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FUSION SYSTEMS ON MAXIMAL CLASS 3-GROUPS OF RANK TWO
REVISITED

CHRIS PARKER AND JASON SEMERARO

Abstract. We complete the determination of saturated fusion systems on maximal class 3-groups
of rank two.

1. Introduction

The maximal class 3-groups have been classified by Blackburn in [Bla58]. In this article we revisit
the determination of the saturated fusion systems on these groups. We take the presentations for
the maximal class 3-groups from [DRV07]. For r ≥ 4, and β, γ, δ ∈ {0, 1, 2}, define

B(r; β, γ, δ) = 〈s, s1, . . . , sr−1 | R1,R2,R3,R4,R5,R6〉

where the relations are as follows:

R1: si = [si−1, s] for i ∈ {2, . . . , r − 1};
R2: [s1, si] = 1 for i ∈ {3, . . . , r − 1};
R3: s3i s

3
i+1si+2 = 1 for i ∈ {2, . . . , r − 1} where sr = sr+1 = 1 by definition;

R4: [s1, s2] = sβr−1;
R5: s31s

3
2s3 = sγr−1; and

R6: s3 = sδr−1.

We mostly require that r ≥ 5: note that |B(r; β, γ, δ)| = 3r and that there are isomorphisms
between some of the groups listed. The full list of maximal class 3-groups of order at least 35 is
uniquely given up to isomorphism by the requirements:

(1) for r odd,

(β, γ, δ) ∈ {(1, 0, 0), (1, 0, 1), (1, 0, 2), (0, 1, 0), (0, 0, 1), (0, 0, 0)}.

(2) for r even,

(β, γ, δ) ∈ {(1, 0, 0), (1, 0, 1), (1, 0, 2), (0, 1, 0), (0, 0, 1), (0, 0, 0), (0, 2, 0)}.

Thus, when r ≥ 5, there are six maximal class 3-groups when r is odd and seven when r is even.
Recall that for a prime p a saturated fusion system F on a p-group S is reduced if and only if

Op(F) = Op′(F) = F and Op(F) = 1. The fusion system F is exotic if F 6= FS(G) for all finite
groups G with S ∈ Sylp(G). Our main result is as follows.

Theorem 1.1. Suppose that S = B(r; β, γ, δ) is a maximal class 3-group of order at least 35.
Assume that F is a saturated fusion system on S and that F has at least one F-conjugacy class
of F-essential subgroups. Then either F is as described in [DRV07, Theorem 5.10] or β 6= 0 and
one of the following holds:

(i) S = B(r; 1, 0, 0), 〈s, sr−1〉 represents the unique F-conjugacy class of F-essential subgroups,
AutF(〈s, sr−1〉) ∼= SL2(3), |OutF(S)| = 2 and either
(a) r is even and F is reduced; or

2010 Mathematics Subject Classification. 20D20, 20D05.
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2 CHRIS PARKER AND JASON SEMERARO

(b) r = 2k+ 1 is odd, and O3(F) is a subsystem of index 3 in F isomorphic to the fusion
system of PSL3(q) at the prime 3 for some prime power q with v3(q − 1) = k.

(ii) S = B(r; 1, 0, 2), r is even and one of the following holds:
(a) 〈ss1, sr−1〉 represents the unique F-conjugacy class of F-essential subgroups,

AutF(〈ss1, sr−1〉) ∼= SL2(3), |OutF(S)| = 2 and F is reduced;
(b) 〈ss21, sr−1〉 represents the unique F-conjugacy class of F-essential subgroups,

AutF(〈ss21, sr−1〉) ∼= SL2(3), |OutF(S)| = 2 and F is reduced; or
(c) there are two F-conjugacy classes of F-essential subgroups represented by 〈ss1, sr−1〉

and 〈ss21, sr−1〉 with AutF(〈ss21, sr−1〉) ∼= AutF(〈ss1, sr−1〉) ∼= SL2(3), |OutF(S)| = 2
and F is reduced.

Furthermore, the fusion systems listed in (i) and (ii) are exotic.

The smallest fusion systems listed in Theorem 1.1 appeared during the work of the authors to
classify all reduced fusion systems on groups of order up to 1000 by computer [PS18]. We note
that all of them have F -pearls [Gra18].

Inspection of the proof of [DRV07, Theorem 1.1] reveals two distinct misstatements which lead
to the absence of the fusion systems in parts (i) and (ii) of Theorem 1.1 from their results. The
first is in the assertion that every element of S \ γ1(S) has order 9 in the case that δ 6= 0 ([DRV07,
Proposition A.9 (e)]). The groups B(r; 1, 0, 2) disprove this claim (as does [DRV07, Proposition
A.9(a)].) This former “fact” is used in the proof of [DRV07, Theorem 5.1] where it is claimed
that the groups B(r; β, γ, δ) are resistant when δ 6= 0 and this is false. The second misstatement
is in the description of the automorphism groups of the groups B(r; β, γ, 0) in [DRV07, Lemma
A.14]. Specifically, the group B(r; 1, γ, 0) has automorphisms with e = ±1 in the notation of that
result whereas it is claimed that e = 1. This leads the authors to work under the assumption
that β = 0 in the proof of [DRV07, Theorem 5.8]. In the case that β = 0 we are convinced that
their calculations are accurate. In this note we determine automorphism groups of B(r; β, γ, δ)
for all maximal class 3-groups of order at least 35 in Proposition 3.3 and we hope this may be of
some independent value. We have also included explicit calculations of various other facts that
we could perhaps have cited to other sources. For example, an expression similar to that given in
Proposition 3.2 (iii) appears in the discussion which precedes [Maz08, Proposition 3.4].

The results from [DRV07] have 26 MathSciNet citations (August 2018). Many of these use facts
about the groups B(r; β, γ, δ). For example Mazza [Maz08] uses [DRV07, Proposition A.9 (a)] to
calculate correctly that there are elements of order 3 in the group S = B(r; 1, 0, 2) which are not
in γ1(S) (we give an explicit proof of [DRV07, Proposition A.9 (a)] in Section 3). Other citations
use [DRV07] to present examples of exotic fusion systems or 3-local compact groups and so they
are not impacted by the existence of further saturated fusion systems. There are two true uses
of the classification of these fusion systems that we know of. The first is in a paper of Sambale
[Sam13] where the classification is used to verify a conjecture of Olsson for certain 3-blocks with
maximal class defect groups. In an e-mail exchange, Sambale has explained that his result also
holds when the new fusion systems are taken into account. The second is by Malle, Navarro and
Sambale in [MNS17] where they propose upper bounds for the number of modular constituents
of the reduction modulo p of a complex irreducible character of a finite group. As far as we can
tell the existence of the fusion systems in (i) and (ii) of Theorem 1.1 do not change the results in
[MNS17] as they do not have F -essential subgroups of order 27.

We assume familiarity with the background needed to work with fusion systems and just refer
to [AKO11, Cra11] as our sources.
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2. Maximal class 3-groups of order at least 35

Let S = B(r; β, γ, δ) be a maximal class 3-group with r ≥ 5 as described in Section 1. We set

γ1(S) := 〈s1, . . . , sr−1〉
and, for i > 1,

γi(S) = [γi−1(S), S].

As S has maximal class, using R2 we obtain

Lemma 2.1. For 1 ≤ i ≤ r− 1, γi(S) = 〈si, . . . , sr−1〉 and S > γ2(S) > · · · > γr−1(S) is the lower
central series of S. In particular, |γr−1(S)| = |Z(S)| = o(sr−1) = 3. �

Lemma 2.2. Either β = 0 and γ1(S) is abelian or β 6= 0, γ1(S) has centre γ3(S) and derived
group γr−1(S). In particular, γ2(S) is abelian and γ1(S) = CS(γr−2(S)) = CS(γ2(S)/γ4(S)) is
characteristic in S.

Proof. Since r ≥ 5, R2 implies s1 centralizes γr−2(S) = 〈sr−2, sr−1〉 which is abelian. Since
CS(γr−2(S)) is normal in S and s1 ∈ CS(γr−2(S)), the fact that S has maximal class implies
that CS(γr−2(S)) = γ1(S). Hence γr−2(S) ≤ Z(γ1(S)). Assume that γe(S) ≤ Z(γ1(S)) for some
3 < e ≤ r− 2. Then se−1 centralizes γe(S) and so γe−1(S) is abelian and R2 implies s1 centralizes
γe−1(S). Since S has maximal class, this implies CS(γe−1(S)) = γ1(S). Thus γe−1(S) ≤ Z(γ1(S))
and we conclude that γ3(S) ≤ Z(γ1(S)) by induction. Now γ2(S) is abelian and so if s1 and s2
commute, then γ1(S) is abelian, whereas if s1 and s2 do not commute, then Z(γ1(S)) = γ3(S),
γ2(S) is abelian and γ1(S)′ = γr−1(S). This proves the claim. �

Lemma 2.3. We have Ω1(γ1(S)) = 〈sr−1, sr−2〉. In particular, every subgroup of γ1(S) is 2-
generated.

Proof. By R3, we have Ω1(γ1(S)) ≥ 〈sr−1, sr−2〉. Assume that Ω1(γ1(S)) 6= 〈sr−1, sr−2〉. If γ1(S) is
abelian, then Ω1(γ1(S)) has exponent 3 and, as γ1(S) is characteristic in S, Ω1(γ1(S)) ≥ γr−3(S).
However, R3 shows that s3r−3 = s2r−1, a contradiction. Hence, if γ1(S) is abelian, the result holds.
Furthermore, in this case we have that every subgroup of γ1(S) is 2-generated.

Suppose that γ1(S) is non-abelian. Then the derived subgroup of γ1(S) is γr−1(S) by
Lemma 2.2. Notice that S = S/γr−1(S) ∼= B(r − 1; 0, 0, 0). Thus Ω1(γ1(S))/γr−1(S) ≤
〈sr−3γr−1(S), sr−2γr−1(S)〉 by applying the previous case to S. This shows that Ω1(γ1(S)) ≤
〈sr−3, sr−2, sr−1〉 and as r ≥ 5, again we see that sr−3 has order 9 by R3 and we conclude that
Ω1(γ1(S)) = 〈sr−1, sr−2〉 in this case also.

Finally, assume that A ≤ γ1(S) is at least 3-generated. If A does not contain γr−1(S), then
A is isomorphic to a subgroup of γ1(S)/γr−1(S) and so is 2-generated, a contradiction. Hence
γr−1(S) ≤ A. Furthermore, A/γr−1(S) is 2-generated and Ω1(A/γr−1(S)) = 〈sr−2, sr−3〉γr−1(S).
Since s3r−3 = s2r−1, we have A is 2-generated a contradiction. �

Because of Lemmas 2.2 and 2.3, we have Ω1(γ1(S)/Ω1(S)) has order 32 when r ≥ 5 and since
Ωi(γ1(S))/Ω1(S) = Ωi−1(γ1(S)/Ω1(S)), by induction Ωi(γ1(S)) has order at most 32i for each
1 ≤ i ≤ b r

2
c. In particular, γ1(S) has exponent at most b r

2
c.

Lemma 2.4. If x ∈ S \γ1(S), then CS(x) = 〈x, sr−1〉 has order 9 and all the elements of the coset
xγ2(S) are S-conjugate.

Proof. Suppose that x ∈ S \ γ1(S). Then CS(x) = 〈x〉Cγ1(S)(x). Obviously, γr−1(S) ≤ Cγ1(S)(x)
and we know from Lemma 2.2 that γ1(S)′ ≤ γr−1(S). This means that Cγ1(S)(x) is normal in
〈x, γ1(S)〉 = S. Assume that Cγ1(S)(x) > γr−1(S). Then sr−2 ∈ Cγ1(S)(x). As r ≥ 5, r − 2 ≥ 3
and so sr−2 is centralized by 〈x, s1〉 = S, and this contradicts Z(S) = γr−1(S). It follows that
CS(x) = 〈x, sr−1〉 has order 9 and that |xS| = 3r−2 = |xγ2(S)|. This proves the result. �
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3. Automorphisms of maximal class 3-groups

We continue to assume that S = B(r; β, γ, δ) with r ≥ 5. We will repeatedly use the commutator
formulae

[xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z]

and

[x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z]

without mention. In particular, we note the following consequence of these relations in our sit-
uation. Suppose that a, b ∈ S, and v, w ∈ γ2(S). Then, as γ2(S) is abelian by Lemma 2.2, we
have

[av, bw] = [a, w][a, b][v, b].

Lemma 3.1. Suppose that S = B(r; β, γ, δ), let d ∈ {0, 1, 2} and e, f ∈ {1, 2}. The following
identities hold.

(i) w3[w, s]3[w, s, s] = w3[w, s2]3[w, s2, s2] = 1 for all w ∈ γ2(S).

(ii) [[sf1 , s
e], sd1] = s2defβr−1 .

(iii) (sf1)3[sf1 , s
e]3[sf1 , s

e, se] = sfγr−1.

Proof. Write w = se22 . . . s
er−1

r−1 for suitable ej ∈ {0, 1, 2}. Then, as γ2(S) is abelian,

[w, s] =
r−1∏
j=2

[sj, s]
ej =

r−1∏
j=2

s
ej
j+1

and

[w, s, s] =
r−1∏
j=2

[sj+1, s]
ej =

r−1∏
j=2

s
ej
j+2.

Therefore

w3[w, s]3[w, s, s] =
r−1∏
j=2

s
3ej
j

r−1∏
j=2

s
3ej
j+1

r−1∏
j=2

s
ej
j+2 =

r−1∏
j=2

s
3ej
j s

3ej
j+1s

ej
j+2 =

r−1∏
j=2

(s3js
3
j+1sj+2)

ej = 1.(3.1)

Now we calculate

[w, s2] = [w, s]2[w, s, s]

and, by using Equation 3.1 with [w, s, s] in place of w for the final equality,

[w, s2, s2] = [[w, s]2[w, s, s], s2]

= [w, s, s2]2[w, s, s, s2]

= ([w, s, s]2[w, s, s, s])2[w, s, s, s]2[w, s, s, s, s]

= [w, s, s]4[w, s, s, s]4[w, s, s, s, s]

= [w, s, s][w, s, s, s].

We obtain:

w3[w, s2]3[w, s2, s2] = w3([w, s]6[w, s, s]3)[w, s, s][w, s, s, s]

= w3[w, s]3[w, s, s][w, s]3[w, s, s]3[w, s, s, s]

= 1.
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This proves (i). We also calculate

[[sf1 , s
e], sd1] =


[s2, s

d
1] = s2dβr−1 if e = f = 1;

[s22s
2β
r−1, s

d
1] = sdβr−1 if e = 1, f = 2;

[s22s3, s
d
1] = sdβr−1 if e = 2, f = 1;

[s42s
4
3s4, s

d
1] = [s2, s

d
1] = s2dβr−1 if e = f = 2.

Hence (ii) holds.
For part (iii), the case e = f = 1 is immediate using R2 and R5. Suppose that e = 1 and f = 2.

Then, as [s1, s, s1] ∈ γ1(S)′ ≤ γr−1(S) which has order 3, [s1, s, s1]
3 = 1 and so

(s21)
3[s21, s]

3[s21, s, s] = s61([s1, s][s1, s, s1][s1, s])
3[[s1, s][s1, s, s1][s1, s], s]

= s61[s1, s]
6[[s1, s][s1, s, s1][s1, s], s] = s61s

6
2[s

2
2, s]

= s61s
6
2s

2
3 = s31s

3
1s

3
2s3s

3
2s3 = (s31s

3
2s3)

2 = s2γr−1.

Now we calculate when e = 2 and f = 1,

s31[s1, s
2]3[s1, s

2, s2] = s31(s
2
2s3)

3[s22s3, s
2] = s31s

6
2s

3
3s

4
3s

4
4s5 = s31s

3
2s3 = sγr−1.

Finally, assume that e = f = 2. Then

(s21)
3[s21, s

2]3[s21, s
2, s2] = s61[s

2
1, s]

6[s21, s, s]
3[s21, s

2, s2]

= s61[s
2
1, s]

6[s21, s, s]
3[[s21, s]

2[s21, s, s], s
2]

= s61([s1, s][s1, s, s1][s1, s])
6[s21, s, s]

3[[s21, s]
2[s21, s, s], s

2]

= s61s
12
2 [s21, s, s]

3[[s21, s]
2[s21, s, s], s

2]

= s61s
12
2 [[s1, s][s1, s, s1][s1, s], s]

3[[s21, s]
2[s21, s, s], s

2]

= s61s
12
2 [s22, s]

3[[s21, s]
2[s21, s, s], s

2]

= s61s
12
2 s

6
3[s

4
2[s1, s, s1]

2[s22[s1, s, s1], s], s
2]

= s61s
12
2 s

6
3[s

4
2[s1, s, s1]

2s23, s
2]

= s61s
12
2 s

6
3[s

4
2s

2
3, s

2] = s61s
12
2 s

6
3[s

4
2, s

2][s23, s
2]

= s61s
12
2 s

6
3[s

4
2, s]

2[s42, s, s][s
2
3, s]

2[s23, s, s]

= s61s
12
2 s

6
3s

8
3s

4
4s

4
4s

2
5 = s61s

12
2 s

8
3s

2
4 = s61s

6
2s

2
3 = s2γr−1.

This establishes (iii). �

For v, w,∈ γ2(S), d ∈ {0, 1, 2} and e, f ∈ {1, 2} define θe,d,f,v,w : S → S by

θe,d,f,v,w :
s 7→ sesd1v

s1 7→ sf1w.

Suppose that θ = θe,d,f,v,w is one of these maps. We shall investigate the restrictions on e, d, f, v
and w required to ensure that θ is an automorphism of S.

Define t := sθ = sesd1v and t1 := s1θ = sf1w. For j > 1, set

tj := [tj−1, t].

Note that for k ≥ r, tk = 1 and tj ∈ γj(S) for all j ≥ 1. Since γ3(S) ≤ Z(γ1(S)), [t1, ti] = 1 for
i ∈ {3, . . . , r − 1}. Thus R1 and R2 are satisfied.

Notice that
[t2, t] = [t2, s

esd1v] = [t2, s
e][t2, s

d
1v]
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and

[t2, t, t] = [t2, s
e, se].

Since [t2, s
d
1v] ∈ γr−1(S), [t2, s

d
1v]3 = 1. Hence, by Lemma 3.1(i),

t32t
3
3t4 = t32([t2, s

e][t2, s
d
1v])3[t2, s

e, se] = t32[t2, s
e]3[t2, s

e, se] = 1.

Suppose that j ≥ 3. Then tj ∈ γ3(S) ≤ Z(γ1(S)) and so [tj, t] = [tj, s
e] and [tj, t, t] = [tj, s

e, se].
Therefore we can apply Lemma 3.1 again to obtain

t3j t
3
j+1tj+2 = 1.

Thus R3 is satisfied.
We start to investigate R4. We have t1 = sf1w, and for some integer n2,

t2 = [t1, t]

= [sf1w, s
esd1v]

= [sf1 , v][sf1 , s
esd1][w, s

esd1]

= [sf1 , v][sf1 , s
e][sf1 , s

e, sd1][w, s
esd1]

= [sf1 , v][sf1 , s
e][sf1 , s

e, sd1][w, s
d
1][w, s

e][w, se, sd1]

= [sf1 , s
e][w, se]sn2

r−1.

Therefore,

t3 = [t2, t]

= [[sf1 , s
e][w, se]sn2

r−1, s
esd1v]

= [[sf1 , s
e], sd1v][[sf1 , s

e], se][[w, se]sn2
r−1, s

e]

= [[sf1 , s
e], sd1v][[sf1 , s

e], se][w, se, se]

= [[sf1 , s
e], sd1][[s

f
1 , s

e], se][w, se, se].

Note that t2 = [sf1 , s
e][w, se]sn2

r−1 = sef2 g3 for some g3 ∈ γ3(S). Similarly, t3 = se
2f
3 g4 for some

g4 ∈ γ4(S). Continuing in this manner we see that tj = se
j−1f
j gj+1 for some gj+1 ∈ γj+1(S). In

particular,

(3.2) tr−1 = se
r−2f
r−1 .

Again we calculate

[t1, t2] = [sf1w, [s
f
1 , s

e][w, se]sn2
r−1] = [sf1w, [s

f
1 , s

e][w, se]]

= [sf1w, [w, s
e]][sf1w, [s

f
1 , s

e]][sf1w, [s
f
1 , s

e], [w, se]]

= [sf1w, [w, s
e]][sf1w, [s

f
1 , s

e]]

= [sf1w, [s
f
1 , s

e]]

= [sf1 , [s
f
1 , s

e]] = sef
2β

r−1 .

where the last equality follows from Lemma 3.1(ii) and the fact that sr−1 has order 3.
Therefore, for R4 to hold we must have

efβ ≡ er−2β (mod 3).

Now, recalling that γ2(S) is abelian and γr−1(S) has order 3, we calculate
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t31t
3
2t3 = (sf1w)3([sf1 , s

e][w, se]sn2
r−1)

3[[sf1 , s
e], sd1][[s

f
1 , s

e], se][w, se, se]

= (sf1w)3[sf1 , s
e]3[w, se]3[[sf1 , s

e], se][w, se, se]s2defβr−1

= (sf1)3w3[w, sf1 ]3[sf1 , s
e]3[w, se]3[[sf1 , s

e], se][w, se, se]s2defβr−1

= (sf1)3[sf1 , s
e]3[[sf1 , s

e], se]w3[w, se]3[w, se, se]s2defβr−1

= (sf1)3[sf1 , s
e]3[[sf1 , s

e], se]s2defβr−1

= sfγ+2defβ
r−1 ,

where the last equality follows from Lemma 3.1(iii).
Therefore for R5 to hold we require

2deβ ≡ γ(er−2 − 1) (mod 3).

We now determine t3 (and this calculation will be used later in a slightly different setting). First
of all notice that all the elements of the coset tγ2(S) are S-conjugate by Lemma 2.4 and t3 ∈
γ1(S) ∩ CS(t) = γr−1(S) and so (t3)b = t3 for all b ∈ S. Thus to investigate R6, we may adjust t
by conjugacy in S and rather than consider sesd1w, we cube sesd1.

(sesd1)
3 = sesd1s

esd1s
esd1

= (se)2sd1[s
d
1, s

e]sesd1[s
d
1, s

e]sd1

= (se)3sd1[s
d
1, s

e]2[sd1, s
e, se]sd1[s

d
1, s

e]sd1

= seδr−1s
d
1[s

d
1, s

e]2sd1[s
d
1, s

e]sd1[s
d
1, s

e, se]

= seδr−1s
d
1[s

d
1, s

e]3sd1[s
d
1, [s

d
1, s

e]]sd1[s
d
1, s

e, se]

= seδr−1(s
d
1)

2[sd1, s
e]3[sd1, s

e, se]sd1[s
d
1, [s

d
1, s

e]]

= seδr−1(s
d
1)

3[sd1, s
e]3[sd1, s

e, se][sd1, [s
d
1, s

e]]

= seδr−1s
dγ
r−1[s

d
1, [s

d
1, s

e]]

= seδr−1s
dγ
r−1s

d2eβ
r−1 = seδ+dγ+ed

2β
r−1 = s

e(d2β+δ)+dγ
r−1 .

Thus for R6 to be satisfied we require

(3.3) e(d2β + δ) + dγ ≡ er−2fδ (mod 3).

We have proved

Proposition 3.2. The map θe,d,f,v,w : S → S is an automorphism of S = B(r; β, γ, δ) if and only
if the following hold:

(i) efβ ≡ er−2β (mod 3).
(ii) 2deβ ≡ γ(er−2 − 1) (mod 3).

(iii) e(d2β + δ) + dγ ≡ er−2fδ (mod 3).

�

Proposition 3.3. The following hold:

(i) Suppose that r is even.
(1) Aut(B(r; 0, 0, 0)) = {θe,d,f,v,w | v, w,∈ γ2(S), d ∈ {0, 1, 2}, e, f ∈ {1, 2}} has order

22 · 32r−3.
(2) Aut(B(r; 0, 1, 0)) = {θe,0,f,v,w | v, w,∈ γ2(S), e, f ∈ {1, 2}} has order 22 · 32r−4.
(3) Aut(B(r; 0, 2, 0)) = {θe,0,f,v,w | v, w,∈ γ2(S), e, f ∈ {1, 2}} has order 22 · 32r−4.
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(4) Aut(B(r; 0, 0, 1)) = {θe,d,e,v,w | v, w,∈ γ2(S), d ∈ {0, 1, 2}, e ∈ {1, 2}} has order 2 ·
32r−3.

(5) Aut(B(r; 1, 0, 0)) = {θe,0,e,v,w | v, w,∈ γ2(S), e ∈ {1, 2}} has order 2 · 32r−4.
(6) Aut(B(r; 1, 0, 1)) = {θe,0,e,v,w | v, w,∈ γ2(S), e ∈ {1, 2}} has order 2 · 32r−4.
(7) Aut(B(r; 1, 0, 2)) = {θe,0,e,v,w | v, w,∈ γ2(S), e ∈ {1, 2}} has order 2 · 32r−4.

(ii) Suppose that r is odd.
(1) Aut(B(r; 0, 0, 0)) = {θe,d,f,v,w | v, w,∈ γ2(S), d ∈ {0, 1, 2}, e, f ∈ {1, 2}} has order

4 · 32r−3.
(2) Aut(B(r; 0, 0, 1)) = {θe,d,1,v,w | v, w,∈ γ2(S), d ∈ {0, 1, 2}, e ∈ {1, 2}} has order 2 ·

32r−3.
(3) Aut(B(r; 0, 1, 0)) = {θ1,0,f,v,w | v, w,∈ γ2(S), f ∈ {1, 2}} has order 2 · 32r−4.
(4) Aut(B(r; 1, 0, 0)) = {θe,0,1,v,w | v, w,∈ γ2(S), e ∈ {1, 2}} has order 2 · 32r−4.
(5) Aut(B(r; 1, 0, 1)) = {θe,0,1,v,w | v, w,∈ γ2(S), e ∈ {1, 2}} has order 2 · 32r−4.
(6) Aut(B(r; 1, 0, 2)) = {θe,0,1,v,w | v, w,∈ γ2(S), e ∈ {1, 2}} has order 2 · 32r−4.

Proof. We have γ1(S) = CS(γr−2(S)) is characteristic in S by Lemma 2.2. Hence every auto-
morphism of S is of the form θe,d,f,v,w for suitable e, d, f, v and w. The result now follows from
Proposition 3.2. �

Lemma 3.4. We have sr−1θe,d,f,v,w = se
r−2f
r−1 .

Proof. Let θ = θe,d,f,v,w. Then, setting t = sθ, t1 = s1θ and tj = [tj−1, t] for j ≥ 2, we have

tj = [tj−1, t] = [sj−1θ, sθ] = [sj−1, s]θ = sjθ.

Now applying Equation (3.2) yields sr−1θ = tr−1 = se
r−2f
r−1 . �

4. Fusion systems on maximal class 3-groups

Suppose that F is a saturated fusion system on S, where S is one of the groups B(r; β, γ, δ).

Lemma 4.1. Suppose that E is an F-essential subgroup. If E ≤ γ1(S), then E = γ1(S) is abelian
and AutF(E) ∼= SL2(3) or GL2(3).

Proof. If γ1(S) is abelian, then E = γ1(S) and we have nothing to do. So suppose that γ1(S) is
non-abelian. Since E is F -centric, E > γ3(S) = Z(γ1(S)). Suppose that E 6= γ1(S). Then |γ1(S) :
E| = 3 and E is abelian. Furthermore, E is normalized by γ1(S). By Lemma 2.3 |E/Φ(E)| = 9
and Ω1(γ1(S)) = 〈sr−1, sr−2〉. Since E is F -essential, [E, γ1(S)] 6≤ Φ(E) and so we deduce that
γr−1(S) 6≤ Φ(E). It follows that E is cyclic and therefore E is not essential, a contradiction. Hence
E = γ1(S). Since |E/Φ(E)| = 9, we now have OutF(E) ∼= SL2(3) or OutF(E) ∼= GL2(3). Since
the Sylow 2-subgroup of AutF(E) has to act faithfully on Ω1(E) = 〈sr−1, sr−2〉, we deduce that
γr−1(S) 6= γ1(S)′ and this is a contradiction. �

Lemma 4.2. Suppose that E is an F-essential subgroup of S and E 6≤ γ1(S). The following hold:

(i) Eγ2(S)/γ2(S) has order 3;
(ii) OutF(E) ∼= SL2(3) or OutF(E) ∼= GL2(3); and
(iii) E is either extraspecial of order 33 or elementary abelian of order 32.

Furthermore, if F is F-essential with Eγ2(S) = Fγ2(S), then E and F are S-conjugate. In
particular, F has at most four S-classes of F-essential subgroups.

Proof. Since Φ(S) = γ2(S), E 6≤ γ1(S) and E 6= S, we have |Eγ2(S)/γ2(S)| = 3 which is (i).
Using [VL91, Lemma 1.2] with Lemma 2.2 yields that Eγ2(S) has maximal class and we know
γ2(S) is abelian. We may repeat this argument until we obtain E = Eγi(S) for some i ≥ 2 has
maximal class. In particular, |E/Φ(E)| = 9 and so, as E is F -essential, either OutF(E) ∼= GL2(3)
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or OutF(E) ∼= SL2(3). This proves (ii). Suppose that |E| ≥ 34. We obtain a contradiction by
showing that AutF(E) does not possess a subgroup of order 8. This follows immediately from
Proposition 3.3 when |E| ≥ 35. The case |E| = 34 is a straightforward computation (for example
using Magma [BCP97]). Hence |E| ∈ {32, 33} and E has exponent 3. This demonstrates (iii)
holds.

Notice that E ≥ Z(S) = γr−1(S) ≥ γ1(S)′ and so E ∩ γ1(S) is normalized by S. Therefore, as
Ω1(γ1(S)) = 〈sr−2, sr−1〉 by Lemma 2.3,

E ∩ γ1(S) =

{
γr−1(S) if |E| = 9; and

γr−2(S) if |E| = 27.

Suppose F is an F -essential subgroup with E < F . Then E is elementary abelian of order 9 and
F is extraspecial of order 27. Since AutF(F ) acts transitively on the maximal subgroups of F , E
is AutF(F )-conjugate to γr−2(S). This contradicts the fact that E is fully F -normalized and we
conclude that there is no such containment.

Suppose that Eγ2(S) = Fγ2(S). We may assume that E∩γ1(S) ≤ F ∩γ1(S). Let x ∈ E \γ2(S)
and y ∈ F \ γ2(S) be such that xγ2(S) = yγ2(S). Then by Lemma 2.4, x and y are S-conjugate.
Hence we may suppose that x ∈ E ∩F . Then E = 〈x〉(E ∩ γ2(S)) and F = 〈x〉(F ∩ γ2(S)). Hence
E ≤ F and thus E = F as claimed. �

For x ∈ S\γ1(S) to be contained in an elementary abelian subgroup of order 9 or an extraspecial
subgroup of order 27, it suffices that x has order 3 since then 〈x〉γr−1(S) and 〈x〉γr−2(S) are such
subgroups. Using Equation (3.3) we see that ssd1 has order 3 if and only if

d2β + δ + dγ ≡ 0 (mod 3).

Table 1 lists the groups B(r; β, γ, δ) and cosets ssd1γ2(S) which consist of elements of order 3.

S sγ2(S) ss1γ2(S) ss21γ2(S) S sγ2(S) ss1γ2(S) ss21γ2(S)

B(r; 0, 0, 0), r even X X X B(r; 0, 0, 0), r odd X X X

B(r; 0, 1, 0), r even X B(r; 0, 1, 0), r odd X

B(r; 0, 2, 0), r even X B(r; 0, 0, 1), r odd

B(r; 0, 0, 1), r even B(r; 1, 0, 0), r odd X

B(r; 1, 0, 0), r even X B(r; 1, 0, 1), r odd

B(r; 1, 0, 1), r even B(r; 1, 0, 2), r odd X X

B(r; 1, 0, 2), r even X X

Table 1. Elements of order 3 in the designated cosets of S = B(r; β, γ, δ)

At this stage, we can confirm that if β = 0, then all the potential fusion systems have been
discovered by [DRV07, Theorem 5.10].

Lemma 4.3. Suppose that E is F-essential. Then
NAutF (E)(AutS(E)) = {β|E | β ∈ AutF(NS(E)), Eβ = E} = {α|E | α ∈ AutF(S), Eα = E}.

Proof. Recall the definition of HE from [AKO11, Proposition I.3.3]. Then, as E is F -essential,
HE/ Inn(E) is strongly p-embedded in OutF(E). Since, by Lemmas 4.1 and 4.2 (ii),OutF(E) ∼=
SL2(3) or GL2(3), HE = NAutF (E)(AutS(E)). Let θ be a generator of HE. Then, by definition,
there exists R > E and ψ ∈ HomF(R, S) with Eψ = E such that θ = ψ|E. Thus ψ|NR(E) ∈
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Hom(NR(E), S). Since |NS(E)/E| = 3, NR(E) = NS(E) and so ψ|NS(E) ∈ AutF(NS(E)) and
θ = ψ|E. It follows that

HE = {ψ|E | ψ ∈ AutF(NS(E)), Eψ = E}
and so the first equality holds.

By Lemmas 4.1 and 4.2, no F -essential subgroup properly contains E, so every element of
AutF(NS(E)) is the restriction of an element of AutF(S) by Alperin’s Theorem [AKO11, Theorem
I.3.5]. This provides the second asserted equality. �

Lemma 4.4. Assume that γ1(S) is F-essential. Then r is odd and (β, γ, δ) ∈ {(0, 0, 0), (0, 1, 0)}.

Proof. Let A = γ1(S) and assume that A is F -essential. Then A is abelian and AutF(A) contains
a normal subgroup isomorphic to SL2(3) by Lemma 4.1. We conclude that all the elements of
A \ Φ(A) have the same order and so |A| = 32k for some k ≥ 2 and r is odd. Let τA be an
element of order 2 in AutF(A) which corresponds to the centre of SL2(3). Then τA = σ|A for some
σ ∈ AutF(S) and σ centralizes S/A and inverts A/γ2(S). Now consulting Proposition 3.3 delivers
the conclusion (β, γ, δ) ∈ {(0, 0, 0), (0, 1, 0)}. �

Lemma 4.5. Let F be a saturated fusion system on B(r; 0, γ, δ) with at least one class of F-
essential subgroups. Then F is as described in [DRV07, Theorem 5.10].

Proof. Lemma 4.2 and Table 1 indicate that the groups B(r; 0, 0, 1) have no F -essential subgroups
which are not contained in γ1(S). This shows that all candidates for S have been considered in
[DRV07, Theorem 5.10]. Here we note that Table 1 indicates that E0 and V0 have exponent 3 when
S = B(r; 0, 1, 0). If r is even, we obtain the examples in [DRV07, Theorem 5.10] whereas when r is
odd there are no examples. To understand this observe that E0γ2(S) = V0γ2(S) = 〈s〉γ2(S). If E
is one of E0 or V0 and is F -essential, then OutF(E) contains a subgroup isomorphic to SL2(3) and
hence an element σ of order 2 which inverts E/Φ(E) and so also 〈s〉Φ(E)/Φ(E). By Lemma 4.3
σ is the restriction of an automorphism σ∗ of S. However Proposition 3.3 (ii)(3) shows that every
automorphism of S which normalizes Eγ2(S) actually centralizes 〈s〉γ2(S)/γ2(S) and so we have
no candidates for σ∗. Thus we recover the results from [DRV07, Theorem 5.10] in this case. �

From now on we assume that β 6= 0. For d ∈ {0, 1, 2} define

Vd = 〈ssd1, sr−1〉 and Ed = 〈ssd1, sr−1, sr−2〉.
Hence Vd is abelian of order 9 and Ed is extraspecial of order 27. In addition, Vd and Ed have
exponent 3 if and only if ssd1 has order 3. Thus using Table 1 we obtain the following table of
possible F -essential subgroups up to S-conjugacy.

S E0 E1 E2 V0 V1 V2

B(r; 1, 0, 0) X X

B(r; 1, 0, 1)

B(r; 1, 0, 2) X X X X

Table 2. Candidates for the F -essential subgroups

We record the following result:

Lemma 4.6. B(r; 1, 0, 1) is resistant.

Proof. By Lemma 4.4, γ1(S) is not F -essential and there are no other candidates for essential
subgroups by Table 2. �
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Lemma 4.7. Suppose that S = B(r; 1, 0, 0) and F is a saturated fusion system on S which has at
least one F-conjugacy class of F-essential subgroups. Then V0 represents the unique such class,
AutF(V0) ∼= SL2(3), |OutF(S)| = 2 and either

(i) r is even and F is reduced; or
(ii) r = 2k+ 1 is odd, and O3(F) is a subsystem of index 3 isomorphic to the fusion system of

PSL3(q) for some prime power q with v3(q − 1) = k.

Proof. Let D be an F -essential subgroup. Using Table 2 we see that up to S-conjugacy D = V0 or
D = E0. By Lemma 4.3, |OutF(S)| ≥ 2 so we conclude from Proposition 3.3 that |OutF(S)| = 2.
Thus without loss of generality, we define θ ∈ AutF(S) via:

θ :=

{
θ2,0,2,1,1 if r is even;

θ2,0,1,1,1 if r is odd.

We see that θ inverts s and from Lemma 3.4,

sr−1θ =

{
sr−1θ2,0,2,1,1 = s2

r−2.2
r−1 = s−1r−1 if r is even;

sr−1θ2,0,1,1,1 = s2
r−2

r−1 = s−1r−1 if r is odd.

By Lemma 4.3 we have OutF(D) ∼= SL2(3) and the central involution in OutF(D) is the image
of θ|D. If D = E0, then θ|D centralizes Z(D) = γr−1(S) so we conclude that D = V0. Now
NS(D)〈θ|NS(D)〉 is isomorphic to the normalizer of the Sylow 3-subgroup M of a group P isomorphic
with 32 : SL2(3) and so the amalgamated product G = P ∗M S〈θ〉 realizes F = FS(G). Since D is
minimal among all F -centric subgroups of S, F is saturated by [Sem14, Theorem C].

If r is even then S = [S, θ] so foc(F) = S and F is reduced as θ|D ∈ O3′(AutF(D)). If r is odd,
then, since θ centralizes s1,

[S, θ] = 〈s, γ2(S)〉 = 〈s, s2, s3, . . . , sr−1〉 ∼= B(r − 1; 0, 0, 0).

Since D, Ds1 and Ds21 are O3(F)-essential and not fused in O3(F), the result follows from [DRV07,
Tables 2,4]. �

Lemma 4.8. Suppose that S = B(r; 1, 0, 2) and F is a saturated fusion system on S which has
at least one F-conjugacy class of F-essential subgroups. Then r is even and one of the following
holds:

(i) V1 represents the unique F-conjugacy class of F-essential subgroups, AutF(V1) ∼= SL2(3),
|OutF(S)| = 2 and F is reduced;

(ii) V2 represents the unique F-conjugacy class of F-essential subgroups, AutF(V2) ∼= SL2(3),
|OutF(S)| = 2 and F is reduced; or

(iii) there are two F-conjugacy classes of F-essential subgroups represented by V1 and V2 with
AutF(V1) ∼= AutF(V2) ∼= SL2(3), |OutF(S)| = 2 and F is reduced.

Proof. Let D be an F -essential subgroup. By Table 2 we have D ∈ {V1, V2, E1, E2} up to
S-conjugacy. Arguing as in Lemma 4.7 (using Lemma 4.3 and Proposition 3.3) we see that
|OutF(S)| = 2. If r is odd then AutF(S) permutes {〈ss1〉γ2(S), 〈ss21〉γ2(S)} transitively by Propo-
sition 3.3. In particular no element of AutF(S) of order 2 normalizes an element of {V1, V2, E1, E2}.
Using Lemma 4.3 we deduce that r is even. Set

θ :=

{
θ2,0,2,1,s2s−1

r−1
if D ∈ {V1, E1}

θ2,0,2,s22,1 if D ∈ {V2, E2}.

Then sr−1θ = s−1r−1 and so as OutF(D) ∼= SL2(3) we see as before that D ∈ {V1, V2}. Observe that
if D = V1, then

(ss1)θ = sθs1θ = s2s21s2s
−1
r−1 = (ss1)

−1
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and, if D = V2, then
(ss21)θ = sθ(s1θ)

2 = s2s22s
4
1 = (ss21)

−1.

Thus θ inverts D as required.
Again observe that S = [S, θ] so foc(F) = S and F is reduced as θ|D ∈ O3′(AutF(D)). For

i = 1, 2, NS(Vi)〈θ|NS(Vi)〉 is isomorphic to the normalizer of the Sylow 3-subgroup Mi of a group
Pi isomorphic with 32 : SL2(3). Hence there is an amalgamated product Gi = Pi ∗Mi

S〈θ〉 which
realizes a fusion system Fi = FS(Gi) satisfying the conditions in (i) and (ii) respectively. Since
Vi is minimal among all Fi-centric subgroups of S, Fi is saturated by [Sem14, Theorem C]. In
particular there are unique fusion systems satisfying these conditions. Now, since V2 is a fully
F1-normalized subgroup which is minimal among all F1-centric subgroups of S, [Sem14, Theorem
C] also implies that 〈F1,F2〉 is saturated. This is the unique fusion system described by (iii). �

Lemma 4.9. The fusion systems described in Lemmas 4.7 and 4.8 are exotic.

Proof. Suppose that F represents one of the fusion systems of interest and let S = B(r; 1, 0, 0) or
B(r; 1, 0, 2). If C is a non-trivial strongly F -closed subgroup of S, then C is normal in S and so
sr−1 ∈ C. Thus C ∩ V 6= 1 where V is an F -essential subgroup. It follows that V ≤ C and then
〈V S〉 = V γ2(S) ≤ C. In fact V γ2(S) is strongly F -closed if S = B(r; 1, 0, 0) or S = B(r; 1, 0, 2)
and F has only one F -class of F -essential subgroups. Since 〈V S〉 ∼= B(r − 1; 0, 0, 0), [DRV07,
Proposition 2.19] applies to say that if F is realised by a finite group G, then it is realized by
an almost simple group. Now the arguments in [DRV07, page 1751 (a), (b) and (c)] prove the
result. �
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