Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae

Natasha Weston, Prateek Sharma, Vito Ricci, Laura J.V. Piddock*

Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom

*Corresponding author (Tel: +44 (0)121 414 6966, Email: l.j.v.piddock@bham.ac.uk)
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The Resistance-Nodulation-Division (RND) family of efflux pumps are the most clinically significant as they are associated with multi-drug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.

Keywords: AcrAB-TolC, Transcription, Induction, Multidrug resistance, Salmonella, Escherichia coli,
Introduction

Bacterial multidrug efflux systems are a major and common mechanism of intrinsic antimicrobial resistance employed by bacteria. Efflux systems are able to extrude a variety of structurally diverse antimicrobials and some metabolites [10]. Many efflux pumps are fundamental to the physiology of some species of Gram-negative bacteria, and are required for virulence and formation of biofilms [10]. The most clinically significant efflux pumps in Gram-negative bacteria are members of the Resistance-Nodulation-Division (RND) family as they recognise a broad range of substrates and are associated with multi-drug resistance (MDR) [10]. These pumps exist as a tripartite system, spanning both the inner and outer membrane [10, 5]. The best characterised RND system is AcrAB-TolC, and is present in Enterobacteriaceae including *Escherichia coli*, *Salmonella* species and *Klebsiella pneumoniae*. Pumps homologous to AcrAB-TolC exist in other species of Gram-negative bacteria, such as MexAB-OprM, MexCD-OprJ and MexXY-OprM in *Pseudomonas spp.*, CmeABC in *Campylobacter spp.*, MtrCDE in *Neisseria spp.* and AdeABC in *Acinetobacter baumannii* [19, 25, 26, 28, 30, 36, 48, 27].

Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. As RND MDR efflux systems show high levels of homology at the gene and protein level, AcrAB-TolC has been studied most extensively as the prototype of this class of pumps [27]. In *E. coli*, expression of the **acrAB** and **tolC** genes is primarily controlled by MarA, whereas in *Salmonella enterica* these genes are controlled by RamA. This review will focus on the current state of knowledge of the regulation of the **acrAB** and **tolC genes** in *E. coli* and *S.
enterica, respectively. We also describe other factors that have been recently discovered.

Local transcription regulation

The mechanism of RND MDR efflux pump regulation is broadly similar in different species; there is local repression of pump genes as well as global transcription factor regulation. In *E. coli*, *Salmonella* spp. and *Klebsiella* spp., the local repressor AcrR acts as a modulator to prevent the over-expression of *acrAB* [29, 47, 72]. AcrR has been extensively studied in *E. coli*. It is part of the TetR family of transcriptional repressors and when induced it represses *acrAB* [64]. *acrR* is located upstream of the *acrAB* operon, is transcribed divergently and can repress its' own synthesis(Fig.1) [29]. Clinical and veterinary isolates of *E. coli* and *Salmonella* have been identified with mutations in *acrR* that lead to loss of repression and subsequent over expression of AcrAB-TolC and MDR [47, 72]. Transcription of *acrR* is increased under general stress conditions, including 4% ethanol, 0.5M NaCl and the onset of stationary phase in Luria-Bertani (LB) medium [29]. In the absence of functional AcrR, these stress conditions were shown to induce *acrAB*, indicating that AcrR does not act in isolation [29, 72].

Other proteins that locally regulate *acrAB* and *tolC* include AcrS/EnvR, the histone-like nucleoid structuring protein (H-NS), and Suppressor of Division Inhibition (Sdi)A [27]. AcrS/EnvR is a repressor of the *acrEF* efflux pump genes; it can also repress *acrAB* in *E. coli* [21]. AcrS/EnvR may repress *acrAB* in response to increased activity in *acrEF*, allowing cross-regulation of RND efflux pumps [21]. In *S. enterica* and *E. coli*, H-NS regulates expression of genes by responding to environmental signals such as pH, osmolarity and temperature; it also down regulates expression of *acrEF* but not *acrAB* [14, 43, 44]. SdiA, a LuxR protein
present in *E. coli* and *S. enterica*, can positively regulate *acrAB* [42, 49]. These regulators are thought to play a minor role in regulation of *acrAB* and *tolC* as deletion of these genes results in little effect in efflux via AcrAB [27].

Mar regulation of *acrAB-tolC* in *E. coli*

The multiple antibiotic resistance operon, Mar, in *E. coli* was discovered by a transposon insertion in *marA*. It is expressed as two separate transcriptional units controlled by a common region of DNA, *marO* [13]. *marR, marA* and *marB* genes are involved in multiple antibiotic resistance, however, the *marC* gene, a putative transmembrane protein, is not [37].

MarR is a protein that blocks its own transcription in the absence of any environmental signal [4]. The MarR family of proteins have a unique ability to sense phenolic compounds. MarR recognises and binds palindromic DNA sequences as dimers and the DNA binding domain contains a helix-turn-helix (HTH) motif that favours this activity [3, 62, 65]. Under normal conditions, MarR represses the *marRAB* operon by binding to two palindromic sequences within the operator DNA sequence *marO* that contains its promoter [33]. Transcription of *marRAB* will only occur when repression by MarR is disrupted. This can be due to the presence of certain ligands (e.g. phenolic compounds such as sodium salicylate), antibiotics, oxidative stress or mutation of *marR, marO* or the MarR binding site [12].

De-repression of the Mar operon leads to expression of *marA* that encodes a global transcriptional activator, MarA, a member of the AraC/XylS family of proteins. This family has a unique feature: a 100 amino acid sequence that forms a domain that contains two helix-turn-helix (HTH) motifs that bind DNA [35]. MarR always represses *marA*. MarA undergoes positive feedback as it binds to a DNA sequence
upstream of the repression site of MarR known as the marbox. This represses marR allowing marA to be activated (Fig. 1). The marbox is usually 20 bp in length, highly degenerate and asymmetric [32]. There are approximately 10,000 copies of the marbox in the E. coli chromosome but most are inactive [32]. Structural studies show that MarA utilises the two HTH motifs containing the recognition helices 3 and 6 that bind two major grooves on the DNA as a monomer and bends the DNA by 35° (Fig. 2) [16, 50]. Expression of MarA leads to activation of many genes in its regulon including acrAB and tolC giving increased drug efflux and multiple drug resistance[46]. In the absence of any environment signal or mutation, MarR binds the operator sites and repression of the Mar operon resumes (Fig. 1).

MarB is transcribed as a part of the second transcription unit of the mar locus. marB is located downstream of marA and has its own ribosome binding site [13]. MarB increases the level of MarA by an unknown mechanism, however, its' predicted periplasmic signal sequence suggests that MarB can act post-transcriptionally [68].

The complete mar regulon (also known as mar/sox/rob regulon) is poorly defined. This is partly because the MarA homologues, SoxS and Rob, which also belong to the AraC family, recognise the same DNA sequence as MarA and regulate transcription similarly [14, 35]. Transcription of marRAB and acrAB-tolC can also be driven by factors other than MarR and MarA. The MarA homologues SoxS and Rob also bind the same DNA sequence as MarA and are known to activate transcription of marRAB and acrAB-tolC [39, 40]. The activation of marRAB increases when another factor known as Factor for Inversion Stimulation (FIS) binds upstream of the marbox. This activation was only seen in the presence of MarA, RobandSoxS [34]. The expression of MarA, SoxS and Rob is influenced by specific environmental
stimuli, but together ensure appropriate efflux pump regulation via a variety of stress signals.

Like MarA, SoxS is a small protein, of 107 amino acids, formed of a single domain containing two HTH motifs connected by a 27 Å rigid helix [31, 32]. SoxS proteins share 41% and 67% identity and similarity with MarA respectively[35]. Unlike most AraC family proteins, MarA and SoxS have no ligand sensing or dimerisation domain. In the absence of any stress signals the repressor SoxR binds to the soxS promoter and represses the transcription of SoxS [20]. Oxidative stress activates soxS and SoxS can repress its own expression. MarA and Rob have also been shown to repress the level of SoxS [11, 45].

Rob is a 289 amino acid protein [35]. It is formed of two domains, of which the N-terminal domain shares 51% and 71% identity and similarity with MarA [2, 35]. The N-terminal domain has been shown to have two HTH motifs similar to MarA. Both MarA HTH motifs interact with the DNA major groove, but Rob interacts with DNA major groove utilizing only one HTH motif [23]. The other motif is responsible for binding to the DNA backbone and so the DNA remains unbent [23]. Rob differs from MarA and SoxS by virtue of its second domain; a C-terminal domain that may be involved in ligand binding [23]. Similar to MarA and SoxS, Rob is constitutively expressed and is abundant. Rob binds with higher affinity than MarA or SoxS to the marbox, however, most of the Rob proteins are inactive due to post-transcriptional sequestration [17]. This prevents activation and in turn prevents activation of other promoters regulated by Rob [17]. Sequestrated Rob clumps are not formed when compounds such as 2,2′-dipyridyl activate Rob [60]. When activated, Rob regulates many promoters by binding to the marbox in response to antibiotics and organic solvents [22]. MarA, SoxS and Rob can repress the transcription of Rob [11, 38, 61].
Over-expression of these transcription factors has been found in antibiotic resistant veterinary and human isolates of *E. coli*. Antibiotic resistance in these isolates is often multi-factorial with resistant isolates harbouring multiple mutations, however, the most resistant isolates typically show increased efflux [15]. This is not caused by consistent over-expression of a single transcription regulator, but rather a combination where some isolates show over-expression of MarA and/or SoxS [71]. This correlates with laboratory mutants (Table 1) and re-enforces the evidence that in *E. coli* several global regulators control production of AcrAB-TolC.

Until recently, it was thought that *mar* mutations caused MDR solely by over-expressing the AcrAB-TolC efflux pump, however, the *mar* system regulates other genes as well as *acrAB* and some are involved in resistance to certain classes of drugs. By carrying out ChIP-Seq experiments in ETEC H10407 (which carries a MarR mutation), Sharma *et al.*, [63], identified 33 target genes that are regulated by MarA. In addition to the *acrAB* and*tolC* genes, MarA targets genes that play a role in transport, DNA damage repair, and transcription regulation. These include xseA which when deleted conferred increased susceptibility to ciprofloxacin, and *mlaFEDCB* which when deleted conferred increased susceptibility to tetracycline [63]. The authors inferred that with AcrAB-TolC, MarA mediates drug resistance.

Ram regulation in Salmonella

RamA is an AraC/XylS transcription activator that is a homologue of MarA and regulates expression of the genes encoding the AcrAB-TolC MDR efflux pump [1]. It has a similar structure to MarA and binds to DNA via a similar mechanism [53]. Like MarA in *E. coli*, RamA regulates expression of *acrAB* and *tolC* in *S. enterica* [55] and other Enterobacteriaceae, including *Klebsiella pneumoniae, Enterobacter aerogenes*
and Enterobacter cloacae [55]. MarA, SoxS and Rob are also found in these species and they too play a role in expression of acrAB. However, RamA functions as the primary regulator [42]. RamA is not found in E. coli or Shigella species [55].

Like MarA, RamA activates acrAB and tolC by directly binding to a degenerate nucleotide sequence upstream of the acrAB and tolC loci known as the rambox [42]. When RamA is constitutively expressed at high levels bacteria are MDR [56]. When ramA is highly expressed, there is a concomitant over-expression of acrAB, and when ramA is inactivated the expression of acrAB is reduced [6]. Overproduction of AcrB and increased expression of the AcrAB-TolC efflux pump confers MDR [6]. When acrB is inactivated, there is a fourfold increase in levels of ramA suggesting a feedback mechanism [6]. In the absence of ramA it is also difficult to select MDR mutants suggesting that ramA is required for MDR [57].

The ramR gene is located upstream of ramA; RamR is a repressor of ramA transcription (Fig. 1). Point mutations and insertions in ramR and the region between ramA and ramR have been identified in MDR clinical and veterinary isolates of S. Typhimurium and other S. enterica serovars [1, 55]. These mutations and insertions prevent RamR from binding to the ramA promoter causing increased expression of RamA and subsequent increase in expression of AcrAB-TolC and MDR [1, 54, 55, 75]. The RamR binding site is 28 bp in length and covers the essential features of the promoter region of ramA, including the -10 conserved region, the transcriptional start site of ramA and two 7 bp inverted repeats [8]. By determining the crystal structure of RamR Yamasaki et al., identified substrates of the RamR protein which include crystal violet, ethidium bromide and rhodamine 6G [74]. All the compounds
tested were found to interact with various amino acid residues of RamR, reduce DNA-binding affinity, and induce over-expression of *ramA* [74].

Expression of *ramA* is under multilevel control, with several factors stimulating expression of this transcription factor. RamA is synthesized *de novo* in response to inducers [1]. Various environmental stimuli have been shown to influence efflux by AcrAB by increasing expression of *ramA*. Baucheron *et al* demonstrated that bile activates *acrAB* through de-repression of *ramA* [9]. Nikaido *et al* demonstrated increased expression of *ramA* in response to the bacterial metabolite indole as it enhanced the promotor activity of *ramA* [42]. Bailey *et al* demonstrated that phenothiazides and serotonin-uptake inhibitors such as amitriptyline, induced *ramA* expression and were associated with a phenotype of efflux inhibition [6]. Chlorpromazine induced the expression of *ramA* in wild-type *Salmonella* and there was a concomitant decrease in the level of *acrB* transcript [6]. Lawler *et al* further demonstrated that exposure of *Salmonella* to several biocides, and certain antibiotics such as chloramphenicol, ciprofloxacin, rifampicin, cloxacillin and cefamandole also increased *ramA* expression [24].

Interestingly, not all antibiotics which are exported via the AcrAB-TolC efflux pump directly increase *ramA* expression, and over-expression of *ramA* is greatest when part of the AcrAB-TolC pump is inactivated leading to lack of the tripartite pump [24]. Seventeen antibiotics known to be exported via the AcrAB-TolC efflux pump were tested by Lawler *et al*, and only five significantly increased expression of *ramA* [24]. This may suggest, that *ramA* expression is not always triggered by direct action of specific chemical compounds to RamR, but also that the up-regulation of *ramA* may occur in response to other stimuli [24].
Environmental factors involved in regulation of \(acrAB\)-\(tolC\)

The induction of \(acrAB\)-\(tolC\) in the presence of environmental factors such as bile, fatty acids or cationic peptides, is clinically relevant due to Enterobacteriaceae encountering these compounds inside the gastrointestinal tract of the host. In \(E. coli\) binding of bile, fatty acids and cationic peptides to Rob produces conformational changes and so it induces \(acrAB\) [58, 70]. In \(Salmonella\) spp. induction of \(acrAB\) by bile is dependent on RamA; this occurs by bile inhibiting the binding of RamR to the promoter region of \(ramA\) [9]. Induction of \(acrAB\), in both \(E. coli\) and \(Salmonella\) spp., can also occur in situations where the cell is under oxidative stress. This is SoxRS dependent and requires the oxidation of the iron–sulphur clusters in SoxR, which in turn induces production of SoxS resulting in the induction of \(acrB\) [73]. Induction of \(acrAB\) can also be triggered by salicylate, a phenolic phytohormone implicated in plant defence against bacterial pathogens. Salicylate binds to MarR, causing conformational changes which leads to disassociation of MarR from the \(marRAB\) promoter. As a result, expression of \(marA\) is de-repressed, which induces expression of \(acrAB\) [65].

Other factors involved in regulation of \(acrAB\)-\(tolC\) (post-transcription and post-translation)

The Lon protease is an ATP-dependent protease belonging to the AAA (ATPases associated with a variety of cellular activities) super-family and can be found in both \(Salmonella\) and \(E. coli\) [41, 52]. In \(E. coli\), Lon has been shown to play a role in regulation of MarA and SoxS at a post-translational level by proteolytic degradation (Fig. 1) [18]. Levy et al., demonstrated that mutations in Lon leads to
increased AcrAB efflux and MDR as MarA is not degraded [41]. The impact upon MDR was greatest when combined with a *marR* mutation [41].

Lon performs similar functions within *Salmonella* as *E. coli*, with additional roles in *Salmonella* Pathogenicity Island (SPI)-1 gene expression and heme biosynthesis [66, 69]. The Lon protease also proteolytically degrades RamA (Fig. 1) [52]. Lon recognises the N-terminal region of RamA, and by binding to this site can degrade the protein [52]. In this way levels of RamA can be re-set to basal levels when the protein is no longer required or there is no longer an inducing stimulus.

Ricci *et al.*, [51] recently showed that the global regulator Carbon Storage Regulator A (CsrA) is involved in the regulation of AcrAB (Fig. 1). CsrA is an RNA binding protein that acts as a global regulator of diverse genes. CsrA binds directly to the 5' end of the *acrAB* transcript. This in turn alters RNA secondary structure preventing the formation of a repressive RNA structure that impedes binding of the ribosome, thus allowing for more efficient translation of the AcrAB proteins [51].

There are subtle differences between regulation of AcrAB-TolC in different species of Enterobacteriaceae

A range of local and global regulators with complex interactions tightly regulates the AcrAB-TolC pump. In *E. coli*, MarA, Sox and Rob have such a tightly woven mechanism of interaction that their target site is termed the *mar/sox/rob* regulon. Each regulator responds to environmental signals as well as each other allowing precise control of the AcrAB-TolC efflux pump and other target genes.

In *Salmonella*, RamA is the predominant regulator, but MarA, SoxS and Rob also influence AcrAB-TolC and cause over-expression and MDR. Mutations causing
over expression of SoxS lead to increased resistance to fluoroquinolones, chloramphenicol and tetracycline, but confers less MDR when compared to mutations in ramA or ramR (Table 1) [75]. Mutations in rob induces mgtA transcription which is involved in Mg$^{2+}$ transport; this can confer tolerance to cyclohexane [7].

In addition to Mar, Sox, Rob, there are other factors in some other Enterobacteriaceae species not found in *E. coli* or *Salmonella*. For instance, in *Klebsiella pneumoniae* there is romA and rarA, which are further regulators of the AcrAB pump. RomA is a second transcription factor that can act independently of RamA. It is in the romA-ramA locus regulated by RamR [59]. A further factor in *K. pneumoniae*, RarA, can also be induced independently of the other regulators and when over-expressed can also cause increased expression of acrAB and MDR [67].

Concluding remarks

RND MDR efflux pumps such as AcrAB-TolC play a vital role in Gram-negative bacteria, and consequently are under complex regulation. This allows for temporary activation of pumps under certain conditions and a rapid return to basal states. This implies that over-expression is not beneficial to the bacterium; possibly because of high-energy requirements. Constitutive de-repression conferring MDR to clinically useful drugs is due to evolutionary pressure of drug exposure. In order to fully understand the mechanisms involved it is essential that the full repertoire of regulatory factors, including those that are species specific, are identified. This knowledge will help identify those factors that could be targets for drug discovery and which could be inhibited as a mechanism to down-regulate MDR efflux and sensitise bacteria to antibiotics susceptible to efflux.
References

15 Griffith KL, Shah IM, Wolf RE, Jr. Proteolytic degradation of *Escherichia coli*
16 transcription activators SoxS and MarA as the mechanism for reversing the induction
17 of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol
20 MtrD protein of *Neisseria gonorrhoeae* is a member of the
21 resistance/nodulation/division protein family constituting part of an efflux system.
22 Microbiology 1997;143 (Pt 7):2117-25.
23 Hidalgo E, Leautaud V, Demple B. The redox-regulated SoxR protein acts from
24 a single DNA site as a repressor and an allosteric activator. EMBO J 1998;17:2629-
25 36.
26 Hirakawa H, Takumi-Kobayashi A, Theisen U, Hirata T, Nishino K, Yamaguchi
27 A. AcrS/EnvR represses expression of the *acrAB* multidrug efflux genes in
30 transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA
31 polymerase alpha subunit in a subset of *Escherichia coli* superoxide-inducible genes.
33 Kwon HJ, Bennik MH, Demple B, Ellenberger T. Crystal structure of the
34 *Escherichia coli* Rob transcription factor in complex with DNA. Nat Struct Biol
36 Lawler AJ, Ricci V, Busby SJ, Piddock LJ. Genetic inactivation of *acrAB* or
37 inhibition of efflux induces expression of *ramA*. J Antimicrob Chemother
39 Li XZ, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic resistance of
40 *Pseudomonas aeruginosa*: resistance to tetracycline, chloramphenicol, and
42 Li XZ, Ma D, Livermore DM, Nikaido H. Role of efflux pump(s) in intrinsic
43 resistance of *Pseudomonas aeruginosa*: active efflux as a contributing factor to beta-
45 Li XZ, Plesiat P, Nikaido H. The challenge of efflux-mediated antibiotic
47 Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in
49 Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays
50 a modulating role in the regulation of *acrAB* genes of *Escherichia coli* by global
52 Magnet S, Courvalin P, Lambert T. Resistance-nodulation-division-type
53 efflux pump involved in aminoglycoside resistance in *Acinetobacter baumannii* strain
55 Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between
56 activator and RNA polymerase as the basis for transcriptional activation by MarA and
58 Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox
59 function in transcriptional activation of *mar*/*sox*/*rob* regulon promoters in *Escherichia coli*:
60 sequence, orientation and spatial relationship to the core promoter. Mol
62 Martin RG, Jair KW, Wolf RE, Jr., Rosner JL. Autoactivation of the *marRAB*
63 multiple antibiotic resistance operon by the MarA transcriptional activator in

Legend to Figures

Figure 1. Transcriptional regulation of the *acrAB* (red and blue) and *tolC* (yellow) regulon by *E. coli marRAB* (green) and *S. enterica ramRA* (purple) genes. Post transcriptional regulation of *acrAB* by CsrA (grey) and post translational regulation of RamA by Lon protease (orange).

Figure 2: Structure and binding site of MarA: A) MarA (purple) binds the major grooves of DNA (black) by its DNA binding domain (generated via Rasmol by using PDB 1B10). B) The 20 bp consensus sequence bound by MarA, which is highly degenerate and asymmetric. Adapted from Rhee et al., 1998 [24]. Similar binding may be observed in the case where RamA binds DNA.