Cinacalcet for symptomatic hypercalcemia caused by AP2S1 mutations

Howles, Sarah A.; Hannan, Fadil M.; Babinsky, Valerie N.; Rogers, Angela; Gorvin, Caroline M.; Rust, Nigel; Richardson, Tristan; McKenna, Malachi J.; Nesbit, M. Andrew; Thakker, Rajesh V.

DOI: 10.1056/NEJMc1511646

License: None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Published in the New England Journal of Medicine on 07/04/2016
Copyright © 2016 Massachusetts Medical Society. All rights reserved.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
TO THE EDITOR: Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is caused by calcium-sensing receptor (CASR) mutations, and type 2 is caused by guanine nucleotide–binding protein (G-protein) subunit α_{11} (GNA11) mutations. Type 3, which is the most severe variant clinically, is caused by adaptor-related protein complex 2 (AP2), sigma 1 subunit (AP2S1) heterozygous mutations. AP2S1 mutations cause Arg15Cys, Arg15His, and Arg15Leu substitutions, and the mutant AP2-sigma proteins result in impaired calcium-sensing receptor–mediated signal transduction.

There is currently no effective therapy for familial hypocalciuric hypercalcemia type 3. We therefore evaluated the usefulness of cinacalcet, a licensed calcium-sensing receptor allosteric activator, in correcting signaling defects due to AP2S1 mutations and in ameliorating symptomatic hypercalcemia.

We evaluated three previously unreported cases of familial hypocalciuric hypercalcemia type 3. Each of the three probands had an AP2S1 mutation causing an Arg15Cys, Arg15His, or Arg15Leu substitution (Fig. 1A). The probands included a 34-year-old woman who had a 12-year history of hypercalcemia. She presented with fatigue, headaches, and persistent generalized aches that did not resolve after parathyroidectomy. In addition, a 22-year-old man presented with hypercalcemia, fatigue, and generalized rib pain, and a 52-year-old woman who had an approximately 20-year history of hypercalcemia presented with headaches, abdominal pain, vomiting, fatigue, and musculoskeletal pain that did not resolve after pamidronate infusion or parathyroidectomy (Fig. 1A and 1B).

The in vitro effects of cinacalcet on the signaling responses of cells expressing the calcium-sensing receptor and familial hypocalciuric hypercalcemia type 3–associated AP2-sigma mutants were assessed by measurement of intracellular calcium concentrations and of the activity of the mitogen-activated protein kinase (MAPK)–serum response element reporter in response to alterations in extracellular calcium (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). Cinacalcet (at a concentration of 10 nM) corrected the abnormal intracellular calcium signaling and MAPK responses to extracellular calcium in cells expressing the Cys15, His15, or Leu15 AP2-sigma mutants (Fig. S1 and S2 in the Supplementary Appendix).

Oral cinacalcet (at a dose of 30 to 60 mg daily) was administered to the three probands with familial hypocalciuric hypercalcemia type 3 over a 33- to 45-month period. This treatment led to more than 20% reductions in serum calcium concentrations (Fig. 1B) and abatement of symptoms. Cinacalcet also increased serum phosphate concentrations and reduced serum parathyroid hormone concentrations, although these values remained within the normal range (Fig. 1B).

Adverse effects such as nausea, vomiting, and hypocalcemia did not develop in any of the probands. However, long-term surveillance will be required to assess safety and monitor for hypocalcemia.

Our results show that cinacalcet-mediated allosteric modulation of the calcium-sensing receptor can correct the loss of function of AP2S1 mutations. In addition, in the short term, cinacalcet can reduce the symptoms of familial hypocalciuric hypercalcemia type 3 associated with all three AP2S1 mutations.

Figure 1 (facing page). Cinacalcet for Hypercalcemia Associated with AP2S1 Mutations.
Panel A shows the clinical and biochemical findings at presentation in three unrelated probands with familial hypocalciuric hypercalcemia who had heterozygous adaptor-related protein complex 2 (AP2), sigma 1 subunit (AP2S1) mutations resulting in Arg15Cys, Arg15His, or Arg15Leu substitutions in the AP2-sigma mutant proteins. Reference ranges are from Nesbit et al. Panel B shows the effect of cinacalcet on serum concentrations of calcium, phosphate, and parathyroid hormone in the three probands. Vertical dashed lines indicate initiation of cinacalcet (CIN) therapy, pamidronate (PMD) infusion, or parathyroidectomy (PTX). Shaded gray areas indicate reference ranges.
A

<table>
<thead>
<tr>
<th>Variable</th>
<th>Reference Range</th>
<th>Proband 1</th>
<th>Proband 2</th>
<th>Proband 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td>Female</td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Age at presentation — yr</td>
<td></td>
<td>22</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>Family history of hypercalcemia</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Associated clinical features</td>
<td></td>
<td>Fatigue, headaches,</td>
<td>Fatigue, rib pain</td>
<td>Fatigue, headaches, vomiting,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>generalized musculoskeletal pain</td>
<td></td>
<td>abdominal and musculoskeletal</td>
</tr>
<tr>
<td>Serum measurements</td>
<td></td>
<td></td>
<td></td>
<td>pain</td>
</tr>
<tr>
<td>Calcium — mmol/liter</td>
<td></td>
<td>1.10–1.30</td>
<td>1.72</td>
<td>1.53</td>
</tr>
<tr>
<td>Ionized</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Albumin-adjusted</td>
<td></td>
<td>2.10–2.60</td>
<td>—</td>
<td>3.07</td>
</tr>
<tr>
<td>Phosphate — mmol/liter</td>
<td></td>
<td>0.70–1.40</td>
<td>1.00</td>
<td>0.80</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td></td>
<td></td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Total — U/liter</td>
<td></td>
<td>30–130</td>
<td>55.0</td>
<td>81.0</td>
</tr>
<tr>
<td>Bone-specific — µg/liter</td>
<td></td>
<td>—</td>
<td>20.6</td>
<td>—</td>
</tr>
<tr>
<td>Magnesium — mmol/liter</td>
<td></td>
<td>0.70–1.40</td>
<td>—</td>
<td>0.98</td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>Base units</td>
<td>10–65 ng/liter</td>
<td>28.5</td>
<td>65.1</td>
</tr>
<tr>
<td></td>
<td>SI units</td>
<td>1.3–7.6 pmol/liter</td>
<td>—</td>
<td>6.2</td>
</tr>
<tr>
<td>Urinary calcium-to-creatinine clearance ratio</td>
<td>>0.02</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>AP2S1 mutation</td>
<td></td>
<td>Arg15Cys</td>
<td>Arg15His</td>
<td>Arg15Leu</td>
</tr>
</tbody>
</table>

B

Proband 1 (Arg15Cys)

- **Serum Ionized Calcium (mmol/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4

- **Serum Phosphate (mmol/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3, 0.1

- **Serum Parathyroid Hormone (ng/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 80, 60, 40, 20, 0, -20

Proband 2 (Arg15His)

- **Serum Ionized Calcium (mmol/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4

- **Serum Phosphate (mmol/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3, 0.1

- **Serum Parathyroid Hormone (ng/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 80, 60, 40, 20, 0, -20

Proband 3 (Arg15Leu)

- **Serum Ionized Calcium (mmol/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4

- **Serum Phosphate (mmol/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 1.5, 1.3, 1.1, 0.9, 0.7, 0.5, 0.3, 0.1

- **Serum Parathyroid Hormone (ng/liter)**
 - Months since Presentation:
 - 0, 5, 10, 15, 20, 25, 30, 35
 - Values:
 - 80, 60, 40, 20, 0, -20

The New England Journal of Medicine

Downloaded from nejm.org at UNIVERSITY OF BIRMINGHAM on January 31, 2018. For personal use only. No other uses without permission.

Copyright © 2016 Massachusetts Medical Society. All rights reserved.
Sarah A. Howles, D.Phil.
Fadil M. Hannan, D.Phil.
Valerie N. Babinsky, D.Phil.
Angela Rogers, M.B., B.S.
Caroline M. Gorvin, D.Phil.
Nigel Rust, B.Sc.
University of Oxford
Oxford, United Kingdom

Tristan Richardson, M.B., B.S.
Royal Bournemouth Hospital
Bournemouth, United Kingdom

Malachi J. McKenna, M.D.
St. Vincent’s University Hospital
Dublin, Ireland

M. Andrew Nesbit, Ph.D.
Rajesh V. Thakker, M.D.
University of Oxford
Oxford, United Kingdom
rajesh.thakker@ndm.ox.ac.uk

Drs. Howles and Hannan contributed equally to this letter.
A complete list of authors is available with the full text of this letter at NEJM.org.

Supported by program grants (G9825289 and G1000467, to Drs. Hannan, Gorvin, Nesbit, and Thakker) from the United Kingdom Medical Research Council, a grant (to Drs. Nesbit and Thakker) from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre Programme, a grant (FP7-264663, to Dr. Babinsky) from the European Commission Seventh Framework Program, Wellcome Trust clinical training fellowships (to Drs. Howles and Rogers), a Wellcome Trust Investigator Award (to Dr. Thakker), and an NIHR Senior Investigator Award (to Dr. Thakker).

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

DOI: 10.1056/NEJMc1511646

Correspondence Copyright © 2015 Massachusetts Medical Society.