Tumor PIK3CA genotype and prognosis in early-stage breast cancer:

Zardavas, Dimitrios; Te Marvelde, Luc; Milne, Roger L.; Fumagalli, Debora; Fountzilas, George; Kotoula, Vassiliki; Razis, Evangelia; Papaxoinis, George; Joensuu, Heikki; Moynahan, Mary Ellen; Hennessy, Bryan T.; Bieche, Ivan; Saal, Lao H.; Stal, Olle; Iacopetta, Barry; Jensen, Jeanette Dupont; O'Toole, Sandra; Lopez-Knowles, Elena; Barbaraeschi, Mattia; Noguchi, Shinzaburo

DOI: 10.1200/JCO.2017.74.8301

License: Other (please specify with Rights Statement)

Citation for published version (Harvard):

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2018 by American Society of Clinical Oncology

Published in Journal of Clinical Oncology on 01/04/2018
DOI: 10.1200/JCO.2017.74.8301

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 15. Sep. 2023
Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data

ABSTRACT

Purpose
Phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations are frequently observed in primary breast cancer. We evaluated their prognostic relevance by performing a pooled analysis of individual patient data.

Patients and Methods
Associations between PIK3CA status and clinicopathologic characteristics were tested by applying Cox regression models adjusted for age, tumor size, nodes, grade, estrogen receptor (ER) status, human epidermal growth factor receptor 2 (HER2) status, treatment, and study. Invasive disease-free survival (IDFS) was the primary end point; distant disease-free survival (DDFS) and overall survival (OS) were also assessed, overall and by breast cancer subtypes.

Results
Data from 10,319 patients from 19 studies were included (median OS follow-up, 6.9 years); 1,787 patients (17%) received chemotherapy, 4,036 (39%) received endocrine monotherapy, 3,583 (35%) received both, and 913 (9%) received none or their treatment was unknown. PIK3CA mutations occurred in 32% of patients, with significant associations with ER positivity, increasing age, lower grade, and smaller size (all \(P < .001\)). Prevalence of PIK3CA mutations was 18%, 22%, and 37% in the ER-negative/HER2-negative, HER2-positive, and ER-positive/HER2-negative subtypes, respectively. In univariable analysis, PIK3CA mutations were associated with better IDFS (HR, 0.77; 95% CI, 0.71 to 0.84; \(P < .001\)), with evidence for a stronger effect in the first years of follow-up (0 to 5 years: HR, 0.73; 95% CI, 0.66 to 0.81; \(P < .001\); 5 to 10 years: HR, 0.82; 95% CI, 0.68 to 0.99; \(P = .037\)); >10 years: (HR, 1.15; 95% CI, 0.84 to 1.58; \(P = .38\); \(P\) heterogeneity = .02). In multivariable analysis, PIK3CA genotype remained significant for improved IDFS (\(P = .043\)), but not for the DDFS and OS end points.

Conclusion
In this large pooled analysis, PIK3CA mutations were significantly associated with a better IDFS, DDFS, and OS, but had a lesser prognostic effect after adjustment for other prognostic factors.

INTRODUCTION

Phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) mutations affect the gene corresponding to the alpha isoform of the catalytic subunit (p110) of the class IA kinase and has been extensively studied for its role in human carcinogenesis. These mutations have been reported in a variety of human cancers, including colorectal, endometrial, and ovarian cancer, among others. In primary breast cancer (BC), PIK3CA mutations are frequent, with the highest frequency among the hormone receptor–positive tumors. Approximately 80% of mutations cluster in hot spots located within the helical domain and the kinase domain. The functional consequences of these hot-spot mutations have been studied extensively at the preclinical level, indicating that they are potent mediators of oncogenesis through AKT activation and evasion of apoptosis, as well as induction of an invasive and migratory phenotype. In addition, PIK3CA mutations have been associated at
the preclinical and clinical level with resistance to paclitaxel, trastuzumab, and endocrine treatment.9,12-15

On the basis of the high frequency of PIK3CA mutations in BC, as well as the preclinical data supporting their multifaced oncogenic functions, several studies have assessed their clinical relevance for patients with early-stage disease.16 In particular, their prognostic relevance has been evaluated with conflicting results.17 Of note, many of these studies were conducted among heterogeneous patient populations in terms of BC subtypes and treatments received, with some notable exceptions.17,18 Therefore, in this study, we pooled individual patient data from these previous studies of patients with early-stage BC to robustly evaluate the prognostic associations of these commonly occurring aberrations (and hence their potential relevance for clinical decision making) overall by mutation gene location as well as interactions by BC subtype.

Types of Studies and Search Strategies
Potentially eligible studies were retrieved through an electronic search on PubMed/MEDLINE using the MeSH terms “breast neoplasm” and “PIK3CA protein, human.” The literature search was conducted independently by two investigators (D.Z. and D.F.) in January 2013. Identified studies were eligible for this pooled analysis of individual patient data if they met the following requirements: (1) studies conducted in patients with early-stage BC assessing the PIK3CA genotype in primary breast tumor, (2) studies comparing clinical outcomes in association with the PIK3CA genotype, and (3) studies published in the English language.

There were no restrictions for inclusion in our study in terms of number of patients included, duration of follow-up, prospective versus retrospective nature of the study, patients’ age, menopausal status, BC subtype, or treatment modalities applied. In addition, no restrictions were applied in terms of PIK3CA mutation status assessment method. However, studies conducted in the neoadjuvant setting associating the PIK3CA genotype with pathologic complete response rate without reporting results of further clinical outcome were excluded from this pooled analysis. Cross-referencing from relevant studies was performed to confirm retrieval of all potentially eligible studies. In terms of study eligibility, final decisions were taken on consensus between the two investigators who performed the research.

The investigators of the eligible trials were contacted and requested to provide individual patient data on (1) baseline characteristics, including patients’ demographics and clinicopathologic characteristics; (2) PIK3CA genotype and method used; (3) type of (neo)-adjuvant treatment received; (4) clinical outcome, including type and time of event that occurred; and (5) survival status. Individual patient data were used for all analyses, rather than combining results as in the usual types of meta-analyses (Data Supplement; Fig 1).17-51

Statistical Analysis
The primary objective of this study was to assess the potential impact of PIK3CA mutations on invasive disease-free survival (IDFS), and secondary objectives were to assess the prognostic impact in terms of distant disease-free survival (DDFS) and overall survival (OS).

IDFS was defined as the time from diagnosis until local, regional, or distant recurrence; contralateral BC; second primary malignancy; or death.32 IDFS analysis time was censored at the last date the patient was known to be alive and recurrence free. DDFS included only distant recurrence and death as events.32 DDFS analysis time was censored at the date last known to be alive and distant recurrence free. OS included only death as the event; patients were censored at the date last known to be alive.

Differences in patient and tumor characteristics by PIK3CA mutation status were assessed using χ² tests for categorical variables, the Cochran-Armitage trend test for ordinal variables, and the Wilcoxon rank sum test for continuous variables. Cox proportional hazard models were used to assess associations between PIK3CA mutation status and IDFS, DDFS, and OS. Hazard ratios (HRs) and 95% CIs were estimated from univariable and multivariable models. Multivariable models included age (fitted as cubic splines because the effect of age on prognosis is U-shaped), stratified on tumor size (T1/T2/T3/T4), positive nodes (yes/no), local histologic grade (1 to 2/3 to 4), estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) status (positive/negative), and treatment (chemotherapy/endocrine therapy/both). Variables for which the proportional hazards assumption was violated were included as strata rather than covariates. The global test of proportional hazards was not violated for any of the results presented below, unless stated otherwise. We used time intervals defined by the Early Breast Cancer Trialists’ Collaborative Group to subdivide the time scale (0 to 5, 5 to 10, and > 10 years).33 Exploratory objectives were to explore interactions between PIK3CA genotype and clinical outcome according to BC subtype (defined using ER and HER2 status), age, and the possible impact of PIK3CA genotypes on the timing of recurrence (early vs late). Median follow-up time was calculated using the reverse Kaplan-Meier method. All data analyses were conducted in R, version 3.1.2.

RESULTS
Data on 10,319 patients with known PIK3CA genotype originating from 19 studies were available (Fig 1; Data

Fig 1. PRISMA study flow chart.
Table 1. Summary of Patient and Disease Characteristics According to PIK3CA Mutation Type

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Wild Type</th>
<th>Mutant</th>
<th>P</th>
<th>All Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (continuous; years)</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>58.4 (12.5)</td>
<td>61.0 (11.6)</td>
<td>59.2 (12.3)</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>59 (19-95)</td>
<td>61 (21-96)</td>
<td>59.7 (19-96)</td>
<td></td>
</tr>
<tr>
<td>Interquartile range</td>
<td>50-67.3</td>
<td>53-69.1</td>
<td>51-68</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>27</td>
<td>12</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Age (categorical; years)</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>≤ 50</td>
<td>1,789 (75.1)</td>
<td>594 (24.9)</td>
<td>2,383 (23.2)</td>
<td></td>
</tr>
<tr>
<td>> 50</td>
<td>5,222 (66.1)</td>
<td>2,675 (33.9)</td>
<td>7,897 (76.8)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>27</td>
<td>12</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Menopausal status</td>
<td></td>
<td></td>
<td>< .001*</td>
<td></td>
</tr>
<tr>
<td>Premenopausal</td>
<td>1,174 (76.5)</td>
<td>361 (23.5)</td>
<td>1,535 (19.0)</td>
<td></td>
</tr>
<tr>
<td>Perimenopausal</td>
<td>7 (63.6)</td>
<td>4 (36.4)</td>
<td>11 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>4,230 (65.0)</td>
<td>2,282 (35.0)</td>
<td>6,512 (80.8)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1,627</td>
<td>634</td>
<td>2,261</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>Ductal</td>
<td>4,727 (69.1)</td>
<td>2,111 (30.9)</td>
<td>6,838 (82.2)</td>
<td></td>
</tr>
<tr>
<td>Ductal-lobular</td>
<td>137 (57.3)</td>
<td>102 (42.7)</td>
<td>239 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Lobular</td>
<td>585 (61.5)</td>
<td>366 (38.5)</td>
<td>951 (11.4)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>244 (82.7)</td>
<td>51 (17.3)</td>
<td>295 (3.5)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1,345</td>
<td>651</td>
<td>1,996</td>
<td></td>
</tr>
<tr>
<td>Local histologic grade (ordered)</td>
<td></td>
<td></td>
<td>< .0011</td>
<td></td>
</tr>
<tr>
<td>Poorly differentiated/undifferentiated</td>
<td>2,752 (76.2)</td>
<td>861 (23.8)</td>
<td>3,613 (41.1)</td>
<td></td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>2,722 (64.0)</td>
<td>1,528 (36.0)</td>
<td>4,250 (48.3)</td>
<td></td>
</tr>
<tr>
<td>Well differentiated</td>
<td>487 (62.3)</td>
<td>445 (37.7)</td>
<td>932 (10.6)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1,077</td>
<td>447</td>
<td>1,524</td>
<td></td>
</tr>
<tr>
<td>Central histologic grade (ordered)</td>
<td></td>
<td></td>
<td>.001†</td>
<td></td>
</tr>
<tr>
<td>Poorly differentiated/undifferentiated</td>
<td>128 (75.7)</td>
<td>41 (24.3)</td>
<td>169 (47.1)</td>
<td></td>
</tr>
<tr>
<td>Moderately differentiated</td>
<td>108 (69.7)</td>
<td>47 (30.3)</td>
<td>155 (43.2)</td>
<td></td>
</tr>
<tr>
<td>Well differentiated</td>
<td>14 (40.0)</td>
<td>21 (60.0)</td>
<td>35 (9.7)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>6,788</td>
<td>3,172</td>
<td>9,960</td>
<td></td>
</tr>
<tr>
<td>ER status</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1,348 (81.7)</td>
<td>301 (18.3)</td>
<td>1,649 (16.1)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>5,627 (65.5)</td>
<td>2,959 (34.5)</td>
<td>8,586 (83.9)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>63</td>
<td>21</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>PR status</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>2,329 (76.0)</td>
<td>736 (24.0)</td>
<td>3,065 (33.2)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>2,970 (64.4)</td>
<td>2,196 (35.6)</td>
<td>6,166 (66.8)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>739</td>
<td>349</td>
<td>1,088</td>
<td></td>
</tr>
<tr>
<td>HER2 status</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>5,120 (65.9)</td>
<td>2,648 (34.1)</td>
<td>7,768 (79.7)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>1,540 (77.7)</td>
<td>441 (22.3)</td>
<td>1,981 (20.3)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>378</td>
<td>192</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>Subtype</td>
<td></td>
<td></td>
<td>< .001</td>
<td></td>
</tr>
<tr>
<td>HER2 negative/ER negative</td>
<td>790 (82.5)</td>
<td>167 (17.5)</td>
<td>957 (9.8)</td>
<td></td>
</tr>
<tr>
<td>HER2 negative/ER positive</td>
<td>4,313 (63.5)</td>
<td>2,475 (36.5)</td>
<td>6,788 (69.8)</td>
<td></td>
</tr>
<tr>
<td>HER2 positive</td>
<td>1,540 (77.7)</td>
<td>441 (22.3)</td>
<td>1,981 (20.4)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>395</td>
<td>198</td>
<td>593</td>
<td></td>
</tr>
<tr>
<td>Tumor size (mm)</td>
<td></td>
<td></td>
<td>.001</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>26.3 (16.1)</td>
<td>25.0 (14.3)</td>
<td>25.90 (15.5)</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>23 (0-250)</td>
<td>22 (0-180)</td>
<td>22 (0-250)</td>
<td></td>
</tr>
<tr>
<td>Interquartile range</td>
<td>16-30</td>
<td>15-30</td>
<td>16-30</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>622 (71.6%)</td>
<td>247 (28.4%)</td>
<td>869</td>
<td></td>
</tr>
<tr>
<td>Tumor size (ordered)</td>
<td></td>
<td></td>
<td>< .001†</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>1 (16.7)</td>
<td>5 (83.3)</td>
<td>6 (0.1)</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>2,861 (65.4)</td>
<td>1,511 (34.6)</td>
<td>4,372 (43.2)</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>3,510 (69.8)</td>
<td>1,516 (30.2)</td>
<td>5,026 (49.7)</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>423 (74.3)</td>
<td>146 (25.7)</td>
<td>569 (6.6)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>92 (63.0)</td>
<td>54 (37.0)</td>
<td>146 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>151</td>
<td>49</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Data are represented as No. (%) unless otherwise noted.
Abbreviations: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor; SD, standard deviation.
*Test included premenopausal and postmenopausal only.
†Test for trend.
Table 2. Association of PIK3CA Mutations With IDFS, DDFS, and OS

<table>
<thead>
<tr>
<th></th>
<th>Univariable</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IDFS</td>
<td>DDFS</td>
<td>OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PIK3CA Hazard Ratio (95% CI) (MT relative to WT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All data</td>
<td>0.77 (0.71 to 0.84); P < .001* (n = 9,863; 2,433 events)</td>
<td>0.79 (0.72 to 0.86); P < .001* (n = 9,697; 2,139 events)</td>
<td>0.90 (0.82 to 0.99); P = .027* (n = 9,578; 2,094 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 years after diagnosis</td>
<td>0.73 (0.68 to 0.81); P < .001 (n = 9,857; 1,749 events)</td>
<td>0.74 (0.66 to 0.83); P < .001 (n = 9,695; 1,517 events)</td>
<td>0.89 (0.79 to 1.00); P = .057 (n = 9,576; 1,285 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10 years after diagnosis</td>
<td>0.82 (0.68 to 0.99); P = .039 (n = 6,797; 520 events)</td>
<td>0.82 (0.67 to 1.00); P = .046 (n = 6,881; 471 events)</td>
<td>0.93 (0.79 to 1.10); P = .393 (n = 7,010; 644 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 10 years after diagnosis</td>
<td>1.15 (0.84 to 1.58); P = .380 (n = 1,045; 160 events)</td>
<td>1.18 (0.85 to 1.63); P = .323 (n = 1,032; events = 151)</td>
<td>0.87 (0.62 to 1.20); P = .383 (n = 927; 165 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multivariable†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IDFS</td>
<td>DDFS</td>
<td>OS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All data</td>
<td>0.88 (0.78 to 1.00); P = .043 (n = 6,120; 1,417 events)</td>
<td>0.88 (0.77 to 1.00); P = .054 (n = 5,919; 1,245 events)</td>
<td>0.98 (0.86 to 1.12); P = .799 (n = 5,730; 1,184 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-5 years after diagnosis</td>
<td>0.87 (0.75 to 1.00); P = .048 (n = 6,120; 1,020 events)</td>
<td>0.85 (0.73 to 0.99); P = .042 (n = 5,919; 891 events)</td>
<td>0.99 (0.83 to 1.16); P = .869 (n = 5,730; 718 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-10 years after diagnosis</td>
<td>0.88 (0.68 to 1.13); P = .324 (n = 4,300; 307 events)</td>
<td>0.92 (0.70 to 1.21); P = .546 (n = 4,328; 268 events)</td>
<td>0.99 (0.79 to 1.24); P = .911 (n = 4,354; 384 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 10 years after diagnosis</td>
<td>1.10 (0.64 to 1.88); P = .740 (n = 691; 90 events)</td>
<td>1.04 (0.60 to 1.81); P = .886 (n = 684; 96 events)</td>
<td>0.91 (0.49 to 1.68); P = .764 (n = 585; 92 events)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: DDFS, distant disease-free survival; IDFS, invasive disease-free survival; MT, mutated; OS, overall survival; WT, wild type.
*Proportional hazard assumption violated (IDFS: P < .001; DDFS: P < .001; OS: P = .27).
†Adjusted for age (fitted as cubic spline) and stratified on tumor size (T1/T2/T3/T4), positive nodes (yes/no), local grade (poorly differentiated or undifferentiated/moderately differentiated/well differentiated), estrogen receptor (positive/negative), human epidermal growth factor receptor 2 (positive/negative), and treatment (chemotherapy/hormone therapy/both).
Overall, the median age at diagnosis was 60 years (range, 18 to 95), and the median follow-up time was 6.9 years (range, 2 days to 21.5 years); 1,787 patients (17%) received chemotherapy, 4,036 (39%) received endocrine treatment, 3,583 (35%) received both, and 895 (9%) received none or the treatment was unknown.
Associations Between PIK3CA Mutations With Clinicopathologic Variables

Summary results from the comparison of baseline characteristics and PIK3CA mutation status are listed in Table 1. PIK3CA mutations were identified in the tumors of 3,281 patients (32%); 1,705 (52%) of these were in the kinase domain and 1,263 (39%) were in the helical domain. PIK3CA mutations were more common in older patients, ER-positive tumors, and lower-grade and smaller tumors. The frequency of PIK3CA mutations also differed significantly by BC subtypes defined by combined ER and HER2 status (HER2-negative/ER-negative [also known as triple-negative breast cancer], 18%; HER2-negative/ER-positive [also known as luminal], 37%; HER2-positive, 22%; \(P < .001 \)).

Associations Between PIK3CA Mutations and Prognosis

In the univariable analysis, PIK3CA mutations were significantly associated with better IDFS (HR, 0.77; 95% CI, 0.71 to 0.84; \(P < .001 \); Table 2). Figure 2 shows the estimated HRs and 95% CIs for each of the studies individually and for all data combined for IDFS, DDFS, and OS. No significant heterogeneity was found.
between studies in the univariable effect of PIK3CA mutation status on IDFS (PIK3CA genotype by study interaction; \(P = .12 \)). For both DDFS and OS, significant heterogeneity was found between studies (\(P = .004 \) and \(P = .009 \), respectively). Evidence of departure from the proportional hazards assumption was observed (\(P < .001 \)), implying that the effect of PIK3CA genotype on IDFS changed over time. Patients with PIK3CA mutant tumors had better IDFS during the first 10 years after diagnosis (0 to 5 years: HR, 0.73; 95% CI, 0.66 to 0.81; \(P < .001 \); 5 to 10 years: HR, 0.82; 95% CI, 0.68 to 0.99; \(P = .037 \)) but not after 10 years (HR, 1.15; 95% CI, 0.84 to 1.58; \(P = .38 \); \(P \) heterogeneity = .02; Table 2; Fig 3).

There was similar evidence of a nonproportional hazard of relapse over time for DDFS (\(P < .001 \)), although not for OS (\(P = .27 \)). Of note, the nonproportionality was significant only when all BC subtypes were combined (Data Supplement).

After adjusting for age, tumor size, nodal status, local grade, ER status, HER2 status, and treatment, PIK3CA status remained significant for IDFS (HR, 0.88; 95% CI, 0.78 to 1.00; \(P = .043 \)) but not for DDFS (\(P = .054 \)) and OS (\(P = .8 \); Table 2).

The effects of PIK3CA genotype on the IDFS and DDFS by BC subtype can be found in the Data Supplement. Notably, there were no significant interactions observed between PIK3CA mutation status, BC subtype, and prognosis with the exception of HER2...
Disease and OS (IDFS: P = .16; DDFS: P = .39; OS: P = .04; Data Supplement) where PIK3CA mutations were associated with a worse OS. Mutation location (helical vs kinase domain) also did not seem to significantly affect prognosis (IDFS: P = .74; DDFS: P = .92; OS P = .65; Data Supplement). In an exploratory analysis, a significant interaction between PIK3CA status and continuous age at diagnosis was observed for IDFS and OS but not for DDFS (IDFS: P = .052; DDFS: P = .20; OS: P < .001; shown in Figure 4 using categorized age at 50 years) where younger patients with a mutation had better survival.

DISCUSSION

The potential prognostic relevance of PIK3CA mutations in early-stage BC has thus far been unclear. The larger data sets have reported PIK3CA mutations as a favorable aberration, associated with a better clinical outcome, seemingly somewhat at odds with the notion of PIK3CA being considered an oncogenic driver. Our study, pooling data from 19 cohorts reaching a total of 10,319 patients, confirms this finding in the univariable analyses. PIK3CA mutations were found to be associated with improved IDFS rates (HR, 0.77; P < .001) in the univariable analysis, but this effect was less strong in the multivariable model because of its association with favorable clinicopathologic characteristics, namely, older age, ER positivity, lower grade, and smaller tumor size. Overall, our data did not reveal a consistent difference in its prognostic effect according to BC subtype, with the exception of HER2-positive disease and the end point of OS.

Preclinical evidence indicates possible biologic differences between PIK3CA mutations affecting the helical or the kinase domain. In particular, mutations of the helical domain have been associated with a more aggressive phenotype. In our pooled analysis, including 1,263 and 1,705 patients with PIK3CA mutations in the helical and kinase domain, respectively, we found no significant differences in their prognostic impact, similar to studies previously reported.

Associations with ER positivity remain intriguing. Tikoo et al reported an increase in the luminal progenitor population in their PIK3CA knock-in mouse model, suggesting that PIK3CA mutation was important in BC initiation. This is supported by the observation that PIK3CA mutations exist at high frequency in DCIS. Loi et al reported decreased mTORC1 signaling as well as upregulation of ER-related genes at the gene expression level in PIK3CA mutant ER-positive primary BCs. These data suggest that PIK3CA mutations could drive oncogenesis through ER signaling. Alternatively, PIK3CA mutations have been associated with the induction of senescence in BC, with similar findings reported in other tumor histologies. Hence, despite being a known driver mutation, PIK3CA mutations seem to contribute to a favorable clinicopathologic phenotype and behave less aggressively than BCs with driver gene amplifications. These observations should be distinguished from reports that PI3K pathway activation per se is associated with endocrine therapy resistance.

Of note, we confirm a previous observation that the positive prognostic relevance of PIK3CA mutations is nonproportional, that is, the strongest effect is in the first 5 years and decreases over time. The explanation for this remains unclear. However, we note that the proportion of patients with over 10 years of follow-up is < 10% and critically does not exclude (lower bound of HR, 0.84) better IDFS; therefore, the departure from proportional hazards could be due to either a reduction in benefit over time or a loss of this effect, or bias in patients with longer follow-up. Taking into account the natural history of BC and the latency of the disease, with relapses occurring even after considerable time after the primary diagnosis, the median follow-up of patients in our pooled analysis (6.9 years) should be taken into consideration when interpreting the results. We also observed a significant interaction between age and PIK3CA mutation status. It would be valuable to further validate this finding in adjuvant endocrine studies of premenopausal women.

Our study has significant strengths, namely, that it is the largest to date performed in patients with early-stage BC using large data sets derived from prospective randomized clinical trials with the use of individual patient-level data. Of note, the size of this data set enabled us to assess the prognostic relevance of PIK3CA mutations across all subtypes of BC, and the use of prospective clinical trial data sets may overcome some biases inherent in retrospective institutional series. We acknowledge the limitations: (1) significant heterogeneity among data sets; (2) the treatments administered did not follow a set protocol; in particular, some of the patients with HER2-positive BC did not receive (neo)adjuvant trastuzumab-based treatment, and some of the treatments administered differed from current standards (Data Supplement); (3) only articles published in English were included; (4) only published studies were included (ie, possible bias toward positive results); and (5) heterogeneity in terms of methods of assessment of PIK3CA mutation status.

In summary, our results indicate that PIK3CA somatic mutations are associated with a significantly better clinical outcome in the univariable but to a lesser extent in the multivariable analysis in early-stage BC. Next-generation sequencing studies have reported that PIK3CA mutations often coexist with other genetic alterations. Integration of coexistent genetic alterations and, potentially, plasma analyses and other markers of PI3K pathway activation will better refine prognostic assessments of PIK3CA mutant early-stage BC patients.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Dimitrios Zardavas, Debora Fumagalli, Sherene Loi
Financial support: Sherene Loi
Administrative support: Christos Sotiriou, Sherene Loi
Provision of study materials or patients: George Papaxoinis, Heikki Joensuu, Olle Stal, Jeanette Dupont Jensen, Gizeh Perez-Tenorio, Christos Sotiriou, Sherene Loi

Downloaded from ascopubs.org by UNIVERSITY BIRMINGHAM on April 16, 2018 from 147.188.108.081
Copyright © 2018 American Society of Clinical Oncology. All rights reserved.
Collection and assembly of data: Dimitrios Zardavas, Luc te Marvelde, Debora Fumagalli, George Fountzilas, Vassiliki Kotoula, Evangelia Rais, George Papamichael, Mary Ellen Moynahan, Bryan T. Hennessy, Ivan Bieche, Lao H. Saal, Barry Iacopetta, Jeanette Dupont Jensen, Sandra O’Toole, Elena Lopez-Knowles, Mattia Barbaraschi, Enrique Lerma, Thomas Bachetel, Vicky Sabine, John M.S. Bartlett, Stefan Michiels, Sherene Loi

Data analysis and interpretation: Dimitrios Zardavas, Luc te Marvelde, Roger L. Milne, Debora Fumagalli, Heikki Joensuu, Mary Ellen Moynahan, Ivan Bieche, Lao H. Saal, Olle Stal, Barry Iacopetta, Sandra O’Toole, Shinzaburo Noguchi, Hatem A. Azim Jr, Thomas Bachetel, Qing Wang, Gizeh Perez-Tenorio, Cornelis J.H. can de Velde, Daniel W. Rea, John M.S. Bartlett, Christos Sotiriou, Stefan Michiels, Sherene Loi

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

REFERENCES

Affiliations

Dimitrios Zardavas and Debora Fumagalli, Breast International Group; Christos Sotiropou, Université Libre de Bruxelles, Brussels, Belgium; Luc te Marvelde and Roger L. Milne, Cancer Council; Roger L. Milne and Sherene Loi, University of Melbourne, Melbourne; Barry Iacopetta, University of Western Australia, Western Australia; Sandra O’Toole and Elena Lopez-Knowles, Garvan Institute of Medical Research, Darlinghurst, Australia; George Fountzilas and Vassiliki Kotoula, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki; Evangelia Razis, Hygeia Hospital; George Papaxoinis, Hipppokration Hospital, Athens, Greece; Heikki Joensuu, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Mary Ellen Moynahan, Memorial Sloan Kettering Cancer Center, New York, NY; Bryan T. Hennessy, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland; Ivan Bieche, Curie Institut, Paris; Thomas Bachelot, Centre de Recherche en Cancérologie de Lyon, Lyon; Stefan Michiels, Gustave Roussy and Inserm, Univ. Paris-Sud, Univ. Paris-Saclay, Villejuif, France; Lao H. Saal, Lund University, Lund; Olle Stal, Qing Wang, and Gizeh Perez-Tenorio, Linköping University, Linköping, Sweden; Jeanette Dupont Jensen, University of Southern Denmark, on behalf of the Danish Breast Cancer Cooperative Group, Odense, Denmark; Elena Lopez-Knowles, Royal Marsden NHS Trust and Institute of Cancer Research, London; Daniel W. Rea, University of Birmingham, Birmingham, United Kingdom; Mattia Barabaschi, Santa Chiara Hospital, Trento, Italy; Shinzaburo Noguchi, Osaka University, Osaka Japan; Hatem A. Azim Jr, American University of Beirut (AUB), Beirut, Lebanon; Enrique Lerma, Universidad Autonoma de Barcelona, Barcelona, Spain; Cornelis J.H. van de Velde, Leiden University Medical Center, Leiden, the Netherlands; Vicky Sabine, University of Guelph, Guelph; John M.S. Bartlett, Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

Support

S.L. is supported by the Cancer Council Victoria John Colebatch Fellowship; National Health and Medical Research Council of Australia; National Breast Cancer Foundation, Australia; and Breast Cancer Research Foundation, New York. C.S. is supported by the Fonds de la Recherche Scientifique and Breast Cancer Research Foundation, New York. J.M.S.B. is supported by the Ontario Institute for Cancer Research. Research at the Ontario Institute for Cancer Research is supported by the Government of Ontario. M.B. is supported by the Trentino Biomolecular Oncologic Network (Trebionet) project, founded by the Fondazione Cassa di Risparmio di Trento e Rovereto, Trento, Italy. L.H.S. is supported by the Swedish Research Council and the Swedish Cancer Society.

Cancer.Net Mobile App for Patients

Cancer.Net’s award-winning app is the mobile companion for patients to stay informed about cancer and to organize important personal data often needed for visits to physicians. It includes interactive tools to help patients get answers to important questions, track side effects, and manage medications. Patients using Spanish language—enabled devices can also access the tools and information in Spanish. Direct your patients to cancer.net/app to download the Cancer.Net mobile app.
Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Dimitrios Zardavas
No relationship to disclose

Luc te Marvelde
No relationship to disclose

Roger L. Milne
No relationship to disclose

Debora Fumagalli
No relationship to disclose

George Fountzilas
AstraZeneca
Consulting or Advisory Role: Pfizer, Sanofi, Roche

Vassiliki Kotoula
No relationship to disclose

Evangelia Razis
Roche, AstraZeneca, GlaxoSmithKline, Amgen, Novartis, Zeinco, Merck, Pfizer, Bristol-Myers Squibb
Consulting or Advisory Role: Roche, Amgen, AstraZeneca, Janssen-Cilag, Astellas Pharma, Novartis, Bristol-Myers Squibb, Merck, Pfizer, Zeinco
Research Funding: Sanofi, Roche/Genentech, Novartis, AstraZeneca, Celldex, Parexel International, Demo Pharmaceutical

Travel, Accommodations, Expenses: Genesis Pharmaceuticals, LEO Pharma, Pfizer, Roche, GlaxoSmithKline, Sanofi, Amgen, Bristol-Myers Squibb, Genekor, Eisai, Merck, Pierre Fabre, Novartis

George Papaxoinis
No relationship to disclose

Heikki Joensuu
Orion Pharma, Sartar Therapeutics, Faron Pharmaceuticals
Consulting or Advisory Role: Orion Pharma, AstraZeneca, Orion Pharma
Research Funding: Blueprint Medicines, Ariad Pharmaceuticals, Orion Pharma

Mary Ellen Moynahan
Novartis
Research Funding: Novartis (Inst)

Bryan T. Hennessy
No relationship to disclose

Ivan Bieche
No relationship to disclose

Lao H. Saal
SAGA Diagnostics
Consulting or Advisory Role: SAGA Diagnostics
Patents, Royalties, Other Intellectual Property: Patent filed for methods related to ultrasensitive quantification of nucleotide sequence variants

Olle Stal
No relationship to disclose

Barry Iacopetta
No relationship to disclose

Jeanette Dupont Jensen
No relationship to disclose

Sandra O’Toole
Australian Clinical Laboratories
Honorary: Astra Zeneca, Pfizer, Merck Serono

Elena Lopez-Knowles
No relationship to disclose

Mattia Barbareschi
No relationship to disclose

Shinzaburo Noguchi
AstraZeneca, Taiho Pharmaceutical, Chugai Pharma, Nippon Kayaku, Pfizer, Takeda, Daichi-Sankyo, Sysmex, Novartis
Consulting or Advisory Role: AstraZeneca, Taiho, Novartis
Research Funding: Chugai Pharma, Nippon Kayaku, Pfizer, Takeda, Daichi-Sankyo, Sysmex, Novartis, AstraZeneca

Patents, Royalties, Other Intellectual Property: Patent for Curebest 95GC-breast

Hatem A. Azim Jr
Innate Pharma
Honorary: GlaxoSmithKline, Novartis, Roche, Genentech
Speakers’ Bureau: GlaxoSmithKline
Research Funding: Amgen

Enrique Lerma
No relationship to disclose

Thomas Bachelot
Novartis
Consulting or Advisory Role: Roche, Novartis, AstraZeneca, Pfizer
Research Funding: Roche (Inst), Novartis (Inst), AstraZeneca (Inst)
Travel, Accommodations, Expenses: Roche, Novartis, AstraZeneca

Qing Wang
No relationship to disclose

Gizeh Perez-Tenorio
No relationship to disclose

Cornelis J.H. can de Velde
No relationship to disclose

Daniel W. Rea
No relationship to disclose

Vicky Sabine
No relationship to disclose

John M.S. Bartlett
Oncology Education
Consulting or Advisory Role: Insight Genetics, BioNTech, bioTheranostics
Research Funding: Thermo Fisher Scientific
Patents, Royalties, Other Intellectual Property: Five pending patents: methods and devices for predicting anthracycline treatment efficacy; systems, devices, and methods for constructing and using a biomarker; histone gene module predicts anthracyline benefit; 95-gene signature of residual risk after endocrine treatment; immune gene signature predicts anthracycline benefit (Inst)
Christos Sotiriou
Consulting or Advisory Role: Puma Biotechnology (Inst), Seattle Genetics (Inst), Ipsen (Inst)
Patents, Royalties, Other Intellectual Property: PI3K pathway gene signature granted by the European and US patent offices (Inst)

Stefan Michiels
Consulting or Advisory Role: IDDI, Hexal, Johnson & Johnson, Ipsen, Gentilce, Mabxience, Steba, Roche

Sherene Loi
Research Funding: Roche/Genentech (Inst), Pfizer (Inst), Novartis (Inst), Merck (Inst), Puma Biotechnology (Inst), Bristol-Myers Squibb (Inst)
Patents, Royalties, Other Intellectual Property: PI3K pathway gene signature granted by the European and US patent offices (Inst)