Speleothem biomarker evidence for a negative terrestrial feedback on climate during Holocene warm periods

Wang, Canfa; Bendle, James; Greene, Sarah; Griffiths, Michael L.; Huang, Junhua; Moossen, Heiko; Zhang, Hongbin; Ashley, Kate; Xie, Shucheng

DOI: 10.1016/j.epsl.2019.115754

License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Citation for published version (Harvard):
Highlights

- The first compound specific δ¹³C analysis of fatty acids from a stalagmite
- Proportional increases in C₃ plants during warmer/wetter Holocene intervals
- Soil respiration is more substrate selective during warmer/wetter Holocene intervals
- Primary production outpaces soil respiration during warmer/wetter Holocene intervals
- Subtropical mineral soils act as a negative feedback in a warmer/wetter climate
Speleothem Biomarker Evidence for a Negative Terrestrial Feedback on Climate During Holocene Warm Periods

Canfa Wanga,b, James A. Bendleb, Sarah E. Greeneb, Michael L. Griffithsc, Junhua Huangd, Heiko Moossenb, Hongbin Zhanga, Kate Ashleyb, Shucheng Xiea*

a State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China

b School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK

c Department of Environmental Science, William Paterson University, Wayne, NJ 07470, USA

d State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China

\footnotesize{* Corresponding author. Tel: +862767883001 Fax: +862767883002 E-mail address: xiecug@163.com (S. Xie).}
Abstract

Understanding how terrestrial carbon storage feeds back on warm climate states is critical for improving global warming projections. Soils may act as a positive feedback on climate if warming increases soil carbon decomposition rates. Conversely, if increases in net primary production (NPP) exceed increases in decomposition, the climate feedback will be negative. Here we utilize the first palaeoclimatic application of compound-specific δ^{13}C measurements on n-fatty acid biomarkers (extracted from a stalagmite from central China) to constrain the response of catchment terrestrial carbon cycle feedbacks during warmer phases of the Holocene. We resolve proportional increases in C$_3$ plants in the catchment area during these warmer/wetter intervals. Moreover, we infer that heterotrophic soil respiration was highly substrate selective, indicating that NPP outpaced decomposition and the catchment behaved as a carbon sink (mediated and enhanced by changes in the relative proportion of C$_3$ vs C$_4$ plants). Thus, we provide palaeoclimate evidence that subtropical soils in a warmer/wetter climate acted as a sink for organic carbon, and thus as a negative climate feedback, during warmer climatic phases.

Keywords

Speleothem; Fatty acids; Carbon isotope; Vegetation; Soil respiration; Negative feedback
1. Introduction

Constraining the effect of climate change on terrestrial respiration and associated feedbacks is critical to furthering our understanding of the global carbon cycle (Mahecha et al., 2010). Globally, soil respiration contributes ca. 100 PgC/yr from the soil to the atmosphere and is sensitive to changes in temperature and precipitation (Bond-Lamberty and Thomson, 2010). If warming increases decomposition rates and transfers carbon stored belowground to the atmosphere, a positive feedback to climate change will occur. Conversely, if increases of plant-derived carbon inputs to soils exceed increases in decomposition, the feedback will be negative. Laboratory and mesocosm experiments to interrogate the response of soil carbon to climate change show highly variable results (see review by Davidson and Janssens (2006) and refs therein). Moreover, laboratory and mesocosm experiments have limited ecosystem complexity and operate on limited timescales, from years to decades (Melillo et al., 2017). Thus, the longer-term climate sensitivity of soil organic matter and global soil carbon stocks, at the whole ecosystem level, is still subject to debate (Davidson and Janssens, 2006). An alternative to laboratory and mesocosm studies is to use palaeoclimate data, which inherently incorporates the response of the whole system. A recent ice-core based study used centennial scale data to derive an estimate for the response of gross primary production and ecosystem respiration to cold climate state during the Little Ice Age cooling (LIA) (Rubino et al., 2016). However, the sensitivity of ecosystem respiration to past warm climate states has not yet been investigated as we lack geological proxies to quantify net primary production and terrestrial respiration. Constraining the intensity of feedback mechanisms between terrestrial ecosystems and warmer climates, on longer timescales, and in natural settings, is central to understanding the global carbon cycle, and thus a prerequisite for reliable future climate projections.

Speleothems are versatile terrestrial archives of palaeoclimate because they have the ability to record changes in ambient environmental conditions at the time of deposition, and can preserve
material transported from overlying ecosystems via karst drip waters (Fairchild and Baker, 2012).

Normal (n-) alkyl lipid biomarkers are produced by higher plants, algae, and bacteria, and are preserved in various palaeoclimate archives. In speleothems, however, n-alkyls have the potential to constrain these ambiguities and isolate catchment vegetation and bacterial changes. The δ^{13}C of high molecular weight n-alkyls (leaf waxes predominantly produced by higher plants) preserved in lake (Huang et al., 2001) and marine (Hughen et al., 2004) sediments, along with palaeosols (Zhang et al., 2006), has been used extensively to reconstruct changes in the relative abundance of C_3 vs C_4 plants. Low molecular weight n-alkyl δ^{13}C records are typically overlooked in palaeoclimate archives because they are produced by three end-members (plants, algae, and bacteria), rendering interpretation challenging. In speleothems though, algal contributions are likely minimal (Fairchild and Baker, 2012), meaning that low molecular weight n-alkyls derive from a simpler two end-member system, produced by higher plants and bacteria. Therefore, the compound-specific records of δ^{13}C entrapped in the calcite can be more directly linked to sources and processes (e.g. bacterial respiration, catchment vegetation, etc.) (Blyth et al., 2016), something which cannot, for example, be achieved from the carbon isotope compositions of bulk calcite (Fairchild and Baker, 2012; Genty et al., 2003), operationally defined organic matter (e.g. acid-soluble organic matter (ASOM) (Li et al., 2014), or non-purgeable organic carbon (NPOC) (Blyth et al., 2013)). Hence, the δ^{13}C of lipid biomarkers in speleothems represents a uniquely direct line of evidence for vegetation and bacterial changes in terrestrial ecosystems.

Here we present the first record of soil bacterial respiration (a critical component of terrestrial ecosystem respiration) and vegetation changes from central East Asia using compound-specific carbon isotopes extracted from a cave speleothem covering the past 9,000 years. Our novel record is based on the δ^{13}C of low molecular weight (LMW; ≤C_{20}) and high molecular weight (HMW; >C_{20}) n-fatty acids (a subset of n-alkyls) from a previously-reported Holocene speleothem (HS4) recovered from Heshang Cave (Hu et al., 2008b) (Fig. 1), located in
the East Asian monsoon region of central China (Wang et al., 2018). The temperature and hydrological conditions in this region have been reconstructed by multiple proxies from the HS4 stalagmite (Wang et al., 2016; Wang et al., 2018; Xie et al., 2013; Zhu et al., 2017). The 3-hydroxy fatty acid (3-OH-FA) biomarker based RAN$_{15}$ proxy reconstructs mean annual temperature variations of ca.16 to 21°C during the last 9 ka BP, with a relatively warm period in the early to middle Holocene (8.0–6.0 ka BP), and then a relatively cool period in the late Holocene (Wang et al., 2018) (see Fig. 5d). The hydrological conditions for the region have also been reconstructed from multiple archives and proxies, including the 3-OH-FA biomarker-based RIAN proxy from the HS4 stalagmite (Fig. 5g), which, for the Holocene, indicate two relatively long wet periods and one relatively dry period, 8.8–5.9 ka BP, 3.0–0 ka BP and 5.9–3.0 ka BP respectively (Wang et al., 2018; Xie et al., 2013; Zhu et al., 2017). In this current study we demonstrate a marked increase in C$_3$ vegetation during warm periods of the Holocene epoch, namely the Holocene Climate Optimum (HCO; ca. 4.4 to 8.8 ka BP) and Medieval Warm Period (MWP). Moreover, a deconvolved record of soil bacterial respiration and substrate selectivity implies that the catchment behaved as a net carbon sink during these warm intervals, thus acting as a negative climate feedback.

2. Materials and Methods

2.1 Study site and sample information

Heshang Cave is located at 294m above sea level (a.s.l.), in the Qing River, a tributary in the middle reaches of the Yangtze River, central China (30°27′N, 110°25′E). Heshang Cave is a dissolutorial cave system formed in Cambrian dolomite, the overlying dolomite is ca. 400 m thick and is capped with a mature layer of soil (20-40 cm-thick) and reasonably dense vegetation (Hu et al., 2008a). The regional climate is strongly impacted by the East Asian Monsoon, with a hot and moist summer, but relatively cold and dry winter (An, 2000). The average annual precipitation in this region is 1161 mm, based on the recent 64 years (1951-2014) of
meteorological data from Yichang station (located ca.100 km east of Heshang Cave). The
seasonal temperature ranges, inside and immediately outside the cave, were constrained by 2-h
resolution logging between 2003 - 2007 using HOBO H8 Pro T loggers (Hu et al., 2008a). The
modern temperature immediately outside the cave varies seasonally from 3°C to 30°C, with an
annual average of 18°C and is statistically identical to that of the nearest government
meteorological station at Changyang county (Hu et al., 2008a).

The HS4 stalagmite is 2.5 m long, and was actively growing when collected from ca. 150 m
within Heshang Cave in 2001. Soil samples were collected in 2013 from the thin soil layers
overlying Heshang Cave, more details were reported in Wang et al. (2018). A detailed description
of the age model of HS4 stalagmite can be found in Hu et al. (2008b).

2.2 Lipid Extraction and Work-Up

In order to prevent external contamination during the experiments, all the glassware was first
soaked overnight in a decontamination solution, then rinsed in deionised water, dried and
combusted for 6h at 500°C. All solvents were purchased at the highest purity available (Absolv,
TEDIA) and were checked for purity using gas chromatography–mass spectrometry prior to use.
The HCl was pre-extracted with dichloromethane (DCM, ×4), and all other reagents were tested
for background contaminants.

The stalagmite samples were treated with an optimized acid digestion method following
Wang et al. (2012). In brief, 10 grams of stalagmite sample were digested with 3M HCl, then
re-fluxed at 130°C for 3 hours with a condenser/ electrothermal heating mantle assembly. An
internal standard (pregn-5-en-3.belta.-ol) was quantitatively added to each sample to quantify the
amount of lipids in the stalagmite. After cooling, the residue was extracted by dichloromethane
(15mL×4) and the extracts combined. Solvents were removed by rotary evaporation (Buchi R210)
under reduced pressure.
The condensed lipids were further derivatized by BF$_3$-methanol (14% BF$_3$/methanol, Sigma) before undergoing column separation. The elute solvent are successively in Hexane, Hexane:DCM (2:1, v/v), DCM and Methanol. The fatty acid methyl esters are in the DCM eluted fraction.

2.3 Instrumental Analysis

Identification of n-alkanoic acids was performed on an Agilent 7890B gas chromatograph (GC) coupled to an Agilent 5977A mass spectrometer (MS) using a BPI fused silica capillary column (60 m×0.25 mm id.; 0.25 μm film thickness). The GC oven temperature was programmed from 70°C to 130°C at 10°C per min, then from 130°C to 340°C at 3°C per min, and finally held at 340°C for 10 min. The carrier gas was Helium (2.7 mL/min). The MS was operated in electron-impact (EI) mode, the ionization energy was set at 70 eV and the scan range was from 50 to 550 aum.

All the stalagmite samples were quantified on an Agilent 7890B gas chromatograph-FID detector for quantification, separation was performed on a BPI fused silica capillary column (60 m×0.25 mm id.; 0.25 μm film thickness). The GC oven temperature was programmed from 70°C (1 min) to 150°C ramped at 30°C per min, then from 150°C to 340°C at 3°C per min, and finally held at 340°C for 10 min.

Compound-specific δ13C analyses of the C$_{16}$, C$_{18}$, C$_{22}$, C$_{24}$ n-fatty acids were performed on an Agilent 7890A GC coupled to an Isoprime GC5 furnace and an IsoPrime100 isotope ratio mass spectrometer. The Isoprime GC5 contains a CuO furnace tube and is kept at 850°C. The GC was equipped with a 60 m BPI column (SGE) (i.d. = 0.25 mm, film thickness = 0.25 μm), with helium as the carrier gas, set at a constant flow of 1.7 ml/min, the oven was programmed from 70°C (1 min) to 150°C ramped at 30°C /min, then from 150°C to 340°C at 3°C per min, and finally held at 340°C for 5 min.
The carbon isotope values are reported as per mil (‰) deviations from Vienna Pee Dee Belemnite (VPDB) in standard delta notation. A homemade mixture of \(n \)-alkanes standard and an authenticated standard \(n \)-fatty acid methyl and ethyl esters mixture with known \(\delta^{13}C \) (F8; Arndt Schimmelmann, Indiana University) were measured regularly between a maximum of 5 sample injections to test the conditions of the instrument and determine the \(\delta^{13}C \) values of the \(n \)-alkanoic acids. Each sample was run at least in duplicate.

Correcting the derivatisation effect on \(\delta^{13}C \) isotopic signature of the fatty acids was done following Polissar and D’Andrea (2014). The determination of the \(\delta^{13}C \) of the methanol is calibrated by a phthalic acid standard with a known \(\delta^{13}C \) value bought from A. Schimmelmann, Indiana University.

2.4 Calculation of carbon isotopic values of fatty acids derived from bacteria

We isolate the bacterial contribution to the \(n \)-C\textsubscript{18} chain length fatty acid, because this chain length is known to be produced by higher plants in low relative abundances (Chikaraishi and Naraoka, 2007; Chikaraishi et al., 2004a; Liu and Liu, 2017; Wang and Liu, 2012). Equation (1) describes the measured \(\delta^{13}C_{18FA} \) as a function of the higher plant and bacterial \(n \)-C\textsubscript{18} chain length fatty acid carbon isotopic composition (\(\delta^{13}C_{18FA(P)} \) and \(\delta^{13}C_{18FA(B)} \), respectively) and \(F \), the fractional contribution of higher plants to \(\delta^{13}C_{18FA} \).

\[
\delta^{13}C_{18FA} = F \times \delta^{13}C_{18FA(P)} + (1 - F) \times \delta^{13}C_{18FA(B)} \quad (1)
\]

Higher plants do not fractionate differentially during the production of fatty acids within even or odd chain lengths (Chikaraishi and Naraoka, 2007). Therefore, if we presume that exclusively plant-derived \(\delta^{13}C_{24FA} \) and the higher plant-derived contribution to \(\delta^{13}C_{18FA} \) (\(\delta^{13}C_{18FA(P)} \)) derived from predominantly the same higher-plant sources in the catchment, then \(\delta^{13}C_{24FA} \) and \(\delta^{13}C_{18FA(P)} \) should have the same carbon isotopic signature (Chikaraishi and Naraoka, 2007). Rearranging and substituting \(\delta^{13}C_{24FA} \) into equation (1) gives us equation (2), which expresses the carbon isotopic signature of the bacterial fraction of \(C_{18FA} \) (\(\delta^{13}C_{18FA(B)} \)) as a function of measured
\[\delta^{13}C_{18\text{FA}(B)} = \left(\delta^{13}C_{18\text{FA}} - F \cdot \delta^{13}C_{24\text{FA}} \right) / \left(1 - F \right) \] (2)

\(F \), the fractional contribution of higher plants \(\delta^{13}C_{18\text{FA}} \), can be expressed as the quotient of the relative abundance of higher plant-derived \(n \)-\(C_{18} \) chain length fatty acids (\(C_{18\text{FA}(P)} \)) divided by the relative abundance of \(C_{18} \) chain length fatty acids (\(C_{18\text{FA}} \)) in each sample:

\[F = C_{18\text{FA}(P)}/C_{18\text{FA}} \] (3)

We do not know the relative abundance of higher plant-derived \(C_{18\text{FA}} \) (\(C_{18\text{FA}(P)} \)) \textit{a priori}, but we can estimate this using the mean ratio of \(C_{18\text{FA}}:C_{24\text{FA}} \) (\(R \)) produced by higher plants. The mean \(R \) value is 1.14 for the compiled global dataset (see Supplementary Datasheet 1) (Chikaraishi et al., 2004a; Liu and Liu, 2017; Wang and Liu, 2012). Thus, in equation (4) we express \(C_{18\text{FA}(P)} \) as the product of \(R \) and the measured relative abundance of \(C_{24\text{FA}} \):

\[C_{18\text{FA}(P)} = R \cdot C_{24\text{FA}} \] (4)

Combining equations (2), (3), & (4) gives equation (5), which expresses the bacterial carbon isotope signature of each sample (\(\delta^{13}C_{18\text{FA}(B)} \)) as a function of the sampled relative abundances of \(C_{18\text{FA}} \) and \(C_{24\text{FA}} \), the mean \(C_{18\text{FA}}:C_{24\text{FA}} \) ratio of higher plants (\(R \)), and the measured carbon isotopic signatures of the \(C_{18} \) and \(C_{24} \) chain length fatty acids in the sample.

\[\delta^{13}C_{18\text{FA}(B)} = \left(\delta^{13}C_{18\text{FA}} - (R \cdot C_{24\text{FA}} / C_{18\text{FA}}) \delta^{13}C_{24\text{FA}} \right) / \left(1 - R \cdot C_{24\text{FA}} / C_{18\text{FA}} \right) \] (5)

The uncertainty in the calculated \(\delta^{13}C_{18\text{FA}(B)} \) is propagated from the uncertainties of \(\delta^{13}C_{18\text{FA}} \) and \(\delta^{13}C_{24\text{FA}} \) according to equation (2). Since there is considerable variability in reported global \(R \) values in the literature (Supplementary Datasheet 1), putting an error estimate on this would be highly speculative (and perhaps much too conservative, given that we are operating in a single catchment where the spatial and temporal variability is unlikely to approach the global spread in reported \(R \) values. Future research efforts for better constraints on the value of \(R \) and soil bacterial biomarkers are needed with the ultimate goal of producing more quantitative estimates of palaeo-respiration). Thus the propagated error is calculated according equation (6) shown below:
\[
\delta(\delta^{13}C_{18FA(B)}) = \sqrt{\left(\frac{1}{1-F} \delta a\right)^2 + \left(\frac{F}{1-F} \delta b\right)^2}
\]

(6)

where \(\delta a\) represents the uncertainty of \(\delta^{13}C_{18FA}\), \(\delta b\) represents the uncertainty of \(\delta^{13}C_{24FA}\).

Our \(\delta^{13}C_{18FA(B)}\) curve is derived by subtracting the \(C_{18FA(P)}\) contribution from the \(C_{18FA}\) record (e.g. correcting for the direct contribution of higher plants to the \(C_{18FA}\)). As a data exploration exercise, we further subtracted the \(\delta^{13}C_{24FA(P)}\) record from the \(\delta^{13}C_{18FA(B)}\) (see Figure S1). An argument for this approach is that the resultant \(\Delta\delta^{13}C_{18FA(B)} - 24FA\) is a more constrained record of soil bacterial respiration—by doing this, one is attempting to remove the influence of changes in \(C_3/C_4\) vegetation on the bacterial substrate pool. However, calculating \(\Delta\delta^{13}C_{18FA(B)} - 24FA\) entails a two-step subtraction in which a (weighted) \(\delta^{13}C_{24FA(P)}\) is added to itself (less \(\delta^{13}C_{18FA}\)). Given the much larger isotopic range for the \(\delta^{13}C_{24FA(P)}\) record compared with the raw \(\delta^{13}C_{18FA}\) record, the end result is simply to produce a curve that largely resembles the original \(\delta^{13}C_{24FA(P)}\) record with amplified variability. In light of this, we restrict our discussion and interpretation to our \(\delta^{13}C_{18FA(B)}\) record.

3. Results and Discussion

3.1 Composition and distribution of fatty acids

The chain length of fatty acids ranges from \(C_{12}\) to \(C_{32}\) in the overlying soils and from \(C_{12}\) to \(C_{28}\) in the HS4 stalagmite. In all the sample sets, fatty acids exhibit a bimodal distribution, with a strong predominance of even-carbon-numbered homologues maximizing at \(n-C_{16}\) and \(n-C_{24}\). Trace amounts of branched and monounsaturated fatty acids were found along with the abundant \(n\)-fatty acids in both the overlying soils and HS4 stalagmite. However, in this study, HMW branched fatty acids were only detected in the HS4 stalagmite (Fig. 2 and Supplementary Datasheet 1), the absence of HMW branched fatty acids in the overlying soils may indicate a contribution of HMW branched fatty acids to the HS4 stalagmite from microorganisms living in the karst or cave environment (Matsumoto et al., 1992). The bimodal distribution pattern of fatty acids in the HS4
stalagmite is the same as the distribution pattern from the same stalagmite reported by Huang et al. (2008) and a stalagmite from a British cave (Blyth et al., 2011), all of which show a dominant carbon maximizing at n-C_{16} in the LWM homologues and at n-C_{24} in the HMW homologues. The bimodal distribution pattern of fatty acids is similar to that of n-alkanes and fatty alcohols which indicates a mixed origin from higher plants and microbes (Xie et al., 2003). We did not detect long chain n-fatty acids from C_{29} to C_{32} in the stalagmite samples, suggesting either low concentrations below the detection limit or that they were totally absent. The bimodal distribution of n-fatty acids in the HS4 stalagmite is akin to that in the overlying soils, suggesting both share a similar source of fatty acids. The implication is that the n-fatty acids in HS4 are dominantly sourced from the overlying soil, with a minor contribution of microbes from inside the karst/cave system, as suggested by the minor component of branched homologues (see discussion in Section 3.3 below).

The percentage of low molecular weight (LMW, \(\leq C_{20}\)) fatty acids we measured is significantly higher than high molecular weight (HMW, \(>C_{20}\)) fatty acids. The LMW fatty acids show a similar pattern in the overlying soils and the HS4 stalagmite. The dominant compound n-C_{16} fatty acid occupied ca. 35% of the total fatty acids in both the soils and stalagmite samples. The n-C_{18} fatty acid is slightly higher in the HS4 stalagmite (ca. 15%) than that of in the overlying soils (ca. 6%) (Fig. 2a, c). HMW fatty acids from cave overlying soils are mainly dominated by n-fatty acids with non-detected branched fatty acids, however, trace amount of iso- (i-) and anteiso- (a-) fatty acids were found in the HS4 stalagmite accounting for an average around 1% of all fatty acids. The most abundant HMW fatty acid n-C_{24} accounted for an average of ca. 7.5% in cave overlying soils and ca. 5.5% in the HS4 stalagmite (Fig. 2b, d).

3.2 Carbon isotopic compositions of fatty acids

We analysed the \(\delta^{13}C\) values of the major n-fatty acids with 16, 18, 22 and 24 carbon atoms
from the HS4 stalagmite subsamples. The δ^{13}C of the n-C$_{16}$ fatty acid (δ^{13}C$_{16FA}$) varies from -27.5‰ to -25.2‰. The n-C$_{18}$ fatty acid (δ^{13}C$_{18FA}$) varies from -27.0‰ to -23.4‰, and is slightly enriched in 13C across the whole time series (Fig. 6a). The n-C$_{22}$ and n-C$_{24}$ fatty acid are relatively more depleted in 13C than the short chain fatty acids n-C$_{16}$ and n-C$_{18}$, with δ^{13}C$_{22FA}$ varying from -32.9‰ to -25.7‰ and δ^{13}C$_{24FA}$ varying from -33.5‰ to -25.2‰ over the past 8.8 ka BP (Figs. 4, 6a). The variation of δ^{13}C$_{16FA}$ and δ^{13}C$_{18FA}$ show a generally parallel trend over the past 8.8 ka BP ($R^2 = 0.79$, $n = 70$; Fig. 3a), while the correlation between the HS4 δ^{13}C$_{16FA}$ and δ^{13}C$_{24FA}$ is much weaker ($R^2 = 0.55$, $n = 61$; Fig. 3b). In addition, the δ^{13}C$_{22FA}$ and δ^{13}C$_{24FA}$ are very strongly correlated within the available data set ($R^2 = 0.94$, $n = 49$; Fig. 3c), while the correlation between the HS4 δ^{13}C$_{18FA}$ and δ^{13}C$_{24FA}$ is much weaker ($R^2 = 0.61$, $n = 59$; Fig. 3d). The 13C values of all the analysed n-fatty acids from 8.8 to 4.4 ka BP and 0.8 to 0.6 ka BP are more negative than those from 4.4 to 0.8 ka BP and 0.6 to 0 ka BP (Figs. 4, 6a). Overall, the δ^{13}C$_{16FA}$ and δ^{13}C$_{18FA}$ values are relatively positive and vary within a smaller range than that of δ^{13}C$_{22FA}$ and δ^{13}C$_{24FA}$ (Fig. 6a).

3.3 Sources of fatty acids in the HS4 stalagmite

We have compared the average distributions of fatty acids within the soils above Heshang Cave ($n = 9$) to those from HS4 ($n = 73$) (Fig. 2 and Supplementary Datasheet 1). Strong similarities in distributions between the soil and cave interior suggest that the n-fatty acids are primarily sourced from microbes and higher plants living above the cave and/or within the groundwater system, with some minor in-situ contribution stalagmite microbial community possible (Wang et al., 2018). This inference is supported by previous work which concluded that the broad similarity of 3-OH-FA lipid distributions in the overlying soils and stalagmites and the site-specific bacterial 16S rRNA analyses of bacterial diversity and transport pathways (Liu et al., 2010; Yun et al., 2016), demonstrated a major contribution of lipid biomarkers from Gram-negative bacteria dwelling in the overlying soils to the HS4 stalagmite samples.
Furthermore, the 16S rRNA analyses demonstrated that changes in the Gram-negative bacterial community were rapidly transmitted through the Heshang Cave system to drip waters and to the cave and speleothems on seasonal timescales (Yun et al., 2016). Such seasonal responsiveness suggests minimal attenuation of climate signals transmitted from the overlying soils to the HS4 stalagmite (at least sufficient for centennial to millennial scale paleoclimate studies) (Wang et al., 2018). Furthermore, quantitative PCR from Heshang Cave weathered rock yields bacterial 16S rRNA gene abundances of about 10^8 to 10^9 copies g$^{-1}$ dry sample (Zhao et al., 2018), while values in soils are about 10^{10} copies g$^{-1}$ dry sample (Wessén et al., 2010), indicating that bacterial biomass in soils are an order of magnitude higher than in the Heshang cave environment. This site specific work on Heshang cave is consistent with the general observation that fatty acids preserved in speleothems are principally derived from the overlying soil ecosystem and vegetation, having been transported from the surface by percolating groundwater, and with only a minor proportion derived from cave ecosystems (Blyth et al., 2007; Huang et al., 2008; Li et al., 2011; Xie et al., 2005).

Numerous studies have established that, in environmental settings, HMW n-fatty acids (C$_{20}$-C$_{32}$) with an even number predominance are mainly derived from higher plants (e.g. Eglinton and Hamilton, 1967), whereas LMW n-fatty acids (such as C$_{16}$, C$_{18}$) are sourced from microbes (Lichtfouse et al., 1995) and higher plants (Chikaraishi and Naraoka, 2006). Hence, this suggests that the HMW n-fatty acids in HS4 were primarily derived from higher plants in the overlying catchment, whilst the LMW n-fatty acids originated from mixed sources: predominantly microbes in soil-karst system, with some contribution from higher plants. Therefore, changes in the isotopic ratios of stalagmite n-fatty acids primarily reflect processes occurring at the subaerial catchment ecosystem above the cave.

Compound-specific isotope analysis is an additional tool to identify the sources of biomarker lipids. For example, significant differences in δ^{13}C values between the long chain and short chain lipids would indicate they likely originated from different sources (Rieley et al., 1991), because
no significant kinetic isotope effect is associated with chain elongation during bacterial fatty acid biosynthesis (Monson and Hayes, 1982), and research shows that the carbon isotope composition of LMW and HMW fatty acids from the same plants are essentially the same (Chikaraishi et al., 2004b). Overall, the strong correlation between $\delta^{13}C_{16FA}$ and $\delta^{13}C_{18FA}$ and between $\delta^{13}C_{22FA}$ and $\delta^{13}C_{24FA}$ ($R^2 = 0.79$, 0.94, respectively, Fig. 3a, b), and the considerable isotopic differences between the LMW and HMW n-fatty acids indicate different biological sources for the LMW and HMW n-fatty acids (Figs. 4, 6a).

3.4 Holocene vegetation changes derived from $\delta^{13}C_{24FA}$

C_3 plants use the Rubisco enzyme to fix carbon during photosynthesis, which discriminates against the $^{13}CO_2$ isotopologue and therefore results in ^{13}C depletion (relative to C_4 plants). By contrast, C_4 plants (most grasses, sedges and dicots) developed a carbon concentration mechanism during the Miocene (Sage, 2004) that permits them to discriminate less between $^{12}CO_2$ and $^{13}CO_2$; as a result, C_4 plants are more enriched in ^{13}C compared with C_3 plants (Farquhar et al., 1989; Sage, 2004). The resulting isotopic difference between C_3 and C_4 plants is propagated to the n-fatty acids they synthesize: typical $\delta^{13}C$ values for n-fatty acids from C_3 plants range from -30.8‰ to -47.7‰, whilst n-fatty acids from C_4 plants range from -16.3‰ to -28.2‰ (Ballentine et al., 1998; Chikaraishi et al., 2004b). Given that CO$_2$ changes are relatively subtle during the Holocene (changes of ca. 20ppm) (Indermühle et al., 1999), we argue that the general increase in HS4 $\delta^{13}C_{24FA}$ values through the Holocene (Fig. 5a) reflects broad changes in C_3 vs C_4 vegetation in the HS4 catchment.

Temperature, precipitation and CO$_2$ concentrations are the three main controls on C_3/C_4 vegetation changes (Ehleringer et al., 1997; Huang et al., 2001). Due to their greater water use efficiency and carbon concentrating mechanism, C_4 plants can theoretically outcompete C_3 plants under conditions of lower pCO_2 and/or higher daytime growing season temperatures (Ehleringer...
et al., 1997). However, the dominant control factor may vary spatially and temporally (Huang et al., 2001). Here we expect changes in the δ13C of the plant wax-derived n-C\textsubscript{24} fatty acid to primarily reflect relative changes in C\textsubscript{3} vs C\textsubscript{4} vegetation driven by changes of temperature and precipitation (Fig. 5a). Our δ13C\textsubscript{24FA} data displays a trend towards heavier values that is broadly consistent with the monotonic decline in NH summer insolation (Fig. 5b), along with a general increase in HS4 stalagmite δ18O (Fig. 5c) which, based on prior work (Cheng et al., 2016), is interpreted to reflect a weakening of the East Asian monsoon during the middle Holocene. The δ13C\textsubscript{24FA} trend is also coeval with declining temperatures inferred from the 3-OH-FA based RAN\textsubscript{15} temperature record from the same stalagmite (Fig. 5d) (Wang et al., 2018), along with changes in hydrology represented by the 3-OH-FA based RIAN proxy (RIAN, the negative logarithm of Branching Ratio; Fig. 5g) (Wang et al., 2018) and dead carbon percentage (DCP, Fig. 5h) (Noronha et al., 2014) from the HS4 speleothem. Noronha et al. (2014) interpret higher DCP to reflect higher precipitation and increased soil moisture, limiting CO\textsubscript{2} diffusion and open-system dissolution, and thus leading to a higher proportion of carbon derived from the 14C-free bedrock.

Closer inspection of our δ13C\textsubscript{24FA} record reveals that values are more negative during the HCO (ca. 4.4 to 8.8 ka BP), indicating a greater abundance of C\textsubscript{3} vs. C\textsubscript{4} plants during this relatively wet (Fig. 5c) and warm (Fig. 5d) phase. Following the HCO around ca. 4.4 ka, δ13C\textsubscript{24FA} values become more positive, indicating a proportional increase in C\textsubscript{4} vegetation in the Heshang Cave catchment. Critically, the inferred maximum in C\textsubscript{3} abundance at our site during the early Holocene is consistent with maximum expansion of evergreen forest in the middle reaches of the Yangtze River (Sun and Chen, 1991), and is regionally consistent with pollen records from northern China (Ji et al., 2005; Zhou et al., 2010), which show significantly higher percentages of tree pollen during the HCO and a relative decrease in tree pollen during the late Holocene (Fig. 5e-f); the latter shift infers a concomitant increase in grasses and other vegetation types (sedges and dicots), many of which utilise the C\textsubscript{4} pathway. An additional feature of our record worth noting is a rapid excursion to lighter δ13C\textsubscript{24FA} values towards the end of the MWP (between ca. 0.6
and 0.8 ka BP), which is again consistent with an increase in tree pollen in Tianchi Lake to the north (Fig. 1, 5f). In light of these phase relationships between regional proxy records in central and northern China, we are confident that temperature and monsoon rainfall were the dominant factors controlling vegetation in the middle reaches of Yangtze River during the Holocene.

3.5 Changes in soil-karst bacterial respiration and substrate selectivity due to Holocene climate change

Holocene variations in $\delta^{13}C$ for the HS4 HMW and LMW n-fatty acids are shown in Figure 3a. In contrast to the higher plant derived HMW n-fatty acids, the LMW fatty acids are relatively heavier and show more subtle changes in carbon isotope values. Higher plants produce fatty acids with a broad range of chain lengths, characterised by a predominance of HMW even-numbered fatty acids (e.g. C_{24}, C_{26}, C_{28}). However, what is sometimes overlooked is that they also produce shorter chain length compounds (e.g. C_{16}, C_{18}) generally in lower abundances (Chikaraishi et al., 2004b). This means that typically there are no n-fatty acids exclusively produced by bacteria preserved in palaeoclimate archives in abundances sufficient for compound-specific isotope analyses. Therefore, in order to constrain bacterial $\delta^{13}C$ signatures we must deconvolve the bacterial $\delta^{13}C$ component from the net $\delta^{13}C$ value (typically some combination of inputs from bacteria, higher plants, and algae) for any given fatty acid.

Unlike in marine or lacustrine systems, algal contributions to the n-fatty acid pool in a soil-karst cave system are negligible; thus, the only remaining sources to account for are higher plants and microbes. Archaeal tetra-ether bonded membrane lipids are fundamentally different from bacteria and a negligible source of fatty acids (Koga, 2011). We note that fungi also produce $C_{18:0}$ fatty acid (Zelles, 1997), but the diagnostic biomarker for fungi ($C_{18:2}\omega6,9$) (Frostegård and Bååth, 1996) was found only in trace amounts or not detected at all in our samples, suggesting the contribution of C_{18} fatty acids from fungi is negligible. Thus, we argue that we isolate the first
order bacterial contribution to the C_{18} fatty acid, which we term δ^{13}C_{18FA(B)} (see Section 2.4), and subsequently use this to reconstruct a unique record of Holocene changes in terrestrial bacterial respiration and substrate selectivity. δ^{13}C_{18FA(B)} varies between -19‰ to -27‰ during the Holocene, becoming generally lighter from 8.5 ka BP (-21‰) to 8 ka BP (-25‰), then heavier to 6.1 ka BP (ca. -19‰), lighter to 2.7 ka BP (-27‰), and finally maintaining values of ca. -22‰ to -25‰ with a notable heavy isotope excursion at ca. 0.6 ka BP (-22‰). Superimposed on these broad trends are several single point outliers. Overall, the δ^{13}C_{18FA(B)} is relatively heavier during the warm/wet phases of the HCO and MWP (Fig. 6b).

Soil bacterial respiration is primarily driven by temperature, with a secondary influence of soil moisture (Raich and Tufekcioglu, 2000). Warmer climate episodes, such as the HCO and the MWP, are expected to increase rates of bacterial decomposition of soil organic matter (SOM) (Crowther et al., 2016). The stock of SOM in the soil-karst system results from the balance between inputs and outputs of carbon within the belowground environment. Inputs are primarily from leaf and root detritus (including root exudates). Outputs are controlled by the temperature sensitivity of decomposition and leaching. The intrinsic temperature sensitivity of decomposition for a particular soil environment depends on the inventory of the thousands of different organic compounds residing in the soil, each with its own kinetic properties and potential rates of decomposition (Sollins et al., 1996). In most environments, the stocks of labile and recalcitrant compounds are not equal, with recalcitrant compounds being much more abundant than labile compounds (Tjoelker et al., 2001).

Modern biogeochemical studies on δ^{13}C fractionation between SOM substrates and bacterial CO\textsubscript{2} (as a product) help us to interpret our HS4 δ^{13}C_{18FA(B)} record. A recent synthesis of studies highlights considerable variability, but suggests a ^{13}C enrichment of bacterial CO\textsubscript{2} of up to +5‰ compared to the bulk substrate in most cases for C\textsubscript{3} plant dominated soils. Such positive offsets indicate that bacteria preferentially utilise ^{13}C-enriched compounds in the SOM fraction, e.g. sugars, starch, cellulose etc, which are relatively labile (Werth and Kuzyakov, 2010). Šantrůčková
et al. (Šantrůčková et al., 2000) found that the enriching effect associated with the preferential use of organic compounds in C₃ soils is more pronounced than the ¹³C-depletion effect of metabolism itself. Hence, by preferential substrate utilization in C₃ soils bacterial biomass gets enriched in ¹³C, but respires CO₂ that is isotopically depleted in ¹³C relative to bacterial biomass (but still enriched compared to SOM). This effect therefore additionally enriches soil bacteria in ¹³C (Werth and Kuzyakov, 2010).

Our reconstructed δ¹³C₁₈FA(B) in the HCO and MWP portions of our HS4 record are relatively isotopically heavy (Fig. 6). δ¹³C₁₈FA(B) also shows a remarkably coherent, anti-phased trend with the carbon isotope values of the acid-soluble organic matter (δ¹³C_ASOM) from the same stalagmite (Fig. 6c) (Li et al., 2014). We interpret this anti-phased trend between δ¹³C₁₈FA(B) and δ¹³C_ASOM record in the HS4 stalagmite as reflecting an increase in substrate selectivity by bacteria of ¹³C-enriched labile substrates (sugars, starches etc) within the soil organic matter (SOM) pool. This evidence of increased substrate selectivity is intriguing given that the warmer conditions in the HCO and MWP would be conducive to higher rates of soil bacterial activity (Lloyd and Taylor, 1994; Luo, 2007). If inputs from leaf and root detritus and the size of substrate pool remained equal (during the HCO and MWP), we would expect an increase in soil bacterial activity to lead to greater competition for substrates, less selectivity and increased utilization of recalcitrant ¹³C-depleted substrates (e.g. lipids, wax esters, macro-molecular material etc). However, our results are consistent with increases in gross primary production (GPP) outpacing bacterial respiration (overall increase in net primary production), leading to greater inputs of plant and root detritus, greater selectivity of ¹³C-enriched labile substrates, and an enriched δ¹³C₁₈FA(B) signal. The corollary of this is a greater proportion of recalcitrant ¹³C-depleted substrates being sequestered in the remaining SOM (Benner et al., 1987; Werth and Kuzyakov, 2010) as represented by the bulk δ¹³C-ASOM record from HS4 (Li et al., 2014). Our interpretation is consistent with our higher plant δ¹³C record (Fig. 5a). We infer the highest proportions of C₃ plant biomass in the HCO and HWP, coeval with our heaviest δ¹³C₁₈FA(B) and greatest selectivity of
13C-enriched labile substrates. Preferential substrate utilization is more important in C3 plant-dominated soils because C4 soils, typical of arid and semiarid climates, contain generally less labile SOM and thus soil bacteria consume the SOM more completely than in C3 soils (Šantrůčková et al., 2000). This has been demonstrated in modern field studies (see review by Werth and Kuzyakov (2010)) but our reconstruction from HS4 is the first evidence of this relationship on Holocene timescales.

To summarize, we argue that because we have isolated the contribution of C18 fatty acids from higher plants, the residual δ13C signal (δ13C_{18FA(B)}) is most parsimoniously explained by greater soil bacterial respiration and decomposition rates, in response to a warmer and wetter local climate, driven by a stronger regional Asian summer monsoon. If net bacterial respiration is substrate-selective, this implies that the more recalcitrant phases are likely escaping heterotrophic degradation. Thus the system acts as a net carbon sink in the early Holocene and would act as a negative feedback on the warmer/wetter local early Holocene climate. This process is likely mediated and enhanced by changes in the relative proportion of C3 vs C4 plants. This interpretation of LMW fatty acids is uniquely applicable to speleothems because compared to lake and marine sediments there is minimal contribution from algae, resulting in a simpler two-end-member system. This work represents the first such application in a speleothem or indeed any paleoclimate archive. As such, it provides key insights into links between East Asian palaeoclimate, vegetation, terrestrial ecosystem respiration and the carbon cycle during the Holocene.

4. Conclusion

We have produced the first reconstruction of vegetation and bacterial activity from the important East Asian monsoon region using compound specific carbon isotopes of fatty acids from a stalagmite. Critically, our study finds that soil bacteria selectively degrade more labile (13C-enriched) substrates during warm periods of the Holocene, suggesting that gross primary
production outpaced soil respiration under higher temperatures. Our findings therefore show that mineral soils in subtropical karst settings may represent a net carbon sink during warmer climate states, thus acting as a negative feedback on Earth’s climate.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41807419, 41821001, 41830319, 41773135), the Key R&D Project of Ministry of Science and Technology (grant no. 2016YFA0601100), the 111 project (National Bureau of Foreign Experts and the Ministry of Education of China; Grant No. B08030), and the Fundamental Research Funds for National University, China University of Geosciences, Wuhan (Grant Nos. CUGL170815, CUGCJ1807). We thank the China Scholarship Council (CSC) (Grant No. 201306410031) for supporting Canfa Wang’s studies at the University of Birmingham. S.G. was supported by NERC Independent Research Fellowship NE/L011050/1 and NERC large grant NE/P01903X/1 while working on this manuscript. M.L.G. acknowledges support from the National Science Foundation award 1805544. H.Z. acknowledges support from the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFB398).
References

Chikaraishi, Y., Naraoka, H., 2007. δ^{13}C and δD relationships among three n-alkyl compound
classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Organic Geochemistry 38, 198-215.

Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004b. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C_{3}, C_{4} and CAM) and aquatic plants. Phytochemistry 65, 1369-1381.

Ji, S., Xingqi, L., Sumin, W., Matsumoto, R., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131-140.

261-285.

Still, C.J., Berry, J.A., Collatz, G.J., Defries, R.S., 2009. ISLSCP II C4 Vegetation Percentage. ORNL Distributed Active Archive Center.

Figure Captions

Fig. 1. Location of Heshang Cave, Qinghai Lake and Tianchi Lake. The distribution of \(C_4 \) vegetation in Asia is after Still et al. (2009). The inset is map shows the main regional surface drainage and location of Heshang cave on the Qing River tributary of the Yangtze (revised after Hu et al. (2008a)).

Fig. 2. Distribution and relative abundance of fatty acids in (a, b) cave overlying soil, and (c, d) HS4 stalagmite. “\(i \)-” refers to “\(iso \)”, “\(a \)-” refers to “\(anteiso \)” and “\(n \)-” refers to “\(normal \)”. \(n-C_{16} \) fatty acid is dominant in low molecular weight fatty acids(\(\leq C_{20} \)), \(n-C_{24} \) fatty acid is dominant in high molecular weight fatty acids (\(> C_{20} \)).

Fig. 3. Plots showing the relationship between \(\delta^{13}C \) values of \(n \)-fatty acids from HS4 stalagmite.
* a, Linear correlation between \(\delta^{13}C_{16FA} \) and \(\delta^{13}C_{18FA} \) based on a data set of 70 samples (\(R^2 = 0.79, p < 0.001 \)).
* b, Linear correlation between \(\delta^{13}C_{16FA} \) and \(\delta^{13}C_{24FA} \) based on a data set of 61 samples (\(R^2 = 0.55, p < 0.001 \)).
* c, Linear correlation between \(\delta^{13}C_{22FA} \) and \(\delta^{13}C_{24FA} \), based on a data set of 49 samples (\(R^2 = 0.94, p < 0.001 \)).
* d, Linear correlation between \(\delta^{13}C_{18FA} \) and \(\delta^{13}C_{24FA} \) based on a data set of 59 samples (\(R^2 = 0.61, p < 0.001 \)).

Fig. 4. Box chart showing the carbon isotope values of \(C_{16} \), \(C_{18} \), \(C_{22} \) and \(C_{24} \) normal (\(n \)-) fatty acids (FAs) from HS4 stalagmite.

Fig. 5. Vegetation changes and climatic drivers in central China during the last 9 ka BP.
* a, Variation of \(\delta^{13}C_{24FA} \) showing vegetation changes during the last 9 ka BP.
* b, Insolation changes at 30°N in July during the last 9 ka BP (Laskar et al., 2004).
* c, Calcite \(\delta^{18}O \) of HS4 stalagmite over the past 9 ka BP (Hu et al., 2008b).
* d, Temperature variation during the last 9 ka BP.
reconstructed by ratio of anteiso to normal C$_{15}$ 3-hydroxy fatty acid (RAN$_{15}$; temperature proxy) from HS4 stalagmite from Heshang Cave, central China (Wang et al., 2018). e, Percentage of tree pollen from Qinghai Lake sediment (Ji et al., 2005). f, Percentage of deciduous tree pollen from Tianchi Lake (Zhou et al., 2010). g, Heshang Cave hydrological conditions inferred from the RIAN proxy (RIAN, the negative logarithm of Branching Ratio) from HS4 stalagmite during the last 9 ka BP (Wang et al., 2018). h, Dead carbon proportion (DCP) from HS4 stalagmite (Noronha et al., 2014). Blue shading highlights two periods with relative low percentage of C$_3$ plants during the HCO. Orange shading highlights relatively high percentages of C$_3$ plants during the HCO and MWP. Black line segments showing the U-Th dating errors.

Fig. 6. Vegetation changes and soil bacterial heterotrophic selectivity and respiration rates in response to climate changes. a, Compound specific δ^{13}C values measured on the n-C$_{16}$, n-C$_{18}$, n-C$_{22}$, n-C$_{24}$ fatty acids extracted from the HS4 stalagmite. b, Variation in δ^{13}C$_{18}$FA(B) over the last 9 ka BP with locally weighted scatterplot smoothing of 25% (LOWESS). c, Acid-soluble organic matter (ASOM) carbon isotope (δ^{13}C$_{ASOM}$) sequence derived from HS4 stalagmite (grey line) and three-point running average (red line) (Li et al., 2014). d, Temperature variation during the last 9 ka BP reconstructed by RAN$_{15}$ from HS4 stalagmite from Heshang Cave, central China (Wang et al., 2018). e, Calcite δ^{18}O of HS4 stalagmite over the past 9 ka BP (Hu et al., 2008b). U-Th dating errors (Hu et al., 2008b) are shown as black line segments.
Figure 2

Overlying soil: LMW (n = 9)

Overlying soil: HMW (n = 9)

HS4 stalagmite: LMW (n = 73)

HS4 stalagmite: HMW (n = 73)
Figure 3

Click here to download high resolution image
Figure 1 (high-resolution)
Click here to download Figure (high-resolution): Figure 1.tif
Figure 2 (high-resolution)
Click here to download Figure (high-resolution): Figure 2.tif
Figure 3 (high-resolution)
Click here to download Figure (high-resolution): Figure 3.tif
Figure 6 (high-resolution)

Click here to download Figure (high-resolution): Figure 6.tif