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Intelligent Acoustic-based Fault Diagnosis of Roller Bearings Using a Deep 
Graph Convolutional Network 

Dingcheng Zhang1*, Edward Stewart1, Mani Entezami1, Clive Roberts1, Dejie Yu2

1.School of Engineering, University of Birmingham, Birmingham, B152TT, United Kingdom
2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, 
Changsha, 410082, China

Abstract: Roller bearings form key components in many machines and, as such, their health 

status can directly influence the operation of the entire machine. Acoustic signals collected 

from roller bearings contain information on their health status. Hence, acoustic-based fault 

diagnosis techniques can provide novel solutions as condition monitoring tools for roller 

bearings. Traditionally, acoustic fault diagnosis methods have been based on conventional 

signal processing methods in which prior expert knowledge has been required in order to 

extract and interpret the health information contained within the collected acoustic signals. As 

an alternative, deep learning methods can be used to obtain heath information from the 

collected signals by constructing ‘end-to-end’ models that do not rely on prior knowledge. 

These approaches have been successfully applied in the condition monitoring of industrial 

machinery. However, conventional deep learning methods can only learn features from the 

vertices of input data and thereby ignore the information contained in the relationships (edges) 

between vertices. In this paper, which combines graph convolution operators, graph coarsening 

methods, and graph pooling operations; a deep graph convolutional network (DGCN) based on 

graph theory is applied to deliver acoustic-based fault diagnosis of roller bearings. In the 

proposed method, the collected acoustic signals are first transformed into graphs with 

geometric structures. The edge weights represent the similarity between connected vertices, 

which enriches the input information and hence improves the classification accuracy of the 

deep learning methods applied. To verify the effectiveness of the proposed system, experiments 

with roller bearings of varying condition were carried out in the laboratory. The experimental 

results demonstrate that the DGCN method can be used to detect different kinds and severities 

of faults in roller bearings by learning from the constructed graphs. The results have been 

compared to those obtained using other, conventional, deep learning methods applied to the 

same datasets. These comparative tests demonstrate improved classification accuracy when 

using the DGCN method. 

Keywords:  acoustic-based fault diagnosis, roller bearing, graph theory, deep learning, deep graph 
convolutional network 
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1. Introduction 

Roller bearings play an important role in industry and are widely used in many different 

kinds of machines. Roller bearings often carry substantial loads and may even support the 

whole weight of the machines of which they are part. Under these conditions, it is possible for 

faults to develop and for those faults to have significant potential consequences. In order to 

avoid failures, maintenance of bearings and bearing components tends to be preventative, but 

this can lead to over-maintenance and inefficiency. In order to reduce costs and maximise the 

availability of machines, condition monitoring of bearings is an increasingly popular approach, 

and a vital step towards condition-based maintenance. Acoustic-based fault diagnosis is one 

such monitoring technique; it involves analysis of acoustic signals collected from microphones. 

The technique has been applied to many systems, such as railway bridges [1], gearboxes [2], 

motors [3], etc. Acoustic-based fault diagnosis has also successfully been applied to roller 

bearings [4, 5]. 

In acoustic-based fault diagnosis, microphones are installed adjacent to target bearings. 

The recorded acoustic signal is then analysed in order to detect faults within those bearings 

with no requirement for direct access to them in order to install the equipment [5, 6]. Hence, 

acoustic-based fault diagnosis techniques have obvious advantages in terms of practicality and 

cost when compared to other techniques such as vibration-based or acoustic emission-based 

approaches. However, acoustic signals normally have high-levels of background noise and may 

contain acoustic signals generated by other components in the machine. Hence, signal-

processing methods are required in order to realise the health analysis benefits. For example: a 

method considering the amplitude of particular frequencies of the acoustic signals was used to 

identify fault-features in [4]; and a method combining improved singular value decomposition 

with resonance-based signal sparse decomposition was proposed in [6]. Conventional signal 

processing-based methods, such as these, have been shown to achieve good performance in 

many cases, however, expert knowledge is generally required to support and interpret the 

results of fault detection systems based on them. Also, each signal sample has to be analysed 

by signal processing-based methods. It is time-consuming as large volumes of data need to be 

processed. Furthermore, stochastic factors in the real operating environment will affect the 

acoustic signals and hence may reduce the effectiveness of these conventional signal 

processing based methods. 

Deep learning (DL) is a powerful machine learning approach which is currently prevalent 

among machine learning techniques. DL has recently demonstrated strong performance in a 
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number of areas, in particular in condition monitoring applications [7]. DL models can be 

trained by learning abstract features from massive datasets off-line and then the trained model 

can be directly used to identify different fault types or fault severities, which are efficiency 

procedures [8]. Intelligent condition monitoring systems based on DL have successfully been 

applied to induction motors [9], planetary gearboxes [10],  axial piston pumps [11], etc. There 

is also a range of work focusing on intelligent fault detection of for bearings. For example, 

Zhang et al proposed an ensemble DL method combining convolution neural networks (CNN) 

and a small batch training [12]. In [13], an improved convolutional deep belief network (DBN) 

was proposed by combining a standard DBN with a compressed sensing technique. The 

approach also used an exponential moving average method to smooth the weightings in the DL 

algorithm. Jia et al proposed a parameter selection strategy for the deep autoencoder (DAE) 

method in [14]. The deep recurrent neural network (DRNN) constructed from long-short term 

memory (LSTM) units was introduced to roller bearing fault diagnosis in [15]. In addition, 

many other DL methods have been proposed to build intelligent condition monitoring systems 

for bearings by analysing vibrational signals [16, 17]. Inspired by those successful cases, an 

intelligent acoustic-based fault diagnosis on DL, is implemented for train bearing monitoring 

in this work. The approach taken here uses Graph Neural Networks. 

Graph neural networks (GNN) were first proposed by Scarselli et al [18], who aimed to 

build a neural network for data held in the graph domain based on graph theory. In the graph 

domain, the geometry structure of the data can provide additional information, including not 

only the values of the nodes but also the relationships between them [19]. Hence, more 

information can be provided in the graph domain than in a general data domain. Bruna et al. 

introduced the convolution operation into GNN based on spectral graph theory, and built the 

first graph convolutional network (GCN) model [20]. Compared with the conventional CNN 

method, GCN has advantages in dealing with the discriminative feature extraction of signals 

in the discrete spatial domain [21]. Up to now, the GCN method has been successfully applied 

to many research areas, such as website recommendation systems [22], electrocardiogram 

detection [23], etc. In this work, a deep graph convolutional network (DGCN) model is built 

and applied to form an intelligent acoustic-based fault diagnosis method.

The proposed DGCN model is constructed by multiple graph convolutional blocks [24], 

one fully connected layer, and one classification layer. The graph convolutional block includes 

one graph convolutional layer, one graph coarsening layer, and one graph pooling layer. 

Different from the convolution operator in the conventional CNN, the graph convolution layer 

used here uses a fast-localized spectral filter constructed according to a Chebyshev polynomial. 





file:///C:/Users/DC_Zh/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/%3Fkeyword=orthogonal
file:///C:/Users/DC_Zh/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/%3Fkeyword=decomposition
file:///C:/Users/DC_Zh/AppData/Local/youdao/DictBeta/Application/7.1.0.0421/resultui/dict/%3Fkeyword=orthogonal






8

2.4 Pooling operation for graphs 

Although the vertices are clustered using graph coarsening, the marked vertices in each 

group are still in an arbitrarily order which blocks the pooling operation for graphs. In this work, 

a binary tree structure is constructed using the coarsened vertices. A rearrangement method is 

then used to sequence the vertices to be compatible with the pooling operation [24]. The 

arranged vertices can then be processed using a 1D pooling operation. The coarsening and 

pooling operations for a graph with 12 vertices are demonstrated in Fig.  2(a) and (b). In Fig.  

2(a), a maximum pooling of size 4, i.e. size of 2 for each pooling, is applied to a graph with 12 

vertices. Fig.  2(b) shows how the vertices are then rearranged to implement the pooling. The 

lines in Fig.  2(a) have the same colour if they connect matched vertices, otherwise they are 

shown with different colours. The vertex enumerators shown in the three levels are allocated 

for each level, with the relationships shown in Fig.  2(b).

After the coarsening procedure described above, each vertex is normally matched and has 

two children (e.g. vertex 0 in level 1 in Fig.  2(b)). Some vertices, known as singletons, occur 

in the last level and only have one child. They occur when the child vertex cannot be matched 

in the coarsening process. Vertices that do not connect with any neighbours (e.g. vertex 1 in 

level 1 in Fig.  2(b)) are known as fake vertices. A balanced binary tree can only be constructed 

if every vertex has two children. In this structure, one singleton and one normal vertex can 

form the two children of a vertex (e.g. vertex 0 in level 2 in Fig.  2(b)). Fig.  2(a) shows an 

original graph (Graph 0) where the input consists of 8 vertices in an arbitrarily order, and 4 

fake vertices. By coarsening and rearranging the vertices to give those shown in Graph 1 / 

Level 1, the pooling operation is rendered similar to a regular 1D pooling operation.
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Fig.  3. Schematic diagram for the construction of graphs

After obtaining the graphs, multiple graph convolutional blocks are then used to extract 

abstract features. Each block includes one graph convolution layer, one graph coarsening layer, 

and a graph pooling layer. The graph convolutional layer is implemented according to the graph 

Laplacian and a Chebyshev polynomial. The graph coarsening layer is based on the weighted 

kernel k-means method and is used to cluster neighbourhoods together in a form compatible 

with the pooling layer. Following this rearrangement strategy, a graph pooling layer based on 

a 1D pooling operation is then applied to those clustered neighbourhoods. Multiple blocks can 

then be used iteratively to extract fault features from inputs. The learned features (i.e. the 

outputs of the blocks) are then fed into a fully connected layer and a SoftMax layer for fault 

detection. The performance of the DGCN approach is tested using testing samples in Section 

4. A flow chart summarising the DGCN approach is presented in Fig.  4.
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Fig.  4. Flow chart of the intelligent acoustic-based fault diagnosis using deep graph convolution network

4. Experimental Validation 
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4.1 Acoustic signal acquisition  

The centre of this paper is to verify effectiveness of the proposed method for acoustic-

based fault diagnosis. In this paper, a roller bearing test rig, shown in Fig.  5 (a), was used to 

collect the acoustic signals in the laboratory. The test rig supports multiple bearings, but in this 

case only a single bearing was used at any time and the data collected using Microphone 2. The 

type of test bearings used were 801023AB tapered roller bearings. 7 bearings were tested, 

including one healthy bearing, two bearings with outer race faults, two bearings with roller 

faults, and two bearings with cage faults. The faults present in the test bearings are shown in 

Fig.  5 (b) – (g), respectively.  The fault details and the methods of artificially creating them 

are summarised in 

Tab. 1. Vertical load was added to the test bearing using a Hydraulic jack. In the experiments, 

the sampling frequency was 12500 Hz. 
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Fig.  5. Test rig and faulty bearings

Tab. 1. Fault conditions for test bearings
Bearing ID Description 

H Healthy statue without any fault

RF1 A minor scratch fault in one roller of bearing, shown in Fig.4 (b). The fault is inflicted 
using the electrical discharge engraver. 

RF2 A greater spalling fault in surface of one roller than that of RF1, shown in Fig.4 (c). A 
small rotary grindstone is used to remove surface material in the roller. 

OF1 A minor scratch fault in the outer race, shown in Fig.4 (d). Fault length is 2.9% of 
circumference. The fault is inflicted using the same method as RF2.

OF2 Similar with OF1. But the scratch area in the outer race becomes widener and deeper, 
shown in Fig 4 (e). Fault length is 10% of circumference.

CF1 The bearing cage cracked in one place, shown in Fig.4 (f). The damage is achieved by 
cutting and applying excess force with a screwdriver. 

CF2 The increased cage fault, shown in Fig.4 (g). The fault is inflicted using the same 
method as CF1.
























