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Abstract 24 

During communication in real-life settings, the brain integrates information from auditory and 25 

visual modalities to form a unified percept of our environment. In the current 26 

magnetoencephalography (MEG) study, we used rapid invisible frequency tagging (RIFT) to 27 

generate steady-state evoked fields and investigated the integration of audiovisual information in 28 

a semantic context. We presented participants with videos of an actress uttering action verbs 29 

(auditory; tagged at 61 Hz) accompanied by a gesture (visual; tagged at 68 Hz, using a projector 30 

with a 1440 Hz refresh rate). Integration difficulty was manipulated by lower-order auditory 31 

factors (clear/degraded speech) and higher-order visual factors (congruent/incongruent gesture). 32 

We identified MEG spectral peaks at the individual (61/68 Hz) tagging frequencies. We 33 

furthermore observed a peak at the intermodulation frequency of the auditory and visually tagged 34 

signals (fvisual - fauditory = 7 Hz), specifically when lower-order integration was easiest because signal 35 

quality was optimal. This intermodulation peak is a signature of nonlinear audiovisual integration, 36 

and was strongest in left inferior frontal gyrus and left temporal regions; areas known to be 37 

involved in speech-gesture integration. The enhanced power at the intermodulation frequency thus 38 

reflects the ease of lower-order audiovisual integration and demonstrates that speech-gesture 39 

information interacts in higher-order language areas. Furthermore, we provide a proof-of-principle 40 

of the use of RIFT to study the integration of audiovisual stimuli, in relation to, for instance, 41 

semantic context.  42 

 43 

Introduction 44 

During communication in real-life settings, our brain needs to integrate auditory input with visual 45 

input in order to form a unified percept of the environment. Several magneto- and 46 

electroencephalography (M/EEG) studies have demonstrated that integration of non-semantic 47 

audiovisual inputs can occur as early as 50-100 ms after stimulus onset (e.g., Giard & Peronnet, 48 

1999; Molholm et al., 2002; Talsma et al., 2010), and encompasses a widespread network of 49 

primary sensory and higher-order regions (e.g., Beauchamp et al., 2004; Calvert, 2001; Werner & 50 

Noppeney, 2010).  51 

  The integration of these audiovisual inputs has been studied using frequency tagging (Giani 52 

et al., 2012; Regan et al., 1995). Here, an auditory or visual stimulus is periodically modulated at 53 

a specific frequency, for example by modulating the luminance of a visual stimulus or the 54 

amplitude of an auditory stimulus. This produces steady-state evoked potentials (SSEPs, SSEFs 55 

for MEG) with strong power at the tagged frequency (for frequency-tagging in the visual domain 56 

and steady-state visual evoked responses (SSVEP), see e.g. Norcia et al., 2015; Vialatte et al., 57 

2010; Gulbinaite et al., 2019, for frequency tagging in the auditory domain and auditory steady-58 

state responses (ASSR), see e.g. Baltus & Herrmann, 2015;  Picton et al., 2003; Ross et al., 2005; 59 

Ross et al., 2003). This technique is especially interesting in the context of studying audiovisual 60 

integration, because it enables the tagging of an auditory stimulus and a visual stimulus at two 61 
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different frequencies (fvisual and fauditory) in order to study whether and how these two inputs interact 62 

in the brain. Previous work has suggested that when the auditory and visual signals interact, this 63 

results in increased power at the intermodulation frequencies of the two stimuli (e.g., |fvisual - fauditory| 64 

or fvisual + fauditory) (Regan & Regan, 1989). Such intermodulation frequencies arise from nonlinear 65 

interactions of the two oscillatory signals. In the case of audio-visual integration, the 66 

intermodulation likely reflects neuronal activity that combines the signals of the two inputs beyond 67 

linear summation (Regan & Regan, 1988; Zemon & Ratliff, 1984).  68 

  However, other authors have reported inconclusive results on the occurrence of such 69 

intermodulation frequencies as a signature of nonlinear audiovisual integration in neural signals. 70 

Furthermore, this integration has so far only been studied in non-semantic contexts (e.g., the 71 

integration of tones and gratings). For example, whereas Regan et al. (1995) identified 72 

intermodulation frequencies (i.e., as a result of tagging an auditory and visual stimulus) in an area 73 

close to the auditory cortex, Giani et al., (2012) identified intermodulation frequencies within (i.e., 74 

as a result of tagging two signals in the visual domain), but not between modalities (i.e., as a result 75 

of tagging both an auditory and a visual signal).  76 

  In both of these previous studies, frequency tagging was applied at relatively low 77 

frequencies (< 30 Hz for visual stimuli, < 40 Hz for auditory stimuli) (Giani et al., 2012; Regan et 78 

al., 1995). This might be problematic, considering that spontaneous neuronal oscillations at lower 79 

frequencies (e.g., alpha and beta oscillations) are likely entrained by frequency tagging (Keitel et 80 

al., 2014; Spaak et al., 2014). In the current study, we use novel projector technology to perform 81 

frequency tagging at high frequencies (rapid invisible frequency tagging; RIFT), and in a semantic 82 

context. Previous work has demonstrated that neuronal responses to a rapidly flickering LED can 83 

be driven and measured up to 100 Hz (Herrmann, 2001), and can successfully be used to study 84 

sensory processing in the brain (Herring, 2017; Zhigalov et al., 2019). We here leverage these 85 

rapid neural responses in order to circumvent the issue of endogenous rhythms interacting with 86 

low-frequency tagging signals.  87 

  We use speech-gesture integration as a test case for studying rapid invisible frequency 88 

tagging in a semantic context. Speech-gesture integration is a form of semantic audiovisual 89 

integration that often occurs in natural, face-to-face communication. Previous behavioral and 90 

neuroimaging studies have demonstrated that listeners process and integrate speech and gestures 91 

at a semantic level, and that this integration relies on a network involving left inferior frontal gyrus 92 

(LIFG), left-temporal regions (STS/MTG), motor cortex, and visual cortex (Dick et al., 2014; 93 

Drijvers, Ozyürek, et al., 2018; Drijvers, Ozyurek, et al., 2018; Drijvers et al., 2019; Holle et al., 94 

2008, 2010; Kircher et al., 2009; Straube et al., 2012; Willems et al., 2007, 2009; Zhao et al., 95 

2018). Using frequency tagging in such a context to study whether intermodulation frequencies 96 

can be identified as a signature of nonlinear audiovisual integration would provide a proof-of-97 

principle for the use of such a technique to study the integration of multiple inputs during complex 98 

dynamic settings, such as multimodal language comprehension.  99 



4 

 

 In the present study, we set out to explore whether RIFT can be used to identify 100 

intermodulation frequencies as a result of the interaction between a visual and auditory tagged 101 

signal in a semantic context. Participants watched videos of an actress uttering action verbs (tagged 102 

at fauditory = 61 Hz) accompanied by a gesture (tagged at fvisual = 68 Hz). Integration difficulty of 103 

these inputs was modulated by auditory factors (clear/degraded speech) and visual factors 104 

(congruent/incongruent gesture). For the visually tagged input, we expected power to be strongest 105 

at 68 Hz in occipital regions. For the auditory tagged input, we expected power to be strongest at 106 

61 Hz in auditory regions. We expected the interactions between the visually tagged and auditory 107 

tagged signal to be non-linear in nature, resulting in spectral peaks at the intermodulation 108 

frequencies of fvisual and fauditory (i.e., fvisual + fauditory and fvisual – fauditory). On the basis of previous 109 

work (e.g., Drijvers, Ozyurek & Jensen, 2018a/b, 2019), we expected the locus of the 110 

intermodulation frequencies to occur in LIFG and left-temporal regions such as pSTS/MTG, areas 111 

known to be involved in speech-gesture integration.  112 

 113 

Methods 114 

 115 

Participants 116 

Twenty-nine right-handed native Dutch-speaking adults (age range = 19 - 40, mean age = 23.68, 117 

SD = 4.57, 18 female) took part in the experiment. All participants reported normal hearing, normal 118 

or corrected-to-normal vision, no neurophysiological disorders and no language disorders. All 119 

participants were recruited via the Max Planck Institute for Psycholinguistics participant database 120 

and the Radboud University participant database, and gave their informed consent preceding the 121 

experiment. Three participants (2 females) were excluded from the experiment due to unreported 122 

metal in dental work (1) or excessive motion artifacts (>75% of trials affected) (2). The final data 123 

set included the data of 26 participants.  124 

 125 

Stimulus materials 126 

Participants were presented with 160 video clips showing an actress uttering a highly-frequent 127 

action verb accompanied by a matching or a mismatching iconic gesture (see for a detailed 128 

description of pre-tests on recognizability and iconicity of the gestures, (Drijvers & Ozyürek, 129 

2017)). All gestures used in the videos were rated as potentially ambiguous when viewed without 130 

speech, which allowed for mutual disambiguation of speech and gesture (Habets et al., 2011).  131 

  In all videos, the actress was standing in front of a neutrally colored background, in 132 

neutrally colored clothes. We predefined the verbs that would form the ‘mismatching gesture’, in 133 

the sense that we asked the actress to utter the action verb, and depict the other verb in her gesture. 134 

This approach was chosen because we included the face and lips of the actress in the videos, and 135 
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we did not want to recombine a mismatching audio track to a video to create the mismatch 136 

condition. Videos were on average 2000 ms long (SD = 21.3 ms). After 120 ms, the preparation 137 

(i.e., the first frame in which the hands of the actress moved) of the gesture started. On average, at 138 

550 ms (SD = 74.4 ms), the meaningful part of the gesture (i.e., the stroke) started, followed by 139 

speech onset at 680 ms (SD = 112.54 ms), and average speech offset at 1435 ms (SD = 83.12 ms)  140 

None of these timings differed between conditions. None of the iconic gestures were prescripted. 141 

All gestures were performed by the actress on the fly.  142 

  All audio files were intensity-scaled to 70 dB and denoised using Praat (Boersma & 143 

Weenink, 2015), before they were recombined with their corresponding video files using Adobe 144 

Premiere Pro. For 80 of the 160 sound files, we created noise-vocoded versions using Praat. Noise-145 

vocoding pertains the temporal envelope of the audio signal, but degrades the spectral content 146 

(Shannon et al., 1995). We used 6-band noise-vocoding, as we demonstrated in previous work that 147 

this is the noise-vocoding level where the auditory signal is reliable enough for listeners to still be 148 

able to use the gestural information for comprehension (Drijvers & Ozyürek, 2017). To achieve 149 

this, we band-pass filtered the sound files between 50 and 8000 Hz in 6 logarithmically spaced 150 

frequency bands with cut-off frequencies at 50, 116.5, 271.4, 632.5, 1473.6, 3433.5 and 8000 Hz. 151 

These frequencies were used to filter white noise and obtain six noise bands. We extracted the 152 

amplitude envelope of each band using half-wave rectification and multiplied the amplitude 153 

Figure 1 A. Illustration of the structure of the videos. Speech was amplitude-modulated at 61 Hz. B. Illustration of the 

different conditions. C. Area used for visual frequency tagging at 68 Hz. D. Illustration of luminance manipulation for 

visual-frequency tagging. D. Frequency tagging was achieved by multiplying the luminance of the pixels with a 68 Hz 

sinusoid. Modulation signal was equal to 0.5 at sine wave zero-crossing to preserve the mean luminance of the video, 

and was phase-locked across trials. 



6 

 

envelope with the noise bands. These bands were then recombined. Sound was presented to 154 

participants using MEG-compatible air tubes. 155 

  We manipulated integration strength in the videos by auditory (clear/degraded) and visual 156 

(congruent/incongruent) factors (see Figure 1). This resulted in four conditions: clear speech + 157 

matching gesture (CM), clear speech + mismatching gesture (CMM), degraded speech + matching 158 

gesture (DM) and degraded speech + mismatching gesture (DMM). These stimuli have been 159 

thoroughly pretested and used in previous work on speech-gesture integration (e.g., Drijvers & 160 

Ozyurek, 2017; Drijvers, Ozyurek & Jensen, 2018). All of the conditions contained 40 videos. All 161 

verbs and gestures were only presented once. Participants were asked to pay attention to the videos 162 

and identify what verb they heard in the videos in a 4-alternative forced choice identification task.  163 

 164 

Procedure 165 

Participants were tested in a dimly-lit magnetically shielded room and seated 70 cm from the 166 

projection screen. All stimuli were presented using MATLAB 2016b (Mathworks Inc, Natrick, 167 

USA) and the Psychophysics Toolbox, version 3.0.11 (Brainard, 1997; Kleiner et al., 2007; Pelli, 168 

1997). To achieve rapid invisible frequency tagging, we used a GeForce GTX960 2GB graphics 169 

card with a refresh rate of 120 Hz, in combination with a PROPixx DLP LED projector (VPixx 170 

Technologies Inc., Saint-Bruno-de-Montarville, Canada), which can achieve a presentation rate up 171 

to 1440 Hz. This high presentation rate is achieved by the projector interpreting the four quadrants 172 

and three colour channels of the GPU screen buffer as individual smaller, grayscale frames, which 173 

it then projects in rapid succession, leading to an increase of a factor 12 (4 quadrants * 3 colour 174 

channels * 120 Hz = 1440 Hz) (User Manual for ProPixx, VPixx Technologies Inc., Saint-Bruno-175 

de-Montarville, Canada). 176 

Frequency tagging 177 

 The area of the video that would be frequency-tagged was defined by the rectangle in which 178 

all gestures occurred, which measured 10.0 by 6.5 degrees of visual angle (width by height). The 179 

pixels within that area were always tagged at 68 Hz. This was achieved by multiplying the 180 

luminance of the pixels within that square with a 68 Hz sinusoid (modulation depth = 100 %; 181 

modulation signal equal to 0.5 at sine wave zero-crossing, in order to preserve the mean luminance 182 

of the video), phase-locked across trials (see Figure 1D).  For the auditory stimuli, frequency 183 

tagging was achieved by multiplying the amplitude of the signal with a 61 Hz sinusoid, with a 184 

modulation depth of 100 % (following (Lamminmäki et al., 2014)). In a pretest, we presented 11 185 

native Dutch speakers with half of the stimuli containing the amplitude modulation, and half of 186 

the stimuli not containing the amplitude modulation in both clear and degraded speech. 187 

Participants were still able to correctly identify the amplitude modulated stimuli in clear speech 188 

(mean % correct without amplitude modulation: 99.54, with amplitude modulation: 99.31) and in 189 

degraded speech (mean % correct without amplitude modulation: 72.74, with amplitude 190 
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modulation: 70.23) and did not suffer more compared to when the signal was not amplitude 191 

modulated.  192 

 Participants were asked to attentively watch and listen to the videos. Every trial started 193 

with a fixation cross (1000 ms), followed by the video (2000 ms), a short delay period (1500 ms), 194 

and a 4-alternative forced choice identification task (max 3000 ms, followed by the fixation cross 195 

of the next trial as soon as a participant pressed one of the 4 buttons). In the 4-alternative forced 196 

choice identification task, participants were presented with four written options, and had to identify 197 

which verb they heard in the video by pressing one of 4 buttons on an MEG-compatible button 198 

box. This task ensured that participants were attentively watching the videos, and to check whether 199 

the verbs were understood. Participants were instructed not to blink during video presentation.  200 

  Throughout the experiment, we presented all screens at a 1440 Hz presentation rate. Brain 201 

activity was measured using MEG, and was recorded throughout the experiment. The stimuli were 202 

presented in four blocks of 40 trials each. The whole experiment lasted approximately 30 minutes, 203 

and participants were allowed to take a self-paced break after every block. All stimuli were 204 

presented in a randomized order per participant.  205 

 206 

MEG data acquisition 207 

MEG was recorded using a 275-channel axial gradiometer CTF MEG system (CTF MEG systems, 208 

Coquitlam, Canada). We used an online low-pass filter at 300 Hz and digitized the data at 1200 209 

Hz. All participants’ eye gaze was recorded by an SR Research Eyelink 1000 eye tracker for 210 

artifact rejection purposes. The head position of the participants was tracked in real time by 211 

recording markers on the nasion, and left and right periauricular points (Stolk et al., 2013). This 212 

enabled us to readjust the head position of participants relative to their original starting position 213 

whenever the deviation was larger than 5 mm. After the experiment, T1-weighted structural 214 

magnetic resonance images (MRI) were collected from 24 out of 26 participants using a Siemens 215 

3T MAGNETOM Skyra system. 216 

 217 

MEG data analysis 218 

Preprocessing  219 

All MEG data were analyzed using the FieldTrip toolbox (version 20180221) (Oostenveld et al., 220 

2011) running in a Matlab environment (2017b). All data were segmented into trials starting 1 s 221 

before and ending 3 s after the onset of the video. The data were demeaned and line noise was 222 

attenuated using a discrete Fourier transform approach at 50, 100 and 150 Hz. All trials that 223 

contained jump artifacts or muscle artifacts were rejected using a semi-automatic routine. The data 224 

were then down-sampled to 400 Hz. Independent component analysis (Bell & Sejnowski, 1995; 225 

Jung et al., 2000) was used to remove residual eye movements and cardiac-related activity (average 226 



8 

 

number of components removed: 6.05). All data were then inspected on a trial-by-trial basis to 227 

remove artifacts that were not identified using these rejection procedures. These procedures 228 

resulted in rejection of 8.3 % of the trials. The number of rejected trials did not differ significantly 229 

between conditions.  230 

Frequency tagging analyses - Sensor-level 231 

To investigate the response in auditory and visual regions to the frequency-tagged signal, we first 232 

calculated event-related fields by averaging time-locked gradiometer data over trials, over 233 

conditions, and over participants. All tagged stimuli were presented phase-locked over trials. We 234 

used an approximation of planar gradiometer data to facilitate interpretation of the MEG data, as 235 

planar gradient maxima are thought to be located above the neuronal sources that may underlie 236 

them (Bastiaansen & Knösche, 2000). This was achieved by converting the axial gradiometer data 237 

to orthogonal planar gradiometer pairs, which were combined by using root-mean-square (RMS) 238 

for the ERFs. For the power analyses, we computed the power separately for the two planar 239 

gradient directions, and combined the power data by averaging the two. To visualize the responses 240 

per tagging frequency (Figure 3), we used a notch (i.e. band-stop) filter between 60 and 62 Hz to 241 

display the ERF at 68 Hz, and a notch filter between 67 and 69 Hz to display the ERF at 61 Hz.  242 

  We then performed a spectral analysis on an individual’s ERF data pooled over conditions, 243 

in the time window in which both the auditory and visual stimulus unfolded (0.5 - 1.5 s), and a 244 

post-stimulus baseline (2.0 - 3.0s). We chose this post-stimulus time window as a baseline because, 245 

contrary to the pre-stimulus time window, it is not affected by the button press of the 4-alternative 246 

forced choice identification task. We chose the 0.5-1.5 s time window to focus our analysis on, 247 

because this time window captures both the meaningful part of the gesture and the full speech 248 

signal. We computed power spectra in frequencies ranging from 1 to 130 Hz for both the baseline 249 

and stimulus window using fast Fourier transform and a single Hanning taper of the 1s segments. 250 

This data was then averaged over conditions, and the stimulus window was compared to the 251 

baseline window.  252 

Frequency tagging analyses - Source-level  253 

To reconstruct activity at the tagging frequencies, we calculated coherence between a pure sine 254 

wave at either 61 Hz or 68 Hz, reflecting the tagged stimulus, and the observed MEG signal at 255 

those frequencies. Although the phase of the tagging was designed to be identical over trials, the 256 

projector that we used occasionally experienced a brief delay in presenting the video material (in 257 

16 of the 26 participants). We corrected for this by translating any observed delays between video 258 

onset and offset markers (recorded in a stimulus trigger channel) into a phase-difference, which 259 

was then subtracted from the tagging signal. Note that this correction only uses information in the 260 

stimulus marker channel and the length of the original video files, and does not rely on any 261 

information in the measured MEG signal. 262 
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  We performed source analysis to identify the neuronal sources that were coherent with the 263 

modulation signal at either 61 Hz or 68 Hz, and compared the difference in coherence in the 264 

stimulus and post-stimulus window. This was done pooled over conditions. Source analyses on 265 

coherence values (for 61 and 68 Hz) and power values (for the intermodulation frequency at 7 Hz, 266 

see results), was performed using dynamic imaging of coherent sources (DICS; (Gross et al., 267 

2001)) as a beamforming approach. We computed a common spatial filter per subject from the 268 

lead field matrix and the cross-spectral density matrix (CSD) that was the same for all conditions. 269 

An individual’s leadfield was obtained by spatially co-registering an individual’s anatomical MRI 270 

to the MEG data by the anatomical markers at the nasion and left and right periaucular points. 271 

Then, for each participant, a single-shell head model was constructed on the basis of the MRI 272 

(Nolte, 2003). A source model was created for each participant by warping a 10 mm spaced grid 273 

defined in MNI space to the individual participant’s segmented MRI. The MNI template brain was 274 

used for those participants (2/26) for which an individual MRI scan was not available. 275 

  After establishing regions that showed elevated coherence with the tagged stimuli, we 276 

proceeded to test the effect of the experimental conditions (clear versus degraded speech; matching 277 

versus mismatching gesture) within these regions-of-interest (ROIs). The ROIs for the auditory 278 

and visual tagged signals were defined by taking the grid points that exceeded 80 percent of the 279 

peak coherence difference value between stimulus and baseline, across all conditions. For these 280 

ROIs, coherence difference values were extracted per condition. Analogously, the ROI for the 281 

intermodulation frequency at 7 Hz was defined by taking those grid points that exceeded 80 percent 282 

of the peak power difference value between stimulus and baseline. The 80 percent threshold was 283 

chosen as an exploratory threshold.   284 

Statistical comparisons 285 

As we predefined our frequencies of interest and have specific regions of interest for analysis, we 286 

compared the differences between conditions using 2x2 repeated measures ANOVAs, with the 287 

factors Speech (clear/degraded) and Gesture (matching/mismatching).  288 

 289 

Results 290 

Participants watched videos of an actress uttering action verbs in clear or degraded speech, 291 

accompanied by a matching or mismatching gesture. After the video, participants were asked to 292 

identify the verb they heard in a 4-alternative forced choice identification task, presented on the 293 

screen in written form. Video presentation was manipulated by tagging the gesture space in the 294 

video by 68 Hz flicker, while the sound in the videos was tagged by 61 Hz amplitude modulation 295 

(see Figure 1). 296 

 297 

Behavioral results 298 
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In our behavioral task we replicated previous results (see Drijvers, Ozyürek, et al., 2018; Drijvers 299 

& Özyürek, 2018) and observed that when the speech signal was clear, response accuracy was 300 

higher than when speech was degraded (F(1, 25) = 301.60, p < .001, partial η2 = .92) (mean scores 301 

and SDs: CM: 94.7% (SD = 4.0%), CMM: 90.2% (SD = 5.6%), DM: 85.0% (SD = 8.2%), DMM: 302 

66.5% (SD = 7.8%)). Similarly, response accuracy was higher when a gesture matched compared 303 

to mismatched the speech signal (F(1, 25) = 184.29, p < .001, partial η2 = .88). The difference in 304 

response accuracy was larger in degraded speech than in clear speech (F(1, 25) = 4.87, p < .001, 305 

partial η2 = .66) (see raincloud plots (Allen et al., 2019), Figure 2).  306 

We observed similar results in the reaction times (RTs). Participants were faster to identify the 307 

verbs when speech was clear, compared to when speech was degraded (F(1, 25) = 198,06, p < 308 

.001, partial η2 = .89) (mean RTs and SDs: CM: 1086.3 ms, SD = 177.1 ms, CMM: 1127.92 ms, 309 

SD = 153.84 ms, DM: 1276.96 ms, SD = 230.13 ms, DMM: 1675.77 ms, SD = 246.69 ms). 310 

Participants were faster to identify the verbs when the gesture matched the speech signal, compared 311 

to when the gesture mismatched the speech signal (F(1, 25) = 105,42, p < .001, partial η2 = .81). 312 

This difference in reaction times was larger in degraded speech than in clear speech (F(1, 25) = 313 

187,78, p < .001, partial η2 = .88). 314 

  In sum, these results demonstrate that gestures facilitate speech comprehension when the 315 

actress performed a matching gesture, but hindered comprehension when she performed a 316 

mismatching gesture. This effect was larger in degraded speech than in clear speech.  317 

 318 

Figure 2 A: Accuracy results per condition. Response accuracy is highest for clear speech conditions, and when a 

gesture matches the speech signal. B: Reaction times per condition. Reaction times are faster in clear speech and when 

a gesture matches the speech signal. Raincloud plots reveal raw data, density and boxplots for coherence change. 

 



11 

 

MEG results - Frequency tagging 319 

Both visual and auditory frequency tagging produce a clear steady-state response that is larger 320 

than baseline 321 

As a first step, we calculated the time-locked averages of the event-related fields pooled over 322 

conditions. Auditory frequency tagging at 61 Hz produced an auditory steady-state response over 323 

left and right-temporal regions (see Figure 3A), and visual frequency tagging at 68 Hz produced a 324 

clear visual steady-state response at occipital regions (see Figure 3B).  325 

To explicitly compare the tagged signals between stimulus (0.5 – 1.5 s) and post-stimulus baseline 326 

(2.0 – 3.0 s) periods, we plotted the difference in spectral power calculated from the ERF (i.e. 327 

power of the time-locked average) in Figure 4. We observe that both visual and auditory responses 328 

at the tagged frequency were reliable larger in the stimulus period than in the baseline (see below 329 

for statistical assessment at the source level). Note that the visual tagged signal at 68 Hz seems to 330 

be more focal and strong than the auditory tagged signal at 61 Hz (see Figure 4). These analyses 331 

confirm that we were able to induce high-frequency steady-state responses simultaneously for both 332 

auditory and visual stimulation. 333 

 334 

Figure 3: Event-related fields show clear responses at the tagged frequencies. Auditory input was tagged by 61 Hz 

amplitude modulation (A), Visual input was tagged by 68 Hz flicker (B). The insets reflect an enlarged part of the 

signal to clearly demonstrate the effect of the tagging on the event-related fields. Tagging was phase-locked over trials. 

A: Average ERF for a single subject at selected sensors overlying the left and right temporal lobe. The highlighted 

sensors in the right plot reflect the sensors for which the ERF is plotted. B: Average ERF for 68 Hz for a single subject 

at selected sensors overlying occipital cortex. The highlighted locations in the right plot reflect the sensors for which 

the ERF is plotted. ERFs show combined planar gradient data.  
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Coherence is strongest at occipital regions for the visually tagged signal (68 Hz) and strongest 335 

when speech is clear 336 

We proceeded to identify the neural generators of the tagged signals using beamformer source 337 

analysis. We computed source-level coherence coefficients for all conditions pooled together. This 338 

was done by computing coherence between a visual dummy 68 Hz modulation signal and the 339 

observed MEG data. The relative coherence increase between stimulus and baseline was largest in 340 

occipital regions (see Figure 5A), in an area consistent with early visual cortex. 341 

  To compare conditions, we then formed a visual ROI by selecting those grid points 342 

exceeding an exploratory threshold of 80 % of the peak coherence increase. For each participant, 343 

the percentage of change in coherence between stimulus and baseline was computed in that ROI 344 

per condition and compared in a 2x2 (Speech: clear/degraded, Gesture: matching/mismatching) 345 

RM-ANOVA (see Figure 5B). Coherence change was larger for videos containing clear speech 346 

Figure 4: A: Power over auditory sensors peaks at the tagged frequency of the auditory stimulus (61 Hz). Note the 

visual 68 Hz tagged signal is still observable at left- and right-temporal sensors of interest. 61 Hz power is stronger in 

the stimulus interval than in the baseline interval, and is widely spread over posterior regions, with maxima at right-

temporal regions. B: A power increase is observed at the tagged frequency (68 Hz) for the visual stimuli. 68 Hz power 

is larger in the stimulus than in the baseline window and is strongest over occipital regions. 
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than videos containing degraded speech (F(1, 25) = 17.14, p < .001, partial η2 = .41), but did not 347 

differ between matching or mismatching trials (F(1, 25) = 0.025, p = .87, partial η2 = .001). We 348 

observed a significant interaction between Speech and Gesture (F(1, 25) = 26.87, p < .001, partial 349 

η2 = .52). Post-hoc pairwise comparisons revealed a stronger coherence change in videos 350 

containing clear speech and a matching gesture (CM) than clear speech and a mismatching gesture 351 

(CMM) (t(25) = 3.26, p = .015), and a stronger coherence change in videos containing degraded 352 

speech and a mismatching gesture (DMM) than in videos containing degraded speech and a 353 

matching gesture (DM) (t(25) = -4.03, p < .001). Coherence change was larger in CM than in DM 354 

(t(25) = 6.59, p < .001), in CMM than DM (t(25) = 2.93, p = .04), but not larger in CM than in 355 

DMM (t(25) = 2.02, p = .27), and not larger in CMM compared to DMM (t(26) = -1.74, p = .48).  356 

Figure 5: Sources of the visually tagged signal at 68 Hz (A/B) and sources of the auditory tagged signal at 61 Hz 

(C/D), and individual scores in the respective ROI per condition (clear match/clear mismatch/degraded 

match/degraded mismatch. Z-coordinates of slices are in mm and in MNI space. A: Coherence change in percentage 

when comparing coherence values in the stimulus window to a post-stimulus baseline for 68 Hz (the frequency of the 

visual tagging), pooled over conditions. Only positive coherence change values are plotted (>80% of peak maximum). 

Coherence change is largest over occipital regions for the visually tagged signal. B: Coherence change values in 

percentage extracted from the 68 Hz ROI. Raincloud plots reveal raw data, density and boxplots for coherence change. 

C: Coherence change in percentage when comparing coherence values in the stimulus window to a post-stimulus 

baseline for 61 Hz (the frequency of the auditory tagging), pooled over conditions. Only positive coherence values are 

plotted (>80% of peak maximum). Coherence change is largest over right-temporal regions. D: Coherence change 

values in percentage extracted from the 61 Hz ROI. Raincloud plots reveal raw data, density and boxplots for coherence 

change. 
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 357 

These results thus indicate that visual regions responded stronger to the frequency-tagged gestural  358 

signal when speech was clear than when speech was degraded. This suggests that when speech is 359 

clear, participants allocate more visual attention to gestures than when speech is degraded, 360 

especially when a gesture matched the speech signal. When speech is degraded, participants 361 

allocate more attention to mismatching than to matching gestures. 362 

Coherence is strongest at right-temporal regions for the auditory tagged signal (61 Hz) and 363 

strongest when speech is degraded 364 

Similar to the visually tagged signal, we first computed coherence coefficients for all conditions 365 

pooled together. This was done by computing source-level coherence between a dummy 61 Hz 366 

modulation signal (reflecting the auditory tagging drive) and the observed MEG data. The 367 

coherence difference between stimulus and baseline peaked at right temporal regions (Figure 5C), 368 

in an area consistent with (right) early auditory cortex. 369 

To compare conditions, we then formed the auditory ROI by selecting those grid points 370 

exceeding an exploratory threshold of 80 % of peak coherence change. Again, coherence change 371 

values per condition and per participant were compared in a 2x2 RM-ANOVA (see Figure 5D). 372 

Coherence change was larger in degraded speech conditions than in clear speech conditions (F(1, 373 

25) = 12.87, p = .001, partial η2 = .34), but did not differ between mismatching and matching 374 

conditions (F(1, 25) = 0.09, p = .77, partial η2 = .04). No interaction effect was observed (F(1, 25) 375 

Figure 6: An intermodulation frequency could be observed at 7 Hz (|fvisual-fauditory|) (A/C/E) but not 129 Hz 

(fvisual+fauditory). (D). A: 7 Hz power in the stimulus window is larger than baseline over left-temporal and left-frontal 

sensors. Only positive values are plotted. B: Selected sensors (based on visual inspection). The black highlighted 

sensors represent the sensors at which the power spectra of the ERFs was calculated. C: Power spectra of 7 Hz 

(stimulus>baseline). D: No difference could be observed at 129 Hz between stimulus and baseline. E:  Power spectra 

per condition. 7 Hz power peaks strongest in the clear+match condition. F: Power spectra of 61 Hz and 68 Hz over 

selected channels of 7 Hz power peak (see B). 
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= 3.13, p = .089, partial η2 = .11). Post-hoc pairwise comparisons revealed that there was no 376 

difference in coherence change when comparing CM and CMM (t(25) = -1.44, p = .81), or between 377 

DM and DMM (t(25) = 1.38, p = .90). Coherence change was larger in DM than in CM (t(25) = -378 

4.24, p < .001), and in DMM than in CM (t(25) = -3.90, p < .01) but not when comparing CMM 379 

to DMM (t(25) = -1.40, p = .87). These results thus indicate that right-lateralized auditory regions 380 

processed the frequency-tagged auditory signal more strongly when speech was degraded than 381 

when speech was clear. This suggests that when speech is degraded, participants allocate more 382 

auditory attention to speech than when speech is clear. 383 

An intermodulation frequency was observed at 7 Hz (|fvisual - fauditory|), but not at 129 Hz (fvisual + 384 

fauditory) 385 

To test whether intermodulation frequencies (|fvisual - fauditory|, fvisual + fauditory) could be observed, 386 

we then calculated power spectra of the ERFs in the stimulus time window and the post-stimulus 387 

time window at 7 Hz and 129 Hz. Only for 7 Hz a difference between stimulus and baseline was 388 

observed at left frontal and left temporal sensors (Figure 6A/C). No reliable differences were 389 

observed for 129 Hz (Figure 6D). Interestingly, the spectral peak at 7 Hz during stimulus was most 390 

pronounced for the clear/match condition (Figure 6E).  391 

As a next step, we then took a similar approach as for the visual and auditory tagged stimuli 392 

and calculated the coherence difference between stimulus and baseline at 7 Hz, pooled over 393 

conditions. This was done by computing source-level coherence between a dummy 7 Hz 394 

modulation signal (the intermodulation frequency of our 61 and 68 Hz tagging signals, specified 395 

as the multiplication of the 61 and 68 Hz dummy signal) and the observed MEG data. The 396 

coherence analysis did not reveal any differences between stimulus and baseline (see Figure 7A). 397 

It should be noted here that our frequency-tagged signals at fauditory and fvisual were exactly phase-398 

consistent across trials, since the phase was uniquely determined by the stimuli themselves. 399 

However, it is possible that the phase of the intermodulation signal has a much weaker phase 400 

consistency across trials, since it depends not only on the stimuli but also on the nature of the 401 

nonlinear neural interaction. If this is the case, we might still observe an effect on the power at the 402 

intermodulation frequency, rather than the coherence. We therefore performed source analysis on 403 

the power of the combined conditions versus baseline. Here, we observed a power change at 7 Hz 404 

in left frontal and temporal regions that mirrored the effect we observed at sensor level (Figure 405 

7B). 406 

The condition-averaged effect at the intermodulation frequency of 7 Hz is less striking than 407 

at the primary tagged frequencies of 61 and 68 Hz, potentially due to it being driven mainly by 408 

one of the four conditions only (see Figure 6E). Note that the 61 and 68 Hz signal were still present 409 

over the left-frontotemporal sensors where we observed the 7Hz effect (see Figure 6F). As a next 410 

step, and sticking to our a priori defined hypotheses and analysis plan, we again proceeded by 411 

comparing conditions within an ROI defined by the condition-averaged contrast in source space. 412 

As before, the ROI was defined as those grid points exceeding an exploratory threshold of 80 % 413 
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of the peak power change from baseline to stimulus epochs. We compared the strength of the 7 Hz 414 

signal at source level between conditions by using a 2x2 RM-ANOVA (Figure 7C). Power change 415 

was larger in clear speech conditions than in degraded speech conditions (F(1, 25) = 10.26, p = 416 

.004, partial η2 = .29), but did not differ between matching and mismatching trials (F(1, 25) = 417 

0.01, p = .91, partial η2 = .001), suggesting an effect of speech degradation, but not of semantic 418 

congruency. No interaction effect was observed (F(1, 25) = 1.27, p = .27, partial η2 = .05). Post-419 

hoc pairwise comparisons revealed that 7 Hz power was not different for CM compared to CMM 420 

(t(25) = 1.14, p = 1), and not different for DM compared to DMM (t(25) = -.67, p = 1). However, 421 

7 Hz power was larger in CM than in DM (t(25) = 3.01, p = .025), and larger in CM than in DMM 422 

(t(25) = 2.82, p = .045). No difference was observed between CMM and DMM (t(25) = 1.61, p = 423 

.6). To rule out that these differences in 7 Hz power were due to general power differences in the 424 

theta band, we compared the strength of 6 Hz and 8 Hz between conditions, using two 2x2 RM-425 

ANOVA’s. Here, no differences between conditions were observed (all p > 0.05), suggesting this 426 

was specific to the 7 Hz signal. These results are also in line with previous MEG studies on speech-427 

gesture integration, where no differences in theta power were observed (Drijvers, Ozyürek, et al., 428 

2018;  Drijvers, Ozyurek, et al., 2018b; Drijvers, van der Plas, et al., 2019). 429 

In addition to our ROI-based analysis, we present the full beamformer source maps of 7 430 

Hz power (stimulus versus baseline) for the four conditions in Figure 7D. These reveal results fully 431 

compatible with the aforementioned RM-ANOVA. Furthermore, they show that our ROI selection 432 

on the condition-averaged response versus baseline was likely suboptimal, since the source map 433 

Figure 7: Sources of the intermodulation frequency (fvisual-fauditory) at 7 Hz and individual scores in the left-

frontotemporal ROI per condition (clear match/clear mismatch/degraded match/degraded mismatch). Z-coordinates 

of slices are in mm and in MNI space. A: Coherence change in percentage when comparing coherence values in the 

stimulus window to a post-stimulus baseline for 7 Hz (intermodulation frequency, fvisual - fauditory), pooled over 

conditions. Only positive coherence values are plotted (> 80 % of maximum). No differences could be observed. B: 

Power change in percentage when comparing power values in the stimulus window to a post-stimulus baseline for 7 

Hz, pooled over conditions. Power changes were largest in left-frontal and left-temporal regions. Highest peak value 

was at MNI coordinates -44, 24, 22, and extended from LIFG to pSTS/MTG. Only positive coherence values are 

plotted (> 80 % of maximum). C: Power change values in percentage extracted from the 7 Hz ROI in source space. 

Raincloud plots reveal raw data, density and boxplots for power change per condition. D: Power change in percentage 

when comparing power values in the stimulus window to a post-stimulus baseline for 7Hz, per condition.  
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for CM shows a more clearly elevated intermodulation cluster than the average (in line with the 434 

sensor-level results shown in Figure 6A). 435 

These results thus demonstrate that we could reliably observe an intermodulation signal 436 

when speech was clear and a gesture matched the speech signal. Left-frontotemporal regions 437 

showed a stronger intermodulation peak (reflecting the lower-order interaction between the 438 

auditory and visually tagged signal) when speech was clear than when speech was degraded. This 439 

suggests that the interaction between the auditory and visual tagged signal is strongest when signal 440 

quality was optimal and speech was clear.  441 

 442 

Discussion 443 

In the current MEG study we provide a proof-of-principle that rapid invisible frequency tagging 444 

(RIFT) can be used to estimate task-dependent neuronal excitability in visual and auditory areas, 445 

as well as the auditory-visual interaction. Coherence was strongest over occipital regions for the 446 

visual-tagged input, and strongest when speech was clear. Coherence was strongest over right-447 

temporal regions for the auditory-tagged input and strongest when speech was degraded. 448 

Importantly, we identified an intermodulation frequency at 7 Hz (fvisual - fauditory) as a result of the 449 

interaction between a visual frequency-tagged signal (gesture; 68 Hz) and an auditory frequency-450 

tagged signal (speech; 61 Hz). In line with our hypotheses, power at this intermodulation frequency 451 

was strongest in LIFG and left-temporal regions (pSTS/MTG), and was strongest when the lower-452 

order integration of auditory and visual information was optimal (i.e., when speech was clear). 453 

Below we provide interpretations of these results.  454 

 455 

Clear speech enhances visual attention to gestural information 456 

In occipital regions, we observed a stronger drive by the 68 Hz visual modulation signal when 457 

speech was clear than when speech was degraded. We speculate that this effect reflects that 458 

listeners allocate more visual attention to gestures when speech is clear. This speculative 459 

interpretation is in line with previous eye-tracking work that demonstrated that when speech is 460 

degraded, listeners gaze more often to the face and mouth than to gestures to extract phonological 461 

information to aid comprehension (Drijvers, Vaitonytė, et al., 2019), as well as previous work that 462 

revealed that the amplitude of SSVEPs was enhanced by visual attention, irrespective of whether 463 

the stimuli were task-relevant (Morgan et al., 1996; Müller et al., 2006). Note that gestural 464 

information is often processed in the periphery of a listener’s visual field (Gullberg & Holmqvist, 465 

1999, 2002, 2006; Gullberg & Kita, 2009). As listeners do not necessarily need to extract the 466 

phonological information conveyed by the lips when speech is clear, overt visual attention might 467 

be directed to a ‘resting’ position in the middle of the screen during clear speech processing, 468 

resulting in stronger coherence with the visual drive when speech is clear than when speech is 469 

degraded. Pairwise comparisons of the conditions revealed that in clear speech, coherence was 470 
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larger when the gesture matched, rather than mismatched, the signal. In line with the interpretation 471 

above, a listener might have reconsidered the auditory input when noticing that the gesture 472 

mismatched the perceived auditory input, and might have directed their attention to the face/lips 473 

of the actress, which, in turn, reduces visual attention to the gesture.  474 

  However, we observed the opposite effect when speech was degraded; i.e. a stronger 475 

coherence when the gesture mismatched, rather than matched, the degraded speech signal. We 476 

speculate that when speech is degraded and a gesture matches the signal, a listener might more 477 

strongly allocate visual attention to the information conveyed by the face/lips, so that information 478 

conveyed by the lips and the information conveyed by the gesture can jointly aid in disambiguating 479 

the degraded speech signal  (Drijvers & Ozyürek, 2017). However, when speech is degraded and 480 

a gesture mismatches the signal, the uncertainty of both inputs may result in a reconsideration of 481 

both inputs, and thus a less fixed locus of attention (see also Nath & Beauchamp, 2011 for work 482 

on perceptual reliability weighting in clear and degraded speech). These interpretations are rather 483 

speculative, and further work is needed to disambiguate different interpretations. For example, 484 

future work could consider tagging the mouth-region to further investigate how a listener allocates 485 

visual attention to these two visual articulators during comprehension 486 

 487 

Degraded speech enhances auditory attention to speech information 488 

In line with our hypotheses, we observed stronger drive by the 61 Hz amplitude modulation signal 489 

in temporal areas overlapping with auditory cortex when speech was degraded than when speech 490 

was clear. This response was strongest at right-temporal regions, which is in line with previous 491 

work that demonstrated that for speech stimuli, the ASSR is often localized to right-lateralized 492 

sources (Lamminmäki et al., 2014; Ross et al., 2005). Although both left- and right-hemispheres  493 

process speech, a right-lateralized dominance is often observed because right-lateralized regions 494 

are sensitive to spectral changes and prosodic information, and processing of low-level auditory 495 

cues (Zatorre & Gandour, 2008; Scott et al., 2000).  496 

  Previous work has reported enhanced ASSR responses to amplitude-modulated multi-497 

speech babble when attention to this input increases (Keitel et al., 2011; Ross et al., 2004; Saupe 498 

et al., 2009; Talsma et al., 2010; Tiitinen et al., 1993). The enhanced ASSR which we observed in 499 

the degraded compared to clear speech conditions could thus reflect an increase in attention to the 500 

speech signal when speech is degraded. Note that no differences in coherence were observed when 501 

comparing matching and mismatching gestures in either clear or degraded speech. As the gesture 502 

congruency manipulation is a visual manipulation, this indicates that modulation of the ASSR is 503 

modality-specific (Parks et al., 2011; Rees et al., 2001).  504 

 505 

The auditory tagged speech signal and visual tagged gesture signal interact in left-506 

frontotemporal regions 507 
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We set out to study whether intermodulation frequencies could be identified in a multimodal, 508 

semantic context as a result of the interaction of the visual and auditory tagged signals. In contrast 509 

to previous work by (Giani et al., 2012) using lower frequencies, we did observe an 510 

intermodulation frequency at 7 Hz (fvisual - fauditory), but not at 129 Hz (fvisual + fauditory). As responses 511 

in lower frequencies tend to be stronger than in higher frequencies, the higher-frequency 512 

intermodulation frequency might not have been identifiable as neurons cannot be driven in this 513 

fast range.  514 

  Note that although we observed a stronger 7 Hz power peak at sensor level in the stimulus 515 

interval compared to the baseline interval, we did not observe stronger coherence between a 7 Hz 516 

dummy signal and the observed MEG data at source level. This indicates that the phase of the 517 

intermodulation signal is not as consistent over trials as the fvisual and fauditory signals, which in turn 518 

might imply that the time point of interaction of the two signals differs across trials. This could 519 

explain why we observed a clear difference between stimulus and baseline when we reconstructed 520 

the sources of the intermodulation frequency on the basis of power, but not coherence. 521 

  We observed a reliable peak at 7 Hz power during stimulation when integration of the 522 

lower-order auditory and visual input was optimal, i.e., when speech was clear. In line with our 523 

hypotheses, the source of the intermodulation frequency was localized in LIFG and left-temporal 524 

(pSTS/MTG) regions. It has been shown that these areas are involved in the integration of speech 525 

and gestures (Dick et al., 2014; Drijvers, Ozyürek, et al., 2018; Drijvers, Ozyurek, et al., 2018; 526 

Drijvers, van der Plas, et al., 2019; Holle et al., 2008, 2010; Kircher et al., 2009; Straube et al., 527 

2012; Willems et al., 2007, 2009; Zhao et al., 2018). There are, however, important differences 528 

between the interpretation of the intermodulation frequency in this work, and the results observed 529 

in response to higher-order speech-gesture integration in previous work.  530 

  First, although previous work has observed effects related to higher-order integration in 531 

LIFG and pSTS/MTG, the observed intermodulation frequency in the current work is most likely 532 

related to lower-order integration. Specifically, we observed that power at the intermodulation 533 

frequency was stronger in clear speech conditions than in degraded speech conditions, but we did 534 

not observe an effect of gesture congruency. We therefore propose that, contrary to our hypotheses, 535 

power at the intermodulation frequency does not reflect the integration of higher-order semantic 536 

audiovisual integration, but rather is a direct reflection of the non-linear integration of lower-order 537 

speech and gesture information. This difference might be explained by considering that the 538 

intermodulation frequency is unable to capture higher-order effects that result from lexical access 539 

on the basis of the auditory and visual input. Second, the current work is not able to dissociate 540 

between the different roles of the LIFG and pSTS/MTG in the speech-gesture integration process. 541 

The accuracy of source modeling using MEG should be considered in the light of the inverse 542 

problem (Baillet, 2017). This limits our ability to make precise claims about the exact locus of the 543 

observed effect when comparing to fMRI (see e.g., Papeo et al., 2019, for a functional distinction 544 

of different subregions of the MTG in the speech-gesture integration process). Furthermore, fMRI 545 

is sensitive to modulations in the BOLD signal whereas MEG detects changes in neuronal 546 
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synchronization. As such, these techniques provide complementary but not necessarily 547 

overlapping information on neuronal activation.   548 

Proof of principle: using RIFT to study the integration of complex and dynamic audiovisual 549 

stimuli in a semantic context. 550 

The current MEG study provides a proof of principle of the use of rapid invisible frequency tagging 551 

(RIFT) to study the integration of audiovisual stimuli, and is the first study to identify 552 

intermodulation frequencies as a result of the lower-order interaction between auditory and visual 553 

stimuli in a semantic context. Note that although previous work has reported the occurrence of 554 

intermodulation frequencies in a non-semantic context (Regan et al., 1995), other studies have 555 

failed to identify between-modality intermodulation frequencies (Giani et al., 2012). This could be 556 

due to the fact that lower frequencies were used for tagging. Another possibility is that this was 557 

due to the nature of the stimuli used in these studies. As Giani et al., (2012) suggest, the occurrence 558 

of intermodulation frequencies resulting from audiovisual integration of non-semantic inputs such 559 

as tones and gratings might reflect low-level spatiotemporal coincidence detection that is 560 

prominent for transient stimuli, but less so for sustained steady-state responses. Similarly, previous 561 

fMRI work that investigated the difference between transient and sustained BOLD responses 562 

revealed that primary auditory and visual regions were only involved in the integration of rapid 563 

transient stimuli at stimulus onset. However, integration for sustained responses did involve 564 

higher-order areas (Werner & Noppeney, 2011). The observed 7 Hz intermodulation frequency in 565 

response to our semantic audiovisual stimuli was also localized to higher-order areas, rather than 566 

early sensory regions. This again underlines the possibility that the observed intermodulation 567 

frequency in the current study reflects the ease of lower-order integration of these audiovisual 568 

stimuli in certain higher-order regions.  569 

  An important advantage of using RIFT is that spontaneous neuronal oscillations in lower 570 

frequencies were not entrained by our tagging frequencies. This might explain why a clear 571 

intermodulation frequency was observed in the current study, but was less easy to identify in 572 

previous work. Future studies might consider exploiting this feature and using RIFT to study the 573 

interaction of these endogenous lower frequency oscillations with the tagged signals, in order to 574 

elucidate their role in sensory processing. However, future work should also consider that high-575 

frequency tagging might entrain spontaneous neuronal oscillations at higher frequencies. Although 576 

this was not directly relevant for the identification of the intermodulation frequency in this study, 577 

and we did not observe any gamma band modulations in response to the stimuli used in this study 578 

in earlier work (Drijvers, Ozyurek & Jensen, 2018b), it should be noted that gamma band 579 

modulations have been observed in other work related to linguistic semantic processing (e.g., in 580 

the 30-50 Hz range in Mellem et al., 2013; Wang et al., 2018).   581 

Conclusion 582 

First of all, we provided a proof of principle that RIFT can be used to tag visual and auditory inputs 583 

at high frequencies, resulting in clear spectral peaks in the MEG signal, localized to early sensory 584 
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cortices. Second, we demonstrated that RIFT can be used to identify intermodulation frequencies 585 

in a multimodal, semantic context. The observed intermodulation frequency was the result of the 586 

nonlinear interaction between visual and auditory tagged stimuli. Third, the intermodulation signal 587 

was localized to LIFG and pSTS/MTG, areas known to be involved in speech-gesture integration. 588 

The strength of this intermodulation frequency was strongest when lower-order signal quality was 589 

optimal. In conclusion, we thus propose that the strength of this intermodulation frequency reflects 590 

the ease of lower-order audiovisual integration, that RIFT can be used to study both unimodal 591 

sensory signals as well as their multimodal interaction in downstream higher-order areas, and that 592 

RIFT has many use cases for future work.  593 
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