Mesenchymal stromal cell therapy for liver diseases
Alfaifi, Mohammed; Eom, Young Woo; Newsome, Philip N.; Baik, Soon Koo

DOI: 10.1016/j.jhep.2018.01.030
License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

Users may freely distribute the URL that is used to identify this publication.
Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Accepted Manuscript

Review

Mesenchymal stromal cell therapy for liver diseases

Mohammed Alfaifi, Young Woo Eom, Philip N. Newsome, Soon Koo Baik

PII: S0168-8278(18)30080-1
DOI: https://doi.org/10.1016/j.jhep.2018.01.030
Reference: JHEPAT 6851

To appear in: Journal of Hepatology

Received Date: 17 November 2017
Revised Date: 16 January 2018
Accepted Date: 30 January 2018

Please cite this article as: Alfaifi, M., Eom, Y.W., Newsome, P.N., Koo Baik, S., Mesenchymal stromal cell therapy for liver diseases, Journal of Hepatology (2018), doi: https://doi.org/10.1016/j.jhep.2018.01.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Mesenchymal stromal cell therapy for liver diseases

Mohammed Alfaifi1,2†, Young Woo Eom3,4†, Philip N. Newsome1,5,6∗, and Soon Koo Baik3,4∗

1 Centre for Liver Research, Institute of Immunology and Immunotherapy, University of Birmingham

2 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia

3 Cell Therapy and Tissue Engineering Center and 4Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea;

5 National Institute for Health Research Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham

6 Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham

† These authors contributed equally to this work.

* Corresponding authors. Address: Department of Internal Medicine, Yonsei Univ., Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Korea (S.K. Baik), or National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK (P.N. Newsome).

E-mail addresses: baiksk@yonsei.ac.kr (S.K. Baik), P.N.Newsome@bham.ac.uk (P.N.}
Keywords: Mesenchymal stromal cell; Liver disease; Enrichment; Priming; Genetic engineering

Electronic word count: 5504

Number of figures and tables: 3 and 4, respectively

Conflict of interest statement: The authors of this manuscript have no conflicts of interest to declare.

Financial support statement: MA is supported by a grant from the Saudi Arabian Cultural Bureau. PNN is supported by the National Institute of Health Research (NIHR) Birmingham Liver Biomedical Research Unit (BRU). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

YWE and SKB were supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI15C2364, HI17C1365), and a Basic Science Research Program and a Medical Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A02019212 and -2017R1A5A2015369, respectively).

Authors contributions: All authors contributed to the conception and writing of the manuscript.
Summary

The therapeutic potential of mesenchymal stromal cells (MSC) in the treatment of liver fibrosis is predominantly based on their immunosuppressive properties, and their ability to secrete various trophic factors. This potential has been investigated in clinical and pre-clinical studies. Although the therapeutic mechanisms of MSC transplantation are still not fully characterized, accumulating evidence has revealed that various trophic factors secreted by MSC play key therapeutic roles in regeneration by alleviating inflammation, apoptosis, and fibrosis as well as stimulating angiogenesis and tissue regeneration in damaged liver. In this review, we summarize the safety, efficacy, potential transplantation routes and therapeutic effects of MSC in patients with liver fibrosis. We also discuss some of the key strategies to enhance the functionality of MSC, which include sorting and/or priming with factors such as cytokines, and also genetic engineering of MSC.
Introduction

Liver disease is a major cause of mortality and morbidity that is rising globally [1, 2]. There remain many inflammatory liver conditions for which treatments are not effective and often such patients will progress to end-stage liver disease and require liver transplantation. To prevent progression to end-stage liver disease and also to treat those with advanced fibrosis mesenchymal stromal cell (MSC) therapies have been considered and shown to have potential in such liver diseases [3-5].

MSC have been shown to have beneficial effects in a range of clinical settings including heart failure [6], lung injury [7, 8], graft versus host diseases [9] and stroke [10], as well as being reported to ameliorate liver injury in the setting of both acute and chronic liver damage [11, 12]. The pleiotropic effects of MSC represent a potential advantage over pharmacological therapies and principally focus on their ability to modulate different components of the immune system either directly or by the release of paracrine factors. In addition to these immunomodulatory effects, MSC have been shown to reduce liver injury by ameliorating oxidative stress through release of antioxidants [12] and also through anti-fibrotic effects [3, 5]. In addition, MSC have been reported to have an ability to differentiate to hepatocyte-like cells which may show promise in augmenting liver regeneration [13, 14]. These encouraging pre-clinical data have resulted in many clinical trials [15, 16], and it is therefore timely to review the data underpinning these effects and also address the important remaining scientific questions so as to establish MSC therapy for patients with liver disease.

MSC: Definition, Biology and Tissue Origins

MSC were initially described in the 1968 by Friedenstein [17], and are a subtype of adult
fibroblast-like cells that have the capacity of self-renewal with high proliferative ability. They can undergo tri-lineage differentiation both in vivo and in vitro down connective tissue lineages to become osteoblasts, chondrocytes and adipocytes.

MSC are plastic adherent cells originally identified and isolated from bone marrow but due to their limited number (0.01 to 0.001% of total bone marrow cells) [18] and invasive nature of their isolation from bone marrow, researchers explored alternative sources. Several studies have reported the successful isolation of MSC from different tissues with similar in vitro properties, including synovial membrane [19], adipose tissue (AT) [20], umbilical cord blood (UCB) [21], amniotic fluid (AF) [22] and placenta [23]. Umbilical cord tissue (UC) has been a particularly promising source of MSC - cells can be isolated from several compartments within UC including umbilical vein, umbilical arteries, umbilical cord perivascular tissue, Wharton’s jelly (WJ) and sub-amniotic tissue. Furthermore, MSC isolated from UC tissue are believed to be more primitive than other cells isolated from other tissues and are found in higher numbers, ensuring this source is gaining prominence. Notably, MSCs from different sources display similar expression profile of MSCs surface markers and morphological features in culture, yet they have different levels of tri-lineage differentiation potential [24].

In addition, further differences have been related to the culture conditions, especially in the isolation procedure and culturing protocols, as well as the experiment protocol used [25]. Whereas, direct comparisons of MSCs from different sources have been shown to share similar biological properties [26-28], other authors demonstrated differences in immunomodulatory properties between BM-MSCs, UC-MSCs, and AT-MSCs [29, 30]. In addition, umbilical cord MSCs exhibit a higher proliferative capacity in comparison to MSCs populations obtained from other sources [24].
MSC from differing sources such as AT, UCB, and BM were found to express a similar pattern of surface antigens [31], although there was variation in respect to their differentiation potential, morphology and proliferation rate [32]. Moreover, several studies have demonstrated that BM MSC have higher expression of pluripotency genes such as Oct-4, Nanog, and Sox-2 than those isolated from WJ and AT [33].

Potential mechanisms of action of MSC in liver disease

Mechanism of immunomodulation by MSC

MSC can modulate and repair injured tissue by modulating injurious immune responses through a range of mechanisms including direct cell to cell interaction or remotely by secretion of paracrine factors (Fig. 1) [34]. Of note, MSC have reduced immunogenicity due to a lack expression of class II major histocompatibility (MHC) antigens when unprimed and do not express many of the molecules required for immune recognition such as CD80, CD86n and CD40 [35].

Immunomodulatory effect of MSC on adaptive immunity

MSC can inhibit the proliferation of T cells in vitro by either secretion of soluble factors or by direct interaction with T-lymphocytes (Fig. 2) [36]. Several different molecules secreted by MSC have been reported to have an immunomodulatory effect on T-cell activities, including transforming growth factor β (TGF-β), hepatocyte growth factor (HGF) [36], prostaglandin E2 (PGE2) [37], and indoleamine 2,3-dioxygenase (IDO) [38]. Notably, the
production of these immunomodulatory molecules differs according to the source of MSC, for example, WJ-MSC produce higher amounts of TGF-β than BM-MSC [39].

The inflammatory environment is known to have an essential role during the interaction between MSC and T cells, for example, the immunosuppressive capacity of MSC is induced by treatment with combination of cytokines (IFN-γ, IL-1α, TNF-α, and IL-1β) [40]. These cytokines can enhance some chemokines and other immune cells to easily contact the MSC and mediate the immune reactions. Another mechanism by which MSC can suppress the proliferation of T cells is via secretion of nitric oxide (NO) which causes inhibition of STAT5 pathways [41]. Another study demonstrated that MSC can secrete matrix metalloproteinases (MMP), such as MMP-2 and MMP-9, which suppress T cell activation by cleaving surface CD25 from T cells [42].

MSC have also been shown to promote the generation and development of regulatory T cells (Tregs), which can positively influence balance of immune damage during tissue injury [43]. The induction of CD4+ CD25+ FOXP3+ Treg was mediated by secretion of TGF-β [44] and is accompanied by an inhibition of the proliferation and differentiation of Th1 and Th17 helper T cells which can further trigger activation of regulatory T cells. This mechanism was associated with an increased production of IL-10 by MSC [45].

MSC can also inhibit the proliferation of B cells, and reduce their production of immunoglobulin. Glennie et al used CD40 and IL-4 to increase the proliferation rate of murine B cells and demonstrated that subsequent co-culture with MSC significantly inhibited
their proliferation [46]. In addition, MSC resulted in a significant stimulation in immunoglobulin production after co-culture of B cells in trans-well experiment [47]. MSC may also alter surface expression of chemokine receptors on B cells; co-culture with MSC in 1:1 ratio resulted in a significant reduction of expression of CXCR4, CCR7 and CXCR5 on B cells [48]. CXCR4 was found to significantly reduced even with 1:10 ratio when cultured with MSC, suggesting that MSC can specifically target CXCR4 which has a role in homing and fate of MSC [49].

Natural killer cells (NK) represent a critical component of the immune response against viral infections and tumor cells [50] - Sotiropoulou et al demonstrated that MSC reduced IL-15 secretion from IL-2 induced NK cells. This reduction was presumed to be due to either cell-to-cell interaction or release of soluble factors such as PGE2 and TGF-β [35]. In addition, another group reported that MSC can suppress NK cells after stimulation with IL-5 [50]. In models of acute liver injury MSC ameliorated hepatotoxicity of NKT cell in an indoleamine 2,3-dioxygenase (IDO) dependent manner, by reducing the number of IL-17 cells and stimulation of FOXP3 and IL-10 resulting from increased numbers of NK Treg in the injured liver [51].

Immunomodulatory effect of MSC in innate immunity

Macrophages can be classified into classical pro-inflammatory macrophages (M1) or alternative macrophages (M2) that secret anti-inflammatory cytokines (Fig. 2) [52]. MSC have been reported to trigger polarization of M1 toward M2 both in vivo and in vitro. This polarization is driven by the ability of MSC to secrete soluble factors such as interleukin (IL)-
10 and IL-1Ra which have been shown to attenuate liver injury by promoting number of M2 macrophages [53]. In addition to the IL-10 mediated ability of MSC to promote switching phenotype of macrophages from M1 to M2, MSC can also help to promote survival of monocytes through upregulation of CCL18, which was found to indirectly mediate ability of MSCs to induce Tregs formation [44] as demonstrated in animal models of sepsis and colitis [54]. In this study murine adipose derived MSC significantly increased the proportion of M2 like cells by increased production of IL10 and arginase1 activities [54].

MSC can also regulate, and interact with, dendritic cell function (DC) by blocking differentiation of antigen presenting cells (APC) to monocytes and decreasing their expression of anti-inflammatory molecules such as IL12, TNF-α, and IFN-γ, whilst also enhancing their secretion of IL-10 which may induce regulatory T cell numbers (Fig. 2) [55]. Notably, WJ-MSC can also inhibit the differentiation of monocytes to mature dendritic cells when cultured with CD14+ monocytes, indicating an indirect effect of WJ-MSC on the allogeneic response of T cells [56]. There is now therefore a greater recognition of the importance of the microenvironment on the immunomodulatory capacity of MSC [40], prompting a need for a better understanding of the microenvironment associated with specific diseases so as to develop more effective therapeutic efficacy of MSC.

Anti-fibrotic activities of MSC

Inflammation and fibrosis have a very close relationship in liver disease. In response to liver injury, pro-fibrotic factors such as TGF-β, platelet-derived growth factor (PDGF), IL-13 and IL-4, which are secreted by resident or infiltrating immune cells, play important roles in the activation and proliferation of hepatic stellate cells (HSC), which are important cells for the
The production of ECM in the liver [57-60]. Therefore, the anti-fibrotic activities of MSC can be distinguished from the direct or indirect effects on HSC. The indirect anti-fibrotic effects on HSC are achieved by MSC controlling immune cells and sequentially inhibiting the activity of HSC, whereas the direct anti-fibrosis effects on HSC are mediated by MSC inhibiting the activity of HSC.

As the indirect anti-fibrotic effects of MSC on HSC, MSC can regulate the activities of HSC by modulating immune cell activity mentioned above. MSC can migrate towards injured sites of inflammatory reaction where they are exposed to inflammatory cytokines such as IFN-γ and IL-1β [61, 62]. These MSC secrete various soluble mediators (e.g. NO, PGE2, IDO, IL-6, IL-10, and HLA-G), thus resulting in the suppression of the proliferation and activation of a variety of immune cells as well as the induction of Treg cells [63]. Thus, suppression of immune cell activities by MSC can also reduce fibrogenic processes and ameliorate ECM accumulation in liver disease. In particular, macrophages play a central role in both fibrosis and fibrotic resolution in the liver [64, 65] - during hepatic fibrogenesis, pro-inflammatory M1 macrophages located near the activated hepatic myofibroblasts secrete pro-fibrogenic factors such as TGF-β, PDGF, and CCL2. This secretion leads to increased fibrogenic responses of the myofibroblasts through the promotion of their activation, proliferation, and chemotaxis [64, 66]. However, macrophages co-cultured with MSC are polarized into anti-inflammatory M2 states, which show higher phagocytic activity through increased expression of IL-10 and decreased expression of tumor necrosis factor (TNF)-α and IL-12p40 [67, 68]. These results suggest that MSC can induce changes in the cytokine profile of activated macrophages promoting resolution of fibrosis. PGE2 has also been reported as a major immunomodulatory molecule when MSC are co-cultured with macrophages [69-71].
As the direct anti-fibrotic effects of MSC on HSC, MSC can inhibit proliferation and ECM production potential of HSC and also induce apoptosis of HSC. MSC can secrete IL-10, HGF, TGF-β3 and TNF-α, inhibit the proliferation of HSC, and decrease ECM synthesis [72, 73]. TGF-β3 and HGF induce G0/G1 cell cycle arrest of HSC by upregulating p21Cip1 and p27Kip1 and downregulating cyclin D1, which leads to HSC growth inhibition [73]. Similarly, neutralization of secretion of TNF-α and IL-10 from MSC inhibits activated HSC proliferation and ECM synthesis [72]. Moreover, MSC-derived HGF can also accelerate the rate of HSC apoptosis [72] and MSC cultured with HGF improve serum albumin level and reduce liver fibrosis in rats [74]. The Notch pathway is activated during direct co-culture of MSC and HSC through a cell–cell contact mode and results in significant suppression of the proliferation and α-SMA expression of HSC [75]. In liver fibrosis, activated HSC can express the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2, specific inhibitors of MMP [76], whereas MSC have been reported to increase the expression of MMP (e.g. MMP-2, -9, -13 and -14) [77-79] or decrease TIMP-1 expression [80], which are generally associated with fibrosis resolution in experimental models.

Hepatocyte-like differentiation of MSC

Since hepatocytes have been reported to improve liver function and mitigate fibrosis in preclinical and clinical studies, hepatocyte transplantation has been considered an alternative therapy to replace liver transplantation. Several factors influence the hepatic differentiation of MSC. It has been reported that the treatment of MSC with a combination of several growth factors, cytokine, and chemical compounds (i.e., HGF, fibroblast growth factor [FGF]-2/-4,
epidermal growth factor [EGF], oncostatin M [OSM], leukemia inhibitory factor [LIF], dexamethasone [Dex], insulin-transferrin-selenium [ITS], and/or nicotinamide [NTA]) increases the expression of hepatocyte markers such as HNF-3β, GATA4, CK19, transthyretin, α-fetoprotein, albumin, and CK18 [81]. In addition, when MSC are co-cultured with liver cells [82] or grown by pellet culture [83], they can be differentiated into hepatocyte-like cells. The differentiation of MSC into hepatocytes has been reported in rats [84], mice [85], sheep [86] and humans [87]. Moreover, hepatic stem/progenitor cells isolated from the adult human liver have been reported to be much better at being able to differentiate into hepatocytes when compared with MSC isolated from other tissues than liver [88]. Several groups have also reported that MSC differentiated into hepatocytes can help improve liver function and histopathologic grade, although they are less effective than adult hepatocytes [89]. There still remains uncertainty in the literature about the characterisation of MSC-derived hepatocytes which requires further evaluation, and indeed it is unclear if this will be a major means by which MSC are utilised.

Clinical trials using MSC in liver disease

Many clinical studies have been conducted on the treatment of liver disease using MSC, focusing on clinical trial design, cell sources, injection route, patient groups, and efficacy of therapies [15, 16, 90-104]. Based on these viewpoints, we addressed 17 articles to summarize MSC-based therapy for liver disease from 2007 to July 15, 2017 (Table 1). With regard to study design for the treatment of liver disease using MSC, there was one case series, six case control studies, five cohort studies, and five randomized clinical trials (RCTs) (Table 1). Cohort and case control studies have been performed in the early clinical trials [15, 16, 90-92,
and RCT studies seem to be mainly conducted recently to evaluate the
efficacy of MSC [93, 95, 101-103]. In the reported studies, a marked heterogeneity was found
in injected cell dosage, stem cell source, graft type, injection route, and study design, but
significant adverse effects were not reported in the included studies. The diseases of the
patients included acute-on-chronic liver failure (ACLF), liver failure including cirrhosis due
to alcohol, HBV, or HCV, and primary biliary cholangitis. A total of 688 patients were
enrolled in the clinical studies, with a range of four patients in the case series design [94] to
158 patients in the case control design [99]. In the clinical studies [99], BM-derived MSC
(BM-MSC) were used in 14 studies and UC-MSC were used in the remaining three studies.
In five studies allogenic MSC were used to treat liver disease; two were derived from the BM,
and three were from UC [15, 16, 96, 100, 102]. Moreover, autologous BM-derived
hepatocytes were reported to improve Child-Pugh score, MELD score, fatigue scale, and
performance status over the controls, although no comparison was made with any
undifferentiated MSC transplantation groups [97]. However, in recent animal studies, it has
been reported that undifferentiated MSC can more effectively improve liver function than
MSC differentiated into hepatocytes [89]. Jang et al. analyzed the liver function improvement
after repeated MSC injections at 4 and 8 weeks [91]. In pilot studies, hepatic fibrosis was
found to be ameliorated or reduced in six of 11 patients (54.5%) and the Child score
improved in ten patients (90.9%) [91]. However, in the inter-group comparison (one-time
injection versus two-time injection), two-time BM-MSC transplantation was not found to
improve fibrosis over a single transplantation [101]. When three studies using two injection
routes were analyzed separately [92, 97, 104], the peripheral vein (PV) was found to be most
commonly used as a transplantation route in 11 cases; the hepatic artery (HA) was used in
four cases, intra-splenic (IS) injection was used in three cases, intrahepatic (IH) injection in
one case, and portal vein in one case. There was no difference in the efficacy of MSC based on the route of administration (PV, IS, portal vein or IH) [92, 97, 104] and in the incidence of HCC or mortality in hepatic failure patients with hepatitis B between the autologous MSC-infused and the control groups [99]. In an efficacy analysis after MSC transplantation, 15 studies reported benefits of using MSC, but two did not.

Taken together, the results of all these studies can be summarized to say that MSC treatments for patients with liver disease are safe and may improve liver function, although robust randomised clinical studies are required to gain confidence with regard to the clinical efficacy of MSC. However, to improve the efficacy of MSC therapy for liver disease, pre-clinical and clinical studies are necessary to standardize the best delivery route of MSC, to optimize the sufficient number of MSC, and to elongate the survival duration of engrafted MSC. Furthermore, in order to understand the therapeutic mechanism and fate of MSC more clearly, it is required to develop a specific biomarker with low toxicity so that the transplanted MSC can be accurately tracked.

Future perspectives

Whilst conventional unmanipulated MSC have been the mainstay of therapeutic studies thus far there have been extensive efforts to try and enhance their efficacy. This section will review some of the key strategies which include sorting MSC to enrich for greater functionality, priming of MSC with factors such as cytokines and finally genetic engineering of cells (Fig. 3). The main driver for these approaches is to enhance efficacy and/or organ homing although there is also often a need to create/protect intellectual property so as to generate a viable business model. The challenge therefore is to balance the additional costs
and potential logistical/safety concerns associated with such perturbations against improvements in efficacy.

MSC enrichment

MSC represent heterogeneous populations of cells, therefore, sorting approaches are highly considered to achieve homogenous populations of MSC, resulting in enriched subsets which could crucially produce various selected populations with different therapeutic functions and open new strategies for the modification of MSC for more beneficial effects.

MSC are phenotypically diverse both morphologically and functionally and thus sorting cells based on marker expression may allow for the selection of cells with greater efficacy. This does require definition of which function is being focused on, and often markers of stemness or proliferation are reported, whereas immunomodulatory action may be the most important.

Sorting of cells for pre-clinical studies is relatively straightforward and can use a range of modalities including flow cell sorting which should result in high purity yields. It is more challenging however when such approaches are attempted in clinical practice as they need to adhere more closely to good manufacturing practice (GMP) which can restrict the modality used. Clinically approved modalities such as the CliniMACS are clinically accredited but may not result in high purities of rare populations and thus the use of GMP fluorescence cell sorting analysis is encouraging.

CD146+ is expressed on various cells types including endothelia cells [24] and can contribute to biological functions such as cell migration, proliferation and differentiation [105, 106]. CD146 expression is correlated with cellular senescence of MSC and markedly affects the
proliferation, differentiation, and stemness of hUCB-MSC. Sorted CD146+ MSC have delayed cellular senescence which is mediated by regulation of Bmi-1, id1, and Twist1 expression, which can regulate the cellular senescence process [107]. This suggested that CD146+ could be a novel marker responsible for control of senescence of MSCs and hence improve the therapeutic efficacy of MSCs.

In a recent study, sorting MSC sub-populations based on CD73+ expression has demonstrated greater self-renewal and differentiation properties [108]. These sorted cells (CD73+) exhibited high levels of colony forming unit ability in contrast with an absence observed with CD73− cells.

Another study has characterized populations of MSC using several markers, including CD271+, known as nerve growth factor receptor and proposed as a marker of BM stromal cells, adhesion molecule (CD56), and MSCA-1+ (mesenchymal stem cell antigen-1) [109]. Sorted dual-positive MSCA-1+ and CD56+ MSC were reported to have 2-4 greater clonal efficiency than MSCA-1+ CD56−. However, MSCA-1+ CD56− were shown to have potential ability to differentiate into adipocytes, whereas MSCA-1− CD56+ were restricted to chondrogenic and pancreatic like cells differentiation. Similarly, other reports indicate that enrichment of synovium-derived-MSC using CD271 in combination with THY-1 (CD90) results in greater chondrogenic differentiation ability and colony forming potential in the CFU-F assay compared to CD271+ CD90+ BM-MSC. Thus, this combination could be a good candidate for the isolation of MSC from different tissue sources for cartilage regeneration [110].

Sherman et al. [111] have proposed aldehyde dehydrogenase (ALDH) as a marker for MSC which defines an enhanced ability to contribute to revascularization. MSC isolated from
human bone marrow and purified into ALDHhi and ALDHlo populations had identical expression of MSC surface makers and ability to differentiate into adipocytes, osteoblasts, and chondroblasts \textit{in vitro}. Notably though conditioned medium from ALDHhi MSC was shown to promote endothelial cell expansion \textit{in vitro} and enhance recruitment of endogenous vascular cells after subcutaneously implanted in NOD/SCID mice, which was mediated by up-regulation of lectin [111].

Positive selection on the basis of expression of the Stro-1 specific marker has also been proposed and such MSC are enriched with respect to CFU-F progenitors [112]. Stro-1+ expanded MSC were reported to have better migratory capacity in various tissues when compare to Stro-1- [113]. Other research groups were able to increase expression of cytokines related cardiovascular which can be mediated through using Stro-1+ enriched MSC [114].

Expression of CD200 has also been used to purify MSC [115], with its expression inhibiting osteoclast formation via inhibition of RANKL signalling pathways, which consequently reduce expression of osteoclast associated genes such as tartrate resistance acid phosphatase (TRAP) and nuclear factor of activated T cells cytoplasmic 1 (NFARC1) [116]. Another study has clearly shown that CD200+ BM-MSC can modulate the immune response of macrophages by inhibition of TNF-\textgreek{a} secretion when compared to CD200low BM-MSC [117]. Consisting with its role in immunomodulation, MSC have been identified to drive the expression of CD200 in T cell subsets following co-culture with MSC [118]. This upregulation was reported in both CD4+ and CD8+ T lymphocyte.

More recently, CD362+ (Syndecan-2) marker has been identified as a novel marker to select a homogeneous population of MSC with enhanced immunomodulatory properties (patent number WO 20131177661 A1). This marker has recently investigated for its ability to reduce
immunogenicity and enhance the immunomodulatory ability in liver inflammation [119, 120]. Syndecan-2 found to be expressed in hematopoietic cells and myeloid cells [121]. And functionally reported to upregulate upon T cell activation and play significance role in CD3 downregulation through degradation of T-cell receptor (TCR) [122]. These findings strongly suggest that enrichment of syndecan-2 expression in MSC could play an essential role in immune modulation in injured tissue.

The potential benefits of the various markers that have been used to select/enrich MSC are detailed in Table 2.

MSC priming

As with selection of MSC, priming of cells before use is intended to enhance their biological properties for whichever clinical indication is being considered (Table 3). This may include improvements in MSC immunomodulatory effects, homing to injured organs and/or greater expansion of cells.

Enhancing immunomodulatory properties of MSC

Pre-treatment of MSC with the pro-inflammatory cytokines IL-1β, IL-23 and IL-6 for 96 hours [123] was found to enhance secretion of TGF-β and reduce production of IL-4 by MSC, although notably no changes were reported in production of IFN-γ and TNF-α. In addition, cytokine-treated MSC exhibited superior multi-lineage differentiation capacity compared to untreated MSC, with no associated changes in their morphology. IL-1 appears to
be important for pre-conditioning of MSC, as combined treatment with IL-1α and IL-1β increases production of granulocyte-colony stimulating factor (G-CSF) and secretion of anti-inflammatory mediators such as IL-10. Moreover, microglial cells incubated with conditioned medium from IL-1 primed MSC increase expression of anti-inflammatory cytokines such as IL10 and decrease secretion of pro-inflammatory cytokines as reported in TNF-α and IL-6 [124].

Duijvestein et al. [125] showed that stimulation MSC with IFN-γ enhanced the anti-inflammatory response of MCS in experiment colitis animal model. In addition, IFN-γ primed MSC exhibit a significant reduction in TNF-α and IL-6 in colon homogenates, while normal MSC had no effect. In the same model, activation of MSC with IFN-γ further promote the immunomodulation via enhance production of IL-17 and IL-4, which therefore inhibit the Th1 and reduce T cell activation [125]. Under similar conditions, pre-stimulation of BM-MSC with IFN-γ and TNF-α stimulate production of IL-6, HGF, TGF-β [126]. More interestingly, an in vivo GVHD model, administration of MSC pre-treated with IFN-γ have the capability to enhance survival rates of mice with GVHD, resulted in 100% survival [127].

More recently, data from de Witte and colleagues have demonstrated that pre-treatment of UC-MSC with different treatments such as TGF-β, IFN-γ, IFN-β or in combinations (TGF-β, IFN-γ and retinoic acid) suppress expression of CD107a on NK cells, enhancing MSC immunomodulation. In addition, MSC treated with IFN-γ and the multiple cytokine combination were found to significantly upregulate IDO activities which subsequently suppressed CD4 and CD8 proliferation when compare to untreated MSC. Notably, following
infusion into mice injured with a single dose of CCl₄, a higher percentage of TGF-β treated MSC homed to the injured liver (25%) compared with untreated MSC (13%) [119].

In another liver injury studies, IL-7 treated MSC had a superior therapeutic effect on liver injury mediated in part through increased activation of iNOS. IL-17 down-regulates gene expression of ARE/poly(U)-binding/ degradation factor 1 (AUF-1) in MSC which is a protein known to regulate immune related molecules [128] and has a key role in regulation stromal cell fate [129]. Thus, AUF1 could have a novel role to enhance the effect of IL-17 on immunosuppression. Similarly, IL-17a modified MSC have been reported to suppress proliferation of T cell in vitro via mechanisms such as inhibition of Th1 cytokines (IFN-γ, TNF-α, IL-10, and IL-2), enhance production of IL-6 and induction of regulatory T cells [130].

IL-6 priming of MSC infused into an acute model of CCl₄ injury resulted in improved viability of isolated hepatocytes as well as a reduction in expression of pro-apoptotic markers such as BAX, Caspase-3 and LDH activities. This finding was not observed when MSC or IL-6 treatment were applied alone [131]. In addition, administration of IL-6 with MSC was found to enhance repair of liver injury in a mouse model of liver fibrosis with reductions in fibrosis, improvements in liver synthetic function, promote hepatocyte survival, and decrease apoptosis in fibrotic liver [131].

Enhancing homing of MSC

A study demonstrated that adhesion molecules such as ICAM and VCAM can be highly expressed on MSC following priming with a combination of IFN-γ, TNF-α and IL-1. This
upregulation of expression of ICAM and VCAM led to increased recruiting of MSC to vascular endothelium, this close contact of MSC with immune cells could enhance the immunosuppressive properties of MSC [132, 133]. Similarly, MSC pre-treated with IFN-γ, TNF-α can induce regulatory T cells more efficiently than non-treated MSC. Furthermore, MSC pre-incubated with IFN-γ, TNF-α induced secretion of CCR6 and therefore increase the adhesion of Th17 cells to MSC, resulting in promote the generation of regulatory T cells (FOXP3+ cell) from Th17 cells and consequently improve their immunosuppressive properties [134].

Priming with CXCL9 has also been shown to enhance adherence of MSC to endothelial cells as well as increase spreading of MSC on the endothelial cells as characterized by the extension of pseudopodia in multiple directions [135]. Further characterization of the beneficial effect of chemokines on MSC behaviour was reported in the same study using trans-well migration experiments, in which MSC migrated across endothelial layers in the presence of chemokines such as CXCL9, CXCL16, and CXCL20, and CXCL25. Of note no migration was observed in the presence of TNF-α alone.

Genetic modification of MSC (Gene editing)

Beside enrichment and priming MSC in vitro, transplantation of MSC after genetic correction or modification (gene editing) represents a powerful approach to use of MSC in regenerative medicine (Table 4). This section will review progress with genetic engineering approaches that have reported with MSC, including viral and non-viral manipulations. Viral transfection of MSC can be achieved with several approaches including lentivirus, adenovirus and retrovirus [136].
MSC have also been genetically modified to increase expression of CXCR4, thereby improving their homing to the injured liver and reducing liver damage [137]. Similarly, the same finding was reported in a rat model of lung injury, with increased expression of CXCR4 on MSC resulting in enhanced hepatic migration and improvement of their immunomodulatory properties mediated by increased production of IL-10 and reduction in TNF-α. Notably, these findings suggest that overexpression of CXCR4 not only enhanced MSC homing but also increased their immunosuppressive effects [138].

Further examination of the beneficial effects of genetic modified MSC was reported in a mouse model of liver fibrosis, following overexpression of insulin growth factor like-1 (IGF-1) [139]. After systemic administration, IGF-1 modified MSC were able to significantly reduce the degree of fibrosis, likely through the down regulation of α-SMA, TGF-β and COL1A2 in animal treated with IGF-1 MSC when compare with animal treated with normal MSC [140]. Over-expression of HGF in MSC was also found to reduce liver fibrosis, seemingly mediated by a reduction in TFG-β, platelet-derived growth factor-bb (PDGF-bb), and metalloprotease-14 (MMP-14) [141]. HGF overexpressed MSC also act on hepatic stellate cells to reduce α-SMA and desmin expression, indicating that MSC that overexpress HGF decreased both the activation and number of hepatic stellate cells more greater level than MSC. This could have therapeutic effect to prevent diseases progression and foster liver restoration.

Another reprogramming approach showed that over-expression of miR-27b in adipose tissue derived MSC resulted in reduction in a rat model of ischemic liver injury in rat with improvements in ALT, AST, TNF-α, and IL-6 as well as significance suppression in TGF-β
Moreover, these transfected cells were shown to have anti-fibrotic ability with suppression of MMP-2 and MMP-9 in liver tissue.

Further study linked between the genetic modified MSC and their capacity to express endothelial cell (EC) markers with similar function. For example, silencing MMP-2 and MMP-14 with endothelial growth medium can induce the MSC differentiation into EC by enhance production of endothelial markers, such as PECAM and VE-cadherin. These markers were increase from 4 to 15% and from 4 to 30% after silencing MMP-2 and MMP-12, respectively. This observation was in comparison with MSC that treated with endothelial growth medium only [143].

In other work, the expression level of HO-1 was genetically modified in MSC and shown to have resistance to cell death under oxidative stress condition and enhance their anti-apoptotic properties [144]. Moreover, HO-1 overexpressed MSC have shown to have more surviving cells following exposure to H\textsubscript{2}O\textsubscript{2} and hypoxia, indicating that HO-1 may shape the stress responsive and cytoprotective properties of MSC. Notably, in the murine model of myocardial infarction, overexpression of HO-1 resulted in diminished oxidative stress and apoptosis as well as an enhanced effect on angiogenesis. This was associated with a 2.1 fold up-regulation of VEGF levels compared to normal MSC [145].

Conclusions and outlook

MSC therapy is generally regarded as a safe and potentially relevant therapeutic strategy for patients with chronic liver disease, including ACLF, liver failure including cirrhosis due to alcohol, HBV, or HCV, and primary biliary cholangitis. However, in order for MSC therapy
to be established as a clinical therapeutics for those of liver diseases, further robust randomised clinical studies are required to increase the reliability of the clinical efficacy of MSC. In addition, further studies on optimal delivery route, sufficient number of MSC, and extension of survival of engrafted MSC are needed to enhance the efficacy of MSC therapy. However, several concerns still remain, including the low migration and fibrogenic potential of MSC, the optimal sources, and the risk of oncogenesis and viral transmission. Whilst, conventional unmanipulated MSC have constituted the mainstream of therapeutic clinical studies so far, there have been extensive efforts to enhance their efficacy, including enrichment and/or priming of MSC along with genetic engineering of cells. The main driver for these approaches is to enhance efficacy and/or organ homing although there is also often a need to create/protect intellectual property so as to generate a viable business model as well as balancing the additional costs and potential safety issues against enhanced efficacy.

References

[4] Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical

[27] Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human

[42] Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ. Mesenchymal stem cells

[57] Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1

2006;24:2840-2850.

[123] Pourgholaminejad A, Aghdami N, Baharvand H, Moazzeni SM. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and
immunomodulatory functions of human mesenchymal stem cells. Cytokine 2016;85:51-60.

[137] Ma HC, Shi XL, Ren HZ, Yuan XW, Ding YT. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J Gastroenterol 2014;20:14884-14894.

Figure legends

Figure 1. Modes of MSC-based therapy.

Figure 2. Potential mechanisms of the MSC interactions with immune cells.

Figure 3. Schematic diagram illustrating the future of using modified MSCs for tissue/organ regeneration.
<table>
<thead>
<tr>
<th>Study Year</th>
<th>Design, Patient cohort</th>
<th>Source of MSC</th>
<th>Injection route</th>
<th>Primary endpoint</th>
<th>Main improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Case series, Decompensated liver cirrhosis (n=4)</td>
<td>Autologous BM</td>
<td>Peripheral vein</td>
<td>Safety and feasibility</td>
<td>Creatinine and MELD score</td>
</tr>
<tr>
<td>2009</td>
<td>Cohort, Liver cirrhosis (n=8)</td>
<td>Autologous BM</td>
<td>Portal vein (n=6)</td>
<td>Feasibility, safety, and efficacy (LFT and MELD score)</td>
<td>Creatinine, prothrombin time and MELD score</td>
</tr>
<tr>
<td>2010</td>
<td>Case control, Decompensated liver cirrhosis due to HCV or HBV (n=12)</td>
<td>Autologous BM</td>
<td>Intra-splenic (n=6)</td>
<td>LFT and MELD score improvement</td>
<td>Creatinine, prothrombin time, albumin, bilirubin and MELD score</td>
</tr>
<tr>
<td>2011</td>
<td>Case control, Decompensated liver cirrhosis due to HCV (n=40)</td>
<td>Autologous BM</td>
<td>Intra-splenic (n=10)</td>
<td>Safety and short-term efficacy (LFT, MELD score improvement)</td>
<td>Ascites, peripheral oedema, albumin, MELD score, and Child-Pugh score</td>
</tr>
<tr>
<td>2011</td>
<td>Case control, ACLF caused by HBV (n=158)</td>
<td>Autologous BM</td>
<td>Hepatic artery</td>
<td>Improvement of MELD and LFT (short term)</td>
<td>Prothrombin time, albumin, bilirubin and MELD score</td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Study Population</td>
<td>Treatment</td>
<td>Route</td>
<td>Outcomes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>El-Ansary et al. 2012</td>
<td>Case control</td>
<td>Decompensated liver due to HCV (n=25)</td>
<td>Autologous BM</td>
<td>Peripheral vein</td>
<td>Improvement of MELD and LFT, Albumin and MELD score</td>
</tr>
<tr>
<td>Shi et al. 2012</td>
<td>Case control</td>
<td>ACLF associated HBV (n=43)</td>
<td>Allogeneic UC</td>
<td>Peripheral vein</td>
<td>LFT and MELD, Albumin, prothrombin time, improvement, adverse events, and survival rates</td>
</tr>
<tr>
<td>Zhang et al. 2012</td>
<td>Case control</td>
<td>Decompensated liver due to HBV (n=45)</td>
<td>Allogeneic UC</td>
<td>Peripheral vein</td>
<td>Safety and efficacy (LFT and MELD), Albumin, bilirubin, MELD score and ascites</td>
</tr>
<tr>
<td>Amin et al. 2013</td>
<td>Cohort</td>
<td>Post-HCV (n=20)</td>
<td>Autologous BM</td>
<td>Intra-splenic</td>
<td>Safety and efficacy, Albumin, prothrombin time, bilirubin, AST, ALT and MELD score</td>
</tr>
<tr>
<td>Mohamadnejad et al. 2013</td>
<td>RCT</td>
<td>Decompensated liver cirrhosis (n=25)</td>
<td>Autologous BM</td>
<td>Peripheral vein</td>
<td>Safety and efficacy, None</td>
</tr>
<tr>
<td>Wang et al. 2013</td>
<td>Cohort</td>
<td>UDCA-resistant PBC</td>
<td>Allogeneic UC</td>
<td>Peripheral vein</td>
<td>Safety and efficacy, Alkaline phosphatase and γ-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Reported markers for selection and purification of MSC

<table>
<thead>
<tr>
<th>MSC Source</th>
<th>Species</th>
<th>Markers expressed</th>
<th>Purification/selection methods</th>
<th>Experimental Models</th>
<th>Target/ Mechanism</th>
<th>Ref.</th>
</tr>
</thead>
</table>
| BM | Human | CD271\(^+\) and CD56\(^+\) | Cell Sorting | \textit{In vitro} | • Increase clonogenic and proliferation potential.
• Increase chondrocyte and pancreatic like cells differentiation. | [105] |
| BM | Rat | CD73\(^+\) | Cell Sorting | \textit{In vitro} Lewis rats | • Enhance self-renewal and differentiation.
• Increase engraftment. | [24] |
| BM | Human | CD200\(^+\) | Magnetic separation | \textit{In vitro} | • Enhance regulation of bone resorption.
• Inhibit osteoclast formation via inhibition of RANKL signaling pathway. | [112] |
<p>| BM | Human | CD200(^+) | Cell Sorting | \textit{In vitro} | • Suppress TNF-(\alpha) secretion in macrophage like | [113] |</p>
<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Marker</th>
<th>Method</th>
<th>Condition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP, AT, BM</td>
<td>Human</td>
<td>αSMA<sup>+</sup></td>
<td>FACS</td>
<td>In vitro</td>
<td>• Improve MSC fate through regulation of YAP/TAZ activation. [146]</td>
</tr>
<tr>
<td>PAM</td>
<td>Human</td>
<td>CD34<sup>+</sup></td>
<td>FACS</td>
<td>TAA (liver fibrosis model)</td>
<td>• Reduce hepatic fibrosis and restore liver function by reduce collagen level and deactivate the hepatic stellate cells. [147]</td>
</tr>
<tr>
<td>BM</td>
<td>Human</td>
<td>CD271<sup>+</sup></td>
<td>Magnetic separation</td>
<td>In vitro (model of wound healing)</td>
<td>• Significant potential in wound healing [148]</td>
</tr>
<tr>
<td>UCB</td>
<td>Human</td>
<td>CD 146<sup>+</sup></td>
<td>FACS</td>
<td>In vitro</td>
<td>• Reduce MSC senescence. [107]</td>
</tr>
<tr>
<td>BM</td>
<td>Human</td>
<td>ALDH</td>
<td>FACS</td>
<td>In vitro and in vivo (NOD/SCID mice)</td>
<td>• Promote endothelial cell expansion. • Enhance recruitment of endogenous vascular cells in vivo by upregulation of lectin. [114]</td>
</tr>
<tr>
<td>SYN and BM</td>
<td>Human</td>
<td>LNGFR and THY-1</td>
<td>FACS</td>
<td>In vitro</td>
<td>Greater chondrogenic differentiation ability and colony forming potential than BM-MSC.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UC</td>
<td>Human</td>
<td>C362+ (Syndecan-2)</td>
<td>FACS</td>
<td>ALF</td>
<td>Improve immunomodulatory properties and clonogenicity.</td>
</tr>
<tr>
<td>BM</td>
<td>Human</td>
<td>STRO-1</td>
<td>FACS</td>
<td>In vitro</td>
<td>Increase expression of cardiovascular related cytokines.</td>
</tr>
</tbody>
</table>

Bone Marrow (BM), Umbilical cord (UC), Umbilical cord blood (UCB), Synovium (SYN), Placenta amnion membrane (PAM), Adipose tissue (AT), Umbilical perivascular (UP), Aldehyde dehydrogenase (ALDH). Stromal Precursor antigen-1 (Stro-1), Acute liver failure (ALF), Receptor activator of nuclear factor kappa-B ligand (RANKL)
Table 3. Reported factors and their effect in priming of MSC for tissue repair.

<table>
<thead>
<tr>
<th>MSC source</th>
<th>Molecule name</th>
<th>Time of treatment</th>
<th>Biological Function</th>
<th>Ref.</th>
</tr>
</thead>
</table>
| Human BM | IL-1β, IL-23, IL-6 | 96 hours | • Enhance secretion of TGF-β.
• Reduce production of IL-4.
• Exhibit significance multi-lineage differentiation capacity. | [121] |
| Human AT | | | | |
| Human BM | IL-1 | 24 hours | • Increase production of G-CSF.
• Increase production of IL-10. | [122] |
| Human BM | IFN-γ and TNF-α | 24 hours | • Enhance osteogenic formation via expression of ALP.
• Increase expression of bone matrix proteins. | [124] |
| Human UC | IFN-γ, TGF-β, or multiple cytokine cocktail (IFN-γ, TGF-β, and retinoic acid) | 72 hours | • Multiple cytokines cocktails improve the immunomodulatory properties of MSC.
• TGF-β treated MSC increased recruitment of MSC to the liver injury in-vivo. | [119] |
| Mouse BM | IFN-γ + TNF-α with IL-17 | 12 hours | • Mediate liver injury through activation of iNOS. | [125] |
| Human BM | IL-17 | 24, 48, and 120 hours. | • Induction regulatory T cells.
• Inhibition of Th1 cytokines.
• Enhance production of IL-6. |
|----------|-------|----------------------|---|
| Mouse BM | IL-6 | 24 hours | • Improve viability of hepatocytes treated with CCL₄.
• Decreased expression of pro-apoptotic markers (BAX, caspase-3, and LDH).
• Reduced liver fibrosis in vivo. |
| Mouse BM | IFN-γ or (TNF-α and IL-1) | Not sure | • Increase upregulation of ICAM and VCAM. |
| Mouse BM | (IFN-γ + TNF-α + IL-1α) or (IL-1β + IFN-γ) | 24 hours | • Increase ability of MSC to inhibit T cell proliferations.
• Enhance secretion of chemokines such as CXCL-9 and CXCL-10. |
| Mouse BM | CXCL9 | 30 minutes | • Ameliorate the adhesion of MSC to murine endothelial cells. |
Table 4. Genetically modified MSC

<table>
<thead>
<tr>
<th>MSC source</th>
<th>Example of associated genes</th>
<th>Condition</th>
<th>Viral vector</th>
<th>Representative biological activities</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse BM</td>
<td>IGF-1 overexpression</td>
<td>Liver cirrhosis</td>
<td>Adenovirus</td>
<td>• Ameliorate liver fibrosis by significant reduction in α-SMA, collagen deposition, and TGF-β1.</td>
<td>[140]</td>
</tr>
<tr>
<td>Mouse BM</td>
<td>Let-7a Knockdown siRNA</td>
<td>IBD and GVHD</td>
<td>siRNA</td>
<td>• Significant improvement in both models, by suppress T cell proliferation (decreased in CD3⁺), increase MCP-1 secretion, and enhancing expression of Fasl/Fas.</td>
<td>[149]</td>
</tr>
<tr>
<td>Human BM</td>
<td>CXCR5 overexpression</td>
<td>CHS</td>
<td>Lentiviral</td>
<td>• Increase migration and engraftment of MSC to the site of injury. • Enhance immunomodulatory effects of MSC in vivo through inhibit of T cell</td>
<td>[150]</td>
</tr>
<tr>
<td>Species</td>
<td>Treatment</td>
<td>Model</td>
<td>Vector</td>
<td>Effects</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Human BM</td>
<td>CXCR4 overexpression</td>
<td>ALF</td>
<td>Lentiviral</td>
<td>- Enhance migration and improve liver regeneration.</td>
<td></td>
</tr>
<tr>
<td>Rat BM</td>
<td>CXCR4 overexpression</td>
<td>Lung injury</td>
<td>Lentiviral</td>
<td>- Improve migration and suppress inflammation of lung tissue by upregulation of IL-10 and downregulation of TNF-α.</td>
<td></td>
</tr>
<tr>
<td>Rat AT</td>
<td>miR-27b overexpression</td>
<td>Partial hepatectomy</td>
<td>MicroRNA</td>
<td>- Enhance liver regeneration through reduction in ALT, TNF-α, and IL-6 in serum. - Reduce expression of TGF-β, MMP2, and MMP9.</td>
<td></td>
</tr>
<tr>
<td>Rat MB</td>
<td>CAMKK1 overexpression</td>
<td>AMI</td>
<td>siRNA</td>
<td>- Reduce scar formation and improve cardiac function in vivo.</td>
<td></td>
</tr>
<tr>
<td>Animal</td>
<td>Treatment</td>
<td>Method</td>
<td>Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Porcine AT | MMP-2 and MMP-14 knockdown | In-vitro siRNA | • Enhance differentiation of MSC into endothelia cells by production of PECAM and V-cadherin.
• Increase the formation of capillary like cells and Sc-LDL uptake. |
| Human BM | HO-1 overexpression | In-vitro Adenovirus | • Enhance MSC survival and resistant to oxidative stress.
• Enhanced anti-apoptotic and anti-oxidative capabilities of MSC |
<p>| Rat BM | HO-1 overexpression | MI Plasmid | • Enhanced anti-apoptotic and anti-oxidative properties and improved angiogenesis level. |
| Human BM | HGF overexpression (MDN model) | Liver Adenovirus | • Promote liver function and reduce liver fibrosis via significant reduction in TGF-β and PDGF-bb. |</p>
<table>
<thead>
<tr>
<th>Mouse BM</th>
<th>COUP-TFI knockdown</th>
<th>Streptozocin-induced diabetic mice</th>
<th>siRNA</th>
<th>• Increase ability of BM-MSC to differentiate into IPCs. [152]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat BM</td>
<td>Aqp1 overexpression</td>
<td>Tibia fracture Model</td>
<td>Lentiviral</td>
<td>• Enhance MSC migration in vitro and in vivo through modulation expression of FAK and β-catenin. [153]</td>
</tr>
</tbody>
</table>

Insulin growth factor like-1 (IGF-1), Inflammatory bowel disease (IBD), graft versus host disease (GVHD), Contact hypersensitivity (CHS), acute liver failure (ALF), amniotic fluid (AF), calcium/calmodulin-dependent protein kinase kinase-1 (CAMKK1), acute myocardial infarction (AMI), matrix metalloproteinases (MMPs), heme oxygenase-1 (HO-1), hepatocyte growth factor (HGF), Di-methylnitrosamine (DMN), platelet-derived growth factor-bb (PDGF-bb), chicken ovalbumin upstream promoter transcriptional factor I (COUP-TFI), Insulin producing cells (IPCs), Aquaporin 1 (Aqp1), focal adhesion kinase (FAK).
Figure 1: Modes of MSC-based therapy.
Figure 2: Potential mechanisms of the MSC interactions with immune cells.
Figure 3: Schematic diagram illustrating the future of using modified MSCs for tissue/organ regeneration.