modifiable coronary risk factors

Blood lipids
Nine of the included trials (10 comparisons) reported data on blood lipids (Bell 1998; Carlson 2000; Dalal 2007; Gordon 2002 Community; Gordon 2002 Supervised; Jolly 2007; Kassaian 2000; Moholdt 2012; Oerkild 2011; Varnfield 2014). All reported total cholesterol values, seven studies (8 comparisons) reported high density lipoprotein concentrations (Carlson 2000; Gordon 2002 Community; Gordon 2002 Supervised; Jolly 2007; Kassaian 2000; Moholdt 2012; Oerkild 2011; Varnfield 2014), and five studies (6 comparisons) reported low density lipoprotein and triglyceride concentrations (Carlson 2000; Gordon 2002 Community; Gordon 2002 Supervised; Kassaian 2000; Moholdt 2012; Oerkild 2011; Varnfield 2014). All reported absolute follow-up data except two studies (3 comparisons) where data were reported as the change at follow up from baseline (Gordon 2002 Community; Gordon 2002 Supervised; Oerkild 2011). Study results were expressed as millimols per litre (mmol/L; Bell 1998; Dalal 2007; Jolly 2007) or milligrams per decilitre (mg/dL; Carlson 2000; Gordon 2002 Community; Gordon 2002 Supervised; Kassaian 2000); in the latter case we converted values into mmol/L before pooling for meta-analysis.

Total cholesterol

The pooled analysis of data at three to 12 months of follow-up revealed no evidence of a difference in the total cholesterol between home- and centre-based groups (MD 0.06, 95% CI -0.10 to 0.23; participants = 1151; studies = 9, comparisons = 10; I² = 57%; random-effects; Analysis 1.5). Jolly 2007 reported no significant difference between home- and centre-based cardiac rehabilitation groups in total cholesterol concentration at 24 months follow up (MD = -0.11 mmol/L, 95% CI 0.06 to -0.28).

Subgroup analyses
Predictors of total cholesterol were examined across the longest follow-up period of each individual study using univariate meta-regression. We found no evidence that the cardiac rehabilitation effect on cholesterol is associated with type of cardiac rehabilitation, duration of follow-up, year of publication, study location, study location (continent) or sample size (Table 5). However, we found evidence of a relationship between case mix and total cholesterol, with a greater reduction in total cholesterol reported in studies with a higher proportion of participants with MI (Table 5). Due to lack of data, we were unable to assess the impact of exercise dose.

Small study bias
There was no evidence of funnel plot asymmetry for total cholesterol (Egger test P = 0.913; Figure 7).
High density lipoprotein (HDL) cholesterol

The pooled analysis of data at 3 to 12 months of follow up revealed some evidence of a lower high density lipoprotein concentration after centre- compared to home-based cardiac rehabilitation (MD -0.07, 95% CI -0.11 to -0.03; participants = 925; studies = 7; comparisons = 8; I² = 35%; fixed-effects; Analysis 1.6).

Jolly 2007 reported no significant difference between home- and centre-based cardiac rehabilitation groups in high density lipoprotein level at 24 months follow-up (MD = 0.03 mmol/L, 95% CI -0.10 to 0.04).

Low density lipoprotein (LDL) cholesterol

In the pooled analysis of data at 3 to 12 months of follow up there was no evidence of a difference in low density lipoprotein concentration between home- and centre-based cardiac rehabilitation (MD 0.04, 95% CI -0.14 to 0.22; participants = 430; studies = 5 comparisons = 6; I² = 54%; random-effects; Analysis 1.7).

Triglycerides

In the pooled analysis of data at 3 to 12 months of follow up there was evidence of slightly lower triglyceride levels in centre-based cardiac rehabilitation participants (MD 0.15, 95% CI 0.00 to 0.29; participants = 396; studies = 5, comparisons = 6 ; I² = 39%; fixed-effect; Analysis 1.8).

Subgroup analyses

Due to the small number of studies reporting blood lipid levels, it was not possible to examine the effects of potential treatment effect modifiers on these outcomes.

Small study bias

Due to the small number of studies reporting blood lipid levels, it was not possible to examine small study bias in these outcomes.

Blood pressure

Ten and nine of the included trials (12 and 11 comparisons) reported on systolic and diastolic blood pressure respectively (Aamot 2014 Treadmill; Aamot 2014 Group; Carlson 2000; Dalal 2007; Daskapan 2005; Gordon 2002 Community; Gordon 2002 Supervised; Jolly 2007; Kassaian 2000; Oerkild 2011; Varnfield 2014) or systolic blood pressure alone (Bell 1998). Absolute values
at follow-up were reported in all but two studies (3 comparisons; Gordon 2002 Supervised; Gordon 2002 Community; Oerkild 2011) where the change from baseline was reported. We obtained unpublished data for the study by Dalal et al (Dalal 2007).

No evidence of a difference was found at follow-up between groups in either pooled systolic blood pressure (MD -0.27, 95% CI -3.13 to 2.60; participants = 1292; studies = 10, comparisons = 12; I² = 55%; random-effects; Analysis 1.9) or diastolic blood pressure (MD 0.74, 95% CI -1.04 to 2.53; participants = 1146; studies = 9, comparisons = 11; I² = 60%; random-effects; Analysis 1.10) following home- or centre-based cardiac rehabilitation. At 24 months follow up, Jolly 2007 reported no significant difference between home- and centre-based cardiac rehabilitation groups in systolic blood pressure (MD = -0.85 mm Hg; 95% CI 2.48 to -4.18) or diastolic blood pressure (MD = -0.76 mm Hg, 95% CI 1.12 to -2.64).

Subgroup analyses

Predictors of blood pressure were examined across the longest follow-up period of each individual study using univariate meta-regression. No statistically significant associations were seen in any of the analyses for systolic blood pressure with the exception of study location (Table 6). No statistically significant associations were seen in any of the analyses for diastolic blood pressure (Table 7).

Small study bias

There was no evidence of funnel plot asymmetry for systolic blood pressure (Egger test P = 0.066; Figure 8) or diastolic blood pressure (Egger test P = 0.318; Figure 8).

Smoking behaviour

Five studies (6 comparisons) reported on participants’ self-reported smoking behaviour at three to 12 months of follow up (Bell 1998; Dalal 2007; Gordon 2002 Community; Gordon 2002 Supervised; Jolly 2007; Oerkild 2011). There was no evidence indicating a difference in the proportion of smokers at follow up be-
between home- and centre-based cardiac rehabilitation (RR 0.1.02, 95% CI 0.83 to 1.27; participants = 986; studies = 5, comparisons = 6; I² = 0%; fixed-effect; Analysis 1.11). Jolly 2007 reported no difference in smoking between home- and centre-based arms at 24 months (RR = 1.16, 95% CI 0.58 to 33.3). There was evidence of a consistent reduction in self-reported smoking behaviour following both home- and centre-based cardiac rehabilitation. This finding was confirmed in the one study that used cotinine-validated assessments of smoking (Jolly 2007).

Subgroup analyses
Due to the small number of studies reporting smoking, it was not possible to examine the effects of potential treatment effect modifiers on these outcomes.

Small study bias
Due to the small number of studies reporting smoking behaviour, it was not possible to examine small study bias.

Adherence
All but six studies (Bell 1998; Daskapan 2005; Hadadzadeh 2013; Hadadzadeh 2015; Kassaian 2000; Wu 2006) reported adherence to cardiac rehabilitation over the duration of the study (Table 8). There was substantial variation in the way in which adherence was defined and measured, and some studies reported more than one measure of adherence. Pooling across studies was therefore deemed to be inappropriate. Eight studies (11 comparisons: Carlson 2000; Cowie 2012; Dalal 2007; Gordon 2002 Community; Gordon 2002 Supervised; Grace 2016 Mixed; Grace 2016 Women; Jolly 2007; Karapalot 2009; Miller 1984 Brief; Miller 1984 Expanded) found no evidence of a significant difference in the level of adherence between groups, although there was evidence of superior adherence in home-based cardiac rehabilitation in five studies (Arthur 2002; Kraul 2014; Marchionni 2003; Piotrowicz 2010; Varnfield 2014) and evidence of superior adherence in centre-based cardiac rehabilitation in one study (Aamot 2014 Treadmill). Three other studies reported adherence (Daskapan 2005; Moholdt 2012; Sparks 1993) but it was not possible to assess if there was a statistically significant difference between home- and centre-based cardiac rehabilitation.

Costs and health service use
Six studies reported costs (Carlson 2000; Cowie 2012; Dalal 2007; Jolly 2007; Marchionni 2003; Varnfield 2014; Table 9). Differences in currencies and timing of studies meant that it was not possible compare the costs directly across studies. In four of the five studies, healthcare costs associated with cardiac rehabilitation were lower for the home-based than centre-based programmes (Carlson 2000; Dalal 2007; Marchionni 2003; Varnfield 2014), although cost was significantly lower in only one study (Dalal 2007). Jolly 2007 found that home-based cardiac rehabilitation was more expensive than centre-based cardiac rehabilitation, although the costs of the two would have been the same if participant costs were included. One study (Cowie 2012) included the costs of a no cardiac rehabilitation control and showed that cardiac rehabilitation costs were offset by a reduction in hospital admissions over five years resulting in a substantive cost saving when compared with control, i.e., GBP -3304 per participant for home-based cardiac rehabilitation and GBP -3784 per participant for hospital-based cardiac rehabilitation. Eight studies reported different aspects of consumption of healthcare resources, including re-admissions to hospital, primary care consultations and use of secondary care medication (Table 10; Table 11). No significant between-group differences were seen.

DISCUSSION

Summary of main results
The mainstay approach to cardiac rehabilitation delivery in many countries is an inpatient and outpatient hospital-based provision, which often takes place in a supervised university, hospital or community setting. The availability of home-based programmes may provide an opportunity to widen access and increase participation in cardiac rehabilitation and, may therefore, improve uptake and adherence. Figures from the UK suggest that the dominant mode of delivery in the UK is group-based, with just 10% cardiac rehabilitation programmes currently offering home-based cardiac rehabilitation provision (NACR 2016).

This updated review included 23 trials which randomised 2890 participants following an acute myocardial infarction (MI) or revascularisation, or with heart failure, to either home- or centre-based cardiac rehabilitation. The model of home-based provision in the largest three included trials was the Heart Manual 2016 (Bell 1998; Dalal 2007; Jolly 2007), a cardiac rehabilitation programme that consists of a self-help manual supported by a nurse facilitator (Lewin 1992). We found no evidence supporting important differences in outcomes for patients receiving home-based or centre-based cardiac rehabilitation either in the short-term (3 to 12 months) or longer-term (up to 24 months) for mortality, cardiac events, exercise capacity, modifyable risk factors (total cholesterol; low density lipoprotein cholesterol; systolic blood pressure; diastolic blood pressure; proportion of smokers at follow up) or health-related quality of life. Small outcome differences in favour of centre-based participants were seen in high density lipoprotein cholesterol and triglycerides. In contrast, in home-based participants, there was evidence of marginally higher levels of programme completion and adherence to the programme. Healthcare costs...
Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

seem to depend on the healthcare economy in which cardiac rehabilitation provision is made. However, this review found no consistent evidence to support an important difference in the cost of providing home- versus centre-based programmes. Home-based programmes often require support from healthcare staff which can be the major cost driver.

Overall completeness and applicability of evidence

The inclusion criteria for this review are broad, in order to reflect current practice where an increasingly diverse patient population is accessing cardiac rehabilitation services (NACR 2016). While the original version of this review was primarily limited to trials in participants with stable coronary heart disease (CHD) either following an acute myocardial infarction (MI) or revascularisation (Taylor 2009), the 2015 update included an additional five trials, which included 345 participants with heart failure (Taylor 2015). However, while this latest update added a further six trials in mixed populations of participants with CHD, none included people with heart failure. Similarly, only 19% of all participants included in this review were women and most participants were from studies that took place in high-income nations (Europe and North America). It is therefore not clear whether or not our findings generalise to women, or to the wider population in general. However, while ethnicity was poorly reported by most studies, this review included several studies with a substantive proportion of ethnic groups, and in studies that reported ethnicity, fewer than 50% of participants were described as Caucasian. The applicability of our findings to low- and middle-income countries is uncertain.

Interventions varied substantially in content, mode of delivery, level of support or supervision and dose. It could be argued that a benefit of this heterogeneity is that the results are more likely to be applicable to the wider population of people with CHD and clinical practice. However, we must also acknowledge this heterogeneity when interpreting the effect of these interventions on outcomes. This review also included studies which followed participants for as little as eight weeks post-randomisation, which limits the clinical relevance of the findings. Similarly, fidelity (whether the intervention was delivered as intended) and dose (the quantity of intervention implemented) are important aspects of the delivery of a complex intervention, such as cardiac rehabilitation, and were generally poorly reported by studies included in this review.

Quality of the evidence

The general lack of reporting of methods in the included randomised controlled trial (RCT) reports made it difficult to assess their methodological quality and thereby judge their risk of bias, although there was some evidence of an improvement in the quality of reporting in more recent trials. It was also not possible to consistently judge whether the rehabilitation programmes included in the studies fulfilled recommended quality criteria for delivery of cardiac rehabilitation programmes, such as the BACPR guidelines (BACPR 2012).

Due to this poor reporting, the quality of the evidence for outcomes was assessed as moderate at best. Other reasons for downgrading the quality of evidence included inconsistency (exercise capacity ≤ 12 months and withdrawal and imprecision (mortality).

Potential biases in the review process

Our review has limitations. Given the inconsistent reporting of outcomes, we were unable to judge the degree of publication bias for all outcomes, although there was no evidence of funnel plot asymmetry or statistically significant Egger tests for any outcome where this was tested (total mortality, exercise capacity, withdrawal, total cholesterol or blood pressure).

Although most participants represented in this review who received home-based cardiac rehabilitation were exposed to the Heart Manual model, there was evidence of considerable statistical heterogeneity across a number of outcomes among trials. This heterogeneity may well reflect the variety of centre-based cardiac rehabilitation interventions. Most studies were of relatively short duration, with only three trials reporting outcomes beyond 12 months of follow-up (Arthur 2002; Jolly 2007; Marchionni 2003). The number of deaths and cardiac events reported by most trials was therefore correspondingly small. Details of interventions were often poorly reported and it was therefore difficult to assess whether the cardiac rehabilitation programmes used would meet current recommendations of good practice (BACPR 2012; Piepoli 2010).

It has been hypothesised that patient preference may have an impact on uptake and adherence to home-based cardiac rehabilitation and there is evidence that white patients who work full- or part-time and who perceive time constraints as a barrier to adherence are more likely to have a preference for home-based provision (Grace 2005). However, such a hypothesis is difficult to test in a traditional RCT and therefore our finding of similar adherence between home- and centre-based cardiac rehabilitation needs to be interpreted with caution. Dalal 2007 employed a comprehensive cohort design in addition to the randomised element of home- and centre-based allocation in which there was also a patient preference element (participants could choose between home- and hospital-based cardiac rehabilitation). The study authors reported that outcome differences between the home and hospital arms in the preference (non-randomised) sample were very similar to those in the randomised comparison. Adherence to home-based cardiac rehabilitation was also comparable between the randomised (75%) and preference arms (73%). This finding does not support the hypothesis that patients who can choose a programme to suit their lifestyle and preferences will have a higher adherence rate and improved outcomes. However, as with the randomised comparison,
the number of participants in the preference arms was small (N = 126).

Agreements and disagreements with other studies or reviews

The findings of this update are consistent with the previous versions of this Cochrane Review (Taylor 2009; Taylor 2015) and another systematic review which reported that home-based cardiac rehabilitation programmes are as effective as centre-based programmes in terms of mortality, morbidity, short-term exercise capacity, blood pressure, smoking cessation and health-related quality of life (HRQoL) (Crawford-Faucher 2010). Our findings are also consistent with a recent systematic review which compared the effectiveness of "telehealth intervention-delivered cardiac rehabilitation" with centre-based supervised cardiac rehabilitation (Huang 2015) in nine trials, eight of which are included in this current review. The authors of the review concluded that telehealth intervention-delivered cardiac rehabilitation does not have significantly inferior outcomes compared to centre-based supervised programmes in low-to-moderate risk patients with CHD (Huang 2015). Similarly, another review which narratively synthesised 11 studies comparing "telerehabilitation" with other delivery models of cardiac rehabilitation in patients with cardiopulmonary diseases (Hwang 2015) found no differences between telerehabilitation and other delivery models, in terms of exercise capacity, quality of life or adverse events, while higher adherence rates were found for patients participating in the telerehabilitation programmes compared with centre-based exercise. Finally, our results also concur with a recent systematic review which assessed the effectiveness of home-based cardiac rehabilitation for heart failure compared to either usual medical care (i.e. no cardiac rehabilitation) or centre-based cardiac rehabilitation on mortality, morbidity, exercise capacity, HRQoL, adherence and costs (Zwisler 2016). This review found that outcomes and costs were similar between home- and centre-based cardiac rehabilitation with the exception of higher levels of trial completion in the home-based group.

Authors' Conclusions

Implications for practice

Home-based and hospital- or centre-based cardiac rehabilitation seem to be of similar effectiveness in improving clinical and health-related quality of life (HRQoL) outcomes in patients after acute myocardial infarction (MI), revascularisation or with heart failure. This finding, together with a lack of evidence of differences in healthcare costs between the approaches, supports that the choice of participating in a more traditional supervised centre- or home-based programme should reflect local availability and consider the preference of the individual patient.

Implications for research

Data are needed to determine whether the effects of home- and centre-based cardiac rehabilitation reported in short-term trials can be confirmed in the longer term. Further comparative trials are needed to assess the relative impact of supervised centre-versus home-based cardiac rehabilitation in patients with heart failure and angina pectoris and need to consider adequately powered non-inferiority or equivalence study designs. Such studies need to consider economic factors, better methods of assessing and reporting adherence and patient-related outcomes including costs to the healthcare system and HRQoL.

Acknowledgements

We are grateful to all authors of the original and previous versions of this Cochrane Review (Dalal 2010; Taylor 2015) for their contributions. We would also like to thank all the study authors who provided additional information about their trials.

References to studies included in this review

Aamot 2014 Group *(published data only)*

Aamot 2014 Treadmill *(published data only)*

Arthur 2002 [published data only]

Bell 1998 [published data only]

Carlson 2000 [published data only]

Cowie 2012 [published data only]

Dalal 2007 [published and unpublished data]

Daskapan 2005 [published data only]

Gordon 2002 Community [published data only]

Gordon 2002 Supervised [published data only]

Grace 2016 Mixed [published data only]

Grace 2016 Women [published data only]

Samayoa L, Arthur HM, Oh P, Brister S, Chessess C, Grace SL. Cardiac rehabilitation program adherence among women following referral to different program models:

Hadadzadeh 2013 [unpublished data only]

Hadadzadeh 2015 [published data only]

Jolly 2007 [published and unpublished data]

Marchionni 2003 [published and unpublished data]

Miller 1984 Brief [published data only]

Miller 1984 Expanded [published data only]

Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

References to studies excluded from this review

Ades 2000 [published data only]

Austin 2005 [published data only]

Babu 2016 [published data only]

Belardinelli 1999 [published data only]

Bubnova 2014 [published data only]

Byrnes 2015 [published data only]

Chan 2012 [published data only]

Chen 2016 [published data only]

Chien 2011 [published data only]
Chien CL, Lee CM, WuYW, Wu YT. Home-based exercise improves the quality of life and physical function but not the psychological status of people with chronic heart failure:

Chow 2015 [published data only]

Cinar 2015 [published data only]

Corvera-Tindel 2004 [published data only]

Dracup 2007 [published data only]

Haddadzadeh 2011 [published data only]

HF ACTION 2009 [published data only]

Higgins 2001 [published data only]

Hovland-Tanneryd 2016 [published data only]

Jolly 2009 [published data only]

Khalife-Zadeh 2015 [published data only]

Kim 2011 [published data only]

Lear 2014 [published data only]
Moosavi-Sohroforouzani 2015 [published data only]

Maddison 2015 [published data only]

Maru 2015 [published data only]

McKelvie 2002 [published data only]

Moosavi-Sohroforouzani 2015 [published data only]

Mutawall 2012 [published data only]

Oka 2000 [published data only]

Olson 2015 [published data only]
Pfaeffli 2015 [published data only]
Piotrowicz 2015 [published data only]

Salavati 2016 [published data only]

Senuzun 2006 [published data only]

Siabani 2016 [published data only]
References to ongoing studies

Maddison 2014 (published data only)

NCT02047942 (unpublished data only) NCT02047942. Telerehabilitation in Coronary Heart Disease (TRICH) [A Randomized Controlled Trial Comparing Home-based Training With Telemonitoring Guidance Versus Center-based Cardiac Rehabilitation in Patients With Coronary Heart Disease: the TRICH-study]. clinicaltrials.gov/ct2/show/NCT02047942 (first received 27 January 2014).

NCT02711631 (unpublished data only) NCT02711631. Feasibility and effectiveness of remote virtual reality-based cardiac rehabilitation. clinicaltrials.gov/ct2/show/NCT02711631 (first received 17 April 2015).

NCT02791685 (unpublished data only) NCT02791685. Smartphone delivered in-home cardiopulmonary rehabilitation. clinicaltrials.gov/ct2/show/NCT02791685 (first received 2 June 2016).

NCT02796404 (unpublished data only) NCT02796404. Homebased Monitoring Cardiac Rehabilitation Program (NUUBO) [Effectiveness of a Homebased Cardiac Rehabilitation Program of Mixed Surveillance Using NUUBO Monitoring Vest in Patients With Ischemic Heart Disease at Moderate Cardiovascular Risk]. clinicaltrials.gov/ct2/show/NCT02796404 (first received 23 May 2016).

NTR5156 (unpublished data only) NTR5156. Effects of cardiac telerehabilitation in patients with coronary artery disease using a personalized patient-
centred ICT platform: the SmartCare-CAD study. clinicalregister.nl/clinicalreg/admin/trialview.asp?TC=5156 (first received 22 April 2015).

Additional references

Anderson 2016

Artinian 2007

BACPR 2012

Balady 2011

Bergner 1976

Beswick 2004

Brown 2013

Buckley 2013

Clark 2012

Collins 2001

Corrà 2005

Crawford-Faucher 2010

Dalal 2012

Davies 2014

Deeks 2011

Dickens 2013

Egger 1997

European Cardiovascular Disease Statistics 2017

EuroQol 1990
Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ExTraMatch 2004

GRADEpro GDT 2015 [Computer program]

Gravely-Witte 2007

Hambrecht 1998

Haykowsky 2007

Heart Manual 2016

Higgins 2011

Huang 2015

Hunt 1980

Hwang 2015

Höfer 2004

Jolly 2006

Karmali 2014

Kostis 1997

Kulik 2015

Lefebvre 2011

Lewin 1992

McHorney 1993
McHorney CA, Ware JE Jr, Raczek AE. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Medical Care 1993;31(3):246–63.

McMurray 2012
McMurray JV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure 2012;14(8):803–69.

Moher 2009

NACR 2013
National Audit of Cardiac Rehabilitation (NACR). The National Audit of Cardiac Rehabilitation Annual Statistical

NACR 2016

Neubeck 2009

NICE 2010

NICE 2013

Nicholls 2012

Piepoli 1998

Piepoli 2010

Piepoli 2015

Racca 2010

Rector 1993

RevMan 2014 [Computer program]

Roffi 2015

Smith 2011

StataCorp 2013 [Computer program]
StataCorp, College Station, TX: StataCorp LP. *Stata Statistical Software: Release 13.* StataCorp, College Station, TX: StataCorp LP, 2013.

Steg 2012

Taylor 2006

Taylor 2014
Townsend 2012

WHO 2008

WHO 2016

Yancy 2013

Zwisler 2016

References to other published versions of this review

Buckingham 2016

Cohen 1988

Dalal 2010

Taylor 2009

Taylor 2015

* Indicates the major publication for the study
Characteristics of included studies [ordered by study ID]

Aamot 2014 Group

| Methods | Study design: Multicentre RCT with 3 parallel groups
| | Number of centres: 2
| | Country: Norway
| | Dates patients recruited: October 2009 to April 2011
| | When randomised: After the baseline tests
| | Maximum follow up: 12 weeks

| Participants | Inclusion criteria: Aged over 18 years, diagnosed MI, CAGB surgery, or acute coronary syndrome (ACS), and able to perform a maximal treadmill test
| | Exclusion criteria: Heart failure, severe arrhythmias, drug abuse, or a medical condition contraindicative to high-intensity training
| | N randomised: total: 90; home-based cardiac rehabilitation: 28; centre-based cardiac rehabilitation (treadmill exercise): 34; centre-based cardiac rehabilitation (group exercise): 28
| | Method of assessment: NR
| | Diagnosis (% of pts):
| | Previous AMI: home-based cardiac rehabilitation: 71.4%; treadmill exercise: 67.6%; group exercise: 64.3%
| | Previous CAGB: home-based cardiac rehabilitation: 21.4%; treadmill exercise: 26.5%; group exercise: 25.0%
| | ACS: home-based cardiac rehabilitation: 7.2%; treadmill exercise: 5.9%; group exercise: 10.7%
| | Age (mean ± SD): total: NR; home-based cardiac rehabilitation: 58 ± 8 years; treadmill exercise: 56 ± 9 years; group exercise: 58 ± 8 years
| | Percentage male: total: 88.9%; home-based cardiac rehabilitation: 96.4%; treadmill exercise: 82.4%; group exercise: 89.3%
| | Ethnicity: NR

| Interventions | All participants in all groups performed HIT twice a week for 12 weeks
| | Every session started with a 10 minute warm up at low-to-moderate intensity (50% to 70% of peak heart rate, HR) and continued with four intervals lasting 4 minutes each, at an exercise intensity of 85% to 95% of peak HR. Each interval was separated by 4 minutes of active breaks at an intensity of 70% of peak HR. After the last interval, a cool down period of 3 to 5 minutes was performed at 50% of peak HR. All participants were individually instructed in use of the HR monitor, and how to reach target HR. As aerobic capacity increased, the participants increased work load to maintain relative exercise intensity. Completion of 70% of the exercise sessions was considered to be training per protocol
| | Description of intervention (home-based cardiac rehabilitation): The home-based exercise started with two initial sessions with personal instruction of a physiotherapist where they learned how to perform HIT and to use the HR monitors. These sessions were performed as up-hill walking or jogging. After the introduction, HIT was performed in preferred exercise mode in their home environment; up-hill walking, cross country skiing, bicycling, running, or using indoor equipment such as treadmills or cross trainers. All
participants varied their exercise mode, but they kept to the exercise design and relative exercise intensity. A Holter electrocardiogram was recorded during the first exercise session to ensure that no arrhythmia occurred during or immediately after exercise.

Time of start after event: NR
Components: Exercise only
Aerobic exercise:
Modality: HIT was performed in preferred exercise mode e.g. up-hill walking, cross country skiing, bicycling, running, or using indoor equipment such as treadmills or cross trainers
Dose:
Length of session: 45 mins
Frequency/no of sessions: twice a week
Intensity: 50% to 95% of peak HR
Resistance training included: No
Total duration: 12 weeks

Intermittent nurse or exercise specialist telephone support? NR

Co-interventions: None described

Description of comparator (centre-based cardiac rehabilitation):
Treadmill exercise: The treadmills were used at the hospitals, in smaller groups consisting of 3-7 patients. Work load was adjusted individually, either by fast walking with inclination or running with less inclination. A physiotherapist was present to provide monitors and to assist if necessary

Time of start after event: NR
Components: Exercise only
Aerobic exercise:
Modality: Treadmills

Dose:
Length of session: 45 mins
Frequency/no of sessions: twice a week
Intensity: 50% to 95% of peak HR
Resistance training included: No
Total duration: 12 weeks

Intermittent nurse or exercise specialist telephone support? NR

Co-interventions: None described

Group exercise:
The group exercise sessions were held at the hospitals in groups of 10 to 15 people, instructed by a physiotherapist. After a warm up consisting of aerobics, the HIT was organised as circuit training and the intervals performed with a variety of exercises, from running to cycling, squats, and steps. Active breaks could consist of strength exercises (push ups, sit ups) or walking

Time of start after event: NR

Components: Exercise only
Aerobic exercise:
Modality: Circuit training

Dose:
Length of session: 45 mins
Frequency/no of sessions: twice a week
Intensity: 50% to 95% of peak HR
Aamot 2014 Group
(Continued)

<table>
<thead>
<tr>
<th>Resistance training included?</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total duration:</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Intermittent nurse or exercise specialist telephone support?</td>
<td>NR</td>
</tr>
<tr>
<td>Co-interventions:</td>
<td>None described</td>
</tr>
</tbody>
</table>

Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Peak VO₂, HRQoL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Follow up</th>
<th>12 weeks</th>
</tr>
</thead>
</table>

Source of funding

<table>
<thead>
<tr>
<th>Source of funding</th>
<th>This work was supported by the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology (NTNU)</th>
</tr>
</thead>
</table>

Conflicts of interest

<table>
<thead>
<tr>
<th>Conflicts of interest</th>
<th>The authors declare that there is no conflict of interest</th>
</tr>
</thead>
</table>

Notes

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Randomization was performed after the baseline tests, by a web-based randomization system.”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>High risk</td>
<td>“The test personnel were not blinded for allocation.”</td>
</tr>
</tbody>
</table>
| Incomplete outcome data (attrition bias) All outcomes | Low risk | Home-based cardiac rehabilitation: 2/28 (7.1 %) lost to follow-up
Treadmill: 2/34 (5.9 %) lost to follow-up
Group exercise: 3/28 (10.7 %) lost to follow-up |
| Selective reporting (reporting bias) | Low risk | All outcomes described in the methods are reported in results section |
| Groups balanced at baseline? | Low risk | “Group differences were not significant” |
| Groups received same co-intervention(s)? | Low risk | No co-interventions were received by any group |
Methods

Study design: Multicentre RCT with 3 parallel groups
No of centres: 2
Country: Norway
Dates patients recruited: October 2009 to April 2011
When randomised: After the baseline tests
Maximum follow up: 12 weeks

Participants

Inclusion criteria: Aged over 18 years, diagnosed MI, CABG surgery, or acute coronary syndrome (ACS), and able to perform a maximal treadmill test
Exclusion criteria: Heart failure, severe arrhythmias, drug abuse, or a medical condition contraindicative to high-intensity training
N randomised: total: 90; home-based cardiac rehabilitation: 28; centre-based cardiac rehabilitation (treadmill exercise): 34; centre-based cardiac rehabilitation (group exercise): 28
Method of assessment: NR
Diagnosis (% of pts):
- Previous AMI: home-based cardiac rehabilitation: 71.4%; treadmill exercise: 67.6%; group exercise: 64.3%
- Previous CABG: home-based cardiac rehabilitation: 21.4%; treadmill exercise: 26.5%; group exercise: 25.0%
- ACS: home-based cardiac rehabilitation: 7.2%; treadmill exercise: 5.9%; group exercise: 10.7%
Age (mean ± SD): total: NR; home-based cardiac rehabilitation: 58 ± 8 years; treadmill exercise: 56 ± 9 years; group exercise: 58 ± 8 years
Percentage male: total: 88.9%; home-based cardiac rehabilitation: 96.4%; treadmill exercise: 82.4%; group exercise: 89.3%
Ethnicity: NR

Interventions

All participants in all groups performed HIT twice a week for 12 weeks
Every session started with a 10-minute warm up at low-to-moderate intensity (50% to 70% of peak heart rate, HR) and continued with four intervals lasting 4 minutes each, at an exercise intensity of 85% to 95% of peak HR. Each interval was separated by 4 minutes of active breaks at an intensity of 70% of peak HR. After the last interval, a cool down period of 3-5 minutes was performed at 50% of peak HR. All participants were individually instructed in use of the HR monitor, and how to reach target HR. As aerobic capacity increased, the participants increased work load to maintain relative exercise intensity. Completion of 70% of the exercise sessions was considered to be training per protocol
Description of intervention (home-based cardiac rehabilitation): The home-based exercise started with two initial sessions with personal instruction of a physiotherapist where they learned how to perform HIT and to use the HR monitors. These sessions were performed as up-hill walking or jogging. After the introduction, HIT was performed in preferred exercise mode in their home environment; up-hill walking, cross country skiing, bicycling, running, or using indoor equipment such as treadmills or cross trainers. All participants varied their exercise mode, but they kept to the exercise design and relative exercise intensity. A Holter electrocardiogram was recorded during the first exercise session to ensure that no arrhythmia occurred during or immediately after exercise
Time of start after event: NR
Components: Exercise only
Aerobic exercise:
Modality: HIT was performed in preferred exercise mode e.g. up-hill walking, cross country skiing, bicycling, running, or using indoor equipment such as treadmills or cross trainers
Dose:
Length of session: 45 mins
Frequency/no of sessions: twice a week
Intensity: 50% to 95% of peak HR
Resistance training included? No
Total duration: 12 weeks
Intermittent nurse or exercise specialist telephone support? NR
Co-interventions: None described

Description of comparator (centre-based cardiac rehabilitation):
Treadmill exercise: The treadmills were used at the hospitals, in smaller groups consisting of 3 to 7 patients. Work load was adjusted individually, either by fast walking with inclination or running with less inclination. A physiotherapist was present to provide monitors and to assist if necessary
Time of start after event: NR
Components: Exercise only

Aerobic exercise:
Modality: Treadmills
Dose:
Length of session: 45 mins
Frequency/no of sessions: twice a week
Intensity: 50% to 95% of peak HR
Resistance training included? No
Total duration: 12 weeks
Intermittent nurse or exercise specialist telephone support? NR
Co-interventions: None described

Group exercise: The group exercise sessions were held at the hospitals in groups of 10 to 15 people, instructed by a physiotherapist. After a warm up consisting of aerobics, the HIT was organised as circuit training and the intervals performed with a variety of exercises, from running to cycling, squats, and steps. Active breaks could consist of strength exercises (push ups, sit ups) or walking
Time of start after event: NR
Components: Exercise only

Aerobic exercise:
Modality: Circuit training
Dose:
Length of session: 45 mins
Frequency/no of sessions: twice a week
Intensity: 50% to 95% of peak HR
Resistance training included? No
Total duration: 12 weeks
Intermittent nurse or exercise specialist telephone support? NR
Co-interventions: None described

Outcomes
Peak VO₂, HRQoL
Aamot 2014 Treadmill
(Continued)

<table>
<thead>
<tr>
<th>Follow up</th>
<th>12 weeks</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Source of funding</th>
<th>This work was supported by the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology (NTNU)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Conflicts of interest</th>
<th>The authors declare that there is no conflict of interest</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Randomization was performed after the baseline tests, by a web-based randomization system.”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>High risk</td>
<td>“The test personnel were not blinded for allocation.”</td>
</tr>
</tbody>
</table>
| Incomplete outcome data (attrition bias) All outcomes | Low risk | Home-based cardiac rehabilitation: 2/28 (7.1 %) lost to follow-up
Treadmill: 2/34 (5.9 %) lost to follow-up
Group exercise: 3/28 (10.7 %) lost to follow-up |
| Selective reporting (reporting bias) | Low risk | All outcomes described in the methods are reported in results section |
| Groups balanced at baseline? | Low risk | “Group differences were not significant” |
| Groups received same co-intervention(s)? | Low risk | No co-interventions were received by any group |
Methods

Study design: Single centre RCT
No of centres: 1
Country: Canada
Dates patients recruited: July 1997 to October 1998
When randomised: 35 to 49 day post-CABG surgery, after baseline assessment
Maximum follow up: 6 years

Participants

Inclusion criteria: 35 to 49 days post-CABG, able to achieve 40 to 80% of age/sex-predicted METs on cycle ergometry, read/write English
Exclusion criteria: Recurrent angina, positive graded exercise test, unable to attend rehabilitation 3 times weekly, physical limitations, previously participant of out-patient cardiac rehabilitation
N randomised: total: 242; home-based cardiac rehabilitation: 120; centre-based cardiac rehabilitation: 122
Method of assessment: NR
Diagnosis (% of pts):
Previous CABG: 100%
Age (mean ± SD): total: 63.3 ± 13 years
Percentage male: total: 81%
Ethnicity: NR

Interventions

Description of home-based cardiac rehabilitation: Patients also attended 1 hour exercise consultation with exercise specialist at baseline and after 3 months training, completed exercises log reviewed every 2 months, and telephone support call every 2 weeks
Time of start after event: 35 to 49 day post-CABG surgery
Components: Exercise, education, psychosocial
Aerobic exercise:
Modality: walking
Dose:
Length of session: 40 min/session
Frequency/no of sessions: 5 sessions weekly
Intensity: 60% to 70% VO₂ max
Total duration: 6 months
Intermittent nurse or exercise specialist telephone support? Home patients were telephoned every 2 weeks by the exercise specialist to monitor progress, assess and document adherence, revise the exercise prescription if necessary, and provide support and education. Exercise logs were reviewed monthly
Co-interventions: Dietary advice and psychological support
Description of centre-based cardiac rehabilitation: Supervised by exercise specialist and completed exercises log reviewed every month
Time of start after event: 35 to 49 day post-CABG surgery
Components: Exercise, education, psychosocial
Aerobic exercise:
Modality: cycle ergometer, treadmill, track walking, and stair climbing
Dose:
Length of session: 40 min/session
Frequency/no of sessions: 3 sessions weekly
Intensity: 60% to 70% VO₂ max
Total duration: 6 months
Co-interventions: Dietary advice and psychological support

<table>
<thead>
<tr>
<th>Outcomes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary:</td>
<td>exercise capacity (METs)</td>
</tr>
<tr>
<td>Secondary:</td>
<td>HRQoL (SF-36); cardiac morbidity, mortality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 and 18 months</td>
<td>and 6 years post randomisation</td>
</tr>
</tbody>
</table>

| Source of funding | Heart and Stroke Foundation of Ontario (grant no. T 4004) |

| Conflicts of interest | NR |

| Notes | |

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>"...the data analyst, who had no role in this project, prepared the randomization sched-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ule using a blocked format"; "...the resulting group assignments were than sealed in o-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>paque envelopes that were opened in sequence after consent"</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>"...the physicians who evaluated the primary variables were blind to the patients ass-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>signment"</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>CONSORT flow diagram shows loss to follow up 20/242 (8%) at 6 months follow up and 24/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>242 (10%) at 18 months follow up. No imputation of missing data undertaken</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>High risk</td>
<td>"There were statistically significant differences at baseline between the two groups in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>weight, resting heart rate, and social support."</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>"Similar numbers of patients in the [hospital and home] groups chose to consult with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>either clinic dietician or psychologist."</td>
</tr>
</tbody>
</table>
Methods

- **Study design:** Multicentre RCT
- **No of centres:** 5 district hospitals
- **Country:** UK
- **Dates patients recruited:** NR
- **When randomised:** NR
- **Maximum follow up:** 52 weeks

Participants

- **Inclusion criteria:** Acute MI (2 of: elevated serum creatinine kinase or oxaloacetic transaminase, prolonged chest pain consistent with AMI, new Q waves or evolutionary ST changes in ECG)
- **Exclusion criteria:** Physical infirmity, unable to speak or read English, dementia or psychosis, aged > 75 years, living > 20 miles from CCU, serious persisting medical complications, any other excluding conditions (consultants opinion), for some hospitals - participation in the previous rehabilitation programme
- **N randomised:** total: 252; home-based cardiac rehabilitation: 152; centre-based cardiac rehabilitation: 100
- **Method of assessment:** NR
- **Diagnosis (% of pts):**
 - AMI: 100%
- **Age (mean ± SD):** total: 59 ± 8.9 years
- **Percentage male:** total: 77%
- **Ethnicity:** NR

Interventions

Description of home-based cardiac rehabilitation

- **Heart Manual**
- **Time of start after event:** NR
- **Components:** Exercise, education and psychological
- **Aerobic exercise:**
 - **Modality:** Walking
 - **Dose:**
 - **Length of session:** NR
 - **Frequency/no of sessions:** NR
 - **Intensity:** NR
 - **Total duration:** 6 weeks
- **Intermittent nurse or exercise specialist telephone support?** 4 phone calls by facilitator, health education, stress management
- **Co-interventions:** NR

Description of centre-based cardiac rehabilitation

- **Time of start after event:** NR
- **Components:** Exercise, education and psychological
- **Aerobic exercise:**
 - **Modality:** Walking
 - **Dose:**
 - **Length of session:** ≥ 20 min
 - **Frequency/no of sessions:** 1 session/week or 4 weeks of 2 sessions/week
 - **Intensity:** 3 to 4 on Borg RPE scale
 - **Total duration:** 12 weeks
- **Co-interventions:** Education sessions - CHD causes, medication, risk factor modification, stress management, and exercise
<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Primary: exercise capacity (METs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secondary: total cholesterol; systolic blood pressure; HRQoL (Nottingham Health Profile); smoking; mortality; readmission rate; use of primary care services</td>
</tr>
<tr>
<td>Follow up</td>
<td>16 and 48 weeks post randomisation (20 and 52 weeks post MI)</td>
</tr>
<tr>
<td>Source of funding</td>
<td>NR</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>NR</td>
</tr>
<tr>
<td>Notes</td>
<td>Published as PhD thesis only</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“Series of sealed envelopes containing cards evenly distributed between conditions … envelopes were taken sequentially … opened envelopes were retained and returned to trial coordinator”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>“All measurements were performed 'blind' by members of the medical staff and technicians”</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Follow up data on all randomised patients is not reported, no CONSORT flow diagram is reported and it is difficult to determine from the report those who were lost to follow up or who dropped out</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>There were no statistically significant differences in population demographics between the two groups</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>High risk</td>
<td>Although the intervention for both groups consisted of exercise, education, and stress management, the nature and amount of intervention was quite different</td>
</tr>
</tbody>
</table>
Carlson 2000

Methods

<table>
<thead>
<tr>
<th>Study design:</th>
<th>Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres:</td>
<td>1</td>
</tr>
<tr>
<td>Country:</td>
<td>USA, single hospital centre</td>
</tr>
<tr>
<td>Dates patients recruited:</td>
<td>NR</td>
</tr>
<tr>
<td>When randomised:</td>
<td>within 2 weeks of entering cardiac rehabilitation</td>
</tr>
<tr>
<td>Maximum follow up:</td>
<td>6 months</td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Men and women aged 35 to 75 years referred for the first time to outpatient cardiac rehabilitation, living ≤ 30 miles from the rehabilitation facility, of low-to-moderate cardiac risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria:</td>
<td>NR</td>
</tr>
<tr>
<td>N Randomised:</td>
<td>total: 80; home-based cardiac rehabilitation: 38; centre-based cardiac rehabilitation: 42</td>
</tr>
<tr>
<td>Method of assessment:</td>
<td>NR</td>
</tr>
</tbody>
</table>
| Diagnosis (% of pts): | MI: home-based cardiac rehabilitation: 47%; centre-based cardiac rehabilitation: 26%
Angioplasty: home-based cardiac rehabilitation: 55%; centre-based cardiac rehabilitation: 40%
CABG: home-based cardiac rehabilitation: 32%; centre-based cardiac rehabilitation: 40% |
| Age (mean ± SD): | total: NR; home-based cardiac rehabilitation: 59 ± 10 years; centre-based: 59 ± 9 years |
| Percentage male: | total: NR; home-based cardiac rehabilitation: 82%; centre-based cardiac rehabilitation: 83% |
| Ethnicity: | NR |

Interventions

Description of home-based cardiac rehabilitation: First 4 weeks - 3 hospital based exercise sessions/week with ECG monitoring, progressively reducing frequency of centre-based sessions

Time of start after event: NR

Components: Exercise, education, psychosocial

Aerobic exercise:

Modality: NR

Dose:

Length of session: 30 to 40 min/session

Frequency/no of sessions: 2 to 5 sessions/week

Intensity: 60 to 85% aerobic capacity

Total duration: 25 weeks

Co-interventions: Weekly educational and counselling meetings that included sessions on exercise, diet, risk factors, drugs, and overcoming barriers to behaviour change. Based on Bandura's self-efficacy theory

Description of centre-based cardiac rehabilitation:

Centre-based cardiac rehabilitation(control):

Exercise: modality: aerobic exercise

Time of start after event: NR

Components: e.g. exercise only, exercise and education, exercise and psychosocial

Aerobic exercise:

Modality: NR

Dose:
<table>
<thead>
<tr>
<th>Carlson 2000 (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of session: 30 to 45 min/session</td>
</tr>
<tr>
<td>Intensity: 60 to 85% aerobic capacity</td>
</tr>
<tr>
<td>Resistance training included?</td>
</tr>
<tr>
<td>Total duration: 25 weeks</td>
</tr>
<tr>
<td>Co-interventions: Three sessions of education and counselling that included sessions on exercise, diet, risk factors, and drugs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary: peak functional capacity (METs), LDL cholesterol</td>
</tr>
<tr>
<td>Secondary: total cholesterol, HDL cholesterol, triglycerides, blood pressure, cardiovascular medications, costs, adherence (exercise sessions attended)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months post randomisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conflicts of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Random sequence generation (selection bias)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
</tr>
</tbody>
</table>
Groups received same co-intervention(s)? | High risk
---|---

“The primary differences in the [home-based CR] compared with the [centre-based CR] included: (2) an ongoing weekly education/support group, and (3) education and counselling that emphasized overcoming barriers associated with developing independent exercise and nutrition behaviours.”

Although both groups received exercise training, education, and counselling, the amount and nature of this intervention was different between groups.

Cowie 2012

Methods
- **Study design:** Single centre RCT
- **No of centres:** 1
- **Country:** UK
- **Dates patients recruited:** May 2007 and August 2008
- **When randomised:** After baseline tests
- **Maximum follow up:** 8 weeks

Participants
- **Inclusion criteria:** (1) left ventricular systolic dysfunction on echocardiography, (2) clinically stable for at least one month, and (3) on optimised medication dosages
- **Exclusion criteria:** (1) significant ischaemic symptoms at low workloads, (2) uncontrollable diabetes, (3) acute systemic illness or fever, (4) recent embolism, (5) acute pericarditis, (6) moderate to severe aortic stenosis, (7) regurgitant valvular heart disease requiring surgery, (8) myocardial infarction within the past three weeks, (9) new onset of atrial fibrillation, (10) signs and symptoms of decompensation, (11) other comorbidities (life-threatening, uncontrolled, infectious, or exacerbated by exercise)
- **N randomised:** total: 60; home-based cardiac rehabilitation: 20; centre-based cardiac rehabilitation: 20; control: 20 (usual care - no cardiac rehabilitation - not considered in this review)
- **Method of assessment:** Echocardiography
- **Diagnosis (% of pts):** NYHA class II/III post-H: F100%
- **Age (range):** total: 66 (35-85) years; home-based cardiac rehabilitation: 65.5 (35 to 82) years; centre-based cardiac rehabilitation: 71.2 (59 to 85) years; control: 61.4 (39 to 79) years
- **Percentage male:** total: 85%; home-based cardiac rehabilitation: 90%; centre-based cardiac rehabilitation: 80%; control: 85%
- **Ethnicity:** NR

Interventions
- **Description of home-based cardiac rehabilitation**
 - Exercise: 1-hour aerobic-based exercise session (DVD and booklet), started with a 15-minute warm-up, and ended with a 15-minute cool-down. Aerobic overload: 2 x 15 minute circuits (10 simple, functional aerobic exercises e.g. knee lifts, side steps); interspersed with low-paced ‘active recovery’
(toe tapping or slow walking; 90 seconds for each exercise). Gradually increasing the proportion of time spent on aerobic overload in relation to active recovery provided interval training, which was individually tailored and progressed

Time of start after event: NR

Components: Exercise and education

Aerobic exercise:

Modality: Functional aerobic exercises e.g. knee lifts, side steps interspersed with low-paced ‘active recovery’ (toe tapping or slow walking)

Dose:

Length of session: 1 hour

Frequency/no of sessions: twice a week

Intensity: NR

Total duration: eight weeks

Intermittent nurse or exercise specialist telephone support? Physiotherapist telephoned every two weeks to modify exercise prescriptions where appropriate

Co-interventions: Educated on symptoms of unstable heart failure. Use of heart rate monitors to guide training intensity. Encouraged to work at 12 to 13 on the Borg RPE. Advised to adhere to usual heart failure nursing care and daily routines

Description of centre-based cardiac rehabilitation: As above i.e. 1-hour aerobic-based exercise session (physiotherapist-led) started with a 15-minute warm-up, and ended with 15-minute cool-down. Aerobic overload: 2 x 15 minute circuits (10 simple, functional aerobic exercises e.g. knee lifts, side steps); interspersed with low-paced ‘active recovery’ (toe tapping or slow walking; 90 seconds for each exercise). Gradually increasing the proportion of time spent on aerobic overload in relation to active recovery provided interval training, which was individually tailored and progressed

Components: Exercise and education

Aerobic exercise:

Modality: Functional aerobic exercises e.g. knee lifts, side steps interspersed with low-paced ‘active recovery’ (toe tapping or slow walking)

Dose:

Length of session: 1 hour

Frequency/no of sessions: twice a week

Intensity: NR

Total duration: eight weeks

Co-interventions: Educated on symptoms of unstable heart failure. Use of heart rate monitors to guide training intensity. Encouraged to work at 12 to 13 on the Borg RPE. Advised to adhere to usual heart failure nursing care and daily routines

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Exercise capacity (shuttle walk test), health-related quality of life (SF-36 and Minnesota Living With Heart Failure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>8 weeks</td>
</tr>
<tr>
<td>Source of funding</td>
<td>This work was supported by NHS Ayrshire and Arran's coronary heart disease Managed Clinical Network</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>Professor Malcolm Granat is a co-inventor of the activPAL™ and a director of PAL Technologies Ltd., Glasgow, UK. Professor Granat had no involvement in data collection, or analysis of results. No other conflicts of interest declared</td>
</tr>
</tbody>
</table>
Notes

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“...participants were randomised (using concealed envelopes) to one of three groups”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>“...measurements obtained by researcher blind to participants”</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>5/20 (25%) centre-based and 5/20 (25%) dropped out</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>High risk</td>
<td>“...the mean age of the hospital group was 10 years older than the control group (P = 0.001)”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>“[both groups were] ...advised to adhere to usual heart failure nursing care and daily routines”</td>
</tr>
</tbody>
</table>

Dalal 2007

Methods

- **Study design:** Single centre RCT
- **No of centres:** 1
- **Country:** UK
- **Dates patients recruited:** December 2000 to September 2003
- **When randomised:** Following consent
- **Maximum follow up:** 9 months

Participants

- **Inclusion criteria:** Confirmed acute myocardial infarction (WHO criteria), ability to read English, registered with family doctor in one of two primary care trusts
- **Exclusion criteria:** Severe heart failure, unstable angina, uncontrolled arrhythmia, history of major psychiatric illness, other significant comorbidity precluding the ability to exercise on the treadmill, patients re-admitted with acute myocardial infarction who had already received an intervention earlier in the study
- **N randomised:** total: 104; home-based cardiac rehabilitation: 60; centre-based cardiac rehabilitation: 44
Method of assessment: Confirmed acute myocardial infarction (WHO criteria)

Diagnosis (% of pts):
- Post MI: 100%

Age (mean ± SD):
- Total: 62 ± 15 years; home-based cardiac rehabilitation: 60.6 ± 10.1 years; centre-based cardiac rehabilitation: 64.3 ± 11.2 years

Percentage male:
- Total: 81%; home-based cardiac rehabilitation: 82%; centre-based cardiac rehabilitation: 80%

Ethnicity: NR

Interventions

Description of home-based cardiac rehabilitation: Heart Manual

Time of start after event:

Components: Exercise, education and psychosocial

Aerobic exercise:
- **Modality:** Walking
- **Dose:** NR
- **Length of session:** NR
- **Frequency/no of sessions:** NR
- **Intensity:** NR
- **Total duration:** 6 weeks

Intermittent nurse or exercise specialist telephone support? Home visit in first week after discharge by cardiac rehabilitation nurse followed up by up to 4 telephone calls at 2, 3, 4, and 6 weeks

Co-interventions: NR

Description of centre-based cardiac rehabilitation:

Components: Exercise, education and psychosocial

Aerobic exercise:
- **Modality:** NR
- **Dose:** NR
- **Length of session:** NR
- **Frequency/no of sessions:** 1 to 5 sessions/week
- **Intensity:** NR
- **Total duration:** 8 to 10 weeks

Co-interventions: Input from dietitian, psychologist, occupational therapist, and pharmacist

Outcomes

- **Primary:** quality of life (MacNew questionnaire), total cholesterol
- **Secondary:** exercise capacity (METs), self-reported smoking, cardiovascular morbidity, mortality, secondary prevention medication use

Follow up

9 months post randomisation

Source of funding

NHS Executive South West (Research and Development) Project Grant D/02/10.99

Conflicts of interest

NR

Notes

Risk of bias
Dalal 2007 (Continued)

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“...computerised random number trial allocation sequence was determined before the study”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“...allocation was transferred to sequentially numbered, opaque, sealed envelopes and concealed from the research nurse, who carried out baseline assessment”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Low risk</td>
<td>“...the person assessing the primary outcome questionnaires was blinded to allocation”</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>“...the last known observation carried forward to replace missing values at 9 months for the primary outcome measures.”</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“The randomized groups were well balanced, apart from a higher proportion of patients in employment in the home based group (51% versus 26%, p=0.013)”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Both groups received similar advice regarding exercise, stress management, and education</td>
</tr>
</tbody>
</table>

Daskapan 2005

Methods

- **Study design:** Single centre RCT
- **No of centres:** 1
- **Country:** Turkey
- **Dates patients recruited:** 2000 to 2001
- **When randomised:** NR
- **Maximum follow up:** 12 weeks

Participants

- **Inclusion criteria:** Heart failure > 3 month duration
- **Exclusion criteria:** Valvular heart disease, exercise-induced cardiac arrhythmias, symptomatic myocardial ischaemia within 3 months, taking beta-blockers
- **N randomised:** total: 29; home-based cardiac rehabilitation: 15; centre-based cardiac rehabilitation: 14
- **Method of assessment:** Patients fulfilled criteria of the New York Heart Association; class II or III CHF
- **Diagnosis (% of pts):**
Interventions

Description of home-based cardiac rehabilitation: The home-based exercise training group (HETG) performed 12 weeks of physical training by themselves. Follow up logs completed daily/returned bi-weekly

- **Components**: Exercise only
- **Aerobic exercise**: Walking
- **Dose**:
 - **Length of session**: 45 min/session (including warm-up, cool-down, recovery)
 - **Frequency/no of sessions**: 3 sessions/week
 - **Intensity**: up to 60% peak heart rate (RPE 12 to 16)
 - **Total duration**: 12 weeks

Interruption nurse or exercise specialist telephone support: Weekly phone calls from staff monitoring adherence and progress, monthly phone calls from patients for control purposes

- **Co-interventions**: NR

Description of centre-based cardiac rehabilitation: The supervised exercise training group (SETG) performed 12 weeks of physical training on treadmill at the laboratory

- **Components**: Exercise only
- **Aerobic exercise**: Walking on a treadmill
- **Dose**:
 - **Length of session**: 45 min/session (including warm-up, cool-down, recovery)
 - **Frequency/no of sessions**: 3 sessions/week
 - **Intensity**: up to 60% peak heart rate (RPE 12 to 16)
 - **Total duration**: 12 weeks

- **Co-interventions**: NR

Outcomes

- (Primary and secondary outcomes not distinguished) exercise capacity (mL/kg/min), resting BP, systolic and diastolic BP, adherence, dropouts, mortality

Follow up

- 12 weeks post randomisation

Source of funding

- NR

Conflicts of interest

- NR

Notes

- Data on mortality obtained by personal contact

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
</table>
Daskapan 2005 *(Continued)*

<table>
<thead>
<tr>
<th>Source of bias</th>
<th>Risk of bias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment</td>
<td>Unclear risk</td>
<td>Blinding of assessors not described</td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td>3/11 (27%) centre-based patients and 4/11 (36%) home-based patients dropped out</td>
</tr>
<tr>
<td>Incomplete outcome data</td>
<td>Unclear risk</td>
<td></td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td>3/11 (27%) centre-based patients and 4/11 (36%) home-based patients dropped out</td>
</tr>
<tr>
<td>Selective reporting</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline</td>
<td>Low risk</td>
<td>“Among patients who completed the study, no differences in demographic characteristics were seen between the 2 study groups after randomization (p>0.05).”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>“We chose lower intensity …training prescriptions in the HETG to avoid any adverse occurrences and also in the SETG to provide comparable training intensity levels between 2 groups.”</td>
</tr>
</tbody>
</table>

Gordon 2002 Community

<table>
<thead>
<tr>
<th>Methods</th>
<th></th>
<th>Study design: Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No of centres: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Country: USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dates patients recruited: NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When randomised: Following baseline testing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum follow up: 12 weeks</td>
</tr>
</tbody>
</table>

Participants		Inclusion criteria: Diagnosed CAD; low-to-moderate risk of cardiac events (1. no cardiac arrest within 1 year, 2. no complex ventricular dysrhythmia, 3. ejection fraction < 40%, 4. no complicated MI or cardiac surgery, 5. no increasing systolic BP response to exercise testing, 6. no angina pectoris < 5.0 METs); ≥ 4 weeks post-hospitalisation; aged 21 to 75 years; no life-threatening illness and/or psychological abnormality; speak/write English; ability to complete exercise treadmill test; ability to attend 36 cardiac rehabilitation sessions
		Exclusion criteria: NR
		N randomised: total: 155; physician-supervised home-based cardiac rehabilitation: 54; community home-based cardiac rehabilitation: 49; centre-based cardiac rehabilitation: 52
		Method of assessment: NR
		Diagnosis (% of pts):

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Interventions

<table>
<thead>
<tr>
<th>Description of physician-supervised home-based cardiac rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components: Exercise and education</td>
</tr>
<tr>
<td>Aerobic exercise:</td>
</tr>
<tr>
<td>Modality: NR</td>
</tr>
<tr>
<td>Dose:</td>
</tr>
<tr>
<td>Length of session: individually prescribed (30 to 60 min of aerobic exercise)</td>
</tr>
<tr>
<td>Frequency/no of sessions: individually prescribed</td>
</tr>
<tr>
<td>Intensity: 60% to 85% peak HR</td>
</tr>
<tr>
<td>Total duration: 12 weeks</td>
</tr>
<tr>
<td>Intermittent nurse or exercise specialist telephone support? appointments: 2 office visits, 4 phone calls</td>
</tr>
<tr>
<td>Co-interventions: Written materials, audiotapes, nutrition, weight and stress management, smoking cessation programme, individual CAD risk factors management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of community home-based cardiac rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components: Exercise and education</td>
</tr>
<tr>
<td>Aerobic exercise:</td>
</tr>
<tr>
<td>Modality: NR</td>
</tr>
<tr>
<td>Dose:</td>
</tr>
<tr>
<td>Length of session: individually prescribed (30 to 60 min of aerobic exercise)</td>
</tr>
<tr>
<td>Frequency/no of sessions: individually prescribed</td>
</tr>
<tr>
<td>Intensity: 60% to 85% peak HR</td>
</tr>
<tr>
<td>Total duration: 12 weeks</td>
</tr>
<tr>
<td>Intermittent nurse or exercise specialist telephone support? 12 on site visits or telephone calls (patient choice)</td>
</tr>
<tr>
<td>Co-interventions: Written materials, audiotapes, nutrition, weight and stress management, smoking cessation programme, individual CAD risk factors management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of centre-based cardiac rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components: e.g. exercise only, exercise and education, exercise and psychosocial</td>
</tr>
<tr>
<td>Aerobic exercise:</td>
</tr>
<tr>
<td>Modality: e.g. running, cycling, skipping</td>
</tr>
<tr>
<td>Dose:</td>
</tr>
<tr>
<td>Length of session: Individually prescribed (30 to 60 min of aerobic exercise)</td>
</tr>
</tbody>
</table>

History of prior MI:
- Physician-supervised home-based cardiac rehabilitation: 29%; community home-based cardiac rehabilitation: 16%; centre-based cardiac rehabilitation: 6%
- History of prior CABG:
 - Physician-supervised home-based cardiac rehabilitation: 37%; community home-based cardiac rehabilitation: 40%; centre-based cardiac rehabilitation: 38%
- History of prior PTCA:
 - Physician-supervised home-based cardiac rehabilitation: 42%; community home-based cardiac rehabilitation: 47%; centre-based cardiac rehabilitation: 53%

Age (mean ± SD):
- Total: NR; physician-supervised home-based cardiac rehabilitation: 61 ± 10 years; community home-based cardiac rehabilitation: 60 ± 9 years; centre-based cardiac rehabilitation: 60 ± 9 years

Percentage male:
- Total: NR; physician-supervised home-based cardiac rehabilitation: 73%; community home-based cardiac rehabilitation: 78%; centre-based cardiac rehabilitation: 76%

Ethnicity:
- NR
Frequency/no of sessions: 3 sessions/week (total of 36 sessions = appointments)
Intensity: 60 to 85% peak HR
Total duration: 12 weeks
Co-interventions: Written materials, audiotapes, education on CAD risk factors and lifestyle modification

Outcomes
(Primary and secondary risk factors not distinguished) maximal oxygen uptake, blood pressure, fasting serum lipids, self-reported smoking status, rehospitalisation, adherence (completion of appointments)

Follow up
12 weeks post randomisation

Source of funding
NR

Conflicts of interest
NR

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors not described</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Data for 142 pts who completed exercise testing at baseline and at follow up (not all 155 pts randomised) reported only; numbers of dropouts reported and reasons described</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“Randomization did not result in statistical significant differences among patients assigned to the 3 interventions”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>All groups received similar written materials and advice</td>
</tr>
</tbody>
</table>
Gordon 2002 Supervised

Methods

<table>
<thead>
<tr>
<th>Study design:</th>
<th>Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres:</td>
<td>1</td>
</tr>
<tr>
<td>Country:</td>
<td>USA</td>
</tr>
<tr>
<td>Dates patients recruited:</td>
<td>NR</td>
</tr>
<tr>
<td>When randomised:</td>
<td>Following baseline testing</td>
</tr>
<tr>
<td>Maximum follow up:</td>
<td>12 weeks</td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Diagnosed CAD; low-to-moderate risk of cardiac events (1. no cardiac arrest within 1 year, 2. no complex ventricular dysrhythmia, 3. ejection fraction < 40%, 4. no complicated MI or cardiac surgery, 5. no increasing systolic BP response to exercise testing, 6. no angina pectoris < 5.0 METs); ≥ 4 weeks post-hospitalisation; aged 21 to 75 years; no life-threatening illness and/or psychological abnormality; speak/write English; ability to complete exercise treadmill test; ability to attend 36 cardiac rehabilitation sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria:</td>
<td>NR</td>
</tr>
<tr>
<td>N randomised:</td>
<td>total: 155; physician-supervised home-based cardiac rehabilitation: 54; community home-based cardiac rehabilitation: 49; centre-based cardiac rehabilitation: 52</td>
</tr>
<tr>
<td>Method of assessment:</td>
<td>NR</td>
</tr>
<tr>
<td>Diagnosis (% of pts):</td>
<td>History of prior MI: physician-supervised home-based cardiac rehabilitation: 29%; community home-based cardiac rehabilitation: 16%; centre-based cardiac rehabilitation: 6%</td>
</tr>
<tr>
<td></td>
<td>History of prior CABG: physician-supervised home-based cardiac rehabilitation: 37%; community home-based cardiac rehabilitation: 40%; centre-based cardiac rehabilitation: 38%</td>
</tr>
<tr>
<td></td>
<td>History of prior PTCA: physician-supervised home-based cardiac rehabilitation: 42%; community home-based cardiac rehabilitation: 47%; centre-based cardiac rehabilitation: 53%</td>
</tr>
<tr>
<td>Age (mean ± SD):</td>
<td>total: NR; physician-supervised home-based cardiac rehabilitation: 61 ± 10 years; community home-based cardiac rehabilitation: 60 ± 9 years; centre-based cardiac rehabilitation: 60 ± 9 years</td>
</tr>
<tr>
<td>Percentage male:</td>
<td>total: NR; physician-supervised home-based cardiac rehabilitation: 73%; community home-based cardiac rehabilitation: 78%; centre-based cardiac rehabilitation: 76%</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>NR</td>
</tr>
</tbody>
</table>

Interventions

<table>
<thead>
<tr>
<th>Description of physician-supervised home-based cardiac rehabilitation:</th>
<th>Exercise and education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components:</td>
<td>Aerobic exercise:</td>
</tr>
<tr>
<td></td>
<td>Modality: NR</td>
</tr>
<tr>
<td>Dose:</td>
<td>Length of session:</td>
</tr>
<tr>
<td></td>
<td>Frequency/no of sessions: individually prescribed</td>
</tr>
<tr>
<td></td>
<td>Intensity: 60% to 85% peak HR</td>
</tr>
<tr>
<td></td>
<td>Total duration: 12 weeks</td>
</tr>
<tr>
<td></td>
<td>Intermittent nurse or exercise specialist telephone support: appointments: 2 office visits, 4 phone calls</td>
</tr>
<tr>
<td></td>
<td>Co-interventions: Written materials, audiotapes, nutrition, weight and stress manage-</td>
</tr>
</tbody>
</table>
Gordon 2002 Supervised *(Continued)*

Description of community home-based cardiac rehabilitation:

Components: Exercise and education

Aerobic exercise:
- **Modality:** NR
- **Dose:**
- **Length of session:** individually prescribed (30 to 60 min of aerobic exercise)
- **Frequency/no of sessions:** individually prescribed
- **Total duration:** 12 weeks

Intermittent nurse or exercise specialist telephone support? 12 on site visits or telephone calls (patient choice)

Co-interventions: Written materials, audiotapes, nutrition, weight and stress management, smoking cessation programme, individual CAD risk factors management

Description of centre-based cardiac rehabilitation:

Components: e.g. exercise only, exercise and education, exercise and psychosocial

Aerobic exercise:
- **Modality:** e.g. running, cycling, skipping.
- **Dose:**
- **Length of session:** Individually prescribed (30 to 60 min of aerobic exercise)
- **Frequency/no of sessions:** 3 sessions/week (total of 36 sessions = appointments)
- **Intensity:** 60 to 85% peak HR
- **Total duration:** 12 weeks

Co-interventions: Written materials, audiotapes, education on CAD risk factors and lifestyle modification

Outcomes

(Primary and secondary risk factors not distinguished) maximal oxygen uptake, blood pressure, fasting serum lipids, self-reported smoking status, rehospitalisation, adherence (completion of appointments)

Follow up

12 weeks post randomisation

Source of funding

NR

Conflicts of interest

NR

Notes

<table>
<thead>
<tr>
<th>Risk of bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors not described</td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Gordon 2002 Supervised (Continued)

Incomplete outcome data (attrition bias)	Low risk	Data for 142 pts (8%) who completed exercise testing at baseline and at follow up (not all 155 pts randomised) reported only; numbers of dropouts reported and reasons described
Selective reporting (reporting bias)	Low risk	All outcomes mentioned in methods are reported in results
Groups balanced at baseline?	Low risk	“Randomization did not result in statistical significant differences among patients assigned to the 3 interventions”
Groups received same co-intervention(s)?	Low risk	All groups received similar written materials and advice

Grace 2016 Mixed

Methods

Study design:	Single-blind, 3 parallel-arm multicentre RCT
No of centres:	6
Country:	Canada
Dates patients recruited:	1 November 2009 to 31 July 2013
When randomised:	After intake assessment
Maximum follow up:	Six months

Participants

Inclusion criteria:	Residency in the city where the cardiac rehabilitation programs were offered, proficiency in English, approval to participate in cardiac rehabilitation program by cardiac specialist or general practitioner, and eligibility for home-based cardiac rehabilitation (i.e. low to moderate risk of an adverse event during exercise as demonstrated by lack of complex ventricular dysrhythmia, New York Heart Association class 1-2 classification, and left ventricular ejection fraction of > 40%, or Canadian Cardiovascular Society class 1-2 classification)
Exclusion criteria:	Musculoskeletal, neuromuscular, visual, cognitive, or serious mental illness, or any serious illness that would preclude cardiac rehabilitation eligibility; deemed not suitable for cardiac rehabilitation by physician; plans to leave area; discharged to a long-term care facility; and participation in another RCT with behavioural interventions.
N randomised:	total: 169; home-based cardiac rehabilitation: 55; comparator 1 (mixed sex): 59 comparator 2 (women only): 55
Method of assessment:	Clinical charts were reviewed for inclusion/exclusion criteria
Diagnosis (% of pts):	PCI: total: 49.1%; home-based cardiac rehabilitation: 50.0%; mixed sex: 50.0%; women only: 47.3%
Angina/ACS/CAD:	total: 36.2%; home-based cardiac rehabilitation: 35.8%; mixed sex: 36.4%; women only: 36.4%
MI:	total: 35.8%; home-based cardiac rehabilitation: 34.0%; mixed sex: 38.6%; women only: 34.5%
CABG:	total: 25.5%; home-based cardiac rehabilitation: 25.9%; mixed sex: 21.4%; women only: 29.1%
Interventions

Female patients were randomised to 1 of 3 models: (1) supervised mixed-sex, (2) supervised women only, or (3) home-based cardiac rehabilitation.

There were 3 cardiac rehabilitation sites involved in the trial, each offering all 3 models of cardiac rehabilitation. The programs lasted 4 to 6 months. At each site, a graded exercise stress test was performed pre-program and post-program. Results were used to develop individualised exercise prescriptions and participants were encouraged to accumulate at least 150 minutes of exercise per week at their target heart rate, preferably exercising most days of the week via stationary bicycle/treadmill/walking.

Description of intervention (home-based cardiac rehabilitation):

Home-based cardiac rehabilitation participants had at least 3 onsite visits and then exercised at home.

Time of start after event: NR

Components: Exercise only

Aerobic exercise:

Modality: stationary bicycle/treadmill/walking

Dose: Participants were encouraged to accumulate at least 150 minutes of exercise per week

Length of session: NR

Frequency/no of sessions: NR

Intensity: Participants exercised according to an individualised exercise prescription which included a target heart rate

Resistance training included? No

Total duration: 4 to 6 months

Intermittent nurse or exercise specialist telephone support? Patients were phoned weekly or biweekly, depending on program protocols and based on patient need

Co-interventions: Patients were provided the same education materials as patients attending the supervised models at their initial visit, which was reviewed on the phone with program staff

Description of comparator (centre-based cardiac rehabilitation):

Comparator 1: supervised mixed-sex

Comparator 2: supervised women only

Time of start after event: NR

Components: Exercise only

Aerobic exercise:

Modality: stationary bicycle/treadmill/walking

Dose:

Length of session: up to 1 hour

Frequency/no of sessions: 1 to 2 times/week

Intensity: Individualised target heart rate

Resistance training included? Yes
Total duration: 4 to 6 months
Co-interventions: Education materials provided

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adherence to cardiac rehabilitation, exercise capacity</td>
</tr>
<tr>
<td>Follow up</td>
</tr>
<tr>
<td>6 months</td>
</tr>
<tr>
<td>Source of funding</td>
</tr>
<tr>
<td>Heart and Stroke Foundation of Ontario (Grant in Aid no. NA 6682)</td>
</tr>
<tr>
<td>Conflicts of interest</td>
</tr>
<tr>
<td>None declared</td>
</tr>
<tr>
<td>Notes</td>
</tr>
<tr>
<td>SD values for adherence data were provided by the author on request</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“The randomization sequence was computer generated, in blocks of 6, and stratified by condition...through randomize.net.”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“Recruiters went online to ascertain random allocation and informed patients and CR sites.”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>“The CR program staff members were not aware of study objectives or which participants were involved in the trial. As a manipulation check, a masked research assistant checked CR charts to confirm the program model attended at the expected CR discharge date. Post-test CR data extraction, including stress test results, and program adherence were also undertaken by the masked research assistant.”</td>
</tr>
</tbody>
</table>
| Incomplete outcome data (attrition bias) | High risk | Home-based cardiac rehabilitation: 35/55 (64 %) lost to follow-up
Mixed sex centre-based cardiac rehabilitation: 38/59 (64 %) lost to follow-up
Women only centre-based cardiac rehabilitation: 34/55 (62 %) lost to follow-up |
| Selective reporting (reporting bias) | Low risk | All outcomes described in the methods were reported in the results section |

Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Grace 2016 Mixed (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Low risk</th>
<th>There were no significant differences between patients randomized to each of the 3 models (all P>.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups balanced at baseline?</td>
<td></td>
<td>“Patients were provided the same education materials as patients attending the supervised models at their initial visit, which was reviewed on the phone with program staff.”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td></td>
</tr>
</tbody>
</table>

Grace 2016 Women

Methods

<table>
<thead>
<tr>
<th>Study design:</th>
<th>Single-blind, 3 parallel-arm multicentre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres:</td>
<td>6</td>
</tr>
<tr>
<td>Country:</td>
<td>Canada</td>
</tr>
<tr>
<td>Dates patients recruited:</td>
<td>1 November 2009 to 31 July 2013</td>
</tr>
<tr>
<td>When randomised:</td>
<td>After intake assessment</td>
</tr>
<tr>
<td>Maximum follow up:</td>
<td>Six months</td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Residency in the city where the cardiac rehabilitation programs were offered, proficiency in English, approval to participate in cardiac rehabilitation program by cardiac specialist or general practitioner, and eligibility for home-based cardiac rehabilitation (i.e. low to moderate risk of an adverse event during exercise as demonstrated by lack of complex ventricular dysrhythmia, New York Heart Association class 1 to 2 classification, and left ventricular ejection fraction of > 40%, or Canadian Cardiovascular Society class 1 to 2 classification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria:</td>
<td>Musculoskeletal, neuromuscular, visual, cognitive, or serious mental illness, or any serious illness that would preclude cardiac rehabilitation eligibility; deemed not suitable for cardiac rehabilitation by physician; plans to leave area; discharged to a long-term care facility; and participation in another RCT with behavioural interventions</td>
</tr>
<tr>
<td>N randomised:</td>
<td>total: 169; home-based cardiac rehabilitation: 55; comparator 1 (mixed sex): 59 comparator 2 (women only): 55</td>
</tr>
<tr>
<td>Method of assessment:</td>
<td>Clinical charts were reviewed for inclusion/exclusion criteria</td>
</tr>
<tr>
<td>Diagnosis (% of pts):</td>
<td>PCI: total: 49.1%; home-based cardiac rehabilitation: 50.0%; mixed sex: 50.0%; women only: 47.3%</td>
</tr>
<tr>
<td></td>
<td>Angina/ACS/CAD: total: 36.2%; home-based cardiac rehabilitation: 35.8%; mixed sex: 36.4%; women only: 36.4%</td>
</tr>
<tr>
<td></td>
<td>MI: total: 35.8%; home-based cardiac rehabilitation: 34.0%; mixed sex: 38.6%; women only: 34.5%</td>
</tr>
<tr>
<td></td>
<td>CABG: total: 25.5%; home-based cardiac rehabilitation: 25.9%; mixed sex: 21.4%; women only: 29.1%</td>
</tr>
<tr>
<td></td>
<td>Valve: total: 19.4%; home-based cardiac rehabilitation: 20.4%; mixed sex: 19.3%; women only: 18.5%</td>
</tr>
<tr>
<td>Age (mean ± SD):</td>
<td>total: 63.64 ± 10.42 years; home-based cardiac rehabilitation: 63.13 ± 10.94 years; mixed sex: 61.56 ± 9.73 years; women only: 66.22 ± 10.21 years</td>
</tr>
<tr>
<td>Percentage male:</td>
<td>total: NR</td>
</tr>
<tr>
<td>Ethnicity (%white):</td>
<td>total: 62.5%; home-based cardiac rehabilitation: 65.3%; mixed</td>
</tr>
<tr>
<td>Interventions</td>
<td>Female patients were randomised to 1 of 3 models: (1) supervised mixed sex, (2) supervised women only, or (3) home-based cardiac rehabilitation. There were 3 cardiac rehabilitation sites involved in the trial, each offering all 3 models of cardiac rehabilitation. The programs lasted 4 to 6 months. At each site, a graded exercise stress test was performed pre-program and post-program. Results were used to develop individualised exercise prescriptions and participants were encouraged to accumulate at least 150 minutes of exercise per week at their target heart rate, preferably exercising most days of the week via stationary bicycle/treadmill/walking. Description of intervention (home-based cardiac rehabilitation): Home-based cardiac rehabilitation participants had at least 3 onsite visits and then exercised at home. Time of start after event: NR Components: Exercise only Aerobic exercise: Modality: stationary bicycle/treadmill/walking Dose: Participants were encouraged to accumulate at least 150 minutes of exercise per week Length of session: NR Frequency/no of sessions: NR Intensity: Participants exercised according to an individualised exercise prescription which included a target heart rate Resistance training included? No Total duration: 4 to 6 months Intermittent nurse or exercise specialist telephone support? Patients were phoned weekly or biweekly, depending on program protocols and based on patient need Co-interventions: Patients were provided the same education materials as patients attending the supervised models at their initial visit, which was reviewed on the phone with program staff. Description of comparator (centre-based cardiac rehabilitation): Comparator 1: supervised mixed sex Comparator 2: supervised women only Time of start after event: NR Components: Exercise only Aerobic exercise: Modality: stationary bicycle/treadmill/walking Dose: Length of session: up to 1 hour Frequency/no of sessions: 1 to 2 times/week Intensity: Individualised target heart rate Resistance training included? Yes Total duration: 4 to 6 months Co-interventions: Education materials provided</td>
</tr>
</tbody>
</table>

| Outcomes | Adherence to cardiac rehabilitation, exercise capacity |

| Follow up | 6 months |

| Source of funding | Heart and Stroke Foundation of Ontario (Grant in Aid no. NA 6682) |
Conflicts of interest
None declared

Notes
SD values for adherence data were provided by the author on request

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“The randomization sequence was computer generated, in blocks of 6, and stratified by condition…through randomize.net.”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“Recruiters went online to ascertain random allocation and informed patients and CR sites.”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>“The CR program staff members were not aware of study objectives or which participants were involved in the trial. As a manipulation check, a masked research assistant checked CR charts to confirm the program model attended at the expected CR discharge date. Post-test CR data extraction, including stress test results, and program adherence were also undertaken by the masked research assistant.”</td>
</tr>
</tbody>
</table>
| Incomplete outcome data (attrition bias) All outcomes | High risk | Home-based cardiac rehabilitation: 35/55 (64%) lost to follow-up
Mixed sex centre-based cardiac rehabilitation: 38/59 (64%) lost to follow-up
Women only centre-based cardiac rehabilitation: 34/55 (62%) lost to follow-up |
| Selective reporting (reporting bias) | Low risk | All outcomes described in the methods were reported in the results section |
| Groups balanced at baseline? | Low risk | There were no significant differences between patients randomized to each of the 3 models (all P > 0.05) |
| Groups received same co-intervention(s)? | Low risk | “Patients were provided the same education materials as patients attending the supervised models at their initial visit, which was reviewed on the phone with program staff.” |
Methods

<table>
<thead>
<tr>
<th>Study design</th>
<th>Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres</td>
<td>1</td>
</tr>
<tr>
<td>Country</td>
<td>India</td>
</tr>
<tr>
<td>Dates patients recruited</td>
<td>2007 to 2008</td>
</tr>
<tr>
<td>When randomised</td>
<td>As recruitment proceeded</td>
</tr>
<tr>
<td>Maximum follow up</td>
<td>1 year</td>
</tr>
</tbody>
</table>

Participants

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Low and moderate risk post-PTCA patients, aged 35 to 75 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria</td>
<td>High risk post-PTCA patients; any musculoskeletal; neuromuscular, or any other medical conditions with exercise contraindications; not willing to give consent</td>
</tr>
<tr>
<td>N randomised</td>
<td>total: 105; home-based cardiac rehabilitation (HmCR): 35; centre-based cardiac rehabilitation (HsCR): 35; control (no cardiac rehabilitation - usual standard care in the centre at the time of study): 35</td>
</tr>
<tr>
<td>Diagnosis (% of pts)</td>
<td>Post-PTCA patients; 100%</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>total: 56.1 ± 9.1; home-based cardiac rehabilitation (HmCR): NR; centre-based cardiac rehabilitation: NR</td>
</tr>
<tr>
<td>Percentage male</td>
<td>total: 71.4%; home-based cardiac rehabilitation (HmCR): NR; centre-based cardiac rehabilitation: NR</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Asian Indian 100%</td>
</tr>
</tbody>
</table>

Interventions

Description of intervention (home-based cardiac rehabilitation):

- **Time of start after event:** within 2 weeks post-PTCA
- **Components:** Exercise and education
- **Aerobic exercise:**
 - **Modality:** Brisk walking
 - **DOSE:** Moderate
 - **Length of session:** 20 to 60 min, progressively increased in 3 month duration of treatment including 5 to 10 min warm up and cool down
 - **Frequency/no of sessions:** 3 times/week
 - **Intensity:** 40% to 70% of HRR, progressively increased in 12 weeks. HRmax was obtained from symptom-limited Bruce protocol exercise test at baseline
- **Resistance training included?** No
- **Total duration:** 3 months (12 weeks)
- **Intermittent nurse or exercise specialist telephone support?** Every 2 weeks to increase intensity based on HR, other times as per needed on the telephone
- **Co-interventions:** NR

Description of comparator (centre-based cardiac rehabilitation):

- **Time of start after event:** within 2 weeks post-PTCA
- **Components:** Exercise (supervised by trained physical therapist at centre)
- **Aerobic exercise:** Yes
 - **Modality:** Brisk walking on treadmill
 - **DOSE:** Moderate
 - **Length of session:** 20 to 60 min, progressively increased in 3 month duration of treatment including 5 to 10 min warm up and cool down
 - **Frequency/no of sessions:** 3 days/week
 - **Intensity:** 40% to 70% HRR, progressively increased in 12 weeks
- **Resistance training included?** No
- **Total duration:** 3 months (12 weeks)
- **Co-interventions:** NR
Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>3 months, 1 year</td>
</tr>
</tbody>
</table>

Source of funding

Manipal University, India

Conflicts of interest

"None"

Notes

This study has not yet been published and we do not have access to the full manuscript. All study information and outcome data were provided by the study author.

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Block randomisation through concealed envelope method</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Block Randomisation through concealed envelope method</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Assessors were blinded to group allocation</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>Home-based cardiac rehabilitation: 0/35 (0%) lost to follow-up Centre-based cardiac rehabilitation: 4/35 (11.4%) lost to follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>This study has not yet been published and we did not have access to a published protocol or description of the methods</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Unclear risk</td>
<td>This study has not yet been published and we did not have access to the baseline data</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>High risk</td>
<td>The home-based group received education; the centre-based group did not</td>
</tr>
</tbody>
</table>
Hadadzadeh 2015

Methods

Study design: Multicentre RCT
No of centres: 3
Country: India, and Iran
Dates patients recruited: 2007 to 2009
When randomised: As recruitment proceeded
Maximum follow up: 1 year

Participants

Inclusion criteria: Low and moderate risk post-event CAD patients (post-MI on conservative Rx, CABG, PTCA), aged 35 to 75 years
Exclusion criteria: High risk post-event CAD patients, Any musculoskeletal, neuromuscular, or any other medical conditions with exercise contra-indications, not willing to give consent
N randomised: total: 180; hospital-based cardiac rehabilitation: 60; centre-based cardiac rehabilitation: 60; control (no exercise): 60
Diagnosis (% of pts): Post-event CAD patients treated conservatively, CABG or PTCA
Age (mean ± SD): total: 57 ± 9.3 years; intervention: NR; comparator: NR
Percentage male: total: 81.1%; intervention: NR; comparator: NR
Ethnicity: Asian Indian 70%, Middle Eastern (white) 30%

Interventions

Description of intervention (home-based cardiac rehabilitation):
Time of start after event: within 2 weeks post-event
Components: Exercise and education
Aerobic exercise: Yes
Modality: Brisk walking
DOSE: Moderate
Length of session: 20 to 60 min, progressively increased in 3 month duration of treatment including 5 to 10 min warm up and cool down
Frequency/no of sessions: 3 times/week
Intensity: 40% to 70% HRR, progressively increased over 12 weeks
Resistance training included? No
Total duration: 3 months (12 weeks)
Intermittent nurse or exercise specialist telephone support? Every 2 weeks to increase intensity based on HR, other times as per needed on the phone
Co-interventions: None

Description of comparator (centre-based cardiac rehabilitation):
Time of start after event: within 2 weeks post-event
Components: e.g. exercise only
Aerobic exercise: Brisk walking on treadmill
DOSE: Moderate
Length of session: 20 to 60 min, progressively increased in 3 month duration of treatment including 5 to 10 min warm up and cool down
Frequency/no of sessions: 3 days/week
Intensity: 40% to 70% HRR, progressively increased over 12 weeks
Resistance training included? No
Total duration: 3 months (12 weeks)
Co-interventions: None

Outcomes

Quality of life measured by SF-36v2. Functional Capacity measured by achieved MET level on a symptom limited Bruce protocol treadmill test
Hadadzadeh 2015 (Continued)

<table>
<thead>
<tr>
<th>Follow up</th>
<th>3 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of funding</td>
<td>Manipal University, India; MOE Iran</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>None</td>
</tr>
<tr>
<td>Notes</td>
<td>This study has not been published yet and we do not have access to the full manuscript. All study information and outcome data has been provided by the author of the study</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>Block randomisation</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Concealed envelope method</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Low risk</td>
<td>Assessors were blinded to group allocation</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>Home-based cardiac rehabilitation: 5/60 (8.0%) lost to follow-up Centre-based cardiac rehabilitation: 2/60 (3.3 %) lost to follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>This study has not yet been published and we did not have access to a published protocol or description of the methods</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Unclear risk</td>
<td>This study has not yet been published and we did not have access to baseline data</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>High risk</td>
<td>The home-based group received education; the centre-based group did not</td>
</tr>
</tbody>
</table>

Jolly 2007

| Methods | Study design: Multicentre RCT
No of centres: 4
Country: UK
Dates patients recruited: February 2002 to January 2004
When randomised: Following baseline assessment
Maximum follow up: 24 months |

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Participants

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Acute MI, coronary angioplasty (± stenting) or CABG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion criteria:</td>
<td>Inability to speak either English or Punjabi, dementia, severe hearing impairment, sight defects of sufficient severity to prevent reading the Heart Manual, and serious persisting complications</td>
</tr>
<tr>
<td>N randomised:</td>
<td>Total: 525; home-based cardiac rehabilitation: 263; centre-based cardiac rehabilitation: 262</td>
</tr>
<tr>
<td>Method of assessment:</td>
<td>Killip Class</td>
</tr>
</tbody>
</table>

Diagnosis (% of pts):%

- **Myocardial Infarction (MI):**
 - Home-based cardiac rehabilitation: 49.0%
 - Centre-based cardiac rehabilitation: 49.2%
- **PTCA:**
 - Home-based cardiac rehabilitation: 38.4%
 - Centre-based cardiac rehabilitation: 42.0%
- **CABG:**
 - Home-based CR: 12.5%
 - Centre-based cardiac rehabilitation: 8.8%

Age (mean ± SD):

- **Home-based cardiac rehabilitation:** 60.3 ± 10.5 years
- **Centre-based cardiac rehabilitation:** 61.8 ± 11.0 years

Percentage Male:

- **Home-based cardiac rehabilitation:** 77.2%
- **Centre-based cardiac rehabilitation:** 76.0%

Ethnicity:

- **Home-based cardiac rehabilitation:** 80.2%
- **Centre-based cardiac rehabilitation:** 79.3%

Interventions

Description of home-based cardiac rehabilitation:

The home-based programme consisted of a manual, three home visits (at 10 days, 6 weeks and 12 weeks) and telephone contact at 3 weeks. Patients who had had an MI were discharged home with the Heart Manual. Additional visits were made as deemed necessary by the rehabilitation nurse. The manual encourages patients to build up their exercise gradually to achieve a minimum of 15 minutes of moderately intense activity daily.

Components: Exercise, education and psychosocial

Aerobic exercise:

- **Modality:** Walking
- **Dose:** Minimum of 15 mins
- **Frequency/no of sessions:** Up to daily
- **Intensity:** NR
- **Total duration:** 6 weeks Heart Manual programme and 12 weeks nurse support

Intermittent nurse or exercise specialist telephone support: Three home visits (at 10 days, 6 weeks and 12 weeks) and telephone contact at 3 weeks

Co-interventions: Education on risk factors, lifestyle changes, medications and stress management (relaxation tapes)

Description of centre-based cardiac rehabilitation:

The four centre-based programmes varied in length, including nine sessions at weekly intervals, 12 sessions over 8 weeks and 24 individualised sessions over 12 weeks. Programmes commenced between 4 weeks and 8 weeks following the cardiac event. Patients exercised to 65% to 75% of their predicted maximal heart rate and the exercise element of the sessions lasted from 25 minutes to 40 minutes plus warm-up and cool-down elements.

Components: Exercise, education and psychosocial

Aerobic exercise:

- **Modality:** Circuit training, cycle ergometer
- **Dose:**
<table>
<thead>
<tr>
<th>Jolly 2007 (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of session: 25 to 30 min/session</td>
</tr>
<tr>
<td>Frequency/no of sessions: 1 or 2 sessions/week</td>
</tr>
<tr>
<td>Intensity: 65% to 75% HRmax</td>
</tr>
<tr>
<td>Resistance training included?</td>
</tr>
<tr>
<td>Total duration: 6 to 12 weeks</td>
</tr>
<tr>
<td>Co-interventions: Education and stress management (relaxation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary: serum cholesterol, total cholesterol, HDL cholesterol, blood pressure, exercise capacity (ISWT), smoking (cotinine-validated)</td>
</tr>
<tr>
<td>Secondary: quality of life (EQ-5D), health service utilisation (hospital readmissions, primary care visits, medication), mortality, cardiovascular events, costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 12, 24 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funded by the UK Department of Health through its Health Technology Assessment Programme. National Heart Research funded the development of the Heart Manual for patients following a revascularisation procedure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conflicts of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>“None”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bias</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Random sequence generation (selection bias)</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
</tr>
<tr>
<td>All outcomes</td>
</tr>
</tbody>
</table>
Jolly 2007 (Continued)

Incomplete outcome data (attrition bias)	Low risk	“A sensitivity analysis was undertaken on the 12-month data to assess the potential impact of the missing values for the ISWT, [systolic] BP, [diastolic] BP, [total cholesterol] and the Hospital Anxiety and Depression Scale scores.”
Selective reporting (reporting bias)	Low risk	All outcomes described in the methods section are reported in the results
Groups balanced at baseline?	Low risk	“Demographic characteristics, diagnosis, past medical history and cardiac risk factors were well matched between the two arms at baseline.”
Groups received same co-intervention(s)?	High risk	Although both groups received exercise, education and stress management, the nature and amount of intervention between groups was different

Karapolat 2009

<table>
<thead>
<tr>
<th>Methods</th>
<th>RCT parallel groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design:</td>
<td>Single centre RCT</td>
</tr>
<tr>
<td>No of centres:</td>
<td>1</td>
</tr>
<tr>
<td>Country:</td>
<td>Turkey</td>
</tr>
<tr>
<td>Dates patients recruited:</td>
<td>2007 to 2008</td>
</tr>
<tr>
<td>When randomised:</td>
<td>NR</td>
</tr>
<tr>
<td>Maximum follow up:</td>
<td>8 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria:</td>
<td>HF as a result of ischaemic and dilated cardiomyopathy, clinical stability for at least 3 months, left ventricular ejection fraction ≤ 40%, NYHA functional class II-III, optimal and standard pharmacological treatment, the ability to speak and understand Turkish, absence of psychiatric disease, the ability to remain stable during exercise tests, and willingness to volunteer to participate in this study</td>
</tr>
<tr>
<td>Exclusion criteria:</td>
<td>Neurological orthopaedic, peripheral vascularisation, or severe pulmonary disease; NYHA class IV patients; unstable angina pectoris; poorly controlled or exercise-induced cardiac arrhythmias; recent acute coronary syndrome or revascularisation (≤ 3 months); significant valvular disease; atrial fibrillation; uncontrolled arterial hypertension; and performing exercise training at regular intervals during the previous 6 weeks</td>
</tr>
<tr>
<td>Method of assessment:</td>
<td>Standard echocardiography and Tissue Doppler Imaging echocardiography (TDI)</td>
</tr>
<tr>
<td>N randomised:</td>
<td>total: 74; home-based cardiac rehabilitation: 37; centre-based cardiac rehabilitation: 37</td>
</tr>
<tr>
<td>Diagnosis (% of pts):</td>
<td>Heart failure: 100%</td>
</tr>
<tr>
<td>Age (mean ± SD):</td>
<td>home-based cardiac rehabilitation: 44.05 ± 11.49 years; centre-based</td>
</tr>
</tbody>
</table>
| Interventions | **Description of home-based** cardiac rehabilitation: All sessions were performed at home, supervised by a physician. A specific program was designed for each patient based on individual muscle strength, joint flexibility, and aerobic endurance. Exercise sessions included flexibility exercises, aerobic exercises, and breathing exercises. The flexibility exercises focused on range of motion and included exercises designed to stretch the cervical and lumbar spine and the upper and lower extremities. Training HR measured by monitor
Components: Exercise only
Aerobic exercise:
Modality: walking
Dose:
Length of session: NR
Frequency/no of sessions: NR
Intensity: NR
Total duration: 8 weeks
Interruption nurse or exercise specialist telephone support? NR
Co-interventions: NR
Description of centre-based cardiac rehabilitation:
Centre-based cardiac rehabilitation (control):
Exercise: All rehabilitation sessions were supervised by a physician. A specific program was designed for each patient based on individual muscle strength, joint flexibility, and aerobic endurance. Exercise sessions included flexibility exercises, aerobic exercises, and breathing exercises. The flexibility exercises focused on range of motion and included exercises designed to stretch the cervical and lumbar spine and the upper and lower extremities. Training HR measured by monitor
Components: e.g. exercise only, exercise and education, exercise and psychosocial
Aerobic exercise:
Modality: Treadmill
Dose:
Length of session: 45 to 60 min (including 5 min warm-up, 30 min aerobic exercise and 5 min cool-down)
Frequency/no of sessions: 3 sessions/week
Intensity: 60% to 70% heart rate reserve, level 13 to 15 on the Borg scale
Total duration: 8 weeks
Co-interventions: NR |

| Outcomes | Exercise capacity, quality of life (SF-36) |

| Follow up | 8 weeks |

| Source of funding | “We have no support for this study” |

| Conflicts of interest | NR |
Karapolat 2009 (Continued)

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“...randomized (using concealed envelopes)”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>Flow diagram shows loss to follow up 5/37 (14%) hospital-based, 1/37 (3%) home-based group; no imputation of missing data undertaken</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>Good balance in patient demographics</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Only difference between groups is whether exercise training performed in hospital or home</td>
</tr>
</tbody>
</table>

Kassaian 2000

Methods

<table>
<thead>
<tr>
<th>Study design: Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres: 1</td>
</tr>
<tr>
<td>Country: Iran</td>
</tr>
<tr>
<td>Dates patients recruited: NR</td>
</tr>
<tr>
<td>When randomised: Immediately after baseline tests (one to two months after acute Q wave MI or CABG)</td>
</tr>
<tr>
<td>Maximum follow up: 12 weeks</td>
</tr>
</tbody>
</table>

Participants

| Inclusion criteria: AMI or CABG in last 1 to 2 months, NYHA class < IV, ejection fraction ≥ 30%, able to exercise on a treadmill and participate in exercise programme |
| Exclusion criteria: High-risk stress test, decompensated CHF (NYHA IV), unstable angina, uncontrolled atrial fibrillation, high-grade atrioventricular block (grade 2 or 3), active pericarditis or myocarditis, recent pulmonary thromboembolism, exercise-induced asthma, claudication, fixed-rate permanent pacemaker, severe medical problem |
| N randomised: total: 125; home-based cardiac rehabilitation: 60; centre-based cardiac rehabilitation: 65 |
Kassaian 2000 (Continued)

| Diagnosis (% of pts): | MI: total: 23.2%; home-based cardiac rehabilitation: 13.3%; centre-based cardiac rehabilitation: 32.3%
| CABG: total: 76.8%; home-based cardiac rehabilitation: 86.7%; centre-based cardiac rehabilitation: 67.7%
| Age (mean ± SD): 55 ± 9.5 years
| Percentage male: total: 100%
| Ethnicity: NR |

| Interventions | Description of home-based cardiac rehabilitation: Patients were taught to count their pulse rate
| Time of start after even: One to two months after acute Q wave MI or CABG
| Components: Exercise only
| Aerobic exercise:
| Modality: NR
| Dose:
| Length of session: NR
| Frequency/no of sessions: NR
| Intensity: “based on exercise test results”
| Total duration: 12 weeks
| Intermittent nurse or exercise specialist telephone support? NR
| Co-interventions: NR

| Description of centre-based cardiac rehabilitation:
| Components: Exercise only
| Aerobic exercise:
| Modality: treadmill
| Dose:
| Length of session: 20 to 30 min + 10 min warm-up + 10 min cool-down/session
| Frequency/no of sessions: 3 sessions week
| Intensity: 60% to 85% (not reported if relative to HRmax)
| Total duration: 12 weeks
| Co-interventions: NR |

| Outcomes | (Primary and secondary outcomes not distinguished) systolic BP, diastolic BP, heart rate (all resting and sub-maximal), functional capacity (METs), BMI, cholesterol: total, LDL, HDL, triglyceride |

| Follow up | 12 weeks post randomisation |

| Source of funding | NR |

| Conflicts of interest | NR |

| Notes | |

Risk of bias

| Bias | Authors’ judgement | Support for judgement |

Home-based versus centre-based cardiac rehabilitation (Review)
Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Kassaian 2000 (Continued)

<table>
<thead>
<tr>
<th>Source of Bias</th>
<th>Risk of Bias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>No information on loss to follow up or missing data management</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Unclear risk</td>
<td>Not all outcomes reported mentioned in methods section</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“Among patients who completed the study no differences in demographic characteris-</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Unclear risk</td>
<td>tics were seen between the two study groups after randomisation.”</td>
</tr>
</tbody>
</table>

Kraal 2014

Methods

- **Study design:** Single centre RCT
- **No of centres:** 1
- **Country:** Netherlands
- **Dates patients recruited:** March 2013 to March 2014
- **When randomised:** After written consent, one week after cardiac rehabilitation intake
- **Maximum follow up:** 12 weeks

Participants

- **Inclusion criteria:** Patients entering cardiac rehabilitation after hospitalisation for MI, unstable angina, or a revascularisation procedure (PCI or CABG). Only patients with a low-to-moderate risk of future cardiac events according to the Dutch cardiac rehabilitation guidelines were included. Patients were required to have Internet access and a computer at home
- **Exclusion criteria:** None described
- **N randomised: total:** 55; **intervention:** 26; **comparator:** 26
- **Method of assessment:** NR
- **Diagnosis (% of pts):**
 - ACS with PCI: home-based cardiac rehabilitation: 56%; centre-based cardiac rehabilitation: 40%
 - ACS without PCI: home-based cardiac rehabilitation: 16%; centre-based cardiac rehabilitation: 20%
 - Angina pectoris with PCI: home-based cardiac rehabilitation: 8%; centre-based cardiac rehabilitation: 16%
 - Angina pectoris without PCI: home-based cardiac rehabilitation: 8%; centre-based cardiac rehabilitation: 16%
| Cardiac Rehabilitation | Description of home-based cardiac rehabilitation: Patients in the HT group received three initial supervised training sessions. During these sessions, patients received instructions on how to use a wearable heart rate monitor (Garmin Forerunner 70) and how to upload the recorded exercise data to a web application (Garmin Connect) through the Internet. The web application was used to review the training data by the patient, the physical therapist and the exercise specialist. During the first sessions, the patients were also familiarised with the training programme (duration, intensity) and their preferred training modality in the home environment was discussed. After three supervised training sessions, patients in the HT group started training in their home environment.

Time of start after event: NR

Components: Exercise plus behavioural change

Aerobic exercise:
- **Modality:** Patient’s preferred training modality
- **Dose:**
 - **Length of session:** 45 to 60 min
 - **Frequency/no of sessions:** at least two training sessions per week
 - **Intensity:** 70% to 85% of maximal heart rate
- **Resistance training included:** No
- **Total duration:** 12 weeks

Intermittent nurse or exercise specialist telephone support? Patients received feedback on training frequency, duration and intensity from the physical therapist once a week via telephone. After 12 weeks, the telephonic feedback was terminated and the patients were advised to continue their training with the heart rate monitor.

Co-interventions: Patients in the home-based training group received coaching from their therapist through weekly telephone calls. During this phone call the therapist gave feedback on training parameters that were measured during the preceding week, and discussed progress with respect to the personal training goals. In addition, based on the principles of motivational interviewing, they discussed barriers and facilitative factors in adhering to the exercise training protocol.

| Cardiac Rehabilitation | Description of centre-based cardiac rehabilitation: Patients in the HT group received three initial supervised training sessions. During these sessions, patients received instructions on how to use a wearable heart rate monitor (Garmin Forerunner 70) and how to upload the recorded exercise data to a web application (Garmin Connect) through the Internet. The web application was used to review the training data by the patient, the physical therapist and the exercise specialist. During the first sessions, the patients were also familiarised with the training programme (duration, intensity) and their preferred training modality in the home environment was discussed. After three supervised training sessions, patients in the HT group started training in their home environment.

Time of start after event: NR

Components: Exercise only

Aerobic exercise:
- **Modality:** Group-based training sessions on a treadmill or cycle ergometer, supervised by physical therapists and exercise specialists
- **Dose:**
 - **Length of session:** 45 to 60 min
 - **Frequency/no of sessions:** at least two training sessions per week
 - **Intensity:** 70% to 85% of their maximal heart rate
- **Resistance training included:** No

<table>
<thead>
<tr>
<th>Interventions</th>
<th>Cardiac rehabilitation: 0%</th>
<th>CABG: home-based cardiac rehabilitation: 12%; centre-based cardiac rehabilitation: 24%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD) (N = 25): total; home-based cardiac rehabilitation: 60.6 ± 7.5 years; centre-based cardiac rehabilitation: 56.1 ± 8.7 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage male (N = 25): total; home-based cardiac rehabilitation: 88%; centre-based cardiac rehabilitation: 84%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity: NR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kraal 2014 (Continued)

<table>
<thead>
<tr>
<th>Total duration:</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-interventions:</td>
<td>None described</td>
</tr>
</tbody>
</table>

Outcomes
- Exercise capacity; HRQoL; adherence to cardiac rehabilitation

Follow up
- 12 weeks

Source of funding
- ZonMw, the Dutch Organisation for Health Research and Development (project number 837001003)

Conflicts of interest
- The FIT@Home study is executed in collaboration with Philips Research; the heart rate monitors used during home-based training were provided by Philips Research

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>“...patients were randomly allocated to homebased training (HT) or centre-based training (CT).” Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
</tbody>
</table>

Incomplete outcome data (attrition bias)
- **All outcomes**
 - High risk
 - Home-based cardiac rehabilitation: 4/29 (13.8%) lost to follow-up
 - Centre-based cardiac rehabilitation: 1/26 (3.8%) lost to follow-up
 - Loss to follow-up was disproportionately higher in the intervention group
 - “Data were analysed per protocol”

Selective reporting (reporting bias)
- Low risk
- All outcomes described in the methods section are reported in the results section

Groups balanced at baseline?
- Low risk
- No P values were given, but baseline characteristics appear to be similar in both groups

Groups received same co-intervention(s)?
- High risk
- “...patients in the HT group started training at home and received coaching from their therapist through weekly telephone calls...” No coaching was given to the centre-based cardiac rehabilitation group
Marchionni 2003

| Methods | Study design: Single centre RCT
| No of centres: 1
| Country: Italy
| Dates patients recruited: NR
| When randomised: NR
| Maximum follow up: 14 months |

| Participants | Inclusion criteria: Aged > 45 years, MI
| Exclusion criteria: Severe cognitive impairment; physical disability; left ventricular ejection fraction < 35%; contraindications to vigorous exercise; eligibility for myocardial revascularisation, living too far from cardiac rehabilitation unit
| N randomised: total: 180; home-based cardiac rehabilitation: 90; centre-based cardiac rehabilitation: 90
| Method of assessment: NR
| Diagnosis (% of pts): MI: 100%
| Age (mean ± SD): total: 69 ± 1.6 years; home-based cardiac rehabilitation: NR; centre-based cardiac rehabilitation: NR
| Percentage male: total: 71%; home-based cardiac rehabilitation: NR%; centre-based cardiac rehabilitation: NR
| Ethnicity: NR |

| Interventions | Description of home-based cardiac rehabilitation:
| Components: Exercise only
| Aerobic exercise:
| Modality: cycle ergometer
| Dose:
| Length of session: NR
| Frequency/no of sessions: 3 days/week
| Intensity: 70% to 85% peak HR
| Total duration: 8 weeks
| Intermittent nurse or exercise specialist telephone support? Physical therapist home visits every other week
| Co-interventions: Monthly family-oriented support groups
| Description of centre-based cardiac rehabilitation:
| Components: Exercise only
| Aerobic exercise: cycle ergometer
| Modality: e.g. running, cycling, skipping.
| Dose:
| Length of session: NR
| Frequency/no of sessions: 3 days/week
| Intensity: 70% to 85% peak HR
| Total duration: 12 weeks
| Co-interventions: Risk factor management counselling; support group meetings |

| Outcomes | Primary: total work capacity
| Secondary: HRQoL (Sickness Impact Profile), mortality, morbidity (cardiovascular events), healthcare utilisation (medical visits, rehospitalisations), costs, and adherence |
Follow up 2, 8, 14 months post randomisation

Source of funding National Research Council (CNR), the University of Florence, and the Regional Government of Tuscany, Italy

Conflicts of interest NR

Notes Subgroup analysis in age groups (middle-aged: 45 to 65 years, old: 65 to 75 years, very old: >75 years)
Data presented separately for 3 age groups. Follow up data on charts only; authors contacted for numerical data at follow up and these have been supplied for total work capacity and Sickness Impact Profile separately for 3 groups; we pooled data across age groups

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>“Testing personnel were blinded to patient assignment.”</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>“...we performed a sensitivity analysis comparing results obtained with and without replacement of missing data with data obtained with the expectation-maximization imputation method. Because the 2 analyses provided similar results, which were also similar with missing data substituted with data estimated in a worst-case scenario, only the data from patients who completed the study are presented”</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“...baseline sociodemographic and clinical characteristics were similar across the 3 arms of the trial” Baseline characteristics by home and hospital group allocation not reported in tabular format</td>
</tr>
</tbody>
</table>
Marchionni 2003 (Continued)

| Groups received same co-intervention(s)? | Low risk | “Patients received an exercise prescription similar to that of the Hosp-CR group.... A physical therapist made home visits every other week to adjust if necessary the exercise prescription, to enhance adherence with intervention” |

Miller 1984 Brief

| Methods | Study design: Single centre RCT
No of centres: 1
Country: USA
Dates patients recruited: NR
When randomised: NR
Maximum follow up: 23 weeks |

| Participants | Inclusion criteria: Uncomplicated AMI (elevated serum creatinine kinase or oxaloacetic transaminase, prolonged chest pain consistent with AMI, new Q waves or evolutionary ST changes in ECG)
Exclusion criteria: Unable to undertake exercise test, congestive heart failure, unstable angina pectoris, valvular heart disease, atrial fibrillation, bundle branch block, history of bypass, stroke, orthopaedic abnormalities, peripheral vascular disease, chronic pulmonary obstructive disease, obesity
N randomised: total: 127; home-based cardiac rehabilitation: 66 (33 in brief exercise programme subgroup and 33 in extended subgroup); centre-based cardiac rehabilitation: 61 (31 in brief subgroup and 30 in extended subgroup)
Method of assessment: MI was documented by the combination of characteristic elevation of serum creatine kinase or oxaloacetic transaminase, a history of prolonged chest pain consistent with MI, and the appearance of new Q waves or evolutionary ST segment changes
Diagnosis (% of pts):
Uncomplicated acute MI: 100%
Age (mean ± SD): total: 52 ± 9 years; home-based cardiac rehabilitation: NR; centre-based cardiac rehabilitation: NR
Percentage male: total: 100%
Ethnicity: NR |

| Interventions | Description of home-based cardiac rehabilitation:
Aerobic exercise:
Modality: stationary cycling. Portable heart rate monitors and teletransmissions of ECG
Dose:
Length of session: 30 min/session
Frequency/no of sessions: 5 sessions/week
Intensity: 70% to 85% HRmax
Resistance training included? NR
Total duration: 8 weeks (brief) or 23 weeks (extended)
Intermittent nurse or exercise specialist telephone support? 2 phone calls/week by staff to verify training intensity, clinical status and medication |
Co-interventions: NR

Description of centre-based cardiac rehabilitation:

Time of start after event: 3 weeks after infarction

Components: Exercise only

Aerobic exercise:
- **Modality:** walking/jogging; Group based and supervised
- **Dose:**
 - **Length of session:** 60 mins/session
 - **Frequency/no of sessions:** 5 sessions/week
 - **Intensity:** 70% to 85% HRmax
- **Resistance training included:** NR

Total duration: 8 weeks (brief) or 23 weeks (extended)

Co-interventions: NR

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Exercise capacity; mortality and cardiovascular morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>23 weeks post randomisation</td>
</tr>
<tr>
<td>Source of funding</td>
<td>Grant HL18907 from the NHLBI, Bethesda, and by a grant from the PepsiCo Foundation, Purchase, NY</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>NR</td>
</tr>
<tr>
<td>Notes</td>
<td>Results reported according to the two subgroups, i.e. brief versus extended exercise training and included into analysis separately</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Drop out reported; no imputation of missing data discussed</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Unclear risk</td>
<td>Baseline characteristics not reported</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Both home and centre groups were very closely balanced in terms of the exercise training received</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---</td>
</tr>
</tbody>
</table>

Miller 1984 Expanded

Methods

- **Study design:** Single centre RCT
- **No of centres:** 1
- **Country:** USA
- **Dates patients recruited:** NR
- **When randomised:** NR
- **Maximum follow up:** 23 weeks

Participants

- **Inclusion criteria:** Uncomplicated AMI (elevated serum creatinine kinase or oxaloacetic transaminase, prolonged chest pain consistent with AMI, new Q waves or evolutionary ST changes in ECG)
- **Exclusion criteria:** Unable to undertake exercise test, congestive heart failure, unstable angina pectoris, valvular heart disease, atrial fibrillation, bundle branch block, history of bypass, stroke, orthopaedic abnormalities, peripheral vascular disease, chronic pulmonary obstructive disease, obesity
- **N randomised:** total: 127; home-based cardiac rehabilitation: 66 (33 in brief exercise programme subgroup and 33 in extended subgroup); centre-based cardiac rehabilitation: 61 (31 in brief subgroup and 30 in extended subgroup)
- **Method of assessment:** MI was documented by the combination of characteristic elevation of serum creatine kinase or oxaloacetic transaminase, a history of prolonged chest pain consistent with MI, and the appearance of new Q waves or evolutionary ST segment changes
- **Diagnosis (% of pts):**
 - Uncomplicated acute MI: 100%
 - Age (mean ± SD): total: 52 ± 9 years; home-based cardiac rehabilitation: NR; centre-based cardiac rehabilitation: NR
 - Percentage male: total: 100%
 - Ethnicity: NR

Interventions

- **Description of home-based cardiac rehabilitation:**
 - **Aerobic exercise:**
 - **Modality:** stationary cycling. Portable heart rate monitors and teletransmissions of ECG
 - **Dose:**
 - **Length of session:** 30 min/session
 - **Frequency/no of sessions:** 5 sessions/week
 - **Intensity:** 70% to 85% HRmax
 - **Resistance training included:** NR
 - **Total duration:** 8 weeks (brief) or 23 weeks (extended)
 - **Intermittent nurse or exercise specialist telephone support:** 2 phone calls/week by staff to verify training intensity, clinical status and medication
 - **Co-interventions:** NR
- **Description of centre-based cardiac rehabilitation:**
- **Time of start after event:** 3 weeks after infarction
Components: Exercise only
Aerobic exercise: walking/jogging; Group based and supervised
Modality:
Dose: Length of session: 60 mins/session
Frequency/no of sessions: 5 sessions/week
Intensity: 70% to 85% HRmax
Resistance training included?: NR
Total duration: 8 weeks (brief) or 23 weeks (extended)
Co-interventions: NR

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Exercise capacity; mortality and cardiovascular morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>23 weeks post randomisation</td>
</tr>
<tr>
<td>Source of funding</td>
<td>Grant HL18907 from the NHLBI, Bethesda, and by a grant from the PepsiCo Foundation, Purchase, NY</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>NR</td>
</tr>
<tr>
<td>Notes</td>
<td>Results reported according to the two subgroups, i.e. brief versus extended exercise training and included into analysis separately</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Unclear risk</td>
<td>Drop out reported; no imputation of missing data discussed</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Unclear risk</td>
<td>Baseline characteristics not reported</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Both home and centre groups were very closely balanced in terms of the exercise training received</td>
</tr>
</tbody>
</table>
Methods

- **Study design:** Single centre RCT
- **No of centres:** 1
- **Country:** Norway
- **Dates patients recruited:** NR
- **When randomised:** 4 to 8 weeks after CABG surgery
- **Maximum follow up:** 6 months

Participants

- **Inclusion criteria:** Had coronary artery bypass surgery 4 to 8 weeks before enrolment and clinically stable (defined as the absence of unstable angina pectoris, symptoms of heart failure, pleural liquid limiting respiration, lung disease limiting respiration, ongoing infections, and atrial fibrillation limiting circulation)
- **Exclusion criteria:** Left ventricular ejection fraction < 30%, contraindications to vigorous physical activity (unstable angina, uncontrolled abnormal heart rhythms, severe aortic stenosis, suspected or known dissecting aneurysm, infection in the heart or any other systemic infection), pulmonary disease clearly limiting exercise capacity, pregnancy, or drug abuse
- **N randomised:** total: 30; home-based cardiac rehabilitation: 14; centre-based cardiac rehabilitation: 16
- **Diagnosis (% of pts):**
 - CABG: 100%
- **Age (mean ± SD):**
 - total: 63 ± 77 years; home-based cardiac rehabilitation: 61.7 ± 8.0 years; centre-based cardiac rehabilitation: 63.6 ± 7.3 years
- **Percentage male:**
 - total: 80%; home-based cardiac rehabilitation: 78.6%; centre-based cardiac rehabilitation: 81.3%
- **Ethnicity:** NR

Interventions

- **Description of home-based cardiac rehabilitation:**
 - **Time of start after event:** 4 to 8 weeks after CABG surgery
 - **Components:** Exercise and education
 - **Aerobic exercise:**
 - **Modality:** walking, jogging, swimming or cycling (patient choice)
 - **Dose:**
 - **Length of session:** 38 min (10 min warm up, 4 x 4 min intervals of high intensity exercise, 4 x 3 min intervals of moderate intensity
 - **Frequency/no of sessions:** 3 sessions/week
 - **Intensity:** 70% HRmax (moderate intensity) to 85% to 95% HRmax (high intensity)
 - **Resistance training included?**
 - **Total duration:** 6 months
 - **Intermittent nurse or exercise specialist telephone support?**
 - **Co-interventions:** Diet counselling, a smoking cessation program, lectures about healthy lifestyle in general. After discharge from the rehabilitation centre, the patients were advised to keep on exercising at home, and were invited back for follow up testing after 6 months
 - **Description of centre-based cardiac rehabilitation (residential rehabilitation):**
 - **Time of start after event:** 4 to 8 weeks after CABG surgery
 - **Components:** Exercise and education
 - **Aerobic exercise:**
 - **Modality:** Outdoor walking, cross-country skiing in winter time, indoor cycling, hall games
Dose:
Length of session: NR
Frequency/no of sessions: 30 exercise sessions with low intensity, 16 with moderate intensity, and 10 with high intensity
Intensity: Up to 11 on the Borg scale (light intensity); 12 to 14 on the Borg scale (moderate intensity); and 15 to 17 on the Borg scale (high intensity)
Resistance training included: strength training
Total duration: 4 weeks
Co-interventions: Diet counselling, a smoking cessation program, lectures about healthy lifestyle in general. After discharge from the rehabilitation centre, the patients were advised to keep on exercising at home, and were invited back for follow up testing after 6 months. They did not receive a training diary or concrete advice about how to exercise on discharge.

Outcomes
Primary: peak oxygen consumption
Secondary: HRQoL total, HDL cholesterol and triglycerides

Follow up
6 months post randomisation

Source of funding
EXTRA funds from the Norwegian Foundation for Health and Rehabilitation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Conflicts of interest
The authors declared that no competing interests exist

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Allocation was done by a computer using block randomisation. The first, the smallest and the largest block, were defined by the technicians at the unit of Applied Clinical Research at the university.”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“The person including the patients got the allocation results on screen and by e-mail by logging on to a website.”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>CONSORT flow diagram shows loss to follow 4/30 (13%) at 6 months</td>
</tr>
</tbody>
</table>
Moholdt 2012

<table>
<thead>
<tr>
<th>Selective reporting (reporting bias)</th>
<th>Low risk</th>
<th>All outcomes described in the methods section are reported in the results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>Although no statement of similarity of baseline characteristics, the provided characteristic of both groups appeared similar</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Co-interventions received by both groups</td>
</tr>
</tbody>
</table>

Oerkild 2011

Methods

<table>
<thead>
<tr>
<th>Study design: Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres: 1</td>
</tr>
<tr>
<td>Country: Denmark</td>
</tr>
<tr>
<td>Dates patients recruited: January 2007 to July 2008</td>
</tr>
<tr>
<td>When randomised: NR</td>
</tr>
<tr>
<td>Maximum follow up: 12 months</td>
</tr>
</tbody>
</table>

Participants

| N = 36 pts home-based intervention; N = 39 pts centre-based intervention, 100% coronary heart disease, mean age home 74.4 (5.8), mean age centre 74.7 (5.9), 19 males: 17 females home, 26 males: 13 females centre |
| Inclusion criteria: ≥ 65 years old with a ‘new’ event of coronary heart disease defined as AMI, percutaneous transluminal coronary intervention or CABG |
| Exclusion criteria: mental disorders (dementia), social disorders (severe alcoholism and drug abuse), living at nursing home, language barriers and the use of wheelchair |
| N randomised: total: 75; home-based cardiac rehabilitation: 36; centre-based cardiac rehabilitation: 39 |
| Method of assessment: NR |
| Medical history (% of pts): |
| Previous MI: home-based cardiac rehabilitation: 27.8%; centre-based cardiac rehabilitation: 30.8% |
| Previous PCI: home-based cardiac rehabilitation: 19.4%; centre-based cardiac rehabilitation: 18.0% |
| Previous CABG: home-based cardiac rehabilitation: 16.7%; centre-based cardiac rehabilitation: 5.4% |
| Heart failure LVEF ≤45%: home-based cardiac rehabilitation: 38.9%; centre-based cardiac rehabilitation: 30.8% |
| Age (mean ± SD): total: NR; home-based cardiac rehabilitation: 74.4 ± 5.8 years; centre-based cardiac rehabilitation: 74.7 ± 5.9 years |
| Percentage male: total: 60.0%; home-based cardiac rehabilitation: 52.8%; centre-based cardiac rehabilitation: 66.7% |
| Ethnicity: NR |

Interventions

| Description of home-based cardiac rehabilitation: The exercise programmes were individualised but followed international recommendations. A physiotherapist individually tailored the exercise programmes. At 3 months when the intervention ceased, participants were encouraged to continue to exercise 30 min 6 days/week at an 11 to 13 on the Borg scale |

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Time of start after event: NR (“new event”)
Components: Exercise and education
Aerobic exercise:
Modality: Self-passed brisk walking and stationary cycling
Dose:
Length of session: 30 min
Frequency/no of sessions: 6 days/week
Intensity: 11 to 13 on a Borg scale
Resistance training included? NR
Total duration: 6 weeks
Intermittent nurse or exercise specialist telephone support? A cardiologist counselled the patients at baseline and after 3, 6 and 12 months. At 4 and 5 months, a telephone call was made to answer any questions, regarding risk factor intervention and medical adjustment
Co-interventions: Patients were offered six education lectures, two dietary counselling sessions, three practical cooking and (if needed) smoking cessation counselling sessions
Description of centre-based cardiac rehabilitation:
This consisted of a six week intensive programme where patients were offered group-based supervised exercise training 60 min twice a week and were encouraged to exercise at home to comply with the international recommendations. As for the home programme, a physiotherapist individually tailored the exercise programmes. At 3 months when the intervention ceased, participants were encouraged to continue to exercise 30 min 6 days/week at 11 to 13 on the Borg scale
Other:
Time of start after event: NR
Components: Individually tailored
Aerobic exercise:
Modality: e.g. running, cycling, skipping.
Dose:
Length of session: 60 min
Frequency/no of sessions: 2 sessions/week
Intensity: NR
Resistance training included? NR
Total duration: 6 weeks
Co-interventions: Patients were offered dietary counselling and (if needed) smoking cessation. A cardiologist counselled the patients at baseline and after 3, 6 and 12 months. At 4 and 5 months, a telephone call was made to answer any questions

| Outcomes | Primary: exercise capacity (VO₂ and 6MWT)
Secondary: systolic and diastolic blood pressure; cholesterol (total, HDL, LDL), smoking, HRQoL (SF-12)
|
|---|---|
| Follow up | 3 and 12 months
|
| Source of funding | The Velux Foundation
|
| Conflicts of interest | There were no conflicts of interest to declare
|
| Notes |

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors’ judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Patients were randomised in alternate block sizes of four to six using computer-generated randomly permuted blocks”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>“Because of the nature of CR, the result of the randomisation could not be blinded and was therefore open to the investigator, involved health personnel and patients”</td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>4/75 (5%) drop out</td>
</tr>
<tr>
<td>All outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes outlined in the methods are reported in results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“Baseline characteristics according to intervention...show no significant difference between the two groups. In addition, no significant differences were found in the use of medication and in socio-demographic data”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>“The pharmacological treatment followed international guidelines and were thus identical in the two groups” “Regarding risk factor intervention and medical adjustment, a cardiologist counselled the patients both at home and in the centre intervention at baseline and after 3, 6 and 12 months.”</td>
</tr>
</tbody>
</table>

Piotrowicz 2010

Methods

Study design: Single centre RCT
No of centres: 1
Country: Poland
Dates patients recruited: NR
When randomised: Following baseline measurements
Maximum follow up: 8 weeks

Participants

Inclusion criteria: (i) patients of either sex with any aetiology of left ventricular systolic HF (as defined in the European Society of Cardiology (ESC) guidelines) diagnosed for > 3 months; (ii) with a left ventricular ejection fraction ≤ 40% on echocardiography;
(iii) in NYHA class II or III; (iv) who were clinically stable and receiving an optimal and stable medication regimen for at least 4 weeks before enrolment; and (v) who were able to exercise using the new model of home-based exercise.

Exclusion criteria: (i) NYHA class I or IV; (ii) unstable angina; (iii) a history of an acute coronary syndrome within the last month, coronary artery bypass grafting within the last 2 months, or initiation of cardiac resynchronisation therapy (CRT) within the last year; (iv) symptomatic and/or exercise-induced cardiac arrhythmia or conduction disturbances; (v) valvular or congenital heart disease requiring surgical treatment; (vi) hypertrophic cardiomyopathy; (vii) severe pulmonary hypertension or other severe pulmonary disease; (viii) uncontrolled hypertension; (ix) anaemia (haemoglobin, 10.0 g/dL); (x) acute and/or decompensated non-cardiac disease; (xi) physical disability related to severe or neurological problems; (xii) acute or chronic inflammatory disease; (xiii) cancer; (xiv) severe psychiatric disorder; and (xv) patient refusal to participate.

N randomised: total: 152; home-based cardiac rehabilitation (tele-monitored cardiac rehabilitation): 77; centre-based cardiac rehabilitation (outpatient-based standard cardiac rehabilitation): 75

Method of assessment: Two-dimensional echocardiography

Diagnosis (% of pts):
- **Heart failure:** 100%
- **Ischaemic:** home-based cardiac rehabilitation: 73.3%; centre-based cardiac rehabilitation: 85.7%
- **Non-ischaemic:** home-based cardiac rehabilitation: 26.7%; centre-based cardiac rehabilitation: 14.3%
- **MI:** home-based cardiac rehabilitation: 64.0%; centre-based cardiac rehabilitation: 78.6%

Age (mean ± SD): total: 58.1 ± 10.2 years; home-based cardiac rehabilitation: 56.4 ± 10.9 years; centre-based cardiac rehabilitation: 60.5 ± 8.8 years

Percentage male: total: NR; home-based cardiac rehabilitation: 85%; centre-based cardiac rehabilitation: 95%

Ethnicity: NR

Interventions

Description of home-based cardiac rehabilitation: To make the ET safe for HF patients, the following recommendations were taken into account: (i) special attention was paid to appropriate patient risk stratification before cardiac rehabilitation; (ii) contraindications to ET were never overlooked; (iii) in patients with an implantable cardioverter defibrillator (ICD), maximal training HR was set at 20 bpm lower than the defibrillator discharge threshold; and (iv) in patients with a pacemaker, the rate-response function was switched on, enabling HR adjustment to the physical effort which facilitates reaching the desired training HR. Exercise training was planned individually for each patient during hospitalisation. The chosen workload reflected individual effort tolerance with regard to: (i) perceived exertion according to the Borg scale and (ii) the training HR range established individually for each patient. In line with the standards, the assumption was that patients should not exceed perceived moderate exertion during the ET (i.e. a score of 11 on the Borg scale).

Components: Exercise, education and psychological

Aerobic exercise:
- **Modality:** Continuous walking training on level ground
- **Length of session:** 20 to 45 min (i) warm-up: 5 to 10 mins (breathing and light exercises, callisthenics), (ii) basic aerobic endurance training for 10 to 30 mins (walking), and (iii)
Description of centre-based cardiac rehabilitation

Components: Exercise, education and psychological

Aerobic exercise:
- **Modality:** Cycle ergometer
- **Dose:**
 - **Length of session:** 20 to 45 min (i) warm-up: 5 to 10 min (breathing and light exercises, callisthenics), (ii) basic aerobic endurance training for 10 to 30 min (walking), and (iii) a 5 min cooling down (a period when patients could calm down and relax)

Frequency/no of sessions: 3 sessions/week

Intensity: Individually tailored

Resistance training included? NR

Total duration: 8 weeks

Co-interventions:
- All patients and partners participated in an education programme: how to measure HR, BP, and body weight; evaluate signs and symptoms; level perceived exertion and how to perform exercise training. Each patient received psychological support

Outcomes

<table>
<thead>
<tr>
<th>Exercise capacity (6-MWT), quality of life (SF-36), mortality, hospitalisation</th>
</tr>
</thead>
</table>

Follow up

<table>
<thead>
<tr>
<th>8 weeks</th>
</tr>
</thead>
</table>

Source of funding

<table>
<thead>
<tr>
<th>National Institute of Cardiology, Warsaw, Poland (study number 2.9/I/06)</th>
</tr>
</thead>
</table>

Conflicts of interest

<table>
<thead>
<tr>
<th>“none declared”</th>
</tr>
</thead>
</table>

Notes

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
</tbody>
</table>
Piotrowicz 2010 (Continued)

<table>
<thead>
<tr>
<th>Incomplete outcome data (attrition bias)</th>
<th>Unclear risk</th>
<th>CONSORT flow diagram shows 19/75 (25%) of centre-based group and 2/77 (3%) of home-based group failed to provide 8 week data; no imputation of missing data undertaken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section are reported in the results</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“At baseline there were no significant intergroup differences in terms of demographic and clinical parameters, NYHA functional class, echocardiographic parameters, 6-MWT distance, functional capacity in [cardiopulmonary exercise testing], medical therapy, or the SF-36 questionnaire score”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Both groups received some education and psychological support co-intervention</td>
</tr>
</tbody>
</table>

Sparks 1993

<table>
<thead>
<tr>
<th>Study design:</th>
<th>Single centre RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of centres:</td>
<td>1</td>
</tr>
<tr>
<td>Country:</td>
<td>USA</td>
</tr>
<tr>
<td>Dates patients recruited:</td>
<td>NR</td>
</tr>
<tr>
<td>When randomised:</td>
<td>NR</td>
</tr>
<tr>
<td>Maximum follow up:</td>
<td>12 weeks</td>
</tr>
</tbody>
</table>

Inclusion criteria:	Male cardiac patient
Exclusion criteria:	Not capable of exercising on a bicycle ergometer, serious arrhythmias, symptoms of frequent chest pain, shortness of breath, hypertension
N randomised:	total: NR; home-based cardiac rehabilitation: 10; centre-based cardiac rehabilitation: 10
Method of assessment:	NR
Diagnosis (% of pts):	MI, CABG, PTCA
Age (mean ± SD):	total: 51.6 ± 12 years
Percentage male:	total: 100%
Ethnicity:	NR

Description of home-based cardiac rehabilitation:	
Components:	Exercise and education
Aerobic exercise:	
Modality:	cycle ergometer with trans-telephonic ECG monitoring
Dose:	
Length of session:	1 hour
Frequency/no of sessions:	3 days/week
Sparks 1993 (Continued)

Intensity:	60% to 75% peak HR
Resistance training included?	NR
Total duration:	12 weeks
Intermittent nurse or exercise specialist telephone support?	trans-telephonic ECG monitoring
Co-interventions:	Education materials on diet, medications, risks and benefits of the exercise
Description of centre-based cardiac rehabilitation:	
Modality:	cycle ergometer
Dose:	
Length of session:	1 hour
Frequency/no of sessions:	3 days/week
Intensity:	60% to 75% peak HR
Resistance training included?	NR
Total duration:	12 weeks
Co-interventions:	Education materials on diet, medications, risks and benefits of the exercise

Outcomes

| Exercise capacity (peak VO₂ max); adherence (compliance with exercise); safety (drop out) |

Follow up

| 12 weeks post randomisation |

Source of funding

| NR |

Conflicts of interest

| NR |

Notes

| Data read from graphs |

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
<td>Method of randomisation not described</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
<td>Allocation concealment not described</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias) All outcomes</td>
<td>Unclear risk</td>
<td>Blinding of assessors was not reported</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias) All outcomes</td>
<td>Low risk</td>
<td>1/20 (5%) drop out reported</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods section were reported in the results</td>
</tr>
</tbody>
</table>
Varnfield 2014

Methods

- **Study design:** Multicentre RCT
- **No of centres:** 4
- **Country:** Australia
- **Dates patients recruited:** 2009 to 2011
- **When randomised:** Prior to baseline assessment
- **Maximum follow up:** 6 months

Participants

- **Inclusion criteria:** Post-MI patients referred to cardiac rehabilitation
- **Exclusion criteria:** Unable to participate in self-management programmes due to medical care needs, operate a smart phone for purposes of trial (e.g., vision, hearing, cognitive or dexterity impairment) or attend TCR, or involved in another trial or had no experience with mobile/smart phones
- **N randomised:** total: 120; intervention: 60; comparator: 60
- **Method of assessment:** NR
- **Diagnosis (% of pts):**
 - **STEMI:** home-based cardiac rehabilitation: 49%; centre-based cardiac rehabilitation: 56%
 - **NSTEMI:** home-based cardiac rehabilitation: 49%; centre-based cardiac rehabilitation: 44%
 - **Angina:** home-based cardiac rehabilitation: 6%; centre-based cardiac rehabilitation: 5%
 - **Heart failure:** home-based cardiac rehabilitation: 4%; centre-based cardiac rehabilitation: 2%
 - **Bypass surgery:** home-based cardiac rehabilitation: 11%; centre-based cardiac rehabilitation: 5%
 - **Angioplasty/stent:** home-based cardiac rehabilitation: 66%; centre-based cardiac rehabilitation: 80%
- **Age (mean ± SD):** total: NR; home-based cardiac rehabilitation: 54.9 ± 9.6 years; centre-based cardiac rehabilitation: 56.2 ± 10.1 years
- **Percentage male:** total: NR; home-based cardiac rehabilitation: 91%; centre-based cardiac rehabilitation: 83%
- **Ethnicity:** NR

Interventions

- **Description of home-based cardiac rehabilitation:** The Care Assessment Platform of Cardiac Rehabilitation (CAP-CR) platform used a smart phone for health and exercise monitoring, and delivery of motivational and educational materials to participants via text messages and pre-installed audio and video files (including understanding cardiovascular disease symptoms and management). The platform included a web portal with participant data for mentors to provide weekly consultations. Each participant was equipped
with a smart phone pre-installed with health diary and activity monitoring applications;
blood pressure monitor; and weight scale. Activity monitoring (step number, duration
and intensity) was automatic through the phone’s in-built accelerometer. Participants
were advised to make daily health diary entries: weight, BP, sleep duration and quality,
exercise other than automatically monitored steps, stress, meals and, if relevant, alcohol
consumption and smoking. Mentors reviewed updated data prior to weekly consulta-
tions

Time of start after event: Average = 54 days

Components: Exercise and education

Aerobic exercise:

Modality: walking

Dose:

Length of session: Target = at least 30 min

Frequency/no of sessions: Target = most days of the week

Intensity: Borg’s scale 11 to 13

Resistance training included? No

Total duration: 6 weeks

Intermittent nurse or exercise specialist telephone support? Weekly consultations via
the web portal to provide informed, personalised feedback according to goals set

Co-interventions: Educational materials

Description of centre-based cardiac rehabilitation: The traditional, centre-based pro-
gramme (TCR) programme comprised of two supervised exercise and 1 h educational
sessions on a weekly basis for 6 weeks at one of four Health Service District community
centres. Participants started education sessions once enrolled to cardiac rehabilitation and
twice-weekly exercise sessions commenced once centre appointments became available

Time of start after event: Average = 68 days

Components: Exercise and education

Aerobic exercise:

Modality: Circuit-based exercise e.g. treadmill, rower, squats and modified push-ups

Dose:

Length of session: NR

Frequency/no of sessions: twice a week

Intensity: Borg’s scale 6 to 10 (light) to 11 to 13 (moderate)

Resistance training included? Resistance bands, weights

Total duration: 6 weeks

Co-interventions: 1 h educational sessions on a weekly basis for 6 weeks

Outcomes

Adherence, risk factors (BP, heart rate, weight, BMI, waist circumference (WC), lipid
profile), functional capacity and HRQoL

Costs are reported separately by Whittaker and Wade 2014

Follow up

6 week and 6 month

Source of funding

A joint venture between Australian eHealth Research Centre and Queensland Health

Conflicts of interest

“None”

Notes

6 month outcome data provided by the author on request
Varnfield 2014

Risk of bias

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Low risk</td>
<td>“Permuted-block randomisation, by computer-generated random numbers…”</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>“…using sequentially numbered opaque, sealed envelopes, was conducted”</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>High risk</td>
<td>“We conducted an unblinded RCT in four CR centres”. Blinding of assessors not described</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>High risk</td>
<td>Home-based cardiac rehabilitation: 14/60 (23.3 %) lost to follow-up Centre-based cardiac rehabilitation: 34/60 (56.7 %) lost to follow-up</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcomes described in the methods were reported in the results section</td>
</tr>
<tr>
<td>Groups balanced at baseline?</td>
<td>Low risk</td>
<td>“There were no significant differences in baseline demographic and clinical characteristics of participants who commenced CR”</td>
</tr>
<tr>
<td>Groups received same co-intervention(s)?</td>
<td>Low risk</td>
<td>Both groups received educational materials or sessions</td>
</tr>
</tbody>
</table>

Wu 2006

Methods

- **Study design**: Single centre RCT
- **No of centres**: 1
- **Country**: Taiwan (China)
- **Dates patients recruited**: NR
- **When randomised**: NR
- **Maximum follow up**: 12 weeks

Participants

- **Inclusion criteria**: No previous CABG, no neurologic impairment like stroke/brain injury, no severe musculoskeletal disease, no complications during hospitalisations like infection, shock, arrhythmia, prolonged ventilation
- **Exclusion criteria**: uncontrolled dysrhythmia or continuous ventricular tachycardia during exercise testing, no possibility of completing test at discharge or 12 weeks later
- **N randomised**: total: 36; intervention: 18; comparator: 18
- **Diagnosis (% of pts)**:
 - **Post CABG**: 100%
 - **Age (mean ± SD)**: total: 61.9 ± 7.3 years
| Interventions | Description of home-based cardiac rehabilitation: Exercise documented in record book. Prescription of exercise individually given and updated every 2 weeks by rehabilitation nurse.
Components: Exercise only
Aerobic exercise:
Modality: fast walking or jogging
Dose:
Length of session: 30 to 60 min + 10 min warm-up + 10 min cool-down/session
Frequency/no of sessions: ≥ 3 sessions/week
Intensity: 60% to 85% HRmax
Resistance training included? NR
Total duration: 12 weeks
Intermittent nurse or exercise specialist telephone support? NR
Co-interventions: NR
Description of centre-based cardiac rehabilitation: Exercise supervised by cardiopulmonary physical therapist.
Components: Exercise only
Aerobic exercise:
Modality: cycle ergometer, treadmill
Dose:
Length of session: 30 to 60 min + 10 min warm-up + 10 min cool-down/session
Frequency/no of sessions: 3 sessions/week (total 36 sessions)
Intensity: 60% to 85% HRmax
Resistance training included? NR
Total duration: 12 weeks
Co-interventions: NR |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes</td>
<td>(Primary and secondary outcomes not distinguished) exercise capacity (METs)</td>
</tr>
<tr>
<td>Follow up</td>
<td>12 weeks post randomisation</td>
</tr>
<tr>
<td>Source of funding</td>
<td>NR</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>NR</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Risk of bias</td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td>Authors' judgement</td>
</tr>
<tr>
<td>Random sequence generation (selection bias)</td>
<td>Unclear risk</td>
</tr>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Unclear risk</td>
</tr>
</tbody>
</table>
Blinding of outcome assessment (detection bias) | Low risk | “The evaluators of the exercise stress test were also masked to the group assignments.”
---|---|---
Incomplete outcome data (attrition bias) | Unclear risk | Not reported
Selective reporting (reporting bias) | Low risk | All outcomes described in methods section were reported in results
Groups balanced at baseline? | Low risk | “Randomization did not result in statistical significances among subjects assigned to the three groups.”
Groups received same co-intervention(s)? | Low risk | Neither group received any co-interventions

6MWT = six minute walk test
AMI = acute myocardial infarction
BP = blood pressure
BMI = body mass index
CABG = coronary artery bypass graft
CAD = coronary artery disease
CCU = coronary care unit
CHD = coronary heart disease
CHF = congestive heart failure
ECG = electrocardiogram
HF = heart failure
HDL = high-density lipoprotein
HR = heart rate
HR\text{max} = maximum heart rate
HRQoL = health related quality of life
ISWT = incremental shuttle walking test
ITT = intention to treat
LDL = low-density lipoprotein
METs = metabolic equivalents
MI = myocardial infarction
min = minutes
NR = not reported
NYHA = New York Heart Association
PTCA = percutaneous transluminal coronary angioplasty
pts = participants
RCT = randomised controlled trial
RPE = rating of perceived exertion
SF-36 = Short Form (36) Health Survey
SD = standard deviation
VO\text{2 max} = maximal oxygen consumption
Characteristics of excluded studies [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ades 2000</td>
<td>Not RCT</td>
</tr>
<tr>
<td>Austin 2005</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Babu 2016</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Belardinelli 1999</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Buhnova 2014</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Byrnes 2015</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Chan 2012</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Chen 2016</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Chien 2011</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Chow 2015</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Cinar 2015</td>
<td>All patients had a Left ventricular Assist Device</td>
</tr>
<tr>
<td>Corvera-Tindel 2004</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Dracup 2007</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Haddadzadeh 2011</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>HF ACTION 2009</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Higgins 2001</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Hovland-Tanneryd 2016</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Jolly 2009</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Khalife-Zadeh 2015</td>
<td>Intervention includes home- and centre-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Kim 2011</td>
<td>Not a RCT</td>
</tr>
<tr>
<td>Lear 2014</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Lee 2013</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Study</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Maddison 2015</td>
<td>Comparator group did not receive formal exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Maru 2015</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>McKelvie 2002</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Moosavi-Sohroforouzani 2015</td>
<td>Not a RCT</td>
</tr>
<tr>
<td>Mutwalli 2012</td>
<td>Not home- versus centre-based cardiac rehabilitation comparison</td>
</tr>
<tr>
<td>Oka 2000</td>
<td>Relevant outcomes not reported</td>
</tr>
<tr>
<td>Olson 2015</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Pfaffli 2015</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Piotrowicz 2015</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Salavati 2016</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Senuzun 2006</td>
<td>Trial experimental arm received home-based cardiac rehabilitation; the programme issued in control arm was not described</td>
</tr>
<tr>
<td>Siabani 2016</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Sinclair 2005</td>
<td>Trial experimental arm received home-based cardiac rehabilitation, while the control group did not receive centre based cardiac rehabilitation (only 6% (N = 12) of the participants in the control group were referred to cardiac rehabilitation and only 3% (N = 8) were known to have attended)</td>
</tr>
<tr>
<td>Takase 2015</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Tygesen 2001</td>
<td>Both trial arms received home-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Vahedian-Azimi 2016</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Vibulchai 2016</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Wolkanin-Bartnik 2011</td>
<td>Intervention not exercise-based cardiac rehabilitation</td>
</tr>
<tr>
<td>Xueyu 2015</td>
<td>Comparator group did not receive exercise-based cardiac rehabilitation</td>
</tr>
</tbody>
</table>

RCT = randomised controlled trial
Characteristics of studies awaiting assessment [ordered by study ID]

Doletsky 2013

<table>
<thead>
<tr>
<th>Methods</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>70 patients during 3 to 14 days after planned PCI were randomized into three groups</td>
</tr>
</tbody>
</table>
| Interventions | 1. Ambulatory training in the hospital 3 times per week with ECG control for 8 weeks
2. One hospital based ECG-controlled training session followed within the first week with 2 home-based training sessions on stationary bike under simultaneous tele-ECG and video-control with use of Skype via Internet. This was followed by home-based sessions with patient’s weekly phone reports and training diaries
3. Uncontrolled home-based training. |
| Outcomes | Peak VO. |
| Notes | We were unable to trace authors or find full publication of this conference abstract |

Gelati 2013

<table>
<thead>
<tr>
<th>Methods</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>46 patients, aged 60 years (range 38 -75), with Left Ventricle Dysfunction, stable with optimal treatment, with EF< 45%. The patients were in sinusal rhythm</td>
</tr>
<tr>
<td>Interventions</td>
<td>Subjects were randomized and stratified to 3 groups: Group 1: 16 patients at high intensity aerobic exercise training, warmed up for 10 minutes at 60-70% of PHR of exercise test, before walking 4 minute intervals at 90-95% of PHR of exercise test. Each interval was separated by 3 minutes active pauses, walking at 70% of PHR. Total exercise time was 38 minutes. Group 2: 14 patients at moderate continuous training, walked at 70-75% of PHR; Group 3: 16 patients at home standard training (control group). The rehabilitation protocol was, 3 times per week for 24 sessions (groups 1 c 2). All patients at the end of the cardiac rehabilitation or after two months (group 3), repeated the baseline tests</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Adverse effects (arrhythmias, myocardial ischaemic events and/or symptoms); Nt-pro BNP; 6MWT</td>
</tr>
<tr>
<td>Notes</td>
<td>We were unable to trace authors or find full publication of this conference abstract</td>
</tr>
</tbody>
</table>

Pomeshkina 2012

<table>
<thead>
<tr>
<th>Methods</th>
<th>RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>112 patients (mean age 56.8 ± 5.5 years) with coronary artery disease (CAD), 1 month post-CABG</td>
</tr>
</tbody>
</table>
| Interventions | Group 1 with supervised cycling training (SCT) (N = 35).
Group 2 - home-based walking training (HBWT) (N = 36)
Group 3 - comparison group (N = 41).
Subjects did 3 trainings per week for 3 months |
| Outcomes | Adherence to medication |
Characteristics of ongoing studies [ordered by study ID]

ACTRN12616000426482

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>SMARTphone-based, early cardiac REHABilitation in patients with acute coronary syndromes: A Randomized Controlled Trial Protocol [SMART-REHAB Trial]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomised, parallel assignment, single blinded</td>
</tr>
</tbody>
</table>
| Participants | **Inclusion criteria:**
| | • Acute coronary syndromes with documented coronary artery disease
| | • Smartphone ownership
| | • Adults aged over 18 years
| | **Exclusion criteria:**
| | • Untreated ventricular tachycardia
| | • Severe heart failure
| | • Significant residual coronary artery disease requiring revascularisation treatment with coronary artery bypass surgery
| | • Life-threatening coexisting disease with life-expectancy less than 1 year
| | • Significant exercise limitations for reasons other than CHD
| Interventions | The smart phone-based secondary prevention program will be delivered over 8 weeks starting at time of discharge from hospital through a smart phone application (app). This is a multi-faceted intervention with particular emphasis on early mobilisation. The app provides a platform to deliver a comprehensive secondary prevention program. The different components of the program include an Exercise Prescription Control group is assigned to usual post-discharge acute coronary syndrome care which includes traditional cardiac rehabilitation
| Outcomes | Exercise capacity; risk factors HRQoL |
| Starting date | 04/04/2016 |
| Contact information | Dr Matia Yudi matias.yudi@austin.org.au |

Maddison 2014

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>The remote exercise monitoring trial for exercise-based cardiac rehabilitation (REMOTE-CR): a randomised controlled trial protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>A two-arm, parallel, non-inferiority, randomised controlled trial will be conducted at two sites in New Zealand</td>
</tr>
</tbody>
</table>
Maddison 2014 (Continued)

Participants	162 adults aged 18 years or more, with a diagnosis of CHD (angina, myocardial infarction, percutaneous coronary intervention or coronary revascularisation) within the previous six months. Participants are current outpatients who have been clinically stable for at least six weeks, are able to perform exercise, and can understand and write English
Interventions	12-week program of technology-assisted, home-based, remote monitored exercise-based cardiac rehabilitation (intervention) versus 8 to 12 week program of standard supervised exercise-based cardiac rehabilitation (control)
Outcomes	VO₂ max; cardiovascular risk factors; HRQoL; costs
Starting date	Registered 7 August 2014
Contact information	r.maddison@auckland.ac.nz
Notes	Study ID number: ACTRN12614000843651

NCT01567189

| Trial name or title | Cost-effectiveness of Outpatient Versus Hospital Cardiac Rehabilitation (CERC1) |
| Methods | Randomised, parallel assignment, open label |
| Participants | Inclusion criteria:
- patients referred to cardiac rehabilitation program in the first 12 weeks after an acute coronary syndrome (myocardial infarction or unstable angina) or after percutaneous or surgical revascularization who have no contraindication to participate in the program
Exclusion criteria:
- contra-indication to participate in the program
- high-risk criteria for home cardiac rehabilitation |
| Interventions | Hospital-based cardiac rehabilitation versus home-based cardiac rehabilitation |
| Outcomes | Morbidity, re-admissions, percutaneous or surgical revascularisation, costs |
| Starting date | April 2012 |
| Contact information | Fernando Aros Borau, LUISFDO.AROSBORAU@osakidetza.net |
| Notes |

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
NCT02047942

Trial name or title
Telerehabilitation in Coronary Heart Disease (TRiCH)

Methods
Randomised, parallel assignment, single blind

Participants
105 participants
Inclusion criteria:
- Patients with CAD (post-PCI, post-MI, post-CABG)
- Patients on optimal medical treatment and stable with regard to symptoms and pharmacotherapy for at least 6 weeks
- Patients have successfully completed the 3 month ambulatory cardiac rehabilitation in hospital program
- 39 years < age < 76 years
- Access to Internet facilities or PC at home
Exclusion criteria:
- Significant undercurrent illness last 6 weeks
- Known severe ventricular arrhythmia with functional or prognostic significance; significant myocardial ischaemia, haemodynamic deterioration or exercise-induced arrhythmia at screening or heart disease that limits exercise
- Comorbidity that may significantly influence one-year prognosis
- Functional of mental disability that may limit exercise

Interventions
Centre-based cardiac rehabilitation versus Home-based training with telemonitoring guidance

Outcomes
Exercise tolerance; comparison of evolution of exercise tolerance from baseline to 12 weeks and one year

Starting date
February 2014

Contact information
Luc Vanhees, PhD, luc.vanhees@faber.kuleuven.be

Notes

NCT02711631

Trial name or title
Feasibility and Effectiveness of Remote Virtual Reality-Based Cardiac Rehabilitation

Methods
Randomised, parallel assignment, single blind

Participants
Inclusion criteria:
- diagnosis of stable ischaemic heart disease
- received a recent uncomplicated coronary angioplasty or coronary artery bypass graft
- participants will be required to have a referral for cardiac rehabilitation.
Exclusion criteria:
- a history of heart failure
- a history of cardiac arrhythmia requiring cardioversion
- an implantable cardiac defibrillator
- unable to cycle on a bike

Interventions
MedBIKE - exercise cardiac rehabilitation system that allows participants to perform clinical cardiac rehabilitation at home versus standard cardiac rehabilitation
NCT02711631 (Continued)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Fitness; compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting date</td>
<td>May 2016</td>
</tr>
<tr>
<td>Contact information</td>
<td>Contact: Peter W Wood, MSc; pwwood@ualberta.ca</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

NCT02791685

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Smartphone Delivered In-home Cardiopulmonary Rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomised, parallel assignment, open label</td>
</tr>
<tr>
<td>Participants</td>
<td>Inclusion criteria:</td>
</tr>
<tr>
<td></td>
<td>Meet eligibility for cardiac rehabilitation program as defined by Centres for Medicare and Medicaid Services (CMS)</td>
</tr>
<tr>
<td></td>
<td>1. Following acute myocardial infarction (within the preceding 12 months)</td>
</tr>
<tr>
<td></td>
<td>2. Coronary artery bypass grafting (CABG)</td>
</tr>
<tr>
<td></td>
<td>3. Current stable angina pectoris</td>
</tr>
<tr>
<td></td>
<td>4. Heart valve repair or replacement</td>
</tr>
<tr>
<td></td>
<td>5. Percutaneous transluminal coronary angioplasty (PTCA) or coronary stenting</td>
</tr>
<tr>
<td></td>
<td>6. Heart or heart-lung transplant</td>
</tr>
<tr>
<td></td>
<td>7. Other diagnosis by specific physician referral</td>
</tr>
<tr>
<td>Interventions</td>
<td>MULTIFIT CR program delivered by the Movn smart phone application versus centre-based CR</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Six minute walk test; HRQoL</td>
</tr>
<tr>
<td>Starting date</td>
<td>2 June 2016</td>
</tr>
<tr>
<td>Contact information</td>
<td>Abarmand Zafari, MD, azafari@emory.edu</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>

NCT02796404

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Homebased Monitoring Cardiac Rehabilitation Program (NUUBO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Randomised, parallel assignment, open label</td>
</tr>
<tr>
<td>Participants</td>
<td>Inclusion criteria:</td>
</tr>
<tr>
<td></td>
<td>All of the following:</td>
</tr>
<tr>
<td></td>
<td>- Age ≤ 80 years.</td>
</tr>
<tr>
<td></td>
<td>- Stable Ischemic heart disease, revascularized by angioplasty or underwent surgery by coronary bypass ≤ one year from the acute episode.</td>
</tr>
<tr>
<td></td>
<td>- Good cognitive level.</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
</tbody>
</table>
NCT02796404 (Continued)

- Ability to perform aerobic exercise tape or cycle ergometer.
- Understand the use of a mobile Smartphone or Tablet.
- Signature of informed consent;
 and at least one of the following:
 - Ventricular dysfunction by ejection fraction (FE) 40 - 50%.
 - Functional capacity 5-7 metabolic equivalents (METS).
 - Raising the blood pressure with the effort.

Interventions
Home-based cardiac rehabilitation program versus traditional cardiac rehabilitation program

Outcomes
Cardiovascular risk factors; functional capacity; adherence; safety

Starting date
Aug 2015

Contact information
Raquel Bravo, MD, rbravescobar@yahoo.es

Notes

NTR5156

Trial name or title
Effects of cardiac telerehabilitation in patients with coronary artery disease using a personalized patient-centred ICT platform: the SmartCare-CAD study

Methods
Randomised, parallel assignment

Participants
Inclusion criteria:
 - Age 18 or over
 - Referral for cardiac rehabilitation due to stable angina pectoris, acute coronary syndrome (with or without ST-segment elevation) or after coronary revascularization, i.e. (primary or elective) percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG)
 - Indication for exercise training as a part of outpatient cardiac rehabilitation, based on the individual needs assessment from the guidelines on outpatient cardiac rehabilitation of the Dutch Society of Cardiology
 - Internet access at home.

Exclusion criteria:
 - Ventricular arrhythmia or myocardial ischaemia during low to moderate exercise intensity as assessed by symptom limited exercise testing at baseline
 - Heart failure NYHA class IV
 - Severe comorbidity precluding exercise training (e.g. orthopaedic or neurological conditions

Interventions
The core component of the study intervention is a secured and personalized patient-centred web-based ICT platform. This platform enables patients to register, evaluate and adjust rehabilitation goals, training goals and medication and to upload and inspect exercise training and daily physical activity data (as measured by a heart rate monitor and accelerometer). After three supervised in-hospital training sessions, patients are given the opportunity to continue exercise training at home, based on prescriptions from their physical therapist.

Comparator: Centre based cardiac rehabilitation, consisting of one or more of the following treatments: exercise training, an information program, a relaxation program, psycho-educative prevention program and/or individual treatment by a psychologist or dietician. Exercise training sessions are performed under direct supervision of a physical therapist specialised in cardiac rehabilitation.
Outcomes	HRQoL, cost effectiveness
Starting date | 01/06/2015
Contact information | Hareld MC Kemps, Máxima Medical Centre, Department of Sport Medicine, P.O. Box 7777 5500 MB Veldhoven The Netherlands; H.Kemps@wxs.nl

Notes |
DATA AND ANALYSES

Comparison 1. home-base vs centre-based

<table>
<thead>
<tr>
<th>Outcome or subgroup title</th>
<th>No. of studies</th>
<th>No. of participants</th>
<th>Statistical method</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Total mortality</td>
<td>13</td>
<td>1505</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.19 [0.65, 2.16]</td>
</tr>
<tr>
<td>2 Exercise capacity ≤ 12 months</td>
<td>26</td>
<td>2255</td>
<td>Std. Mean Difference (IV, Random, 95% CI)</td>
<td>-0.13 [-0.28, 0.02]</td>
</tr>
<tr>
<td>3 Exercise capacity 12 to 24 months</td>
<td>3</td>
<td>1074</td>
<td>Std. Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.11 [-0.01, 0.23]</td>
</tr>
<tr>
<td>4 Completers</td>
<td>26</td>
<td>2615</td>
<td>Risk Ratio (M-H, Random, 95% CI)</td>
<td>1.04 [1.00, 1.08]</td>
</tr>
<tr>
<td>5 Total cholesterol 3 to 12 months</td>
<td>10</td>
<td>1151</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.06 [-0.10, 0.23]</td>
</tr>
<tr>
<td>6 HDL cholesterol 3 to 12 months</td>
<td>8</td>
<td>925</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>-0.07 [-0.11, -0.03]</td>
</tr>
<tr>
<td>7 LDL cholesterol 3 to 12 months</td>
<td>6</td>
<td>430</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.04 [-0.14, 0.22]</td>
</tr>
<tr>
<td>8 Triglycerides 3 to 12 months</td>
<td>6</td>
<td>396</td>
<td>Mean Difference (IV, Fixed, 95% CI)</td>
<td>0.15 [0.00, 0.29]</td>
</tr>
<tr>
<td>9 Systolic blood pressure 3 to 12 months</td>
<td>12</td>
<td>1292</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>-0.27 [-3.13, 2.60]</td>
</tr>
<tr>
<td>10 Diastolic blood pressure 3 to 12 months</td>
<td>11</td>
<td>1146</td>
<td>Mean Difference (IV, Random, 95% CI)</td>
<td>0.74 [-1.04, 2.53]</td>
</tr>
<tr>
<td>11 Smoking 3 to 12 months</td>
<td>6</td>
<td>986</td>
<td>Risk Ratio (M-H, Fixed, 95% CI)</td>
<td>1.02 [0.83, 1.27]</td>
</tr>
</tbody>
</table>
Analysis 1.1. Comparison 1 home-base vs centre-based, Outcome 1 Total mortality.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 1 Total mortality

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed(95% CI)</td>
<td></td>
<td>M-H,Fixed(95% CI)</td>
</tr>
<tr>
<td>Aamot 2014 Group</td>
<td>0/14</td>
<td>0/28</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>0/14</td>
<td>0/34</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Bell 1998</td>
<td>12/152</td>
<td>7/99</td>
<td>44.7 %</td>
<td>1.12 [0.46, 2.74]</td>
<td></td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>4/60</td>
<td>1/44</td>
<td>6.1 %</td>
<td>2.93 [0.34, 25.35]</td>
<td></td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td>1/15</td>
<td>0/14</td>
<td>2.7 %</td>
<td>2.81 [0.12, 63.83]</td>
<td></td>
</tr>
<tr>
<td>Hadadzadeh 2013</td>
<td>0/35</td>
<td>0/35</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>3/263</td>
<td>3/262</td>
<td>15.9 %</td>
<td>1.00 [0.20, 4.89]</td>
<td></td>
</tr>
<tr>
<td>Kraal 2014</td>
<td>0/29</td>
<td>0/26</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Miller 1984 Brief</td>
<td>0/31</td>
<td>0/30</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Miller 1984 Expanded</td>
<td>0/30</td>
<td>0/33</td>
<td>Not estimable</td>
<td></td>
<td>Not estimable</td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>0/14</td>
<td>1/16</td>
<td>7.4 %</td>
<td>0.38 [0.02, 8.59]</td>
<td></td>
</tr>
<tr>
<td>Oerkild 2011</td>
<td>4/36</td>
<td>3/39</td>
<td>15.2 %</td>
<td>1.44 [0.35, 6.02]</td>
<td></td>
</tr>
<tr>
<td>Piotrowicz 2010</td>
<td>0/77</td>
<td>1/75</td>
<td>8.0 %</td>
<td>0.32 [0.01, 7.85]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>770</td>
<td>735</td>
<td>100.0 %</td>
<td>1.19 [0.65, 2.16]</td>
<td></td>
</tr>
</tbody>
</table>

Total events: 24 (home-based CR), 16 (centre-based CR)

Heterogeneity: \(\chi^2 = 2.26, df = 6 (P = 0.89); I^2 = 0.0\% \)

Test for overall effect: \(Z = 0.56 (P = 0.58) \)

Test for subgroup differences: Not applicable
Analysis 1.2. Comparison 1 home-base vs centre-based, Outcome 2 Exercise capacity ≤ 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 2 Exercise capacity ≤ 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Std. Mean Difference</th>
<th>Weight</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean(SD)</td>
<td>N Mean(SD)</td>
<td>IV,Random,95% CI</td>
<td></td>
<td>IV,Random,95% CI</td>
</tr>
<tr>
<td>Aamot 2014 Group</td>
<td>13 37.2 (5.2)</td>
<td>25 36 (6.2)</td>
<td>-0.20 [-0.47, 0.87]</td>
<td>2.9 %</td>
<td></td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>13 37.2 (5.2)</td>
<td>32 39 (8)</td>
<td>-0.24 [-0.89, 0.41]</td>
<td>3.0 %</td>
<td></td>
</tr>
<tr>
<td>Arthur 2002</td>
<td>113 5.22 (2.1)</td>
<td>109 5.21 (2)</td>
<td>0.00 [-0.26, 0.27]</td>
<td>5.7 %</td>
<td></td>
</tr>
<tr>
<td>Bell 1998</td>
<td>91 7.29 (2.81)</td>
<td>91 7.1 (3.12)</td>
<td>0.06 [-0.23, 0.35]</td>
<td>5.5 %</td>
<td></td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>34 7.4 (1.5)</td>
<td>29 6.8 (1.7)</td>
<td>0.37 [-0.13, 0.87]</td>
<td>3.9 %</td>
<td></td>
</tr>
<tr>
<td>Cowie 2012</td>
<td>15 318 (153)</td>
<td>15 312 (155)</td>
<td>0.04 [-0.68, 0.75]</td>
<td>2.7 %</td>
<td></td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>60 9.66 (3.1)</td>
<td>44 7.68 (2.8)</td>
<td>0.66 [0.26, 1.06]</td>
<td>4.6 %</td>
<td></td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td>11 23.6 (7.4)</td>
<td>11 23.3 (6.8)</td>
<td>0.04 [-0.80, 0.88]</td>
<td>2.2 %</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>40 1.6 (2.2)</td>
<td>22 1.6 (2.1)</td>
<td>0.0 [-0.52, 0.52]</td>
<td>3.8 %</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>49 0.9 (1.9)</td>
<td>22 1.6 (2.1)</td>
<td>-0.35 [-0.86, 0.15]</td>
<td>3.9 %</td>
<td></td>
</tr>
<tr>
<td>Grace 2016 Mixed</td>
<td>9 18.63 (6.11)</td>
<td>19 19.4 (4.97)</td>
<td>-0.14 [-0.93, 0.65]</td>
<td>2.4 %</td>
<td></td>
</tr>
<tr>
<td>Grace 2016 Women</td>
<td>9 18.63 (6.11)</td>
<td>21 19.54 (4.7)</td>
<td>-0.17 [-0.95, 0.61]</td>
<td>2.4 %</td>
<td></td>
</tr>
<tr>
<td>Hadadzadeh 2015</td>
<td>60 11 (1.2)</td>
<td>60 11.5 (1.2)</td>
<td>-0.41 [-0.78, -0.05]</td>
<td>4.9 %</td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>191 391.3 (162.11)</td>
<td>179 407.4 (157.6)</td>
<td>-0.10 [-0.30, 0.10]</td>
<td>62.6 %</td>
<td></td>
</tr>
<tr>
<td>Karapolat 2009</td>
<td>36 18.12 (6)</td>
<td>32 19.43 (4.59)</td>
<td>-0.24 [-0.72, 0.24]</td>
<td>4.1 %</td>
<td></td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60 8.9 (2.9)</td>
<td>65 12.4 (2.7)</td>
<td>-1.24 [-1.63, -0.86]</td>
<td>4.8 %</td>
<td></td>
</tr>
<tr>
<td>Kraal 2014</td>
<td>25 26 (5.9)</td>
<td>25 26.1 (7.6)</td>
<td>-0.01 [-0.57, 0.54]</td>
<td>3.6 %</td>
<td></td>
</tr>
<tr>
<td>Marchioni 2003</td>
<td>74 3650.67 (3957.23)</td>
<td>79 3509.33 (3343.82)</td>
<td>0.04 [-0.28, 0.36]</td>
<td>5.3 %</td>
<td></td>
</tr>
<tr>
<td>Miller 1984 Brief</td>
<td>33 8 (1.5)</td>
<td>31 7.9 (1.3)</td>
<td>0.07 [-0.42, 0.56]</td>
<td>4.0 %</td>
<td></td>
</tr>
<tr>
<td>Miller 1984 Expanded</td>
<td>33 7.9 (1.5)</td>
<td>30 8.9 (1.4)</td>
<td>-0.68 [-1.19, -0.17]</td>
<td>3.9 %</td>
<td></td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>12 27.7 (6.5)</td>
<td>14 30.2 (4.3)</td>
<td>-0.45 [-1.23, 0.34]</td>
<td>2.4 %</td>
<td></td>
</tr>
<tr>
<td>Oerklid 2011</td>
<td>30 -2.5 (3.63)</td>
<td>34 -2 (3.3)</td>
<td>-0.14 [-0.63, 0.35]</td>
<td>4.0 %</td>
<td></td>
</tr>
<tr>
<td>Piotrowicz 2010</td>
<td>75 462 (91)</td>
<td>56 462 (92)</td>
<td>0.0 [-0.35, 0.35]</td>
<td>5.1 %</td>
<td></td>
</tr>
<tr>
<td>Sparks 1993</td>
<td>10 1900 (400)</td>
<td>10 1950 (150)</td>
<td>-0.16 [-1.04, 0.72]</td>
<td>2.0 %</td>
<td></td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>43 571 (88)</td>
<td>25 601 (95)</td>
<td>-0.33 [-0.82, 0.17]</td>
<td>3.9 %</td>
<td></td>
</tr>
<tr>
<td>Study or subgroup</td>
<td>home-based CR</td>
<td>centre-based CR</td>
<td>Std. Mean Difference</td>
<td>Weight</td>
<td>Std. Mean Difference</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Wu 2006</td>
<td>18 22.9 (3.6)</td>
<td>18 24.2 (4.4)</td>
<td></td>
<td>3.0 %</td>
<td>-0.32 [-0.97, 0.34]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1157</td>
<td>1098</td>
<td></td>
<td>100.0 %</td>
<td>-0.13 [-0.28, 0.02]</td>
</tr>
</tbody>
</table>

Heterogeneity: \(\tau^2 = 0.08; \) \(\chi^2 = 67.22, \) df = 25 \((P<0.00001); I^2 = 63\%

Test for overall effect: Z = 1.72 \((P = 0.086) \)

Test for subgroup differences: Not applicable

Analysis 1.3. Comparison 1 home-base vs centre-based, Outcome 3 Exercise capacity 12 to 24 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 3 Exercise capacity 12 to 24 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Std. Mean Difference</th>
<th>Weight</th>
<th>Std. Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthur 2002</td>
<td>96 5.79 (1.6)</td>
<td>102 5.44 (1.5)</td>
<td></td>
<td>18.4 %</td>
<td>0.23 [-0.05, 0.50]</td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>179 5.35 (1.44)</td>
<td>163 5.28 (1.44)</td>
<td></td>
<td>31.9 %</td>
<td>0.05 [-0.16, 0.26]</td>
</tr>
<tr>
<td>Marchionni 2003</td>
<td>267 4050.33 (4421.88)</td>
<td>267 3580.67 (3650.13)</td>
<td></td>
<td>49.8 %</td>
<td>0.12 [-0.05, 0.29]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>542</td>
<td>532</td>
<td></td>
<td>100.0 %</td>
<td>0.11 [-0.01, 0.23]</td>
</tr>
</tbody>
</table>

Heterogeneity: \(\chi^2 = 0.97, \) df = 2 \((P = 0.62); I^2 = 0.0\%

Test for overall effect: Z = 1.87 \((P = 0.061) \)

Test for subgroup differences: Not applicable
Analysis 1.4. Comparison 1 home-base vs centre-based, Outcome 4 Completers.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 4 Completers

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Risk Ratio M-H</th>
<th>Weight</th>
<th>Risk Ratio M-H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>Random, 95% CI</td>
<td></td>
<td>Random, 95% CI</td>
</tr>
<tr>
<td>Aamot 2014 Group</td>
<td>13/14</td>
<td>25/28</td>
<td>3.1 %</td>
<td>1.04</td>
<td>[0.86, 1.26]</td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>13/14</td>
<td>32/34</td>
<td>3.7 %</td>
<td>0.99</td>
<td>[0.83, 1.17]</td>
</tr>
<tr>
<td>Arthur 2002</td>
<td>113/120</td>
<td>109/122</td>
<td>7.6 %</td>
<td>1.05</td>
<td>[0.98, 1.14]</td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>35/38</td>
<td>32/42</td>
<td>3.1 %</td>
<td>1.21</td>
<td>[1.00, 1.47]</td>
</tr>
<tr>
<td>Cowie 2012</td>
<td>15/20</td>
<td>15/20</td>
<td>1.1 %</td>
<td>1.00</td>
<td>[0.70, 1.43]</td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>50/60</td>
<td>34/44</td>
<td>3.0 %</td>
<td>1.08</td>
<td>[0.89, 1.31]</td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td>11/15</td>
<td>11/14</td>
<td>0.9 %</td>
<td>0.93</td>
<td>[0.62, 1.41]</td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45/49</td>
<td>23/26</td>
<td>3.9 %</td>
<td>1.04</td>
<td>[0.88, 1.22]</td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52/54</td>
<td>22/26</td>
<td>3.6 %</td>
<td>1.14</td>
<td>[0.96, 1.35]</td>
</tr>
<tr>
<td>Grace 2016 Mixed</td>
<td>9/28</td>
<td>19/59</td>
<td>0.4 %</td>
<td>1.00</td>
<td>[0.52, 1.92]</td>
</tr>
<tr>
<td>Grace 2016 Women</td>
<td>9/27</td>
<td>21/55</td>
<td>0.4 %</td>
<td>0.87</td>
<td>[0.46, 1.64]</td>
</tr>
<tr>
<td>Hadadzadeh 2013</td>
<td>35/35</td>
<td>31/35</td>
<td>5.0 %</td>
<td>1.13</td>
<td>[0.99, 1.28]</td>
</tr>
<tr>
<td>Hadadzadeh 2015</td>
<td>55/60</td>
<td>58/60</td>
<td>6.9 %</td>
<td>0.95</td>
<td>[0.87, 1.04]</td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>239/263</td>
<td>236/262</td>
<td>8.7 %</td>
<td>1.01</td>
<td>[0.95, 1.07]</td>
</tr>
<tr>
<td>Karapolat 2009</td>
<td>36/37</td>
<td>32/37</td>
<td>4.7 %</td>
<td>1.13</td>
<td>[0.98, 1.29]</td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60/60</td>
<td>65/65</td>
<td>9.8 %</td>
<td>1.00</td>
<td>[0.97, 1.03]</td>
</tr>
<tr>
<td>Kraal 2014</td>
<td>25/29</td>
<td>25/26</td>
<td>3.8 %</td>
<td>0.90</td>
<td>[0.76, 1.06]</td>
</tr>
<tr>
<td>Marchioni 2003</td>
<td>74/90</td>
<td>79/90</td>
<td>5.3 %</td>
<td>0.94</td>
<td>[0.83, 1.06]</td>
</tr>
<tr>
<td>Miller 1984 Brief</td>
<td>28/30</td>
<td>27/31</td>
<td>3.8 %</td>
<td>1.07</td>
<td>[0.91, 1.26]</td>
</tr>
<tr>
<td>Miller 1984 Expanded</td>
<td>26/33</td>
<td>26/30</td>
<td>2.4 %</td>
<td>0.91</td>
<td>[0.73, 1.14]</td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>12/14</td>
<td>14/16</td>
<td>1.7 %</td>
<td>0.98</td>
<td>[0.74, 1.30]</td>
</tr>
<tr>
<td>Oerkild 2011</td>
<td>30/36</td>
<td>34/39</td>
<td>3.2 %</td>
<td>0.96</td>
<td>[0.79, 1.16]</td>
</tr>
<tr>
<td>Piotrowicz 2010</td>
<td>75/77</td>
<td>56/75</td>
<td>4.7 %</td>
<td>1.30</td>
<td>[1.14, 1.50]</td>
</tr>
<tr>
<td>Sparks 1993</td>
<td>9/10</td>
<td>10/10</td>
<td>1.9 %</td>
<td>0.90</td>
<td>[0.69, 1.18]</td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>46/60</td>
<td>26/60</td>
<td>1.4 %</td>
<td>1.77</td>
<td>[1.28, 2.44]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.5</th>
<th>0.7</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favours centre-based CR</td>
<td>Favours home-based CR</td>
<td>(Continued...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study or subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>home-based CR</td>
<td>centre-based CR</td>
<td>Risk Ratio</td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Random,95% CI</td>
<td></td>
</tr>
<tr>
<td>Wu 2006</td>
<td>18/18</td>
<td>18/18</td>
<td>6.1 %</td>
<td>1.00 [0.90, 1.11]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>1291</td>
<td>1324</td>
<td>100.0 %</td>
<td>1.04 [1.00, 1.08]</td>
</tr>
</tbody>
</table>

Total events: 1133 (home-based CR), 1080 (centre-based CR)
Heterogeneity: Tau² = 0.00; Ch² = 53.58, df = 25 (P = 0.00075); I² = 53%
Test for overall effect: Z = 1.74 (P = 0.082)
Test for subgroup differences: Not applicable

Analysis 1.5. Comparison 1 home-base vs centre-based, Outcome 5 Total cholesterol 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation
Comparison: 1 home-base vs centre-based
Outcome: 5 Total cholesterol 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th></th>
<th></th>
<th></th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>home-based CR</td>
<td>centre-based CR</td>
<td>IV,Random,95% CI</td>
<td></td>
<td>IV,Random,95% CI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Mean(SD)</td>
<td>N</td>
<td>Mean(SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell 1998</td>
<td>60</td>
<td>5.9 (1.1)</td>
<td>61</td>
<td>5.2 (0.8)</td>
<td>10.6 %</td>
<td>0.70 [0.36, 1.04]</td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>34</td>
<td>4.68 (0.78)</td>
<td>28</td>
<td>4.71 (0.83)</td>
<td>9.0 %</td>
<td>-0.03 [-0.43, 0.37]</td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>60</td>
<td>4.6 (1.12)</td>
<td>44</td>
<td>4.45 (1.01)</td>
<td>8.9 %</td>
<td>0.15 [-0.26, 0.56]</td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45</td>
<td>-0.32 (0.89)</td>
<td>22</td>
<td>-0.31 (0.61)</td>
<td>10.0 %</td>
<td>-0.01 [-0.37, 0.35]</td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52</td>
<td>-0.29 (0.78)</td>
<td>23</td>
<td>-0.31 (0.61)</td>
<td>11.1 %</td>
<td>0.02 [-0.31, 0.35]</td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>232</td>
<td>3.99 (0.9)</td>
<td>233</td>
<td>3.88 (0.83)</td>
<td>16.5 %</td>
<td>0.11 [-0.05, 0.27]</td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60</td>
<td>5.58 (1.09)</td>
<td>65</td>
<td>5.63 (0.83)</td>
<td>10.7 %</td>
<td>-0.05 [-0.39, 0.29]</td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>12</td>
<td>4.3 (0.7)</td>
<td>14</td>
<td>4.3 (1)</td>
<td>4.8 %</td>
<td>0.0 [-0.66, 0.66]</td>
</tr>
<tr>
<td>Oerkild 2011</td>
<td>30</td>
<td>-0.2 (0.56)</td>
<td>34</td>
<td>0.1 (0.59)</td>
<td>12.4 %</td>
<td>-0.30 [-0.58, -0.02]</td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>29</td>
<td>3.3 (1)</td>
<td>13</td>
<td>3.27 (0.88)</td>
<td>6.0 %</td>
<td>0.03 [-0.54, 0.60]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>614</td>
<td></td>
<td>537</td>
<td>100.0 %</td>
<td>0.06 [-0.10, 0.23]</td>
<td></td>
</tr>
</tbody>
</table>
Analysis 1.6. Comparison 1 home-base vs centre-based, Outcome 6 HDL cholesterol 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 6 HDL cholesterol 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Mean Difference (IV, Random, 95% CI)</th>
<th>Weight (IV, Random)</th>
<th>Mean Difference (IV, Fixed, 95% CI)</th>
<th>Weight (IV, Fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlson 2000</td>
<td>32 (0.98 (0.21))</td>
<td>28 (0.98 (0.26))</td>
<td>-0.01 (0.25)</td>
<td>11.2 %</td>
<td>0.0 [-0.12, 0.12]</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45 -0.01 (0.25)</td>
<td>22 0.02 (0.25)</td>
<td>-0.03 (0.16, 0.10)</td>
<td>10.1 %</td>
<td>-0.03 [-0.16, 0.10]</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52 0.03 (0.25)</td>
<td>23 0.02 (0.25)</td>
<td>0.01 [-0.11, 0.13]</td>
<td>10.9 %</td>
<td>0.01 [-0.11, 0.13]</td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>233 1.29 (0.39)</td>
<td>233 1.33 (0.62)</td>
<td>0.04 [-0.13, 0.05]</td>
<td>18.5 %</td>
<td>0.04 [-0.13, 0.05]</td>
<td></td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60 0.85 (0.21)</td>
<td>65 0.98 (0.18)</td>
<td>-0.13 [-0.20, -0.06]</td>
<td>34.6 %</td>
<td>-0.13 [-0.20, -0.06]</td>
<td></td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>12 1.2 (0.2)</td>
<td>14 1.4 (0.2)</td>
<td>-0.20 [-0.35, -0.05]</td>
<td>6.9 %</td>
<td>-0.20 [-0.35, -0.05]</td>
<td></td>
</tr>
<tr>
<td>Oerki1 2011</td>
<td>30 -0.03 (0.47)</td>
<td>34 0.03 (0.5)</td>
<td>0.06 [-0.30, 0.18]</td>
<td>2.9 %</td>
<td>0.06 [-0.30, 0.18]</td>
<td></td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>29 1.02 (0.4)</td>
<td>13 0.98 (0.2)</td>
<td>0.04 [-0.14, 0.22]</td>
<td>5.0 %</td>
<td>0.04 [-0.14, 0.22]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>493</td>
<td>432</td>
<td></td>
<td>100.0 % -0.07 [-0.11, -0.03]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 10.75$, df = 7 ($P = 0.15$); $I^2 = 35\%$

Test for overall effect: $Z = 3.28$ ($P = 0.0010$)

Test for subgroup differences: Not applicable
Analysis 1.7. Comparison 1 home-base vs centre-based, Outcome 7 LDL cholesterol 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 7 LDL cholesterol 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean(SD)</td>
<td>N Mean(SD)</td>
<td>IV ,Random,95% CI</td>
<td></td>
<td>IV ,Random,95% CI</td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>30 2.98 (0.67)</td>
<td>27 2.87 (0.6)</td>
<td>15.5 % 0.11 [-0.22, 0.44]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45 -0.22 (0.72)</td>
<td>22 -0.28 (0.59)</td>
<td>15.8 % 0.06 [-0.26, 0.38]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52 -0.3 (0.73)</td>
<td>23 -0.28 (0.59)</td>
<td>16.4 % -0.02 [-0.33, 0.29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60 3.72 (0.96)</td>
<td>65 3.31 (0.7)</td>
<td>17.2 % 0.41 [0.11, 0.71]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oerkild 2011</td>
<td>30 -0.2 (0.28)</td>
<td>34 -0.02 (0.54)</td>
<td>22.4 % -0.18 [-0.39, 0.03]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>29 1.6 (0.6)</td>
<td>13 1.69 (0.6)</td>
<td>12.8 % -0.09 [-0.48, 0.30]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 246 184 100.0 % 0.04 [-0.14, 0.22]

Heterogeneity: Tau^2 = 0.03; Chi^2 = 10.93, df = 5 (P = 0.05); I^2 = 54%
Test for overall effect: Z = 0.45 (P = 0.65)
Test for subgroup differences: Not applicable
Analysis 1.8. Comparison 1 home-base vs centre-based, Outcome 8 Triglycerides 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 8 Triglycerides 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Mean Difference</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlson 2000</td>
<td>34 1.58 (0.86)</td>
<td>27 1.63 (0.76)</td>
<td>-0.05 [-0.46, 0.36]</td>
<td>12.8 %</td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45 -0.21 (0.72)</td>
<td>22 -0.14 (0.6)</td>
<td>-0.07 [-0.40, 0.26]</td>
<td>19.7 %</td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52 0.03 (0.72)</td>
<td>23 -0.14 (0.6)</td>
<td>0.17 [-0.14, 0.48]</td>
<td>21.5 %</td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60 2.16 (0.94)</td>
<td>65 1.69 (0.61)</td>
<td>0.47 [0.19, 0.75]</td>
<td>26.9 %</td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>12 1.4 (0.7)</td>
<td>14 1.4 (0.2)</td>
<td>0.0 [-0.41, 0.41]</td>
<td>12.6 %</td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>29 1.32 (0.8)</td>
<td>13 1.22 (0.9)</td>
<td>0.10 [-0.47, 0.67]</td>
<td>6.5 %</td>
</tr>
</tbody>
</table>

Total (95% CI): 232 164 0.15 [0.00, 0.29]

Heterogeneity: Chi2 = 8.23, df = 5 (P = 0.14); I2 =39%

Test for overall effect: Z = 2.01 (P = 0.044)

Test for subgroup differences: Not applicable

Favours home-based CR

Favours centre-based CR
Analysis 1.9. Comparison 1 home-base vs centre-based, Outcome 9 Systolic blood pressure 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 9 Systolic blood pressure 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aamot 2014 Group</td>
<td>13 135 (14)</td>
<td>25 138 (16)</td>
<td>5.7 % -3.00</td>
<td>IV, Random, 95% CI [-12.86, 6.86]</td>
<td></td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>13 135 (14)</td>
<td>32 134 (14)</td>
<td>6.4 % 1.00</td>
<td>IV, Random, 95% CI [-8.02, 10.02]</td>
<td></td>
</tr>
<tr>
<td>Bell 1998</td>
<td>63 136.3 (20.9)</td>
<td>63 137.2 (20.9)</td>
<td>8.1 % 0.0</td>
<td>IV, Random, 95% CI [-8.20, 6.40]</td>
<td></td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>35 125 (18)</td>
<td>32 137 (16)</td>
<td>7.2 % -12.00</td>
<td>IV, Random, 95% CI [-20.14, -3.86]</td>
<td></td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>60 133.8 (16.1)</td>
<td>44 135.4 (22)</td>
<td>7.7 % 0.0</td>
<td>IV, Random, 95% CI [-9.27, 6.07]</td>
<td></td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td>11 113.6 (16.9)</td>
<td>11 113.6 (21.4)</td>
<td>2.7 % 0.0</td>
<td>IV, Random, 95% CI [-16.11, 16.11]</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45 -6.3 (13.9)</td>
<td>22 -4.3 (11.1)</td>
<td>9.6 % 0.0</td>
<td>IV, Random, 95% CI [-8.17, 4.17]</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52 -5.2 (8.7)</td>
<td>23 -4.3 (11.1)</td>
<td>11.1 % 0.0</td>
<td>IV, Random, 95% CI [-6.02, 4.22]</td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>235 133.55 (18.37)</td>
<td>232 132.18 (21.54)</td>
<td>135 % 1.37</td>
<td>IV, Random, 95% CI [-2.26, 5.00]</td>
<td></td>
</tr>
<tr>
<td>Kassaian 2000</td>
<td>60 120 (11)</td>
<td>65 113 (9)</td>
<td>13.7 % 7.00</td>
<td>IV, Random, 95% CI [3.46, 10.54]</td>
<td></td>
</tr>
<tr>
<td>Oekild 2011</td>
<td>30 4.6 (20.7)</td>
<td>34 1.4 (21.7)</td>
<td>53 % 3.20</td>
<td>IV, Random, 95% CI [-7.20, 13.60]</td>
<td></td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>46 123.1 (17.12)</td>
<td>46 124.4 (15)</td>
<td>9.0 % -1.30</td>
<td>IV, Random, 95% CI [-7.88, 5.28]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI) 663 629 100.0 % -0.27 [-3.13, 2.60]

Heterogeneity: Tau² = 12.31; Ch² = 24.30, df = 11 (P = 0.01); I² = 55%
Test for overall effect; Z = 0.18 (P = 0.86)
Test for subgroup differences: Not applicable
Analysis 1.10. Comparison I home-base vs centre-based, Outcome 10 Diastolic blood pressure 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: I home-base vs centre-based

Outcome: 10 Diastolic blood pressure 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Mean Difference</th>
<th>Weight</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aamot 2014 Group</td>
<td>13 83 (8)</td>
<td>25 87 (8)</td>
<td>-4.00 [-9.36, 1.36]</td>
<td>6.8 %</td>
<td></td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>13 83 (8)</td>
<td>32 81 (8)</td>
<td>2.00 [-3.16, 7.16]</td>
<td>7.1 %</td>
<td></td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>35 81 (10)</td>
<td>32 82 (8)</td>
<td>-1.00 [-5.32, 3.32]</td>
<td>8.6 %</td>
<td></td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>60 81.3 (10.8)</td>
<td>44 78.7 (10.6)</td>
<td>2.60 [-1.56, 6.76]</td>
<td>8.9 %</td>
<td></td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td>11 76.8 (8.4)</td>
<td>11 80 (10.9)</td>
<td>-3.20 [-11.33, 4.93]</td>
<td>3.8 %</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>45 -2.3 (7.4)</td>
<td>22 -3.3 (7.3)</td>
<td>1.00 [-2.74, 4.74]</td>
<td>9.8 %</td>
<td></td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>52 -2 (6.1)</td>
<td>23 -3.3 (7.3)</td>
<td>1.30 [-2.11, 4.71]</td>
<td>10.6 %</td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>235 74.94 (9.82)</td>
<td>232 74.21 (10.66)</td>
<td>0.73 [-1.13, 2.59]</td>
<td>14.6 %</td>
<td></td>
</tr>
<tr>
<td>Kassian 2000</td>
<td>60 80 (3)</td>
<td>65 76 (8)</td>
<td>4.00 [1.91, 6.09]</td>
<td>14.0 %</td>
<td></td>
</tr>
<tr>
<td>Oerkild 2011</td>
<td>30 3.9 (11.4)</td>
<td>34 -2.1 (11.6)</td>
<td>0.36 [11.64]</td>
<td>6.3 %</td>
<td></td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>46 71.6 (8.9)</td>
<td>26 76.2 (7.6)</td>
<td>-4.60 [-8.49, -0.71]</td>
<td>9.5 %</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>600</td>
<td>546</td>
<td>0.74 [-1.04, 2.53]</td>
<td>100.0 %</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 4.77; Chi² = 24.74, df = 10 (P = 0.01); I² = 60%

Test for overall effect: Z = 0.82 (P = 0.41)

Test for subgroup differences: Not applicable
Analysis 1.11. Comparison 1 home-base vs centre-based, Outcome 11 Smoking 3 to 12 months.

Review: Home-based versus centre-based cardiac rehabilitation

Comparison: 1 home-base vs centre-based

Outcome: 11 Smoking 3 to 12 months

<table>
<thead>
<tr>
<th>Study or subgroup</th>
<th>home-based CR</th>
<th>centre-based CR</th>
<th>Risk Ratio</th>
<th>Weight</th>
<th>Risk Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/N</td>
<td>n/N</td>
<td>M-H,Fixed,95% CI</td>
<td></td>
<td></td>
<td>M-H,Fixed,95% CI</td>
</tr>
<tr>
<td>Bell 1998</td>
<td>8/70</td>
<td>15/68</td>
<td>1.47 %</td>
<td>0.52</td>
<td>[0.24, 1.14]</td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>15/60</td>
<td>10/44</td>
<td>11.1 %</td>
<td>1.10</td>
<td>[0.55, 2.21]</td>
</tr>
<tr>
<td>Gordon 2002 Community</td>
<td>6/49</td>
<td>1/26</td>
<td>1.3 %</td>
<td>3.18</td>
<td>[0.40, 25.05]</td>
</tr>
<tr>
<td>Gordon 2002 Supervised</td>
<td>4/54</td>
<td>1/26</td>
<td>1.3 %</td>
<td>1.93</td>
<td>[0.23, 16.38]</td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>49/263</td>
<td>45/262</td>
<td>43.5 %</td>
<td>1.08</td>
<td>[0.75, 1.57]</td>
</tr>
<tr>
<td>Oerkild 2011</td>
<td>28/30</td>
<td>31/34</td>
<td>28.1 %</td>
<td>1.02</td>
<td>[0.89, 1.18]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>526</td>
<td>460</td>
<td>100.0 %</td>
<td>1.02</td>
<td>[0.83, 1.27]</td>
</tr>
</tbody>
</table>

Total events: 110 (home-based CR), 103 (centre-based CR)

Heterogeneity: Chi² = 4.48, df = 5 (P = 0.48); I² =0.0%

Test for overall effect: Z = 0.21 (P = 0.83)

Test for subgroup differences: Not applicable

ADDITIONAL TABLES

Table 1. Results of univariate meta-regression analysis for total mortality

<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>Exp(slope)*</th>
<th>95% CI univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mix (% MI patients) (n = 6)</td>
<td>RR = 0.997</td>
<td>0.970 to 1.024 P = 0.743</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with case mix</td>
</tr>
<tr>
<td>Dose of exercise (number of weeks of exercise training x average number of sessions/week x average duration of session in min) (n =)</td>
<td>Not calculable¹</td>
<td>Not calculable¹</td>
<td>Not calculable¹</td>
<td>No evidence that RR is associated with increased dose of exercise</td>
</tr>
<tr>
<td>Type of cardiac rehabilitation (exercise only versus comprehensive care)</td>
<td>RR = 2.464</td>
<td>0.038 to 160.487 P = 0.603</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with type of cardiac rehabilitation</td>
</tr>
</tbody>
</table>

Home-based versus centre-based cardiac rehabilitation (Review)
Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Table 1. Results of univariate meta-regression analysis for total mortality (Continued)

<table>
<thead>
<tr>
<th>Explanatory variable (n)</th>
<th>RR</th>
<th>95% CI</th>
<th>Univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of follow-up (months) (n = 7)</td>
<td>1.022</td>
<td>0.872 to 1.198</td>
<td>0.737</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with duration of follow-up</td>
</tr>
<tr>
<td>Year of publication (n = 7)</td>
<td>0.988</td>
<td>0.851 to 1.147</td>
<td>0.842</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with year of publication</td>
</tr>
<tr>
<td>Risk of bias (low risk in ≥ 4 items versus < 4 items) (n = 7)</td>
<td>0.902</td>
<td>0.197 to 4.127</td>
<td>0.868</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with risk of bias</td>
</tr>
<tr>
<td>Study location (n = 7)</td>
<td>0.846</td>
<td>0.398 to 1.822</td>
<td>0.613</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with study location</td>
</tr>
<tr>
<td>Sample size (n = 7)</td>
<td>1.001</td>
<td>0.995 to 1.006</td>
<td>0.726</td>
<td>Not calculable²</td>
<td>No evidence that RR is associated with sample size</td>
</tr>
</tbody>
</table>

¹ Not calculable due to insufficient observations
² Not calculable; Tau² of all studies = 0

Abbreviations: MI, myocardial infarction; RR, risk ratio

Table 2. Results of univariate meta-regression analysis for exercise capacity

<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>Exp(slope)*</th>
<th>95% CI</th>
<th>Univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mix (% MI patients) (n = 23)</td>
<td>0.003</td>
<td>-0.001 to 0.008</td>
<td>0.119</td>
<td>11.69%</td>
<td>No evidence that RR is associated with case mix</td>
</tr>
<tr>
<td>Dose of exercise (number of weeks of exercise training x average number of sessions/week x average duration of session in min) (n = 10)</td>
<td>-0.001</td>
<td>-0.003 to 0.001</td>
<td>0.245</td>
<td>Not calculable¹</td>
<td>No evidence that RR is associated with increased dose of exercise</td>
</tr>
<tr>
<td>Type of cardiac rehabilitation (exercise only versus comprehensive cardiac rehabilitation) (n = 26)</td>
<td>0.210</td>
<td>-0.026 to 0.447</td>
<td>0.079</td>
<td>18.73%</td>
<td>No evidence that RR is associated with type of cardiac rehabilitation</td>
</tr>
</tbody>
</table>
Table 2. Results of univariate meta-regression analysis for exercise capacity (Continued)

Duration of follow-up (months) (n = 25)	RR = 0.003	-0.007 to 0.013	-5.17%	No evidence that RR is associated with duration of follow-up
Year of publication (n = 25)	RR = -0.002	-0.024 to 0.020	-5.52%	No evidence that RR is associated with year of publication
Risk of bias (low risk in ≥ 4 items versus < 4 items) (n = 25)	RR = 0.097	-0.118 to 0.311	2.94%	No evidence that RR is associated with risk of bias
Study location (n = 26)	RR = 0.195	-0.033 to 0.423	15.80%	No evidence that risk ratio is associated with study location
Sample size (n = 25)	RR = 0.000	-0.001 to 0.002	-7.78%	No evidence that RR is associated with sample size

¹ Not calculable; τ² of all studies = 0
Abbreviations: MI, myocardial infarction; RR, risk ratio

Table 3. Summary of health-related quality of life (HRQoL) at follow up for home and centre-based cardiac rehabilitation

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Follow up</th>
<th>HRQoL measure</th>
<th>Outcome values at follow up</th>
<th>Between-group difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean (SD or range)</td>
<td>Home- versus centre-based, between group P value</td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>12 weeks</td>
<td>MacNew Emotional domain</td>
<td>6.1 (3.9-6.7) versus 6.0 (4.8-6.5) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Home versus treadmill group</td>
<td></td>
<td>Social domain</td>
<td>6.8 (4.9-7.0) versus 6.7 (5.6-6.9) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical domain</td>
<td>6.4 (4.9-6.9) versus 6.6 (5.4-6.9) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global</td>
<td>6.4 (4.7-6.8) versus 6.3 (5.2-6.7) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Aamot 2014 Treadmill</td>
<td>12 weeks</td>
<td>MacNew Emotional domain</td>
<td>6.1 (3.9-6.7) versus 6.2 (3.6-6.9) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Home versus group exercise</td>
<td></td>
<td>Social domain</td>
<td>6.8 (4.9-7.0) versus 6.5 (5.0-7.0) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical domain</td>
<td>6.4 (4.9-6.9) versus 6.4 (5.2-7.0) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global</td>
<td>6.4 (4.7-6.8) versus 6.3</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Study</td>
<td>Time Points</td>
<td>Measures</td>
<td>Results</td>
<td>Conclusion</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Arthur 2002/Smith 2004</td>
<td>6 months</td>
<td>SF-36 PCS, MCS</td>
<td>51.2 (6.4) versus 48.6 (7.1) P = 0.003*</td>
<td>Home > Centre</td>
</tr>
<tr>
<td></td>
<td>18 months</td>
<td></td>
<td>53.5 (6.4) versus 52.0 (8.1) P = 0.13*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48.3 (11.7) versus 47.6 (11.7) P = 0.67*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53.0 (10.9) versus 50.2 (10.9) P = 0.07*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Bell 1998</td>
<td>10.5 months</td>
<td>Nottingham Health Profile</td>
<td>18.6 (28.4) versus 17.3 (30.7) P = 0.78*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy, Pain, Emotional reactions, Sleep</td>
<td>6.6 (15.3) versus 7.4 (15.5) P = 0.74*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social isolation, Physical mobility</td>
<td>6.6 (15.3) versus 16.9 (22.8) P = 0.0007*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.7 (13.6) versus 6.7 (15.0) P = 0.18*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Cowie 2012</td>
<td>3 months</td>
<td>SF-36 PCS, MCS</td>
<td>34.01 (11.04) versus 31.33 (7.97) P = 0.82</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MLWHF total, Physical, Emotional</td>
<td>44.44 (12.23) versus 48.25 (11.21) P = 0.04</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37 (NR) vs 32 (NR) P = 0.18</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21 (NR) vs 19 (NR) P = 0.31</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 (NR) vs 7 (NR) P = 0.13</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Marchionni 2003</td>
<td>2 months</td>
<td>Sickness Impact Profile</td>
<td>2.83 (14.5) versus 4.71 (11.1) P = 0.09*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td>8 months</td>
<td></td>
<td>2.83 (14.5) versus 3.40 (11.1) P = 0.61*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td>14 months</td>
<td></td>
<td>2.00 (8.3) versus 3.70 (11.8) P = 0.06*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Dalal 2007/Taylor 2007</td>
<td>9 months</td>
<td>MacNew Global score, EQ-5D</td>
<td>5.61 (1.14) versus 5.54 (1.10) P = 0.71</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.74 (0.04) versus 0.78 (0.04) P = 0.57</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Study</td>
<td>Follow-up</td>
<td>Measure</td>
<td>Physical Composite Score</td>
<td>Mental Composite Score</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Hadadzadeh 2015</td>
<td>12 weeks</td>
<td>SF-36</td>
<td>51.6 (4.7) versus 52.2 (4.7)</td>
<td>P = 0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 months</td>
<td>EQ-5D</td>
<td>0.74 (0.26) versus 0.76 (0.23)</td>
<td>P = 0.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>6 months</td>
<td>SF-12</td>
<td>42.28 (10.9) versus 42.56 (10.8)</td>
<td>P = 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCS</td>
<td>49.19 (10.1) versus 50.33 (9.6)</td>
<td>P = 0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCS</td>
<td>0.74 (0.27) versus 0.76 (0.23)</td>
<td>P = 0.52*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EQ-5D</td>
<td>0.73 (0.29) versus 0.75 (0.26)</td>
<td>P = 0.39*</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
<td>EQ-5D</td>
<td>0.74 (0.26) versus 0.76 (0.23)</td>
<td>P = 0.37</td>
</tr>
<tr>
<td></td>
<td>24 months</td>
<td>EQ-5D</td>
<td>0.73 (0.29) versus 0.75 (0.26)</td>
<td>P = 0.39*</td>
</tr>
<tr>
<td>Karapolat 2009</td>
<td>8 weeks</td>
<td>SF-36</td>
<td>59.39 (25.35) versus 69.57 (20.94)</td>
<td>P = 0.08*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical function</td>
<td>39.81 (41.75) versus 48.21 (45.10)</td>
<td>P = 0.43*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical role</td>
<td>62.42 (30.45) versus 74.23 (19.66)</td>
<td>P = 0.07*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bodily pain</td>
<td>47.25 (23.42) versus 53.98 (25.00)</td>
<td>P = 0.33*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General health</td>
<td>66.67 (19.82) versus 69.81 (17.41)</td>
<td>P = 0.41*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitality</td>
<td>65.33 (25.60) versus 69.33 (25.14)</td>
<td>P = 0.52*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social function</td>
<td>44.74 (39.77) versus 37.16 (39.24)</td>
<td>P = 0.44*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emotional role</td>
<td>64.67 (19.04) versus 70.52 (20.37)</td>
<td>P = 0.22*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mental health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraal 2014</td>
<td>12 weeks</td>
<td>MacNew</td>
<td>6.1 (0.6) versus 5.7 (0.8)</td>
<td>P = 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical scale</td>
<td>5.9 (0.8) versus 5.6 (0.9)</td>
<td>P = 0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emotional scale</td>
<td>6.4 (0.6) versus 6.1 (0.7)</td>
<td>P = 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social scale</td>
<td>6.1 (0.5) versus 5.8 (0.7)</td>
<td>P = 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>6 months</td>
<td>MacNew</td>
<td>1.2 (0.2) versus 1.4 (0.2)</td>
<td>P > 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emotional domain</td>
<td>1.4 (0.7) versus 1.6 (1.1)</td>
<td>P > 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical domain</td>
<td>4.3 (0.7) versus 4.3 (1.0)</td>
<td>P > 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social domain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary of health-related quality of life (HRQoL) at follow up for home and centre-based cardiac rehabilitation

(Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Follow up</th>
<th>Measure</th>
<th>Home vs. Centre</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oerkild 2011</td>
<td>3 months</td>
<td>SF-36 PCS</td>
<td>1.4 (-1.5 to 4.3) versus 0.5 (-2.4 to 3.4) P > 0.05</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td>6 months</td>
<td>SF-36 MCS</td>
<td>0.8 (-2.6 to 4.3) versus 0.2 (-3.6 to 3.4) P > 0.05</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF-36 PCS</td>
<td>1.0 (-1.6 to 3.6) versus 1.2 (-1.4 to 3.8) P > 0.05</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF-36 MCS</td>
<td>2.3 (-1.1 to 5.7) versus 2.6 (-0.9 to -6.0) P > 0.05</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Piotrowicz 2010/</td>
<td>8 weeks</td>
<td>SF-36</td>
<td>21.60 (9.65) versus 23.20 (10.71) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Piotrowicz 2014</td>
<td></td>
<td>Physical function</td>
<td>12.74 (7.17) versus 11.39 (8.43) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Role limitation caused by physical problems</td>
<td>2.66 (2.22) versus 2.00 (2.07) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bodily pain</td>
<td>13.14 (3.80) versus 14.59 (4.03) P < 0.05</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General health</td>
<td>50.27 (17.06) versus 51.37 (19.60) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical component summary</td>
<td>2.64 (2.84) versus 1.63 (1.54) P < 0.05</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social function</td>
<td>7.15 (4.00) versus 5.89 (3.58) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mental health</td>
<td>4.93 (6.15) versus 4.35 (6.07) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Role limitation caused by physical problems</td>
<td>7.25 (3.78) versus 6.76 (3.17) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vitality</td>
<td>21.68 (12.46) versus 18.56 (9.18) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mental component summary</td>
<td>70.50 (25.40) versus 69.20 (26.40) ns</td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total quality of life index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>6 weeks</td>
<td>EQ5D-Index</td>
<td>0.92 (0.9-1.0) versus 0.82 (0.7-0.9) ns</td>
<td>Home > Centre</td>
</tr>
<tr>
<td></td>
<td>6 months</td>
<td></td>
<td></td>
<td>Home = Centre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P value calculated by authors of this report based on independent 2-group t-test
Home = Centre: no statistically significant difference (P > 0.05) in HRQoL between home and centre-based groups at follow up
Home > Centre: statistically significant ($P \leq 0.05$) higher HRQoL in home versus centre-based groups at follow up
Home < Centre: statistically significant ($P \leq 0.05$) lower HRQoL in home versus centre-based groups at follow up
Abbreviations: HRQoL = health related quality of life; MCS: mental component score; MLWHF: Minnesota Living With Heart Failure; PCS: physical component score; SF-12: 12-Item Short Form Health Survey; SF-36: Short Form (36) Health Survey

Table 4. Results of univariate meta-regression analysis for withdrawal (no of completers)

<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>Exp(slope)*</th>
<th>95% CI univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mix (% MI patients) (n = 21)</td>
<td>RR = 1.000</td>
<td>0.999 to 1.002 P = 0.949</td>
<td>-15.22%</td>
<td>No evidence that RR is associated with case mix</td>
</tr>
<tr>
<td>Dose of exercise (number of weeks of exercise training x average number of sessions/week x average duration of session in min) (n = 10)</td>
<td>RR = 0.999</td>
<td>0.998 to 1.000 P = 0.217</td>
<td>16.94%</td>
<td>No evidence that RR is associated with increased dose of exercise</td>
</tr>
<tr>
<td>Type of cardiac rehabilitation (exercise only versus comprehensive cardiac rehabilitation) (n = 24)</td>
<td>RR = 1.041</td>
<td>0.975 to 1.111 P = 0.219</td>
<td>-1.56%</td>
<td>No evidence that RR is associated with type of cardiac rehabilitation</td>
</tr>
<tr>
<td>Duration of follow-up (months) (n = 23)</td>
<td>RR = 1.000</td>
<td>0.997 to 1.003 P = 0.940</td>
<td>-21.09%</td>
<td>No evidence that RR is associated with duration of follow-up</td>
</tr>
<tr>
<td>Year of publication (n = 23)</td>
<td>RR = 1.000</td>
<td>0.992 to 1.007 P = 0.930</td>
<td>-12.08%</td>
<td>No evidence that RR is associated with year of publication</td>
</tr>
<tr>
<td>Risk of bias (low risk in ≥ 4 items versus < 4 items) (n = 23)</td>
<td>RR = 0.949</td>
<td>0.880 to 1.023 P = 0.160</td>
<td>32.50%</td>
<td>No evidence that RR is associated with risk of bias</td>
</tr>
<tr>
<td>Study location (n = 24)</td>
<td>RR = 0.988</td>
<td>0.912 to 1.069 P = 0.747</td>
<td>-21.54%</td>
<td>No evidence that RR is associated with study location</td>
</tr>
<tr>
<td>Sample size (n = 23)</td>
<td>RR = 1.000</td>
<td>1.000 to 1.000 P = 0.880</td>
<td>-20.04%</td>
<td>No evidence that RR is associated with sample size</td>
</tr>
</tbody>
</table>

Abbreviations: MI: myocardial infarction; RR: risk ratio
<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>Exp(slope)*</th>
<th>95% CI univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mix (% MI patients) (n = 10)</td>
<td>RR = -0.007</td>
<td>-0.011 to -0.002 P = 0.014</td>
<td>88.71%</td>
<td>Evidence that RR is associated with case mix</td>
</tr>
<tr>
<td>Dose of exercise (number of weeks of exercise training x average number of sessions/week x average duration of session in min) (n =)</td>
<td>Not calculable¹</td>
<td>Not calculable¹</td>
<td>Not calculable¹</td>
<td>No evidence that RR is associated with increased dose of exercise</td>
</tr>
<tr>
<td>Type of cardiac rehabilitation (exercise only vs comprehensive cardiac rehabilitation) (n = 10)</td>
<td>RR = -0.127</td>
<td>-0.822 to 0.567 P = 0.684</td>
<td>-17.11%</td>
<td>No evidence that RR is associated with type of cardiac rehabilitation</td>
</tr>
<tr>
<td>Duration of follow-up (months) (n = 10)</td>
<td>RR = -0.007</td>
<td>-0.038 to 0.024 P = 0.594</td>
<td>-21.27%</td>
<td>No evidence that RR is associated with duration of follow-up</td>
</tr>
<tr>
<td>Year of publication (n = 10)</td>
<td>RR = 0.027</td>
<td>-0.012 to 0.066 P = 0.154</td>
<td>31.00%</td>
<td>No evidence that RR is associated with year of publication</td>
</tr>
<tr>
<td>Risk of bias (low risk in ≥ 4 items versus < 4 items) (n = 10)</td>
<td>RR = -0.077</td>
<td>-0.404 to 0.249 P = 0.600</td>
<td>-14.59%</td>
<td>No evidence that RR is associated with risk of bias</td>
</tr>
<tr>
<td>Study location (n = 10)</td>
<td>RR =0.015</td>
<td>-0.304 to 0.333 P = 0.919</td>
<td>-18.83%</td>
<td>No evidence that RR is associated with study location</td>
</tr>
<tr>
<td>Sample size (n = 10)</td>
<td>RR = -0.001</td>
<td>-0.002 to 0.001 P = 0.347</td>
<td>-7.77%</td>
<td>No evidence that RR is associated with sample size</td>
</tr>
</tbody>
</table>

¹Not calculable due to insufficient observations
Abbreviations: MI: myocardial infarction; RR: risk ratio

Table 6. Results of univariate meta-regression analysis for systolic BP

<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>Exp(slope)*</th>
<th>95% CI univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mix (% MI patients) (n = 11)</td>
<td>RR = 0.026</td>
<td>-0.095 to 0.146 P = 0.642</td>
<td>-8.81%</td>
<td>No evidence that RR is associated with case mix</td>
</tr>
</tbody>
</table>
Table 6. Results of univariate meta-regression analysis for systolic BP (Continued)

<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>RR</th>
<th>95% CI</th>
<th>P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose of exercise (number of weeks of exercise training x average number of sessions/week x average duration of session in min) (n = 4)</td>
<td>0.001</td>
<td>-0.110 to 0.112</td>
<td>P = 0.971</td>
<td>Not calculable¹</td>
<td>No evidence that RR is associated with increased dose of exercise</td>
</tr>
<tr>
<td>Type of cardiac rehabilitation (exercise only versus comprehensive cardiac rehabilitation) (n = 12)</td>
<td>5.021</td>
<td>-0.292 to 10.971</td>
<td>P = 0.089</td>
<td>51.60%</td>
<td>No evidence that RR is associated with type of cardiac rehabilitation</td>
</tr>
<tr>
<td>Duration of follow-up (months) (n = 12)</td>
<td>-0.053</td>
<td>-0.540 to 0.435</td>
<td>P = 0.815</td>
<td>-22.77%</td>
<td>No evidence that RR is associated with duration of follow-up</td>
</tr>
<tr>
<td>Year of publication (n = 12)</td>
<td>-0.008</td>
<td>-0.607 to 0.591</td>
<td>P = 0.976</td>
<td>-15.85%</td>
<td>No evidence that RR is associated with year of publication</td>
</tr>
<tr>
<td>Risk of bias (low risk in ≥ 4 items versus < 4 items) (n = 12)</td>
<td>2.325</td>
<td>-1.376 to 6.026</td>
<td>P = 0.192</td>
<td>37.06%</td>
<td>No evidence that RR is associated with risk of bias</td>
</tr>
<tr>
<td>Study location (n = 12)</td>
<td>4.053</td>
<td>0.696 to 7.410</td>
<td>P = 0.023</td>
<td>71.21%</td>
<td>Evidence that RR is associated with study location</td>
</tr>
<tr>
<td>Sample size (n = 12)</td>
<td>-0.005</td>
<td>-0.029 to 0.018</td>
<td>P = 0.623</td>
<td>-18.75%</td>
<td>No evidence that RR is associated with sample size</td>
</tr>
</tbody>
</table>

¹Not calculable; Tau² of all studies = 0
Abbreviations: MI: myocardial infarction; RR: risk ratio

Table 7. Results of univariate meta-regression analysis for diastolic blood pressure

<table>
<thead>
<tr>
<th>Explanatory variable (n trials)</th>
<th>Exp(slope)*</th>
<th>95% CI univariate P value</th>
<th>Proportion of variation explained</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case mix (% MI patients) (n = 10)</td>
<td>0.025</td>
<td>-0.069 to 0.119</td>
<td>P = 0.561</td>
<td>-11.53%</td>
</tr>
<tr>
<td>Dose of exercise (number of weeks of exercise training x average number of sessions/week)</td>
<td>-0.017</td>
<td>-0.085 to 0.051</td>
<td>P = 0.391</td>
<td>Not calculable¹</td>
</tr>
</tbody>
</table>
Table 7. Results of univariate meta-regression analysis for diastolic blood pressure (Continued)

<table>
<thead>
<tr>
<th>x average duration of session in min (n = 4)</th>
<th>RR = 0.125</th>
<th>-4.719 to 4.970</th>
<th>-20.57%</th>
<th>No evidence that RR is associated with type of cardiac rehabilitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of cardiac rehabilitation (exercise only versus comprehensive cardiac rehabilitation) (n = 11)</td>
<td>RR = 0.125</td>
<td>-4.719 to 4.970</td>
<td>-20.57%</td>
<td>No evidence that RR is associated with type of cardiac rehabilitation</td>
</tr>
<tr>
<td>Duration of follow-up (months) (n = 11)</td>
<td>RR = -0.051</td>
<td>-0.377 to 0.276</td>
<td>-32.23%</td>
<td>No evidence that RR is associated with duration of follow-up</td>
</tr>
<tr>
<td>Year of publication (n = 11)</td>
<td>RR = 0.234</td>
<td>-0.144 to 0.613</td>
<td>40.22%</td>
<td>No evidence that RR is associated with year of publication</td>
</tr>
<tr>
<td>Risk of bias (low risk in ≥ 4 items versus < 4 items) (n = 11)</td>
<td>RR = 0.761</td>
<td>-2.082 to 3.605</td>
<td>0.88%</td>
<td>No evidence that RR is associated with risk of bias</td>
</tr>
<tr>
<td>Study location (n = 11)</td>
<td>RR = -0.034</td>
<td>-3.196 to 3.128</td>
<td>-25.38%</td>
<td>No evidence that RR is associated with study location</td>
</tr>
<tr>
<td>Sample size (n = 11)</td>
<td>RR = -0.001</td>
<td>-0.017 to 0.015</td>
<td>-30.17%</td>
<td>No evidence that risk ratio is associated with sample size</td>
</tr>
</tbody>
</table>

¹Not calculable; Tau² of all studies = 0
Abbreviations: MI: myocardial infarction; RR: risk ratio

Table 8. Summary of adherence at follow up in home and centre-based cardiac rehabilitation

<table>
<thead>
<tr>
<th>Trial</th>
<th>Follow-up</th>
<th>Method/definition of adherence assessment</th>
<th>Findings</th>
<th>Between-group difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aamot 2014 Treadmill Home versus treadmill group</td>
<td>12 weeks</td>
<td>Completion of 70% of the exercise sessions (considered to be training per protocol) Median (range) number of exercise sessions completed</td>
<td>Home: 24/28 (86%) versus centre: 34/34 (100%) P = 0.04 Home: 24 (10-24) versus centre: 24 (7-24)</td>
<td>Home < Centre</td>
</tr>
<tr>
<td>Aamot 2014 Treadmill Home versus group exercise</td>
<td>12 weeks</td>
<td>Completion of 70% of the exercise sessions (considered</td>
<td>Home: 24/28 (86%) versus centre: 28/28 (100%) P = 0.04</td>
<td>Home < Centre</td>
</tr>
<tr>
<td>Table 6</td>
<td>Arthur 2002 /Smith 2004</td>
<td>6 months</td>
<td>Number of exercise session reported/week</td>
<td>Home: mean 6.5 (SD 4.6) Centre: mean 3.7 (SD 2.6) P < 0.0001† Home 50% (mean 3.5, SD 2.5 visits) Centre: 53% (mean 3.6, SD 2.3 visits) Home: 42% (mean 2.6, SD 2.4 visits) Centre: 51% (mean 2.5, SD 2.2 visits) Home: mean 232.6 (SD 99.4) Centre: mean 170.0 (SD 89.2) P < 0.0001†</td>
</tr>
<tr>
<td>Carlson 2000</td>
<td>6 months</td>
<td>Attendance at all 3 nutrition/risk factor classes Total exercise over follow up - number of sessions ≥ 30 min</td>
<td>Home: 27/38 (71%) Centre: 33/42 (79%) P = 0.438* Home: mean 111.8 (SD 29.1) Centre: mean 98.1 (SD 33.4) P = 0.06†</td>
<td>Home = Centre Home = Centre</td>
</tr>
<tr>
<td>Cowie 2012</td>
<td>3 months</td>
<td>Percentage completion of 16 exercise sessions</td>
<td>Home: 77% Centre: 86% P = 0.32</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>9 months</td>
<td>Number who participated in intervention</td>
<td>Home: 40/60 (67%) Centre: 32/44 (72%) P = 0.51*</td>
<td>Home = Centre</td>
</tr>
<tr>
<td>Daskapan 2005</td>
<td>3 months</td>
<td>Percentage of sessions attended</td>
<td>Home: 97% Centre: 81% P value not calculable</td>
<td>?</td>
</tr>
<tr>
<td>Gordon Community 2002</td>
<td>3 months</td>
<td>Percentage of completed scheduled appointments (exercise sessions, office/on site visits, "tele-</td>
<td>Home (MD supervised): 83% Home (community-</td>
<td>Home = Centre**</td>
</tr>
<tr>
<td>Study</td>
<td>Duration</td>
<td>Outcome Description</td>
<td>Home</td>
<td>Centre</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>---</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>Grace 2016 Mixed</td>
<td>6 months</td>
<td>Percentage of cardiac rehabilitation sessions attended</td>
<td>58.12% (SD 34.68)</td>
<td>51.33% (SD 35.75)</td>
</tr>
<tr>
<td>Grace 2016 Mixed</td>
<td>6 months</td>
<td>Percentage of cardiac rehabilitation sessions attended</td>
<td>58.12% (SD 34.68)</td>
<td>54.4% (SD 34.72)</td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>3 months</td>
<td>Hours of self-reported activity weighted for intensity</td>
<td>Home: mean 23.2 (SD 22.1)</td>
<td>Centre: mean 18.7 (SD 19.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Home: mean 16.4 (SD 17.0)</td>
<td>Centre: mean 18.1 (SD 25.4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Home: mean 19.2 (SD 20.8)</td>
<td>Centre: mean 15.9 (SD 16.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Home: mean 18.9 (SD 18.4)</td>
<td>Centre: mean 16.6 (SD 16.4)</td>
</tr>
<tr>
<td>Karapolat 2009</td>
<td>8 weeks</td>
<td>Attendance at exercise sessions</td>
<td>(32/37) 87.5%</td>
<td>(33/37) 90%</td>
</tr>
<tr>
<td>Kraal 2014</td>
<td>12 weeks</td>
<td>Number of sessions attended</td>
<td>Home: Mean = 24 (100%); SD 7.2; range: 13 to 41</td>
<td>Centre: Mean = 20.5 (86%; SD 4.5 range: 6 to 25)</td>
</tr>
</tbody>
</table>
Table 8. Summary of adherence at follow up in home and centre-based cardiac rehabilitation (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Follow-up</th>
<th>Measure</th>
<th>Home</th>
<th>Centre</th>
<th>P-value</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchionni 2003</td>
<td>4 months</td>
<td>Number of exercise sessions completed</td>
<td>37.3 (SD 3.4)</td>
<td>34.3 (SD 4.4)</td>
<td>P < 0.0001†</td>
<td>Home > Centre</td>
</tr>
<tr>
<td>Miller 1984 Brief/DeBusk 1985/Taylor 1986</td>
<td>6 months</td>
<td>Ratio of exercise sessions completed versus prescribed</td>
<td>50/70 (72%)</td>
<td>28/40 (71%)</td>
<td>P value not calculable</td>
<td>Home = Centre**</td>
</tr>
<tr>
<td>Moholdt 2012</td>
<td>6 months</td>
<td>Training diaries (only reported for home group)</td>
<td>7/10</td>
<td></td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Piotrowicz 2010</td>
<td>8 weeks</td>
<td>Percentage of patients who carried out the prescribed exercise training (home group: daily telephone contacts with monitoring centre; centre group: attendance at supervised sessions)</td>
<td>77/77 (100%)</td>
<td>59/75 (79%)</td>
<td>P < 0.0001†</td>
<td>Home > Centre</td>
</tr>
<tr>
<td>Sparks 1993</td>
<td>3 months</td>
<td>Percentage of cardiac rehabilitation sessions attended</td>
<td>93%</td>
<td>88%</td>
<td>P value not calculable</td>
<td>?</td>
</tr>
<tr>
<td>Varnfield 2014</td>
<td>6 weeks</td>
<td>“Attended baseline assessment and at least 4 weeks (8 of 12 sessions) of centre-based gym sessions/uploaded exercise data to web portal for a minimum of 4 weeks”</td>
<td>45/48 (94%)</td>
<td>25/37 (68%)</td>
<td>P < 0.005</td>
<td>Home > Centre</td>
</tr>
</tbody>
</table>

*calculated by authors of this report based on Chi² test †calculated by authors of this report based on independent t-test

Home = Centre: no statistically significant difference (P > 0.05) in health-related quality of life (HRQoL) between home- and centre-based groups at follow up

Home > Centre: statistically significant (P ≤ 0.05) higher HRQoL in home- versus centre-based groups at follow up

Home < Centre: statistically significant (P ≤ 0.05) lower HRQoL in home- versus centre-based groups at follow up

**Home- and centre-based groups at follow up appear to be similar but P value not reported or calculable

? Home- and centre-based groups at follow up appear different but P value not reported or calculable
Table 9. Summary of costs in home- and centre-based settings

<table>
<thead>
<tr>
<th>Study</th>
<th>Currency Year of costs Follow up</th>
<th>Cardiac rehabilitation programme cost (per patient)</th>
<th>Programme costs considered</th>
<th>Total healthcare cost (per patient)</th>
<th>Additional healthcare costs considered</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlson 2000</td>
<td>USD Not reported 6 months</td>
<td>Home: mean USD 1519 Centre: mean USD 2349</td>
<td>Staff, ECG monitoring</td>
<td>Not reported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowie 2012</td>
<td>GBP 2013 to 2014 60 months</td>
<td>Home: mean GBP 197 Centre: mean GBP 221</td>
<td>Staff, HR monitors, DVD</td>
<td>Home: mean: GBP 7932 Centre: mean: GBP 7452</td>
<td>Hospitalisations, emergency admissions</td>
<td></td>
</tr>
<tr>
<td>Marchionni 2003</td>
<td>USD 2000 14 months</td>
<td>Home: mean USD 1650 Centre: mean USD 8841</td>
<td>Not reported</td>
<td>Home: USD 21, 298 Centre: USD 13, 246</td>
<td>Not reported</td>
<td></td>
</tr>
<tr>
<td>Dalal 2007</td>
<td>GBP 2002 to 2003 9 months</td>
<td>Home: mean GBP 170 (SD 8) Centre: mean GBP 200 (SD 3) Difference: mean GBP 30 (95% CI -45 to -12) P < 0.0001</td>
<td>Staff, exercise, equipment, staff travel</td>
<td>Home: mean GBP 3279 (SD 374) Centre: mean GBP 3201 (SD 443) Difference: mean GBP 78 (95% CI -1103 to 1191) P = 0.894</td>
<td>Rehospitalisations, revascularisations, secondary preventive medication, investigations, primary care consultations</td>
<td></td>
</tr>
<tr>
<td>Jolly 2007</td>
<td>GBP 2003 24 months</td>
<td>Home: mean GBP 198 (95% CI 189 to 209) Centre: mean GBP 157 (95% CI 139 to 175) P < 0.05</td>
<td>Staff, telephone, consultations, staff travel</td>
<td>Not reported</td>
<td></td>
<td>With inclusion of patient costs (travel and time) , the societal costs of home- and centre-based cardiac rehabilitation were not significantly different</td>
</tr>
<tr>
<td>Varnfield 2014/Whittaker 2014</td>
<td>AUD Not reported Based on a 6 week programme</td>
<td>Home: AUD 1633 Centre: AUD 1845</td>
<td>Education, assessment, coaching and mentoring, gymnasium, communication, Patient travel: Home: AUD 80 Centre: AUD 400</td>
<td>Re-admissions - Estimated AUD 39,670 per re-admission (Collins 2001)</td>
<td>Based on evidence suggesting that completing a formal rehabilitation-</td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Summary of costs in home- and centre-based settings (Continued)

facility, technology, administration

Abbreviation: ECG = electrocardiogram

Table 10. Summary of healthcare utilisation in home- and centre-based settings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>9 months</td>
<td>3 months</td>
<td>0 to 6 months</td>
<td>6 to 12 months</td>
<td>6 months</td>
<td>14 months</td>
</tr>
<tr>
<td>Rehospitalisations</td>
<td>N patient (%)</td>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home 9/60 (15%)</td>
<td>2.2 (0.9)†</td>
<td>Home 21/90 (23%)</td>
<td>13/89 (15%)</td>
<td>Home 0.46 (SE 0.1)</td>
<td>Home 0.08 (0.49)</td>
</tr>
<tr>
<td></td>
<td>Centre 6/44 (14%)</td>
<td>1.2 (0.6)</td>
<td>Centre 19/88 (22%)</td>
<td>12/84 (14%)</td>
<td>Centre 0.33 (SE 0.1)</td>
<td>Centre 0.12 (0.41)</td>
</tr>
<tr>
<td></td>
<td>P = 0.845</td>
<td></td>
<td>P = 0.78†</td>
<td>P = 0.95#</td>
<td>P = 0.49</td>
<td>P = 0.3</td>
</tr>
<tr>
<td></td>
<td>Home 20/190 (23%)</td>
<td>5.4 (4.5)</td>
<td>Home 0.46 (SE 0.1)</td>
<td>13/89 (15%)</td>
<td>Home 0.08 (0.49)</td>
<td>Home 0.20 (0.45)</td>
</tr>
<tr>
<td></td>
<td>Centre 19/198 (22%)</td>
<td>4.6 (3.7)</td>
<td>Centre 0.33 (SE 0.1)</td>
<td>12/84 (14%)</td>
<td>Centre 0.12 (0.41)</td>
<td>Centre 0.26 (0.57)</td>
</tr>
<tr>
<td></td>
<td>P = 0.19#</td>
<td></td>
<td>P = 0.95#</td>
<td>P = 0.385</td>
<td>P = 0.3</td>
<td>P = 0.3</td>
</tr>
<tr>
<td>Primary care consultations</td>
<td>N patient (%)</td>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home 6.3 (0.6)</td>
<td>6.6 (3.6)*</td>
<td>Home 6.6 (4.1)</td>
<td>5.4 (4.1)</td>
<td>Home 0.65 (1.14)</td>
<td>Home 0.53 (1.14)</td>
</tr>
<tr>
<td></td>
<td>Centre 7.0 (0.9)</td>
<td>6.6 (4.1)</td>
<td>Centre 6.6 (4.1)</td>
<td>4.6 (3.7)</td>
<td>Centre 0.72 (1.54)</td>
<td>Centre 0.66 (1.42)</td>
</tr>
<tr>
<td></td>
<td>P = 0.514</td>
<td></td>
<td>P = 1.00#</td>
<td>P = 0.49#</td>
<td>P = 0.19</td>
<td>P = 0.8</td>
</tr>
<tr>
<td>Secondary prevention medication</td>
<td>Home 31/49 (63%)</td>
<td>Home 36/97 (37%)</td>
<td>Home 19/38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10. Summary of healthcare utilisation in home- and centre-based settings (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Moholdt 2012</th>
<th>Oerkild 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>6 months</td>
<td>12 months</td>
</tr>
<tr>
<td>Rehospitalisations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N patient (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#P value calculated by authors of the present report
NS: not statistically significant
SE: standard error

Table 11. Summary of healthcare in hospital- and centre-based settings, continued
<table>
<thead>
<tr>
<th>Primary care</th>
<th>Not reported</th>
<th>Not reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consultations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary prevention medication

<table>
<thead>
<tr>
<th></th>
<th>Home: 8/14 (57%)</th>
<th>Centre: 15/16 (94%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N patients (%)</td>
<td>Centre: 0/16 (0%)</td>
<td>P = 0.28*</td>
</tr>
<tr>
<td>beta-blockers</td>
<td>Home: 1/14 (7%)</td>
<td>P = 0.02*</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>Centre: 2/16 (13%)</td>
<td>P = 0.07*</td>
</tr>
<tr>
<td>Antihypertensives</td>
<td>Home: 6/14 (43%)</td>
<td>P = 0.07*</td>
</tr>
<tr>
<td>Statins</td>
<td>Centre: 14/16 (100%)</td>
<td>P = 0.18*</td>
</tr>
<tr>
<td>Antiplatelets</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

*P value calculated by review authors

ACE: angiotensin-converting-enzyme

APPENDICES

Appendix 1. Search strategies

September 2016 Strategies

CENTRAL

#1 MeSH descriptor: [Myocardial Ischemia] explode all trees
#2 (myocard* near isch*mi*)
#3 isch*mi* near heart
#4 MeSH descriptor: [Coronary Artery Bypass] explode all trees
#5 coronary
#6 MeSH descriptor: [Coronary Disease] explode all trees
#7 MeSH descriptor: [Myocardial Revascularization] explode all trees
#8 MeSH descriptor: [Myocardial Infarction] explode all trees
#9 myocard* near infarct*
#10 heart near infarct*
#11 MeSH descriptor: [Angina Pectoris] explode all trees
#12 angina
#13 MeSH descriptor: [Heart Failure] explode all trees
#14 heart and (failure or attack)
#15 MeSH descriptor: [Heart Diseases] explode all trees
#16 heart near disease*
#17 myocard*
#18 cardiac*
#19 CABG
#20 PTCA
#21 stent* near (heart or cardiac*)
#22 MeSH descriptor: [Heart Bypass, Left] explode all trees
#23 MeSH descriptor: [Heart Bypass, Right] explode all trees
#24 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23
#25 MeSH descriptor: [Percutaneous Coronary Intervention] explode all trees
#26 (percutaneous coronary near/2 (interven* or revascular*))
#27 MeSH descriptor: [Angioplasty] explode all trees
#28 angioplast*
#29 ((coronary or arterial) near/4 dilat*)
#30 endoluminal repair*
#31 MeSH descriptor: [Stents] explode all trees
#32 stent*
#33 (pci or ptca)
#34 MeSH descriptor: [Atherectomy] explode all trees
#35 atherectom*
#36 acute coronary syndrom*
#37 #25 or #26 or #27 or #28 or #29 or #30 or #31 or #32 or #33 or #34 or #35 or #36
#38 MeSH descriptor: [Rehabilitation Centers] explode all trees
#39 MeSH descriptor: [Exercise Therapy] explode all trees
#40 MeSH descriptor: [Sports] this term only
#41 MeSH descriptor: [Physical Exertion] explode all trees
#42 rehabilitat*
#43 (physical* near (fit* or train* or therap* or activit*))
#44 MeSH descriptor: [Exercise] explode all trees
#45 (train*) near (strength* or aerobic or exercise*)
#46 (exercise* or fitness) near/3 (treatment or interven* or program*)
#47 MeSH descriptor: [Rehabilitation] explode all trees
#48 MeSH descriptor: [Patient Education as Topic] explode all trees
#49 (patient* near/3 educat*)
#50 (lifestyle or life-style) near/3 (interven* or program* or treatment*)
#51 MeSH descriptor: [Self Care] explode all trees
#52 MeSH descriptor: [Ambulatory Care] explode all trees
#53 MeSH descriptor: [Psychotherapy] explode all trees
#54 psychotherap*
#55 psycholog* near interven*
#56 relax*
#57 MeSH descriptor: [Relaxation Therapy] explode all trees
#58 MeSH descriptor: [Counseling] explode all trees
#59 counsel*ing
#60 MeSH descriptor: [Cognitive Therapy] explode all trees
#61 MeSH descriptor: [Behavior Therapy] explode all trees
#62 (behaivior* or interven* or rehabilit*) near 4 (modif* or therap* or rehab* or change)
#63 MeSH descriptor: [Stress, Psychological] explode all trees
#64 stress near manage*
#65 cognitive* near therap*
#66 MeSH descriptor: [Meditation] explode all trees
#67 meditat*
#68 MeSH descriptor: [Anxiety] this term only
#69 (manage*) near (anxiety or depres*)
MEDLINE

1. exp Myocardial Ischemia/
2. (myocard* adj3 isch?mi*).tw.
4. exp Coronary Artery Bypass/
5. coronary.tw.
6. exp Coronary Disease/
7. exp Myocardial Revascularization/
8. exp Myocardial Infarction/
9. (myocard* adj3 infarct*).tw.
10. (heart adj3 infarct*).tw.
11. exp Angina Pectoris/
12. angina.tw.
13. exp Heart Failure/
14. (heart adj3 (failure or attack)).tw.
15. exp Heart Diseases/
16. (heart adj3 disease*).tw.
17. myocard*.tw.
18. cardiac*.tw.
19. CABG.tw.
20. PTCA.tw.
21. (stent* adj3 (heart or cardiac*)).tw.
22. Heart Bypass, Left/
23. exp Heart Bypass, Right/
24. or/1-23
25. exp Percutaneous Coronary Intervention/
26. (percutaneous coronary adj2 (interven* or revascular*)).tw.
27. exp Angioplasty/
28. angioplast*.tw.
29. ((coronary or arterial) adj4 dilat*).tw.
30. endoluminal repair*.tw.
31. exp Stents/
32. stent*.tw.
33. (pci or ptca).tw.
34. exp Atherectomy/
35. atherectom*.tw.
36. acute coronary syndrom*.tw.
37. or/25-36
38. Rehabilitation Centers/
39. exp Exercise Therapy/
40. Sports/
41. Physical Exertion/
42. rehabilitat*.tw.
43. (physical* adj3 (fit* or train* or therap* or activit*)).tw.
44. exp Exercise/
45. (train* adj3 (strength* or aerobic or exercise*)).tw.
46. ((exercise* or fitness) adj3 (treatment or intervent* or program*)).tw.
47. exp Rehabilitation/
48. Patient Education as Topic/
49. (patient* adj3 educat*).tw.
50. ((lifestyle or life-style) adj3 (intervent* or program* or treatment*)).tw.
51. exp Self Care/
52. exp Ambulatory Care/
53. exp Psychotherapy/
54. psychotherap*.tw.
55. (psycholog* adj3 intervent*).tw.
56. relax*.tw.
57. Relaxation Therapy/
58. exp Counseling/
59. counsel?ing.tw.
60. exp Cognitive Therapy/
61. exp Behavior Therapy/
62. (behavior* adj4 (modif* or therap* or rehab* or change)).tw.
63. exp Stress, Psychological/
64. (stress adj3 manage*).tw.
65. (cognitive* adj3 therap*).tw.
66. exp Meditation/
67. meditat*.tw.
68. Anxiety/
69. (manage* adj3 (anxiety or depres*)).tw.
70. CBT.tw.
71. hypnotherap*.tw.
72. (goal adj3 setting).tw.
73. (psycho-educat* or psychoeducat*).tw.
74. (motivat* adj3 inter*).tw.
75. exp Psychopathology/
76. psychopathol*.tw.
77. exp Autogenic Training/
78. autogenic*.tw.
79. (self adj3 (manage* or care or motivat*)).tw.
80. distress*.tw.
81. (psychosocial* or psycho-social*).tw.
82. exp Health Education/
83. ((nutrition or diet or health) adj3 education).tw.
Home-based versus centre-based cardiac rehabilitation (Review)
35. atherectomy.tw.
36. acute coronary syndrom*.tw.
37. or/25-36
38. Rehabilitation Centers/
39. exp Exercise Therapy/
40. Sports/
41. Physical Exertion/
42. rehabilitat*.tw.
43. (physical* adj3 (fit* or train* or therapeut* or activity*)).tw.
44. exp Exercise/
45. (train* adj3 (strength* or aerobic or exercise*)).tw.
46. ((exercise* or fitness) adj3 (treatment or intervention* or program*)).tw.
47. exp Rehabilitation/
48. Patient Education as Topic/
49. (patient* adj3 educat*).tw.
50. ((lifestyle or life-style) adj3 (intervention* or program* or treatment*)).tw.
51. exp Self Care/
52. exp Ambulatory Care/
53. exp Psychotherapy/
54. psychotherap*.tw.
55. (psychological* adj3 intervention*).tw.
56. relax*.tw.
57. Relaxation Therapy/
58. exp Counseling/
59. counseling.tw.
60. exp Cognitive Therapy/
61. exp Behavior Therapy/
62. (behavior* adj4 (modification or therapy* or rehabilitation or change)).tw.
63. exp Stress, Psychological/
64. (stress adj3 management*).tw.
65. (cognitive* adj3 therapy*).tw.
66. exp Meditation/
67. meditat*.tw.
68. Anxiety/
69. (manage* adj3 (anxiety or depression*)).tw.
70. CBT.tw.
71. hypnotherap*.tw.
72. (goal adj3 setting).tw.
73. (psychosocial* or psychoeducational*).tw.
74. (motivation* adj3 intervention*).tw.
75. exp Psychopathology/
76. psychopathology.tw.
77. exp Autogenic Training/
78. autogenic*.tw.
79. (self adj3 (management or care or motivation*)).tw.
80. distress*.tw.
81. (psychosocial* or psycho-social*).tw.
82. exp Health Education/
83. ((nutrition or diet or health) adj3 education).tw.
84. heart manual.tw.
85. home based.tw.
86. or/38-85
87. random$.tw.

Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
88. factorial$.tw.
89. crossover$.tw.
90. cross over$.tw.
91. cross-over$.tw.
92. placebo$.tw.
93. (doub! adj blind$).tw.
94. (sing! adj blind$).tw.
95. assign$.tw.
96. allocat$.tw.
97. volunteer$.tw.
98. crossover procedure/
99. double blind procedure/
100. randomized controlled trial/
101. single blind procedure/
102. 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100 or 101
103. (animal/ or nonhuman/) not human/
104. 102 not 103
106. 37 and 86 and 104
107. 24 and 86 and 104 and 105
108. 106 or 107

PsycINFO
1. (myocard* adj3 isch?mi*).tw.
2. (isch?mi* adj3 heart).tw.
3. coronary.tw.
4. exp Myocardial Infarction/
5. (myocard* adj3 infarct*).tw.
6. (heart adj3 infarct*).tw.
7. exp Angina Pectoris/
8. angina.tw.
9. (heart adj3 (failure or attack)).tw.
10. (heart adj3 disease*).tw.
11. myocard*.tw.
12. cardiac*.tw.
13. CABG.tw.
14. PTCA.tw.
15. (stent* adj3 (heart or cardiac*)).tw.
16. or/1-15
17. exp percutaneous coronary intervention/
18. (percutaneous coronary adj2 (interven* or revascular*)).tw.
19. exp angioplasty/
20. angioplast* .tw.
21. ((coronary or arterial) adj4 dilat*).tw.
22. endoluminal repair*.tw.
23. exp stent/
24. stent*.tw.
25. (pci or ptca).tw.
26. exp atherectomy/
27. atherectom*.tw.
28. acute coronary syndrom*.tw.
29. or/17-28
30. Rehabilitation Centers/
31. exp Exercise Therapy/
32. Sports/
33. rehabilitat*.tw.
34. (physical* adj3 (fit* or train* or therap* or activit*)).tw.
35. exp Exercise/
36. (train* adj3 (strength* or aerobic or exercise*)).tw.
37. ((exercise* or fitness) adj3 (treatment or intervent* or program*)).tw.
38. exp Rehabilitation/
39. (patient* adj3 educat*).tw.
40. ((lifestyle or life-style) adj3 (intervent* or program* or treatment*)).tw.
41. exp Self Care/
42. exp Ambulatory Care/
43. exp Psychotherapy/
44. psychotherap*.tw.
45. (psycholog* adj3 intervent*).tw.
46. relax*.tw.
47. Relaxation Therapy/
48. exp Counseling/
49. counsel?ing.tw.
50. exp Cognitive Therapy/
51. exp Behavior Therapy/
52. (behavior* adj4 (modif* or therap* or rehab* or change)).tw.
53. (stress adj3 manage*).tw.
54. (cognitive* adj3 therap*).tw.
55. exp Meditation/
56. meditat*.tw.
57. Anxiety/
58. (manage* adj3 (anxiety or depres*)).tw.
59. CBT.tw.
60. hypnotherap*.tw.
61. (goal adj3 setting).tw.
62. (psycho-educat* or psychoeducat*).tw.
63. (motivat* adj3 intervw*).tw.
64. exp Psychopathology/
65. psychopathol*.tw.
66. exp Autogenic Training/
67. autogenic*.tw.
68. (self adj3 (manage* or care or motivat*)).tw.
69. distress*.tw.
70. (psychosocial* or psycho-social*).tw.
71. exp Health Education/
72. ((nutrition or diet or health) adj3 education).tw.
73. heart manual.tw.
74. home based.tw.
75. or/30-74
76. random$.tw.
77. factorial$.tw.
78. crossover$.tw.
79. cross-over$.tw.
80. placebo$.tw.
81. (doubl$ adj blind$).tw.
82. (singl$ adj blind$).tw.
83. assign$.tw.
84. allocat$.tw.

Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Home-based versus centre-based cardiac rehabilitation (Review)

Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

August 2016 Strategies

CENTRAL
#1 MeSH descriptor: [Myocardial Ischemia] explode all trees
#2 (myocard* near isch?mi*)
#3 isch?mi* near heart
#4 MeSH descriptor: [Coronary Artery Bypass] explode all trees
#5 coronary
#6 MeSH descriptor: [Coronary Disease] explode all trees
#7 MeSH descriptor: [Myocardial Revascularization] explode all trees
#8 MeSH descriptor: [Myocardial Infarction] explode all trees
#9 myocard* near infarct*
#10 heart near infarct*
#11 MeSH descriptor: [Angina Pectoris] explode all trees
#12 angina
#13 MeSH descriptor: [Heart Failure] explode all trees
#14 heart and (failure or attack)
#15 MeSH descriptor: [Heart Diseases] explode all trees
#16 heart near disease*
#17 myocard*
#18 cardiac*
#19 CABG
#20 PTCA
#21 stent* near (heart or cardiac*)
#22 MeSH descriptor: [Heart Bypass, Left] explode all trees
#23 MeSH descriptor: [Heart Bypass, Right] explode all trees
#24 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23
#25 MeSH descriptor: [Rehabilitation Centers] explode all trees
#26 MeSH descriptor: [Exercise Therapy] explode all trees
#27 MeSH descriptor: [Sports] this term only
#28 MeSH descriptor: [Physical Exertion] explode all trees
#29 rehabilitat*
#30 (physical* near (fit* or train* or therap* or activit*))
#31 MeSH descriptor: [Exercise] explode all trees
#32 (train*) near (strength* or aerobic or exercise*)
#33 ((exercise* or fitness) near/3 (treatment or intervent* or program*))
#34 MeSH descriptor: [Rehabilitation] explode all trees
#35 MeSH descriptor: [Patient Education as Topic] explode all trees
#36 (patient* near/3 educat*)
#37 ((lifestyle or life-style) near/3 (treatment or intervent* or program*))
#38 MeSH descriptor: [Self Care] explode all trees
#39 MeSH descriptor: [Ambulatory Care] explode all trees
#40 MeSH descriptor: [Counseling] explode all trees
#41 psychotherap*
#42 psychologist near intervent*
#43 relax*
#44 MeSH descriptor: [Relaxation Therapy] explode all trees
#45 MeSH descriptor: [Counseling] explode all trees
#46 counseling
#47 MeSH descriptor: [Cognitive Therapy] explode all trees
#48 MeSH descriptor: [Behavior Therapy] explode all trees
#49 (behavior* or therap* or rehab* or change)
#50 MeSH descriptor: [Stress, Psychological] explode all trees
#51 stress near manage*
#52 cognitive* near therap*
#53 MeSH descriptor: [Meditation] explode all trees
#54 meditat*
#55 MeSH descriptor: [Anxiety] this term only
#56 (manage*) near (anxiety or depress*)
#57 CBT
#58 hypnotherap*
#59 goal near/3 setting
#60 (psycho-educat*) or (psychoeducat*)
#61 motivat* near interv*
#62 MeSH descriptor: [Psychopathology] explode all trees
#63 psychopathol*
#64 MeSH descriptor: [Autogenic Training] explode all trees
#65 autogenic*
#66 self near (manage* or care or motivat*)
#67 distress*
#68 psychosocial* or psycho-social
#69 MeSH descriptor: [Health Education] explode all trees
#70 ((nutrition or diet or health) near education)
#71 heart manual
#72 home-based
#73 #25 or #26 or #28 or #29 or #30 or #31 or #32 or #34 or #35 or #36 or #37 or #38 or #39 or #40 or #41 or #42 or #43 or #44 or #45 or #46 or #47 or #48 or #49 or #50 or #51 or #52 or #53 or #54 or #55 or #56 or #57 or #58 or #59 or #60 or #61 or #62 or #63 or #64 or #65 or #66 or #67 or #68 or #69 or #70 or #71 or #72
#74 #24 and #73 from 2014 to 2016

MEDLINE
1. exp Myocardial Ischemia/
2. (myocard* adj3 isch?mi*).tw.
4. exp Coronary Artery Bypass/
5. coronary.tw.
6. exp Coronary Disease/
7. exp Myocardial Revascularization/
8. exp Myocardial Infarction/
9. (myocard* adj3 infarct*).tw.
10. (heart adj3 infarct*).tw.
11. exp Angina Pectoris/
12. angina.tw.
13. exp Heart Failure/
14. (heart adj3 (failure or attack)).tw.
15. exp Heart Diseases/
16. (heart adj3 disease*).tw.
17. myocard*.tw.
18. cardiac*.tw.
19. CABG.tw.
20. PTCA.tw.
21. (stent* adj3 (heart or cardiac*)).tw.
22. Heart Bypass, Left/
23. exp Heart Bypass, Right/
24. or/1-23
25. Rehabilitation Centers/
26. exp Exercise Therapy/
27. Sports/
28. Physical Exertion/
29. rehabilitat*.tw.
30. (physical* adj3 (fit* or train* or therap* or activit*)).tw.
31. exp Exercise/
32. (train* adj3 (strength* or aerobic or exercise*)).tw.
33. ((exercise* or fitness) adj3 (treatment or intervent* or program*)).tw.
34. exp Rehabilitation/
35. Patient Education as Topic/
36. (patient* adj3 educat*).tw.
37. ((lifestyle or life-style) adj3 (intervent* or program* or treatment*)).tw.
38. exp Self Care/
39. exp Ambulatory Care/
40. exp Psychotherapy/
41. psychotherap*.tw.
42. (psycholog* adj3 intervent*).tw.
43. relax*.tw.
44. Relaxation Therapy/
45. exp Counseling/
46. counsel*ing.tw.
47. exp Cognitive Therapy/
48. exp Behavior Therapy/
49. (behavior* adj4 (modifi* or therap* or rehab* or change)).tw.
50. exp Stress, Psychological/
51. (stress adj3 manage*).tw.
52. (cognitive* adj3 therap*).tw.
53. exp Meditation/
54. meditat*.tw.
55. Anxiety/
56. (manage* adj3 (anxiety or depression*)).tw.
57. CBT.tw.
58. hypnotherap*.tw.
59. (goal adj3 setting).tw.
60. (psycho-educat* or psychoeducat*).tw.
61. (motivat* adj3 interv*).tw.
62. exp Psychopathology/
63. psychopathol*.tw.
64. exp Autogenic Training/
65. autogenic*.tw.
66. (self adj3 (manage* or care or motivat*)).tw.
67. distress*.tw.
68. (psychosocial* or psycho-social*).tw.
69. exp Health Education/
70. ((nutrition or diet or health) adj3 education).tw.
71. heart manual.tw.
72. home based.tw.
73. or/25-72
74. randomized controlled trial.pt.
75. controlled clinical trial.pt.
76. randomized.ab.
77. placebo.ab.
78. drug therapy.fs.
79. randomly.ab.
80. trial.ab.
81. groups.ab.
82. 74 or 75 or 76 or 77 or 78 or 79 or 80 or 81
83. exp animals/ not humans.sh.
84. 82 not 83
85. 74 and 73 and 84
86. (2014* or 2015* or 2016*).ed.
87. 85 and 86

Embase
1. exp Myocardial Ischemia/
2. (myocard* adj3 isch?mi*).tw.
4. exp Coronary Artery Bypass/
5. coronary.tw.
6. exp Coronary Disease/
7. exp Myocardial Revascularization/
8. exp Myocardial Infarction/
9. (myocard* adj3 infarct*).tw.
10. (heart adj3 infarct*).tw.
11. exp Angina Pectoris/
12. angina.tw.
13. exp Heart Failure/
14. (heart adj3 (failure or attack)).tw.
15. exp Heart Diseases/
16. (heart adj3 disease*).tw.
17. myocard*.tw.
18. cardiac*.tw.
19. CABG.tw.
20. PTCA.tw.
21. (stent* adj3 (heart or cardiac*)).tw.
22. Heart Bypass, Left/
23. exp Heart Bypass, Right/
24. or/1-23
25. Rehabilitation Centers/
26. exp Exercise Therapy/
27. Sports/
28. Physical Exertion/
29. rehabilitat*.tw.
30. (physical* adj3 (fit* or train* or therap* or activit*)).tw.
31. exp Exercise/
32. (train* adj3 (strength* or aerobic or exercise*)).tw.
33. ((exercise* or fitness) adj3 (treatment or intervent* or program*)).tw.
34. exp Rehabilitation/
35. Patient Education as Topic/
36. (patient* adj3 educat*).tw.
37. ((lifestyle or life-style) adj3 (intervent* or program* or treatment*)).tw.
38. exp Self Care/
39. exp Ambulatory Care/
40. exp Psychotherapy/
41. psychotherap*.tw.
42. (psycholog* adj3 intervent*).tw.
43. relax*.tw.
44. Relaxation Therapy/
45. exp Counseling/
46. counsel?ing.tw.
47. exp Cognitive Therapy/
48. exp Behavior Therapy/
49. (behavior* adj4 (modif* or therap* or rehab* or change*)).tw.
50. exp Stress, Psychological/
(stress adj3 manage*).tw.
(cognitive* adj3 therap*).tw.
exp Meditation/
meditat*.tw.
Anxiety/
(manage* adj3 (anxiety or depres*)).tw.
CBT.tw.
hypnotherap*.tw.
goal adj3 setting).tw.
(psycho-educat* or psychoeducat*).tw.
motivat* adj3 interv*).tw.
exp Psychopathology/
psychopathol*.tw.
exp Autogenic Training/
utogenic*.tw.
(self adj3 (manage* or care or motivat*)).tw.
distress*.tw.
(psychosocial* or psycho-social*).tw.
exp Health Education/
((nutrition or diet or health) adj3 education).tw.
heart manual.tw.
home based.tw.
or/25-72
random$.tw.
factorial$.tw.
crossover$.tw.
cross over$.tw.
cross-over$.tw.
placebo$.tw.
(doubl$ adj blind$).tw.
singl$ adj blind$).tw.
assign$.tw.
allocat$.tw.
volunteer$.tw.
crossover procedure/
double blind procedure/
randomized controlled trial/
single blind procedure/
74 or 75 or 76 or 77 or 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88
(animals/ or nonhuman/) not human/
not 90
24 and 73 and 91
(2014* or 2015* or 2016*).em.
92 and 93
limit 94 to embase
PsycINFO
1. (myocard* adj3 isch?mi*).tw.
2. (isch?mi* adj3 heart).tw.
coronary.tw.
exp Myocardial Infarction/
(myocard* adj3 infarct*).tw.
(heart adj3 infarct*).tw.
ex Angina Pectoris/
8. angina.tw.
9. (heart adj3 (failure or attack)).tw.
10. (heart adj3 disease*).tw.
11. myocard*.tw.
12. cardiac*.tw.
13. CABG.tw.
14. PTCA.tw.
15. (stent* adj3 (heart or cardiac*)).tw.
16. Rehabilitation Centers/
17. exp Exercise Therapy/
18. Sports/
19. rehabilitat*,tw.
20. (physical* adj3 (fit* or train* or therap* or activit*)).tw.
21. exp Exercise/
22. (train* adj3 (strength* or aerobic or exercise*)).tw.
23. ((exercise* or fitness) adj3 (treatment or intervent* or program*)).tw.
24. exp Rehabilitation/
25. (patient* adj3 educat*).tw.
26. ((lifestyle or life-style) adj3 (intervent* or program* or treatment*)).tw.
27. exp Self Care/
28. exp Ambulatory Care/
29. exp Psychotherapy/
30. psychotherap*.tw.
31. (psycholog* adj3 intervent*).tw.
32. relax*.tw.
33. Relaxation Therapy/
34. exp Counseling/
35. counsel?ing.tw.
36. exp Cognitive Therapy/
37. exp Behavior Therapy/
38. (behavior* adj4 (modif* or therap* or rehab* or change)).tw.
39. (stress adj3 manage*).tw.
40. (cognitive* adj3 therap*).tw.
41. exp Meditation/
42. meditat*.tw.
43. Anxiety/
44. (manage* adj3 (anxiety or depres*)).tw.
45. CBT.tw.
46. hypnotherap*.tw.
47. (goal adj3 setting).tw.
48. (psycho-educat* or psychoeducat*).tw.
49. (motivat* adj3 interv*).tw.
50. exp Psychopathology/
51. psychopathol*.tw.
52. exp Autogenic Training/
53. autogenic*.tw.
54. (self adj3 (manage* or care or motivat*)).tw.
55. distress*.tw.
56. (psychosocial* or psycho-social*).tw.
57. exp Health Education/
58. ((nutrition or diet or health) adj3 education).tw.
59. heart manual.tw.
60. home based.tw.
61. or/1-15
62. or/16-60
63. 61 and 62
64. random$.tw.
65. factorial$.tw.
66. crossover$.tw.
67. cross-over$.tw.
68. placebo$.tw.
69. (doubl$ adj blind$).tw.
70. (singl$ adj blind$).tw.
71. assign$.tw.
72. allocat$.tw.
73. volunteer$.tw.
74. control$.tw.
75. "2000".md.
76. or/64-75
77. 63 and 76
78. (2014* or 2015* or 2016*).up.
79. 77 and 78

CINAHL
S76 S74 and S75
S75 EM 20141013-20160803
S74 S70 and S73
S73 S71 or S72
S72 (MH "Clinical Trials+)")
S71 random* or blind* or allocat* or assign* or trial* or placebo* or crossover* or cross-over*
S70 S23 and S69
S69 S24 or S25 or S26 or S27 or S28 or S29 or S30 or S31 or S32 or S33 or S34 or S35 or S36 or S37 or S38 or S39 or S40 or S41 or S42 or S43 or S44 or S45 or S46 or S47 or S48 or S49 or S50 or S51 or S52 or S53 or S54 or S55 or S56 or S57 or S58 or S59 or S60 or S61 or S62 or S63 or S64 or S65 or S66 or S67 or S68
S68 (heart manual) OR (home based)
S67 ((nutrition or diet or health) N3 education)
S66 (MH "Health Education+)")
S65 (psychosocial* or psycho-social)
S64 (distress*)
S63 (self N3 (manage* or care or motivat*))
S62 (autogenic*)
S61 (psychopathol*)
S60 (MH "Psychopathology")
S59 (motivat* N3 interv*)
S58 (psycho-educat*) or (psychoeducat*)
S57 (goal N3 setting)
S56 (hypnotherap*)
S55 (CBT)
S54 (manage*) N3 (anxiety or depres*)
S53 (MH "Anxiety")
S52 (meditat*)
S51 (MH "Meditation")
S50 (cognitive* N3 therap*)
S49 (stress N3 manage*)
S48 (MH "Stress, Psychological+")
S47 (behavior* N4 (modif* or therap* or rehab* or change)
S46 (MH "Behavior Therapy+")
S45 (MH "Cognitive Therapy")
S44 (counsel*ing)
S43 (MH "Counseling +")
S42 (relax*)
S41 (psycholog* N3 intervent*)
S40 (psychotherap*)
S39 (MH "Psychotherapy +")
S38 (MH "Ambulatory Care")
S37 (MH "Self Care +")
S36 (lifestyle or life-style) N3 (intervent* or program* or treatment*)
S35 (patient* N3 educat*)
S34 (MH "Patient Education +")
S33 (MH "Rehabilitation +")
S32 (exercise* or fitness) N3 (treatment or intervent* or program*)
S31 (train*) N3 (strength* or aerobic or exercise*)
S30 (MH "Exercise")
S29 (physical* N3 (fit* or train* or therap* or activit*))
S28 (rehabilitat*)
S27 (MH "Exertion +")
S26 (MH "Sports")
S25 (MH "Therapeutic Exercise +")
S24 (MH "Rehabilitation Centers +")
S23 S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10 or S11 or S12 or S13 or S14 or S15 or S16 or S17 or S18 or S19 or S20 or S21 or S22
S22 (MH "Cardiopulmonary Bypass")
S21 (stent* N3 (heart or cardiac*))
S20 (PTCA)
S19 (CABG)
S18 (cardiac*)
S17 (myocard*)
S16 (heart N3 disease*)
S15 (MH "Heart Diseases +")
S14 (heart N3 (failure or attack))
S13 (MH "Heart Failure +")
S12 (angina)
S11 (MH "Angina Pectoris +")
S10 (heart N3 infarct*)
S9 (myocard* N3 infarct*)
S8 (MH "Myocardial Infarction +")
S7 (MH "Myocardial Revascularization +")
S6 (MH "Coronary Disease +")
S5 (coronary)
S4 (MH "Coronary Artery Bypass +")
S3 (isch?mi* N3 heart)
S2 (myocard* N3 isch?mi*)
S1 (MH "Myocardial Ischemia +")

UK Clinical Trials Gateway (www.ukctg.nihr.ac.uk/)
“cardiac rehabilitation” AND “home”

WHO ICTRP

Home-based versus centre-based cardiac rehabilitation (Review)
Copyright © 2017 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
“cardiac rehabilitation” AND “home”

Clinicaltrials.gov
“cardiac rehabilitation” AND “home”

WHAT’S NEW
Last assessed as up-to-date: 21 September 2016.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 January 2017</td>
<td>New citation required but conclusions have not changed</td>
<td>Six new studies included. Conclusions not changed.</td>
</tr>
<tr>
<td>14 November 2016</td>
<td>New search has been performed</td>
<td>The review was updated following a new search in September 2016</td>
</tr>
</tbody>
</table>

HISTORY
Review first published: Issue 1, 2010

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 October 2014</td>
<td>New search has been performed</td>
<td>The review has been updated following a new search in October 2014</td>
</tr>
<tr>
<td>9 October 2014</td>
<td>New citation required but conclusions have not changed</td>
<td>Five new studies were found for inclusion but did not change the conclusions of this review</td>
</tr>
<tr>
<td>19 April 2010</td>
<td>Amended</td>
<td>Minor changes to the Background section.</td>
</tr>
<tr>
<td>10 February 2010</td>
<td>Amended</td>
<td>Forest plots of ‘Mortality’ and ‘Completers’ have been updated as home and hospital group headings were inadvertently reversed in the original review Added citation in ‘Other published versions of this review’.</td>
</tr>
</tbody>
</table>
Contributions of Authors

LA undertook the study selection, data extraction and risk of bias assessment, and led the writing of the updated review.

HD, KJ, AZ, SGD and RJN contributed to a previous version of the review and contributed to the editing of this updated review.

GAS undertook data extraction and risk of bias assessment and contributed to the editing of this updated review.

RST contributed to the original and previous versions of the review, led the analysis of this review and contributed to the editing of the updated review.

The final manuscript was approved by all authors.

declarations of interest

LA is an author on number of other Cochrane cardiac rehabilitation reviews.

RST, HD, KJ and AC are investigators on randomised controlled trials included in this review. RST, HD and KJ are chief investigators/co-applicants on an ongoing National Institute for Health Research (NIHR) Programme Grants for Applied Research funded study - Rehabilitation Enablement in Chronic Heart Failure (REACH-HF) - to develop and evaluate the costs and outcomes of a home-based self help heart failure rehabilitation manual (RP-PG-1210-12004) [http://medicine.exeter.ac.uk/research/healthserv/primarycare/projects/reach-hf/].

SJD’s position at the University of Exeter Medical School is partially supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health in England. The textbook ‘Interprofessional Rehabilitation: a person-centred approach’ has a section on adherence in rehabilitation, drawing upon earlier work than this Cochrane Review.

KJ is part funded by NIHR CLAHRC-WM.

RJN, AZ and GAS declare that they have no conflicts of interest.

Sources of Support

Internal sources

- No sources of support supplied

External sources

- NIHR Cochrane Heart Programme grant, UK.
- Transparency of the National Health System Drug Reimbursement Decisions, Poland. co-financed by EU
DIFFERENCES BETWEEN PROTOCOL AND REVIEW

To reflect current practice and terminology, “percutaneous transluminal coronary angioplasty” (PTCA) was replaced by “percutaneous coronary intervention” (PCI), a term which encompasses the use of balloons, stents and atherectomy.

The order of primary and secondary outcomes has been updated, for clarity.

Due to the increase in the number of studies included in this review, we undertook meta-regression analysis to examine potential treatment effect modifiers and the text has been updated to reflect this change.

Finally, we created a 'Summary of findings' table using the following outcomes: total mortality, exercise capacity, withdrawal and health-related quality of life.

INDEX TERMS

Medical Subject Headings (MeSH)
*Home Care Services; *Rehabilitation Centers; Heart Failure [*rehabilitation]; Myocardial Infarction [*rehabilitation]; Myocardial Revascularization [*rehabilitation]; Randomized Controlled Trials as Topic; Risk Factors

MeSH check words
Adult; Aged; Female; Humans; Male; Middle Aged