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Abstract In this paper, we propose a masking scheme
to protect ring-LWE decryption from �rst-order side-
channel attacks. In an unprotected ring-LWE decryption,
the recovered plaintext is computed by �rst performing
polynomial arithmetic on the secret key, and then de-
coding the result. We mask the polynomial operations
by arithmetically splitting the secret key polynomial
into two random shares; the �nal decoding operation is
performed using a new bespoke masked decoder. The
output of our masked ring-LWE decryption are Boolean
shares suitable for derivation of a symmetric key. Thus,
the masking scheme keeps all intermediates, including
the recovered plaintext, in the masked domain. We have
implemented the masking scheme on both hardware
and software. On a Xilinx Virtex-II FPGA, the masked
ring-LWE processor requires around 2000 LUTs, a 20%
increase in the area with respect to the unprotected
architecture. A masked decryption operation takes 7478
cycles, which is only a factor �2:6 larger than the un-
protected decryption. On a 32-bit ARM Cortex-M4F
processor, the masked software implementation costs
around �5:2 more cycles than the unprotected imple-
mentation.

This journal version is based on a paper appeared at the CHES
2015 conference [27]. Sections 6, 7.3 and 8.2 carry substantial
di�erences.
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Kasteelpark Arenberg 10 bus 2452
Tel.: +32-45-678910
Fax: +123-45-678910
E-mail: oscar.reparaz@esat.kuleuven.be

1 Introduction

Once the quantum computer is built, Shor’s algorithm
will make most current public-key cryptographic algo-
rithms obsolete. In particular, public-key cryptosystems
that rely on number-theoretic hardness assumptions
such as integer factorization (RSA) or discrete loga-
rithms, either in Z�p (Di�e-Hellman) or in elliptic curves
over �nite �elds, will be insecure. On the bright side,
there is an entire branch of post-quantum cryptography
that is believed to resist mathematical attacks running
on quantum computers.

There are three main branches of post-quantum cryp-
tosystems: based on codes, on multivariate quadratic
equations or on lattices [2]. Lattice-based cryptographic
constructions, founded on the learning with errors (LWE)
problem [24] and its ring variant known as ring-LWE
problem [18], have become a versatile tool for design-
ing asymmetric encryption schemes [18], digital signa-
tures [10] and homomorphic encryption schemes [11,4].
Several hardware and software implementations of such
schemes have appeared in the literature. So far, the re-
ported implementations have focused mainly on e�cient
implementation strategies, and very little research work
has appeared in the area of side channel security of the
lattice-based schemes.

It comes as no surprise that implementations of post-
quantum algorithms are vulnerable to side-channel at-
tacks. Side-channel attacks, as introduced by Kocher [16],
exploit timing, power consumption or the electromag-
netic emanation from a device executing a cryptographic
implementation to extract secrets, such as cryptographic
keys. A particularly powerful side-channel technique
is Di�erential Power Analysis (DPA), introduced by
Kocher et. al. [17]. In a typical DPA attack, the ad-
versary measures the instantaneous power consumption
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of a device, places hypotheses on subkeys and applies
statistical tests to con�rm or reject the hypotheses. DPA
attacks can be surprisingly easy to mount even with
low-end equipment, and hence it is important to protect
against them.

There are plenty of countermeasures against DPA.
Most notably, masking [7,14] is provably sound and
popular in industry. Masking e�ectively randomizes the
computation of the cryptographic algorithm by splitting
each intermediate into several shares, in such a way
that each share is independent from any secret. This
property is preserved through the entire computation.
Thus, observing any single intermediate (for example,
by a side-channel, be it known or unknown) reveals
nothing about the secret. However, there are not many
masking schemes speci�cally designed for post-quantum
cryptography. In [5] Brenner et. al. present a masked
FPGA implementation of the post-quantum pseudo-
random function SPRING.

In the rest of the paper, we focus on protecting
the ring-LWE decryption operation against side-channel
attacks with masking. The decryption algorithm is con-
siderably exposed to DPA attacks since it repeatedly
uses long-term private keys. In contrast, the encryp-
tion or key-generation procedures use ephemeral secrets
only [28].

Our contribution. In this paper we present a compact
masked implementation of the ring-LWE decryption
function. The masking countermeasure adds a small over-
head when compared to the other previous approaches,
thanks to a bespoke probabilistic masked decoder de-
signed speci�cally for our implementation. We imple-
mented the masked ring-LWE decryption on a Virtex-II
FPGA and on an ARM Cortex-M4F processor, and
tested the side-channel security with practical experi-
ments.

Organization. The paper is structured as follows: we
provide a brief mathematical background of the ring-
LWE encryption scheme in Section 2 and describe a
high-level overview of the proposed masked ring-LWE
decryption in Section 3. Next, in Section 4 we construct
the masked decoder. In 5 we describe our hardware im-
plementation, and in the next Section 6 we describe our
software implementation. We analyze the error rates of
the decryption operation in Section 7. We dedicate Sec-
tion 8 for the side-channel evaluation of both hardware
and software implementations and draw conclusions in
the last section.

2 Preliminaries

Notation. The Latin letters r, ci indicate polynomials.
When we want to explicitly access a coe�cient of the
polynomial we write r[i]. Multiplication of polynomials
is written as r � c1. Coe�cient-wise multiplication is
denoted as r�c1. The letter m denotes a string of message
bits, and q is an integer. Letters with prime x0 or double
prime x00 represent shares of variable x. Depending on
the context, these shares are split either arithmetically
x = x0+x00 (mod q) or Boolean x = x0+x00 (mod 2). A
polynomial r is shared into (r0; r00) by additively sharing
each of its coe�cients r[i] such that r = r0 + r00.

Ring-LWE. For completeness, we give in this section a
description of the three major algorithms of the ring-
LWE public-key cryptosystem [18]: key-generation, en-
cryption and decryption.

The ring-LWE encryption scheme works with poly-
nomials in a ring Rq = Zq[x]=(f(x)), where f(x) is
an irreducible polynomial of degree n. During the key
generation, encryption and decryption operations, poly-
nomial arithmetic such as polynomial addition, subtrac-
tion and multiplication are performed. In addition, the
key-generation and encryption operations require sam-
pling of error polynomials from an error distribution
(typically a discrete Gaussian.)

The ring-LWE encryption scheme is described in this
way:

{ In the key generation phase, two error polynomials
r1 and r2 are sampled from the discrete Gaussian
distribution. The secret key is the polynomial r2 and
the public key is the polynomial p = r1�g�r2. After
key generation, there is no use of the polynomial r1.
The polynomial g is globally known.

{ In the encryption operation of a binary message
vector m of length n, the message is �rst lifted to
a ring element �m 2 Rq by multiplying the message
bits by q=2. The ciphertext is computed as a pair
of polynomials (c1; c2) where c1 = g � e1 + e2 and
c2 = p � e1 + e3 + �m 2 Rq. The encryption operation
requires generation of three error polynomials e1, e2
and e3.

{ The decryption operation uses the private key r2 to
compute the message as m = th(c1 � r2 + c2). The
decoding function th is a simple threshold decoder
that is applied coe�cient-wise and is de�ned as

th(x) =
�

0 if x 2 (0; q=4) [ (3q=4; q)
1 if x 2 (q=4; 3q=4) (1)
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E�ciency improvements. To achieve an e�cient im-
plementation of the encryption scheme, the irreducible
polynomial f(x) is taken as xn + 1 where n is a power
of two, and the modulus q is chosen as a prime number
satisfying q � 1 mod 2n [21,29]. In this setting, poly-
nomial multiplications can be e�ciently performed in
O(n log n) time using the Number Theoretic Transform
(NTT).

Following [29], we keep the ciphertext polynomials
c1 and c2 in the NTT domain to reduce the computa-
tion cost of the decryption operation. The decryption
operation thus computes the decrypted message as

m = th
�
INTT(~c1 � ~r2 + ~c2)

�
: (2)

Here the symbol ~r represents the NTT of a polyno-
mial r, and INTT(�) represents the inverse NTT oper-
ation. The multiplication of ~c1 � ~r2 is thus performed
coe�cient-wise (as well as the addition ~c1 � ~r2 + ~c2.)
For convenience, we drop the tildes in the rest of the
paper and work with c1, c2 and r2 in the NTT domain.
We furthermore refer to ~r2 simply as r. (We recall that
the INTT is a linear transformation applied to the n
coe�cients of a = r � c1 + c2.) The decoding function th
applies a threshold function to each coe�cient of a as
de�ned in Equation 1 to output n recovered message
bits.

3 High-level overview

In this section, we give a high-level view of the masked
ring-LWE implementation. The most natural way to
split the computation of the decryption as Equation 2
is to split the secret polynomial r additively into two
shares r0 and r00 such that r[i] = r0[i] + r00[i] (mod q)
for all i. The n coe�cients of r0 are chosen uniformly at
random in Zq in each execution of the decryption.

The bulk of the computation from Equation 2 is
amenable to this splitting, since by linearity of the mul-
tiplication and INTT operation, we have that INTT(r �
c2 + c1) = INTT(r0 � c2 + c1) + INTT(r00 � c2). Thus, we
can split almost the entire computation from Equation 2
into two branches, as drawn in Figure 1. The �rst branch
computes on r0 to determine the polynomial

a0 = INTT(r0 � c1 + c2) (3)

and the second branch operates on r00 to determine

a00 = INTT(r00 � c1): (4)

The advantage of such a high-level masking is that
the operations of Equation 3 and 4 can be performed

on an arithmetic processor without any particular pro-
tection against DPA. (This is because any intermediate
appearing in either branch is independent of the secret
r. This situation is very similar to, for example, base
point blinding in elliptic curve scalar multiplication.)
We can reuse an existing ring-LWE processor for these
operations, and leverage the numerous optimizations
carried out for this block [21,29,9].

INTT

INTT

masked
decoder

r 0

r 00

m0

m00

c1 c2

c1

a0

a00

1

13

13

1

13

13

Fig. 1: General data 
ow of the masked ring-LWE de-
cryption. r0 and r00 are the arithmetic shares of the
private key r; c1 and c2 are the input unmasked cipher-
text; m0 and m00 are the Boolean shares of the recovered
plaintext.

The �nal threshold th(�) operation of Equation 2
is obviously non-linear in the base �eld Fq, and hence
cannot be independently applied to each branch (Equa-
tion 3 and 4). There are generic approaches to mask
arbitrary functions. For instance, in [5] an approach
based on masked tables was used. However, these generic
approaches are usually quite expensive in terms of area
or randomness. In the following Section 4, we pursue
another direction. We design a bespoke masked decoder
that results in a compact implementation.

4 Masked decoder

In this section we describe a compact, probabilistic
masked decoder. In the sequel, a denotes a single co-
e�cient and (a0; a00) its shares such that a0 + a00 = a
(mod q). The decoder computes the function th(a) from
the shares (a0; a00). We also drop the symbol (mod q)
when obvious.

First crack. The key idea of the e�cient masked decoder
is that we do not need to know the exact values of the
shares a0 and a00 of a coe�cient a in order to compute
th(a). For example, if 0 < a0 < q=4 and q=4 < a00 < q=2
then a = a0 + a00 is bounded by q=4 < a < 3q=4, and
thus th(a) = 1. That is, we learnt th(a) from only a
few most signi�cant bits from a0 and a00. We can use
this idea to substantially simplify the complexity of the
masked th function.
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a a00

a0

q=4

3q=4

q=2 0

q=4

3q=4

q=2 0

III

III IV

q=4

3q=4

q=2 0

a = a0 + a00

a = a0 + a00
a0

a0 a00
a00

Fig. 2: Idea for the masked decoder. Elements in Zq are shown in a circle. Adding two elements translates into
adding their respective angles. Left: case 0 < a0 < q=4, q=4 < a00 < q=2, and therefore th(a) = 1. Center and right:
case 0 < a0 < q=4, 0 < a00 < q=4, which does not allow to infer th(a).

4.1 Rules

Figure 2, left, illustrates the situation from the last
paragraph. In this case, 0 < a0 < q=4 and q=4 < a00 <
q=2 so obviously a can range only from q=4 to 3q=4,
and hence th(a) = 1. Analogously to this rule, we can
formulate 3 other rules:

{ If q=2 < a0 < 3q=4 and 3q=4 < a00 < q then q=4 <
a < 3q=4 and thus th(a) = 1.

{ If q=4 < a0 < q=2 and q=2 < a00 < 3q=4 then a
belongs to (0; q=4) [ (3q=4; q) and thus th(a) = 0
(quadrants I and IV, left half of the circle).

{ If 3q=4 < a0 < q and 0 < a00 < q=4 then a belongs
to (0; q=4) [ (3q=4; q) and thus th(a) = 0.

There are 4 other rules that result from interchang-
ing a0 with a00 in the above expressions. (This follows
straight from the symmetry of the additive splitting.)
Essentially, with the only information of the quadrant of
each share a0 and a00 we can, in half of the cases, deduce
the output of th(a). (For the explanation simplicity, we
obviated what happens in the boundaries of the quad-
rant intervals. Similar conclusions hold when including
them.)

What if no rule is hit? In roughly half of the cases, we
can apply one of the 8 rules previously described to
deduce the value of th(a). However, in the other half
of the cases, none of the rules applies. A representative
case of this event is shown in Figure 2, center and right.
In both cases, 0 < a0 < q=4 and 0 < a00 < q=4. This
situation is not covered by any of the 8 rules previously
described. We see that in the center sub �gure th(a) = 0
while in the right sub �gure th(a) = 1, so in this case
the quadrants of each share a0 and a00 do not allow us
to infer th(a).

The solution in this case is to refresh the splitting
(a0; a00), that is, update a0  a0+�1 and a00  a00��1
for certain �1. (This refreshing1 naturally preserves the
unshared value a = a0 + a00.) After the refreshing, the 8
rules can be checked again. If still no rule applies, the
process is repeated with a di�erent refreshing value �i.
Note that in each iteration of the step, roughly half of
the possible values of (a0; a00) 2 Zq � Zq are successfully
decoded, and thus the amount of pairs (a0; a00) that do
not get decoded shrinks exponentially with the number
of iterations. In our implementation, N = 16 iterations
produces a satisfactory result. This will be studied in
detail in Section 7.1.

Optimal cooked values for �i. One can determine a se-
quence of �i values that maximizes the number of pairs
successfully decoded after N iterations. We performed a
�rst-order search for such a sequence of �i values. Each
�i maximizes the number of successfully decoded pairs
after i� 1 iterations. For q = 7681 the sequence of �i
shown in Appendix A was found.

Architecture. The hardware architecture for the masked
decoder follows from the previous working principle
description. Our implementation is shown in Figure 3.
From left to right, we see the �rst refreshing step by
the constants �i. The constants �i vary from itera-
tion to iteration. After the refreshing step, the quadrant
function is applied to each share a0; a00. This quadrant
function outputs x if a belongs to the x-th quadrant,
and thus the output consists of 2 bits. These blocks

1 We use here the term \refresh" to refer to the process
of modifying the masked representation (a0; a00) of a without
modifying the unshared value a, but, contrary to other con-
texts in the literature, we do not imply that we are pumping
new randomness in the new representation.
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a00
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1
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m00

q0

q00

Fig. 3: Data 
ow for the masked decoder.

are essentially 13-bit comparators, and thus relatively
inexpensive in logic.2 The subsequent rule checking on
(q0; q00) is performed by a masked table lookup that is
described in the following section. The whole process is
repeated N = 16 iterations, and this number of itera-
tions stays �xed even if the decoding is successful after
the few �rst iterations.

4.2 Masked table lookup

The �nal step in the masked decoder is a masked table
lookup. This table implements the rules described in
Section 4.1, and essentially maps the output of each
quadrant q0i and q00i (2 bits each) after the i-the iteration
(i 2 [1; N ]) to a (Boolean) masked output bit value
(m0i;m00i ). In our speci�c implementation, we have other
inputs: the result of the decoding from the previous
iteration (m0i�1;m00i�1) and an extra randomness bit r
(fresh at each of the N iterations for each of the n
coe�cients).

This is a well-studied problem that arises in other sit-
uations (for instance, when masking the sbox lookup in a
typical block cipher) and there are plenty of approaches
here to implement such masked table lookup.

Hardware. In hardware, we opted for the approach
of masked tables as in [31]. We set m0i  r and we
compute m00i  f(r; q0i; q00i ;m0i�1;m00i�1). The function f
essentially bypasses the previous decoded value when
no rule applies to q0i; q00i by setting the output m00i to
r +m0i�1 +m00i�1 (refreshing the content of the output
registers). If a rule applies to q0i; q00i , it sets the output
m00i accordingly. By doing this, we can register always
the output of this table and no control logic to enable
such output register is needed (it is implicitly integrated
into this masked table.) This is the reason why the table
sees also the previous decoded value m0i�1 and m00i�1.

2 Note that in the special case that q is a prime close to a
power of two the construction of the quadrant block can be
further simpli�ed.

The usual precautions are applied when implement-
ing f . For our target FPGA platform, we carefully split
the 7-bit input to 1-bit output function f into a bal-
anced tree of 4-bit input LUTs, in such a way that any
intermediate input or output of LUTs does not leak in
the �rst order. Note that here we are assuming that each
LUT is an atomic operation. If stronger security guar-
antees are needed, other approaches to implement such
function f should be followed. When implemented in an
ASIC, it may be preferable to store this masked table
in ROM (since the contents of the table are immutable
and the size is small.)

The output of this table is (Boolean) masked, and
thus no unmasked value lives within the implementation.
This is suited for consumption of a masked AES module
(say) after some preprocessing as will be detailed later.
We stress that we use masked tables on the output of
the quadrants. This is the key for our reduced area
requirements, as will be explained in Section 5.

Software. For the software implementation of the masked
table lookup we base our approach on the previous hard-
ware description. We �rst write an unmasked decoder in
a (software) bitsliced way, and then apply the method
of [1] to provide \gate-level" masking to the bitsliced
software implementation. More details are given in Sec-
tion 6.

5 Hardware implementation

We implemented the fully masked ring-LWE decryp-
tion system with the proof-of-concept parameter set
(n; q; s) = (256; 7681; 11:32) �rst introduced in [13], cor-
responding to a medium-term security level. Note that
these concrete choice of parameters is not meant to
be deployed. The target platform is a Xilinx Virtex-II
xc2vp7 FPGA. The HDL �les were synthesized within
Xilinx ISE v8.2 with optimization settings set to bal-
anced and KEEP HIERARCHY 
ag when appropriate to
prevent optimization of security-critical components. We
base our arithmetic processor on the design from [29].

5.1 Area

In our case, a single arithmetic coprocessor performs
serially the computations of Equation 3 and then that
of Equation 4. This incurs in a very slight area overhead
(only the control microcode is slightly modi�ed, plus the
masked decoder), at the obvious cost of an increased
execution time. In comparison to the unprotected ver-
sion, our protected decryption scheme consumes more
memory as now we store two shares r0 and r00 of the
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LUTs/FFs/DSPs fmax [MHz] cycles

unprotected 1713/830/1 120 2.8k
protected 2014/959/1 100 7.5k

Table 1: Performance and Comparison on Xilinx Virtex-
II xc2vp7 FPGA. Note that these results are not directly
comparable with [29], since the latter were obtained from
a more advanced Virtex-6 FPGA, which has 6-bit input
LUTs and superior routing mechanisms in comparison
to our target FPGA.

secret polynomial r, and the two output polynomials a0

and a00 from the two INTT operations.
In Table 1, we can see that the proposed masking

of the ring-LWE architecture incurs an additional area
overhead of only 301 LUTs and 129 FFs in comparison
to the unprotected version. This additional area cost is
mostly due to a pair of masked decoders. Due to its low
area overhead, we chose to keep two masked decoders in
parallel, decoding two coe�cients simultaneously. (This
nicely �ts with the memory organization of the arith-
metic coprocessor, since it �ts two 13-bit coe�cients
in each memory word.) Thus, we use two addition and
subtraction circuits for the refreshing with �i (account-
ing for 160 LUTs) and two masked tables (90 LUTs in
total).

We note that we could straightforward reduce the
additional area cost by reusing the 13-bit addition and
subtraction circuits present in the arithmetic coproces-
sor. Since during a decoding operation, the arithmetic
coprocessor remains idle, reusing of the addition and
subtraction circuits do not cause any increase in the
cycle count. For simplicity, we did not implement this
approach.

5.2 Cycle count

The cycle count for our approach is decomposed in the
computation of Equation 3, Equation 4 and the masked
decoder. Equation 3 takes 2840 cycles (one unprotected
ring-LWE decryption), Equation 4 takes 2590 cycles,
slightly less than Equation 3 since there is no addition
present in the second branch.

The two-way parallel masked decoder takes 1
2 � n�

N + � cycles to decode all the coe�cients into message
bits. In our case with n = 256, N = 16 the masked
decoder takes 2048 cycles. Thus in total, a masked de-
cryption operation requires 7478 cycles. The arithmetic
coprocessor and the masked decoder run in constant
time and constant 
ow.

5.3 Comparison with an elliptic-curve cryptosystem

We compare our protected decryption scheme with the
unprotected high-speed elliptic curve scalar multiplier
architecture proposed by Rebeiro et al. in [23]. The ar-
chitecture for the �eld GF(2233) consumes 23 147 LUTs
and computes an unprotected scalar multiplication in
12:5�s on a more advanced Virtex-4 FPGA. Thus the
scalar multiplier has an area � time product of approx-
imately 289 337. Our protected ring-LWE decryption
(for a similar security) achieves an area � time product
of approximately 151 452 on a Virtex-2 FPGA; thus
achieving at least 1.9 times better �gure of merit.

5.4 Trade-o�s

The previous �gures are subject to trade-o�s. If smaller
latency is desired instead of a compact implementation,
two coprocessors can perform the two computations of
Equation 3 and 4 in parallel. Trade-o�s also apply to
the masked decoder, and the parallelization could be
extended easily to reduce latency in this stage. Since the
BRAMs present in the Xilinx FPGAs support reading of
multiple consecutive words, we could keep more pairs of
masked decoders in parallel and reduce the number of cy-
cles. Another alternative is to keep the masked decoder
in pipeline with the polynomial arithmetic block. Such
type of setting is suitable for systems where many de-
cryption operations are performed in a chain. While the
masked decoder works on the coe�cients of a previous
computation, the polynomial arithmetic unit processes
new ciphertexts. Since the masked decoder is faster than
the polynomial arithmetic unit, the cycle count of the
masked decoder is not an overhead in such type of set-
ting. But of course, in this situation we could not reuse
the arithmetic circuitry of the arithmetic coprocessor
for the refreshing operation of the masked decoder.

5.5 Maximum frequency

We note that the arithmetic coprocessor is a very op-
timized unit with a complex pipeline organization. We
thus insert two pipeline stages in the masked decoder
to match the maximum frequency of the whole system
to that of the arithmetic coprocessor. In this way, the
design can run up to almost 100 MHz. The critical path
is inside the arithmetic multiplier.

6 Software implementation

We wrote a software implementation of the complete sys-
tem for an ARM Cortex-M4F with the same parameter
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c1
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b0

a0

b1
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b1

a1

b0

r
c0

Fig. 4: Trichina AND gate. This masked computes the
unshared function c = ab. Each variable a is shared into
two shares a1, a2. This is the construction we use for our
secure AND instruction in our software implementation.

set as previous section. This Cortex-M4F is a popular
and powerful embedded platform. It has a 32-bit word
size, 13 general-purpose registers, its instruction set
supports single-cycle 32-bit multiplications and 16-bit
SIMD arithmetic.

6.1 Arithmetic operations

Our implementation for the arithmetic part (the two
branches from Eq. 3 and Eq. 4) follows the lines of de
Clercq et al. [9]. We remind here the key ideas of the
software implementation. Each coe�cient requires 13-
bits of storage for q = 7681, and we therefore store two
coe�cient in every processor word. We use the negative-
wrapped NTT along with computational optimizations
from [29] to implement the polynomial multiplication.
We can reduce the number of memory accesses, pointer
operations, and loop overhead by 50% by performing a
two-fold unrolling of the inner loop of the NTT transfor-
mation. The expensive calculation of twiddle factors can
be avoided by storing precomputed twiddle factors, and
inverse twiddle factors in a lookup table. The code is con-
stant time and constant 
ow (SPA resistant.) Since each
branch operates on only one share, no special protection
against DPA is required.

6.2 Masked decoder

Quadrants. The quadrant operation is implemented in
a constant-time and constant-
ow way. It relies on arith-
metic substraction to perform successive comparisions
against q=4, q=2 and 3q=4. From these comparisions, the
quadrant result is constructed by bitmasks. As in the
previous paragraph, since each quadrant operates on a
single share, no further DPA protection is required.

Table 2: Timings for major operations in software.

Operation kCycles

Equation 3 43
Inverse NTT transform 39
Masked decoder 168

Table lookup. The table lookup is the most sensitive part
since it sees both shares q0 and q00. We mask the table
lookup following [1]. This approach takes as input an
unprotected software bitsliced implementation written
as a straight-line sequence of XOR and AND instructions.
Then, the input data is shared in a Boolean fashion and
the instructions are replaced by its secure equivalent.
The masked XOR operation is very easy to derive; the
masked AND instruction is more ellaborate due to the
non-linearity of the operation. The data
ow for the AND
instruction is represented in Figure 4. It is essentially
Trichina’s masked AND gate.

We wrote the unmasked function that applies the
rules of Section 4 (including output feedback) in a bit-
sliced fashion. We then used espresso [30] and MisII
(part of Octtools) for logic minimization and synthe-
sis into XOR and AND \gates" = instructions. We then
substituted the XOR and AND instructions for its secure
equivalents. We perform 32 table lookups (for 32 di�er-
ent coe�cients) concurrently, and the decoder always
performs 16 iterations. This part (a series of XOR and
AND) was prototyped in C and the assembly output
carefully inspected.

6.3 Timings

In Table 2 we can see an overview of the time required
for each major operation. Note that while the arithmetic
part is heavily optimized, we did not focus on achiev-
ing the fastest implementation in the masked decoder
implementation. The most expensive part of arithmetic
computation is the inverse NTT, requiring 39k cycles.
The computation of Eq. 3 takes around 43k cycles. The
masked decoder takes around 168k cycles. (Most of the
time goes to computing the quadrant functions. An
assembler version for these functions would greatly ben-
e�t the overall timing.) The overhead in cycles for the
masked version is around 5:8 times more cycles.

7 Discussion

7.1 Error rates

Cryptosystems based on ring-LWE are inherently prob-
abilistic. This means that there is a non-zero probability
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Fig. 5: Empirical success distribution for the masked
decoder

that the recovered plaintext after ring-LWE decryption
is not exactly the plaintext before encryption. In our
case, due to the probabilistic nature of our masked de-
coder approach, there is a second source of noise. Since
the number of iterations of the masked decoder is �-
nite, there are some pair values (a0; a00) that will not
get decoded within the �xed �nite number of iterations.
In this section, we �rst explain the error rate of the
probabilistic decoding in isolation, and then we switch
to the global system error rate and point out strategies
to mitigate it.

Errors due to the probabilistic decoding. In this section,
we assume that the plaintext bit is 1 and the unmasked
input a to the masked decoder is in (q=4; 3q=4). The ad-
ditional error due to the probabilistic masked decoder is
the probability pe that (a0; a00) does not get successfully
decoded. Let us write ps = 1� pe.

This probability ps is in
uenced by two distributions.
We have that

ps =
X

Pr[successful decodeja] � Pr[a] (5)

where the sum is taken over a 2 (q=4; 3q=4). On the
one hand, Pr[successful decodeja] is the probability that
the decoder successfully decodes a. On the other, Pr[a]
is the probability with which a takes various values in
(q=4; 3q=4).

The distribution of the decoder success probability
Pr[successful decodeja] as a function of the unshared
input value a to the decoder can be easily computed

Fig. 6: Distribution of a when plaintext is 1

by averaging over all possible pairs (a0; a00) such that
a0 + a00 = a. Since for any given value of a, its shares
a0 or a00 are (individually) equiprobable, we compute
Pr[successful decodeja] as Pr[successful decodeja] =
1
q
P

a0+a00=a Pr[successful decode of (a0; a00)].
The distribution Pr[successful decodeja] is shown in

Figure 5. We see that the decoder performs best when
a � q=2, in which case all possible inputs get decoded
correctly. Only when the input value a approaches q=4
or 3q=4, the performance degrades. When using a larger
number of iterations N = 16 this e�ect is less pro-
nounced when compared to N = 2 iterations, as Figure 5
shows.

On the other hand, it is easy to see that not all
unshared inputs a to the decoder are equally likely. By
the construction of the ring-LWE decryption function,
the unshared input to the decoder a is either centered
around q=2 (resp. 0) when the message bit is 1 (resp. 0).
This distribution Pr[a] is plotted in Figure 6.

These two observations combined produce a nice
interaction between the prior distribution Pr[a] of a
(given by the ring-LWE decryption) and the success dis-
tribution of the masked decoder Pr[successful decodeja]
as in Equation 5. Namely, values of a that are di�cult
to decode (those with low Pr[successful decodeja]) are
quite unlikely to appear as input to the masked decoder
(their Pr[a] is also low). This positive interaction keeps
the global error rate of the system quite low. This is
precisely quanti�ed in the next paragraph.

Global error rate and number of iterations. We per-
formed simulations to estimate the global error rate and
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Iterations pg [�10�5] pg=pbaseline

N =2 332.24 91.41
3 178.44 49.09
4 25.36 6.97
5 20.77 5.71
6 16.22 4.46
8 6.97 1.91
16 4.32 1.19
24 4.06 1.11
30 3.87 1.06

Fig. 7: Global error rates with the probabilistic decoder.
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Fig. 8: Evolution of the ratio pg=pbaseline as the number
of iterations N grows.

determine the required number of iterations N in our
design. Over 106 bits, the average error per bit using a
deterministic decoder was pbaseline = 3:634375 � 10�5.
This is a baseline error intrinsic to the ring-LWE con-
struction. When we plug in the probabilistic decoder,
the global, end-to-end, error rate per bit pg increases.
(We have pg = pbaseline + pe.) In Figure 7, we can �nd
the global error rate for di�erent values of the number
of iterations N of the decoding. At N = 3, for instance,
the error rate is pg = 1:7844�10�3, which is � 49 times
larger than pbaseline. As already hinted, the error rate
quickly decreases with N (roughly exponentially, as can
be see in Figure 8). In our design, we set N = 16 (we
iterate 16 times per coe�cient) as a balanced tradeo�
between cycle count and error rate. The impact of the
masked probabilistic decoder on the global error rate is
quite low, adding less than 20% to the intrinsic error
rate when compared to a deterministic decoder, as it can
be see in Figure 7. We note that one could generalize
the masked decoder to trade area for less number of
iterations. For details, see Appendix C.

7.2 Comparison with other decoding strategies

We are only aware of a similar masked decoder, the one
presented in [5]. There the authors resort to a generic
masking method, namely masked tables, to perform the
decoding. Translating the ideas of [5] in our context, we
would need two tables of 213 bits (one of them random).
For a smaller group Zd with d = 257 the authors report
an utilization of 1331 slices on a Virtex 6 FPGA. While
the results in slices are not directly comparable with
ours, we point out that the size of the masked table
following the approach of [5] grows linearly in the group
size q, while for our solution the size of the masked table
stays constant (independent of q), and the quadrant
blocks grow only logarithmically in q. The cycle count,
however, is larger in our solution. The critical obser-
vation of our masked decoder is that we can compress
the input coe�cient shares a0 and a00 to a mere two
bit per share (the output of each quadrant) and then
perform the decoding based on the information of the
two quadrants (4 bits.)

7.3 Post-processing

Albeit the computation from Equation (2) is commonly
referred as the \ring-LWE decryption", the decryption
process should include a post-processing on the recov-
ered message m. This post-processing consists of error
correction and padding veri�cation.

Linear codes with masking. One approach to deal with
the probabilistic nature of the ring-LWE decryption sys-
tem is to use forward error correcting codes (FEC). The
message prior to encryption is encoded using a FEC
and the resulting composite is ring-LWE encrypted. The
output of the ring-LWE decryption should be corrected
for errors, preferably in the masked domain. For syn-
drome decoding of linear codes, this can easily be done
by masking the syndrome table. A clever choice of the
linear code (for example, perfect codes) can allow very
easy masked implementation. (The only perfect linear
codes are repetition, Hamming and Golay codes.)

Padding schemes. As presented, the ring-LWE system is
malleable. CCA security can be achieved with a padding
mechanism. The Fujisaki-Okamoto [12] padding scheme
is known to work with ring-LWE [20]. This padding
scheme makes use of standard symmetric cryptographic
constructions whose masked implementations are well
studied. We point out that key-encapsulation mecha-
nisms may result in a more compact and simpler imple-
mentation.
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� = 0:27, intermediate: a0[0]
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� = 0:3, intermediate: r00[0] � c1[0]

� = 0:25, intermediate: r0[0] � c1[0] + c2[0]
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Fig. 9: Hardware implementation. PRNG o�. On top, black, one power consumption trace. The di�erent computa-
tional stages can be distinguished: �rst branch, second branch and decoding. Next, in blue, the correlation trace for
the value r0[0] � c1[0] + c2[0]. The correlation achieves a maximum value of � = 0:25. Below, in red, correlation for
r00 � c1 (max � � 0:3); in green: correlation for the input of the masked decoder a0[0]. At the bottom: correlation
with one message bit m0[0].

We remind that the Fujisaki-Okamoto padding scheme
requires a negligible decryption error rate for honestly
generated ciphertexts,3 as explained by Peikert [20].
Thus, the designer must ensure that the global error
rate due to the intrisic noise of ring-LWE and the prob-
abilistic decoder is negligible. This can be achieved with
FEC as previously described.

A formal generic analysis to choose a FEC code that
sets the error rate to, say, 2�80 or 2�128 is not straight-
forward. The analysis is greatly simpli�ed if one chooses
(n; p; s) parameters such that there is no error contribu-
tion due to those parameters and at the same time a
required bit security level is maintained. We leave this
as future work.

7.4 Extension to higher-order security

We point out that the approach laid out in Section 3
scales quite well with the security order. To achieve secu-
rity at level d+ 1, one would need to split the computa-
tion of Equation 2 into d branches analogously to Equa-

3 We would like to thank the anonyomus reviewer for bring-
ing this important issue to our attention.

tion 3. The masked decoder can follow the same princi-
ples with the appropriate modi�cations. The complexity
of this decoder obviously grows. Generic approaches to
perform this computation have been discussed in [8,3,
25].

8 Evaluation

In this section we evaluate both the hardware and the
software implementations described above.

We provide a very advantageous setting for the ad-
versary: we assume that the evaluator knows the details
about the implementation (for example, pipeline stages
and register allocation). In addition, we assume that
while guessing a subkey, the adversary knows the rest of
the key. These assumptions allow to comfortably place
predictions on intermediates arbitrarily deep into the
computation. While this may represent a very powerful
attacker and somewhat unrealistic, the algebraic struc-
ture of such cryptosystem may help the attacker to
predict deep intermediates with relatively low e�ort. In
the Appendix B we describe an attack on half-masked
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ring-LWE decryption that uses these ideas. This stresses
the necessity of masking the decoding function entirely.

The evaluation methodology to test if the masking is
sound is as follows. We �rst proceed with �rst-order key-
recovery attacks when the randomness source (PRNG)
is switched o�. We demonstrate that in that situation
the attacks are successful, indicating that the setup
and procedure is sound. Then we switch on the PRNG
and repeat the attacks. If the masking is sound, the
�rst-order attacks shall not succeed. In addition, we per-
form second-order attacks to con�rm that the previous
�rst-order analyses were carried out with enough traces.

We modeled the power consumption as the Ham-
ming distance between two consecutive values held in
a register, and used Pearson’s correlation coe�cient to
compare predictions with measurements [6].

8.1 Hardware implementation evaluation

Measurement setup. We implemented the full design on
a SASEBO G board. The design was clocked at 18:75
MHz and the power consumption was sampled at 500
MS/s. This platform is very low noise.

We test 4 di�erent points which covers all the rele-
vant parts of the computation. The targets are the �rst
13-bit coe�cient of r0 � c1 + c2, the �rst 13-bit coe�cient
of r00 �c1, the �rst input coe�cient to the shared decoder
and the �rst output bit.

PRNG o�. We �rst begin the experiments when the
PRNG is o�. That is, the sharing of r into r0 and r00 on
each execution is deterministic. This would not happen
in practice, as an active PRNG would randomize the
representation of r in each execution. In our setting, this
would mean that the masking is switched o�.

In Figure 9 we draw the result of correlating against
the 4 intermediates with 10 000 traces. On top, we draw
a mean trace for orientation. The correlation values are,
from top to bottom, 0:25, 0:3, 0:27 and 0:21, respectively.
This means that the attacks are successful, and con�rms
the soundness of our setting. In Figure 10 we can see the
evolution of the correlation coe�cient as the number
of traces increases for the �rst two intermediates. We
can see that starting from hundred traces the attack
is successful. Similar behavior was observed for other
intermediates.

PRNG on. In Figure 11 we draw the result of the pre-
vious analysis when the masks are switched on. This
corresponds to the situation that an adversary would
face in reality. We can see that the correct key guess is
no longer distinguishable, even when using 10 000 traces.

Fig. 10: Hardware implementation. PRNG o�. Evolution
of the correlation coe�cient as the number of traces
increases for the intermediates r0[0] � c1[0] + c2[0] (left)
and r00[0] � c1[0] (right). Correct subkey guess in red, all
other guesses in green. A 99:99 % con�dence interval for
� = 0 is plotted in black discontinuous line. We can see
that starting from hundred measurements the attacks
are successful.

We repeated the same experiments for other interme-
diates and other intermediate positions with identical
results.

Second-order attacks. To con�rm that we used enough
traces in our previous analyses, we perform here second-
order attacks on the masked implementation with the
PRNG on. We will focus on the masked decoder. In
Figure 12 we draw on top a mean curve in the region
of 7 400 to 7 700 cycles, corresponding to the end of
the masked decoding. We target one output bit of the
decoding: m[254].

In Figure 12 we �rst begin by correlating against
masks and masked values. This is a test scenario, since
for this attack we need to know the masks, something
that would not happen in a real deployment. Correlation
with masks or masked value yield high correlation as
expected (� = 0:32 and � = 0:34, respectively). In con-
trast, when correlating against the unshared value (in
light blue), the correlation coe�cient does not traverse
the con�dence interval for � = 0. This indicates that
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Fig. 11: Hardware implementation. Analogous to Fig-
ure 10, but with PRNG on. The correct subkey is no
longer identi�able. This is expected and means that the
masking is e�ective.

the masking is e�ective. We can repeat the same attack
against centered and squared traces [7,22]. This is e�ec-
tively a second-order attack, and is expected to work. It
is shown in magenta in Figure 12, and we can see that
the attack succeeds. Using the centered absolute value
to pre-process traces also works as expected, as shown
in yellow.

In Figure 13 we can see the evolution as a func-
tion of the number of traces. We can see that starting
from � 2000 measurements this second-order attack is
successful. This con�rms that the �rst-order attacks
from above were carried out with enough traces, since a
second-order attack is already successful starting from
� 2000 measurements.

We remark that the relatively low number of traces
required for the second-order attack is due to the very
friendly scenario for the evaluator. The platform is low
noise and no other countermeasure except than masking
was implemented. In practice, masking needs a source
of noise to be e�ective, and consequently the higher-
order attacks would be harder to mount, requiring more
traces [7] and more computation [26].

8.2 Software implementation evaluation

Measurement setup. We deployed the masked software
implementation on a 32-bit ARM STM32F407VG Cortex-
M4. The MCU operates at 168 MHz and has 192 kB of
SRAM. We take contactless power measurements from
a decoupling capacitor in the power loop with a Langer
LF2-5 H-�eld probe and 20 dB ampli�cation. This lab
setup is very low-noise. DPA on an unprotected byte-
oriented AES succeeds with 20 traces. We focus the
evaluation on the most challenging part: the masked
decoding operation.

Masks o�. Figure 15 shows successful correlations when
the adversary knows the secret PRNG seed. This serves
to con�rm that our setup is sound. We selected many
di�erent intermediates within the table lookup operation
and used 20k traces to produce a good-looking picture.
The maximum absolute value for the correlation against
the correct key hypothesis is around j�j � 0:71. In Fig-
ure 16, top, we see the evolution of sample correlation
coe�cient as the number of curves at timesample 1390.
We can see that starting from less than hundred traces
the attack is successful, since the correct subkey stands
out from all other competing key hypotheses.

Masks on. When the PRNG output is unknown, �rst-
order attacks are expected not to work. This is the case
in our implementation. In Figure 16, middle, the evolu-
tion of the correlation coe�cient is plotted at the same
timesample 1390. The correct subkey is indistinguish-
able among competing ones. Similar observations apply
to the entire timespan.

Second-order attacks. We also performed second-order
attacks. Note that our implementation does not claim
second-order security. One can see from Figure 16, bot-
tom, that second-order attacks begin to work from a
couple hundred measurements. This means that the pre-
vious analyses were carried out with enough number of
measurements (up to 20k measurements.) Similar obser-
vations apply here: our software setting is very friendly
towards the evaluator since there is no additional noise
present in the measurements. In reality, one would al-
ways implement masking along with a source of noise
to be e�ective.

8.3 Horizontal DPA attacks

During the decoder operation, the input coe�cients are
refreshed N � 1 = 15 times with publicly known o�sets
�i. The device thus handles consecutively the values
a0, a0 + �1, ..., a0 + �1 + : : : + �15. This may enable
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Fig. 12: Hardware implementation. Correlation traces for intermediates within the shared decoder. On top, a power
measurement trace showing the last 15 decodings. Below, correlation traces. The �rst two (masks and masked
values) assume that the adversary knows the masks. The third one, in light blue, is a �rst-order attack without
knowing the attack, and is unsuccessful. In contrast, the second-order attack against the same intermediate is
successful, as the traces in magenta and yellow show.

a horizontal DPA attack [19] during the operation: the
adversary may collect a single trace, split it into 16
chunks and then perform a DPA on these 16 chunks to
recover the mask a0. Once the masks from all traces are
discovered, a �rst-order, vertical DPA applies.

There are two factors that mitigate this threat. First,
we note the adversary is given a very limited number
of traces to recover each mask (namely, N = 16). Sec-
ondly, this attack can be easily prevented by shu�ing
the public coe�cients �i. This randomizes the order
of execution of each refreshing with �i, and thus the
exposure to horizontal DPA attacks is minimized.

9 Conclusion

In this paper we described a practical side-channel pro-
tected implementation of the lattice-based ring-LWE
asymmetric decryption. Our solution is based on the
sound principles of masking and incurs in a manage-
able overhead (in cycles and area). A key component
of our solution is a bespoke masked decoder. Our im-

plementation performs the entire ring-LWE decryption
computation in the masked domain.
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Fig. 16: Software implementation. Evolution of Pearson’s
correlation coe�cient with number of traces for di�er-
ent attacks at timesample 1390. On top: (successful)
�rst-order attack with PRNG o�. Middle: (unsuccessful)
�rst-order attack with PRNG on. Bottom: (successful)
second-order attack with PRNG on. Correct subkey
in red, incorrect in green. We also plot the 99:99 %
con�dence interval for � = 0 in dashed line.

ber 2007. Available at http://www.cs.bris.ac.uk/home/
tunstall/papers/THMWMM.pdf.

a0 a00
I1 I2 I3 I4 I5 I6 I7 I8

I1 = (0; q=8) X � X X X � X X
I2 = (q=8; 2q=8) � X X X � X X X
I3 = (2q=8; 3q=8) X X X � X X X �
I4 = (3q=8; 4q=8) X X � X X X � X
I5 = (4q=8; 5q=8) X � X X X � X X
I6 = (5q=8; 6q=8) � X X X � X X X
I7 = (6q=8; 7q=8) X X X � X X X �
I8 = (7q=8; 8q=8) X X � X X X � X

Table 3: The rules for octant-decoding. The cases where
no rule is hit are marked with �.

A Optimal values of � i for q = 7681

�(i) = (960; 1440; 480; 1680; 240; 720; 1200; 1800; (6)
120; 360; 600; 840; 1080; 1320; 1560; 1860; (7)
60; 180; 300; 420; 540; 660; 780; 900; 1020; (8)
1140; 1260; 1380; 1500; 1620; 1740; 1890; (9)
30; 90; 150; 210; 270; 330; 390; 450; 510; (10)
570; 630; 690; 750; 810; 870; 930; 990; 1050; (11)
1110; 1170; 1230) (12)

These values were found by exhaustive �rst-order search.
The value �i is chosen so that it maximizes the number of
pairs that get decoded after i iterations.

B Attack on half-masked variant

In this section, we analyze the security of a masked ring-
LWE variant where the intermediates just before decoding are
unmasked, and the decoding is performed in the unmasked
domain. This alternative is de�nitely cheaper than full mask-
ing. In the following, we provide evidence to show that this
clearly does not provide enough security in our case.

(A seemingly similar situation appears in [5]. However,
there are important di�erences|namely it is not possible to
choose ciphertexts. In the following, we are not analyzing the
variant of [5] but only the half-masked ring-LWE.)

A common argument is that after key-di�usion is com-
plete, prediction of the intermediates is not possible and hence
standard DPA attacks to the half-masked ring-LWE do not
apply. We will see that this is not strictly true, if the attacker
can choose ciphertexts.

Assume that the coe�cients of the polynomial a = INTT(r�
c1 + c2) appear unmasked in the implementation. Let the ad-
versary collect measurements with chosen ciphertext. The
ciphertext c1 has the following structure: all the coe�cients
�xed except c1[0] randomly varying. The ciphertext c2 has the
same structure. Then observe that due to linearity of the INTT
operation, a[0] can be written as a[0] = �(r[0]�c1[0]+c2[0])+�,
where

{ � is a public constant determined by the INTT transfor-
mation.

{ � is a secret constant that is a function of the other
(unknown) key coe�cients r[1]; : : : ; r[255]. Note that by
construction � is constant within the set of collected traces.

Thus, an attacker can perform a DPA attack targeting
the intermediate a[0] and placing predictions on (r[0]; �). The
adversary recovers r[0] and proceeds to recover other key co-
e�cients. We have veri�ed this attack in simulations, even
when using th(a[i]) as intermediate.

(It may seem that the high number of hypotheses, 226

may produce a cumbersome attack. However, one can apply
techniques of partial correlation [6] to alleviate the compu-
tational e�ort of DPA on large word sizes [32]. And we have
experimented that in practice it makes sense to �rst recover
r[0] (this is easier due to larger non-linearity of the modular
multiplication) and then � (which may be harder due to the
low non-linearity of the modular addition), splitting the 226

e�ort in two 213 steps.)

http://www.cs.bris.ac.uk/home/tunstall/papers/THMWMM.pdf
http://www.cs.bris.ac.uk/home/tunstall/papers/THMWMM.pdf
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C Generalization of the decoding scheme

The probability of not hitting any rule can be reduced by
increasing the number of rules, i.e. by splitting the domain of
decoding into more than four sections. For example, in Table 3
the rules are shown for the case when the decoding domain is
split into eight sections or octant. As seen from the table, the
probability of not hitting a rule has reduced to 1=4. Hence to
meet a same decryption failure rate, an octant decoder needs
almost half the number of iterations as required by a quad de-
coder. However there are overheads associated with an octant
decoder when it is compared to a quad decoder: the number
of comparisons to locate the position of a coe�cient in the
octant chart doubles and the sizes of the tables quadruples.
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