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A MULTIPARTITE HAJNAL-SZEMERÉDI THEOREM

PETER KEEVASH AND RICHARD MYCROFT

Abstract. The celebrated Hajnal-Szemerédi theorem gives the precise minimum degree
threshold that forces a graph to contain a perfect Kk-packing. Fischer’s conjecture states
that the analogous result holds for all multipartite graphs except for those formed by a
single construction. Recently, we deduced an approximate version of this conjecture from
new results on perfect matchings in hypergraphs. In this paper, we apply a stability analysis
to the extremal cases of this argument, thus showing that the exact conjecture holds for
any sufficiently large graph.

1. Introduction

A fundamental result of Extremal Graph Theory is the Hajnal-Szemerédi theorem, which
states that if k divides n then any graph G on n vertices with minimum degree δ(G) ≥
(k − 1)n/k contains a perfect Kk-packing, i.e. a spanning collection of vertex-disjoint k-
cliques. This paper considers a conjecture of Fischer [4] on a multipartite analogue of this
theorem. Suppose V1, . . . , Vk are disjoint sets of n vertices each, and G is a k-partite graph
on vertex classes V1, . . . , Vk (that is, G is a graph on the vertex set V1 ∪ · · · ∪ Vk such that
no edge of G has both endvertices in the same Vj). We define the partite minimum degree
of G, denoted δ∗(G), to be the largest m such that every vertex has at least m neighbours
in each part other than its own, i.e.

δ∗(G) := min
i∈[k]

min
v∈Vi

min
j∈[k]\{i}

|N(v) ∩ Vj|,

where N(v) denotes the neighbourhood of v. Fischer conjectured that if δ∗(G) ≥ (k−1)n/k
then G has a perfect Kk-packing. This conjecture is straightforward for k = 2, as it is not
hard to see that any maximal matching must be perfect in this case, but for odd k ≥ 3
the conjecture does not hold, as can be seen from constructions provided by Catlin [1]
(these counterexamples are presented in Construction 1.2 as Γn,k,k). For k = 3, Magyar and
Martin [9] proved that, for large n, Catlin’s construction is in fact the only counterexample
to this conjecture. More precisely, they showed that if n is sufficiently large, G is a 3-partite
graph with vertex classes each of size n and δ∗(G) ≥ 2n/3, then either G contains a perfect
K3-packing, or n is odd and divisible by 3, and G is isomorphic to the graph Γn,3,3 defined
in Construction 1.2.

The implicit conjecture behind this result (stated explicitly by Kühn and Osthus [7])
is that the only counterexamples to Fischer’s original conjecture are those constructed by
Catlin, that is, the graphs Γn,k,k defined in Construction 1.2 when n is odd and divisible by k.
We refer to this as the modified Fischer conjecture. If k is even then n cannot be both odd
and divisible by k, so the modified Fischer conjecture is the same as the original conjecture
in this case. Martin and Szemerédi [10] proved that (the modified) Fischer’s conjecture
holds for k = 4. Another partial result was obtained by Csaba and Mydlarz [2], who gave
a function f(k) with f(k) → 0 as k → ∞ such that the conjecture holds for large n if one
strengthens the degree assumption to δ∗(G) ≥ (k−1)n/k+f(k)n. Recently, an approximate
version of the conjecture assuming the degree condition δ∗(G) ≥ (k−1)n/k+o(n) was proved
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2 PETER KEEVASH AND RICHARD MYCROFT

independently and simultaneously by Keevash and Mycroft [6], and by Lo and Markström [8].
The proof in [6] was a quick application of the geometric theory of hypergraph matchings
developed in the same paper; this will be formally introduced in the next section. By a
careful analysis of the extremal cases of this result, we will obtain the following theorem, the
case r = k of which shows that (the modified) Fischer’s conjecture holds for any sufficiently
large graph. Note that the graph Γn,r,k in the statement is defined in Construction 1.2.

Theorem 1.1. For any r ≥ k there exists n0 such that for any n ≥ n0 with k | rn the
following statement holds. Let G be an r-partite graph whose vertex classes each have size n
such that δ∗(G) ≥ (k − 1)n/k. Then G contains a perfect Kk-packing, unless rn/k is odd,
k | n, and G ∼= Γn,r,k.

We now give the generalised version of the construction of Catlin [1] which shows Fischer’s
original conjecture to be false.

Construction 1.2. Suppose rn/k is odd and k divides n. Let V be a vertex set partitioned

into parts V1, . . . , Vr of size n. Partition each Vi, i ∈ [r] into subparts V j
i , j ∈ [k] of size

n/k. Define a graph Γn,r,k, where for each i, i′ ∈ [r] with i 6= i′ and j ∈ [k], if j ≥ 3 then

any vertex in V j
i is adjacent to all vertices in V j′

i′ with j′ ∈ [k] \ {j}, and if j = 1 or j = 2

then any vertex in V j
i is adjacent to all vertices in V j′

i′ with j′ ∈ [k] \ {3− j}.

V1 V2 V3

}

V 1

}

V 2

}

V 3

Figure 1. Construction 1.2 for the case k = r = 3.

Figure 1 shows Construction 1.2 for the case k = r = 3. For n = k this is the exact
graph of the construction; for larger n we ‘blow up’ the graph above, replacing each vertex
by a set of size n/k, and each edge by a complete bipartite graph between the corresponding
sets. In general, it is helpful to picture the construction as an r by k grid, with columns

corresponding to parts Vi, i ∈ [r] and rows V j =
⋃

i∈[r] V
j
i , j ∈ [k] corresponding to subparts

of the same superscript. Vertices have neighbours in other rows and columns to their own,
except in rows V 1 and V 2, where vertices have neighbours in other columns in their own row
and other rows besides rows V 1 and V 2. Thus δ∗(G) = (k − 1)n/k. We claim that there is
no perfect Kk-packing. For any Kk has at most one vertex in any V j with j ≥ 3, so at most

k− 2 vertices in
⋃

j≥3 V
j . Also

∣

∣

∣

⋃

j≥3 V
j
∣

∣

∣
= (k− 2)rn/k, and there are rn/k copies of Kk in

a perfect packing. Thus each Kk must have k − 2 vertices in
⋃

j≥3 V
j , and so 2 vertices in

V 1 ∪ V 2, which must either both lie in V 1 or both lie in V 2. However, |V 1| = rn/k is odd,
so V 1 cannot be perfectly covered by pairs. Thus G contains no perfect Kk-packing.
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This paper is organised as follows. In the next section we introduce ideas and results
from [6] on perfect matchings in k-graphs. Section 3 gives an outline of the proof of The-
orem 1.1. In Sections 4 to 7 we prove several preliminary lemmas, before combining these
lemmas in Section 8 to prove Theorem 1.1.

Notation. The following notation is used throughout the paper: [k] = {1, . . . , k}; if X

is a set then
(

X
k

)

is the set of subsets of X of size k; x ≪ y means that for every y > 0
there exists some x0 > 0 such that the subsequent statement holds for any x < x0 (such
statements with more variables are defined similarly); if x is a vertex in a graph then N(x)
is the neighbourhood of x.

2. Perfect matchings in hypergraphs

In this section we describe the parts of the geometric theory of perfect matchings in
hypergraphs from [6] that we will use in the proof of Theorem 1.1. We start with some
definitions. A hypergraph G consists of a vertex set V and an edge set E, where each edge
e ∈ E is a subset of V . We say that G is a k-graph if every edge has size k. A matching M in
G is a set of vertex-disjoint edges in G. We call M perfect if it covers all of V . We identify
a hypergraph H with its edge set, writing e ∈ H for e ∈ E(H), and |H| for |E(H)|. A
k-system is a hypergraph J in which every edge of J has size at most k and ∅ ∈ J . We refer
to the edges of size r in J as r-edges of J , and write Jr to denote the r-graph on V (J) formed
by these edges. A k-complex J is a k-system whose edge set is closed under inclusion, i.e. if
e ∈ J and e′ ⊆ e then e′ ∈ J . For any non-empty k-graph G, we may generate a k-complex
G≤ whose edges are any e ⊆ V (G) such that e ⊆ e′ for some edge e′ ∈ G.

Let V be a set of vertices, and let P partition V into parts V1, . . . , Vr of size n. Then we
say that a hypergraph G with vertex set V is P-partite if |e ∩ Vi| ≤ 1 for every i ∈ [r] and
e ∈ G. We say that G is r-partite if it is P-partite for some partition P of V into r parts.

Let J be a P-partite k-system on V . For each 0 ≤ j ≤ k − 1 we define the partite
minimum j-degree δ∗j (J) as the largest m such that any j-edge e has at least m extensions

to a (j + 1)-edge in any part not intersected by e, i.e.

δ∗j (J) := min
e∈Jj

min
i:e∩Vi=∅

|{v ∈ Vi : e ∪ {v} ∈ J}|.

The partite degree sequence is δ∗(J) = (δ∗0(J), . . . , δ
∗
k−1(J)). Note that we suppress the

dependence on P in our notation: this will be clear from the context. Note also that this
is not the standard notion of degree used in k-graphs, in which the degree of a set is the
number of edges containing it. Our minimum degree assumptions will always be of the form
δ(J) ≥ a pointwise for some vector a = (a0, . . . , ak−1), i.e. δi(J) ≥ ai for 0 ≤ i ≤ k − 1.
It is helpful to interpret this ‘dynamically’ as follows: when constructing an edge of Jk by
greedily choosing one vertex at a time, there are at least ai choices for the (i + 1)st vertex
(this is the reason for the requirement that ∅ ∈ J , which we need for the first choice in the
process).

The following key definition relates our theorems on hypergraphs to graphs. Fix r ≥ k
and a partition P of a vertex set V into r parts V1, . . . , Vr of size n. Let G be a P-partite
graph on V . Then the clique k-complex J(G) of G is the k-complex whose edges of size
i are precisely the copies of Ki in G for 0 ≤ i ≤ k. Note that J(G) must be P-partite.
Furthermore, if δ∗(G) ≥ (k − 1)n/k − αn and 0 ≤ i ≤ k − 1, then the vertices of any copy
of Ki in G have at least n − in/k − iαn common neighbours in each Vj which they do not
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intersect. That is, if G satisfies δ∗(G) ≥ (k − 1)n/k − αn, then the clique k-complex J(G)
satisfies

(1) δ∗(J(G)) ≥
(

n,

(

k − 1

k
− α

)

n,

(

k − 2

k
− 2α

)

n, . . . ,

(

1

k
− (k − 1)α

)

n

)

.

Note also that any perfect matching in the k-graph J(G)k corresponds to a perfect Kk-
packing in G. So if we could prove that any P-partite k-complex J on V which satisfies (1)
must have a perfect matching in the k-graph Jk, then we would have already proved Theo-
rem 1.1! Along these lines, Theorem 2.4 in [6] shows that any such J must have a match-
ing in Jk which covers all but a small proportion of the vertices of J . (Here we assume
1/n ≪ α ≪ 1/r, 1/k). However, two different families of constructions show that this con-
dition does not guarantee a perfect matching in Jk; we refer to these as space barriers and
divisibility barriers. We will describe these families in some detail, since the results of [6]
show that these are essentially the only k-complexes J on V which satisfy (1) but do not
have a perfect matching in Jk. Firstly, space barriers are characterised by a bound on the
size of the intersection of every edge with some fixed set S ⊆ V (J). If S is too large, then Jk
cannot contain a perfect matching. The following construction gives the precise formulation.

Construction 2.1. (Space barriers) Suppose P partitions a set V into r parts V1, . . . , Vr of
size n. Fix j ∈ [k−1] and a set S ⊆ V containing s = ⌊(j/k + α)n⌋ vertices in each part Vj .
Then we denote by J = Jr(S, j) the k-complex in which Ji (for 0 ≤ i ≤ k) consists of all
P-partite sets e ⊆ V of size i that contain at most j vertices of S. Observe that δ∗i (J) = n
for 0 ≤ i ≤ j − 1 and δ∗i (J) = n − s for j ≤ i ≤ k − 1, so (1) is satisfied. However, any

matching in Jk has size at most
⌊

|V \S|
k−j

⌋

and so leaves at least r(αn− k) vertices uncovered.

Having described the general form of space barriers, we now turn our attention to di-
visibility barriers. These are characterised by every edge satisfying an arithmetic condition
with respect to some partition Q of V . To be more precise, we need the following definition.
Fix any partition Q of a vertex set V into d parts V1, . . . , Vd. For any Q-partite set S ⊆ V
(that is, S has at most one vertex in each part of Q), the index set of S with respect to Q
is iQ(S) := {i ∈ [d] : |S ∩ Vi| = 1}. For general sets S ⊆ V , we have the similar notion of
the index vector of S with respect to Q; this is the vector iQ(S) := (|S ∩ V1|, . . . , |S ∩ Vd|)
in Z

d. So iQ(S) records how many vertices of S are in each part of Q. Observe that if S is
Q-partite then i(S) is the characteristic vector of the index set i(S). When Q is clear from
the context, we write simply i(S) and i(S) for iQ(S) and iQ(S) respectively, and refer to
i(S) simply as the index of S. We will consider the partition Q to define the order of its
parts so that iQ(S) is well-defined.

Construction 2.2. (Divisibility barriers) Suppose Q partitions a set V into d parts, and L
is a lattice in Z

d (i.e. an additive subgroup) with i(V ) /∈ L. Fix any k ≥ 2, and let G be the
k-graph on V whose edges are all k-tuples e with i(e) ∈ L. For any matching M in G with
vertex set S =

⋃

e∈M e we have i(S) =
∑

e∈M i(e) ∈ L. Since we assumed that i(V ) /∈ L it
follows that G does not have a perfect matching.

For the simplest example of a divisibility barrier take d = 2 and L = 〈(−2, 2), (0, 1)〉. So
(x, y) ∈ L precisely when x is even. Then the construction described has |V1| odd, and the
edges of G are all k-tuples e ⊆ V such that |e ∩ V1| is even. If |V | = n and |V1| ∼ n/2,
then any set of k− 1 vertices of G is contained in around n/2 edges of G, but G contains no
perfect matching.
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We now consider the multipartite setting. Let P partition a vertex set V into parts
V1, . . . , Vr of size n, and let Q be a partition of V into d parts U1, . . . , Ud which refines P.
Then we say that a lattice L ⊆ Z

d is complete with respect to P if L contains every difference
of basis vectors ui−uj for which Ui and Uj are contained in the same part Vℓ of P, otherwise
we say that L is incomplete with respect to P. The idea behind this definition is that if L
is incomplete with respect to P, then it is possible that iQ(V ) /∈ L, in which case we would
have a divisibility barrier to a perfect matching, whilst if L is complete with respect to P
then this is not possible.

There is a natural notion of minimality for an incomplete lattice L with respect to P. We
say that Q is transferral-free if L does not contain any difference of basis vectors ui − uj

for which Ui, Uj are contained in the same part Vℓ of P. For suppose L does contain some
such difference ui − uj and form a partition Q′ from Q by merging parts Ui and Uj of Q.

Let L′ ⊆ Z
d−1 be the lattice formed by this merging (that is, by replacing the ith and jth

coordinates with a single coordinate equal to their sum). Then L′ is also incomplete with
respect to P, so we have a smaller divisibility barrier.

Let J be an r-partite k-complex whose vertex classes V1, . . . , Vr each have size n. The next
theorem, Theorem 2.9 from [6], states that if J satisfies (1) and Jk is not ‘close’ to either a
space barrier or a divisibility barrier, then Jk contains a perfect matching. Moreover, we can
find a perfect matching in Jk which has roughly the same number of edges of each index.

More precisely, for a perfect matching M in Jk and a set A ∈
([r]
k

)

let NA(M) be the number
of edges e ∈ M with index i(e) = A. We say that M is balanced if NA(M) is constant over

all A ∈
([r]
k

)

, that is, if there are equally many edges of each index. Similarly, we say that

M is γ-balanced if NA(M) = (1 ± γ)NB(M) for any A,B ∈
([r]
k

)

. Finally, we formalise the
notion of closeness to a space or divisibility barrier as follows. Let G and H be k-graphs on
a common vertex set V of size n. We say G is β-contained in H if all but at most βnk edges
of G are edges of H. Also, given a partition P of V into d parts, we define the µ-robust edge
lattice Lµ

P(G) ⊆ Z
d to be the lattice generated by all vectors v ∈ Z

d such that there are at

least µnk edges e ∈ G with iP(e) = v.

Theorem 2.3. Suppose that 1/n ≪ γ ≪ α ≪ µ, β ≪ 1/r, r ≥ k and k | rn. Let P ′ partition
a set V into parts V1, . . . , Vr each of size n. Suppose that J is a P ′-partite k-complex with

δ∗(J) ≥
(

n,

(

k − 1

k
− α

)

n,

(

k − 2

k
− α

)

n, . . . ,

(

1

k
− α

)

n

)

.

Then J has at least one of the following properties.

1 (Matching): Jk contains a γ-balanced perfect matching.
2 (Space barrier): Jk is β-contained in Jr(S, j)k for some j ∈ [k − 1] and S ⊆ V

with ⌊jn/k⌋ vertices in each Vi, i ∈ [r].
3 (Divisibility barrier): There is some partition P of V (J) into d ≤ kr parts of size

at least δ∗k−1(J) − µn such that P refines P ′ and Lµ
P(Jk) is incomplete with respect

to P ′.

Note that the fact that the perfect matching in Jk is γ-balanced in the first property is
not stated in the statement of the theorem in [6]. However, examining the short derivation
of this theorem from Theorem 7.11 in [6] shows this to be the case.



6 PETER KEEVASH AND RICHARD MYCROFT

V1 V2 V3 V4

}

X2

}

X1X1
1 X1

2 X1
3 X1

4

X2
1 X2

2 X2
3 X2

4

p1 = 2

p2 = 1

Figure 2. A row-decomposition of a 4-partite graph G into 2 rows.

3. Outline of the proof

In this section we outline the proof of Theorem 1.1. For ease of explanation we restrict to
the case when G is an r-partite graph whose vertex classes each have size kn and δ∗(G) ≥
(k − 1)n. Our strategy consists of the following three steps:

(i) Impose a row structure on G.
(ii) Find balanced perfect clique-packings in each row.
(iii) Glue together the row clique-packings to form a Kk-packing of G.

For step (i) we partition V (G) into blocks Xi
j , so that each vertex class Vj is partitioned

into s blocks X1
j , . . . ,X

s
j . This partition is best thought of as an s × r grid, with rows

Xi :=
⋃

j∈[r]X
i
j and columns the vertex classes Vj =

⋃

i∈[s]X
i
j. We insist that all the blocks

in a given row Xi have equal size pin, where
∑

i∈[s] pi = k. We call a partition of V (G)

which satisfies these conditions an s-row-decomposition of G. We also require that G has
density close to 1 between any two blocks which do not lie in the same row or column (we
refer to the smallest such density as the minimum diagonal density). Figure 2 illustrates
this structure. We begin with the trivial 1-row-decomposition of G with a single row (so the
blocks are the vertex classes Vj). If it is possible to split this row into two rows to obtain
a row-decomposition with minimum diagonal density at least 1− d (where d will be small),
then we say that G is d-splittable. If so, we partition G in this manner, and then examine in
turn whether either of the two rows obtained is splittable (for some larger value of d). By
repeating this process, we obtain a row-decomposition of G with high minimum diagonal
density in which no row is splittable; this argument is formalised in Lemma 4.1.

For step (ii) we require a balanced perfect Kpi-packing in each row Xi. We first use the
results of Section 2 to obtain a near-balanced perfect Kpi-packing in G[Xi]. Fix i and take
J to be the clique pi-complex of G[Xi]. So we regard the row Xi as an r-partite vertex set
whose parts are the blocks Xi

1, . . . ,X
i
r, and the edges of Jj are the j-cliques in G[Xi] for

j ≤ pi. The assumption δ∗(G) ≥ (k − 1)n implies that

δ∗(J) ≥ (pin, (pi − 1)n, (pi − 2)n, . . . , n) .

Then Theorem 2.3 (with pi playing the role of k) implies that Jpi contains a near-balanced
perfect matching, unless Jpi is close to a space or divisibility barrier. In Section 4 we consider
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a space barrier, showing in Lemma 4.2 that since G[Xi] is not d-splittable, Jpi cannot be
close to a space barrier. We then consider a divisibility barrier in Section 5. For pi ≥ 3,
Lemma 5.3 shows that since G[Xi] is not d-splittable, Jpi also cannot be close to a divisibility
barrier. However, the analogous statement for pi = 2 is false, for the following reason.

We say that G[Xi] is ‘pair-complete’ if it has a structure close to that which appears in
rows V 1 and V 2 of Construction 1.2. That is, there is a partition of Xi into ‘halves’ S
and Xi \ S, such that each vertex class Vj is partitioned into two equal parts, and both
G[S] and G[Xi \ S] are almost complete r-partite graphs. Such a row is not d-splittable if
r is odd, but J2 is close to a divisibility barrier. However, Lemma 5.2 shows that this is
essentially the only such example, that is, that if pi = 2 and G[Xi] is neither d-splittable
nor pair-complete then J2 is not close to a divisibility barrier. So unless pi = 2 and G[Xi] is
pair-complete, Theorem 2.3 implies that Jpi contains a near-balanced perfect Kpi-packing.
In Section 6 we then show that we can actually obtain a balanced perfect matching in Jpi .
Indeed, in Lemma 6.2 we first delete some ‘configurations’ from G[Xi]; these are subgraphs
of G[Xi] that can be expressed as two disjoint copies of Kpi in G[Xi] in two different ways
(with different index sets). After these deletions we proceed as just described to find a near-
balanced perfect Kpi-packing in G[Xi]. Then by carefully choosing which pair of disjoint
edges to add to the matching from each ‘configuration’, we obtain a balanced perfect Kpi-
packing in G[Xi], as required. This leaves only the case where pi = 2 and G[Xi] is pair-
complete; in this case Lemma 6.4 gives a balanced perfect K2-packing in G[Xi], provided
that each half has even size.

For step (iii), we construct auxiliary hypergraphs, perfect matchings in which describe
how to glue together the perfect Kpi-packings in the rows into a perfect Kk-packing of
G. Recall that the row-decomposition of G was chosen to have large minimum diagonal
density, so almost every vertex of any block Xi

j has few non-neighbours in any block Xi′

j′

in a different row and column. Assume for now that this row-decomposition of G has the
stronger condition of large minimum diagonal degree, i.e. that we can delete ‘almost’ from
the previous statement. For each row i, we partition its perfect Kpi-packing into sets Eσ,i,
one for each injective function σ : [k] → [r]. For each σ we then form an auxiliary s-partite
s-graph Hσ, where for each i ∈ [s] the i-th vertex class of Hσ is the set Eσ,i (so a copy
of Kpi in G[Xi] is a vertex of Hσ). Edges in Hσ are those s-tuples of vertices for which
the corresponding copies of Kpi together form a copy of Kk in G. We defer the details of
the partition to the final section of this paper; the crucial point is that the large minimum
diagonal degree of G ensures that each Hσ has sufficiently large vertex degree to guarantee
a perfect matching. Taking the copies of Kk in G corresponding to the union of these
matchings gives a perfect Kk-packing in G, completing the proof.

The above sketch glosses over the use of the precise minimum degree condition in The-
orem 1.1. Indeed, to replace our minimum diagonal density condition with a minimum
diagonal degree condition, we must remove all ‘bad’ vertices, namely those which have many
non-neighbours in some block in a different row and column. To achieve this, before step
(ii) we delete some vertex-disjoint copies of Kk from G which cover all bad vertices. We
must ensure that the number of vertices deleted from row Xi is a constant multiple of pi for
each i, so that we will be able to join together the Kpi-packings of the undeleted vertices
of each Xi to form a Kk-packing of G. We also need to ensure that each half has even size
in pair-complete rows. This is accomplished in Section 7, which is the most lengthy and
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technical part of the paper. After this, it is fairly quick to complete the proof as outlined
above in Section 8.

4. Row decompositions and space barriers

In this section we formalise our description of row-decompositions and the iterative process
of splitting rows described in Section 3. We then show that the clique p-complex of any row
obtained at the end of this process is not close to a space barrier. Note that many definitions
and results of this section (and later sections) require that the size of each vertex class should
be a multiple of k, which is not assumed in the statement of Theorem 1.1. However, our
first step in the proof of Theorem 1.1 will be to remove vertices so that this condition is
satisfied, allowing these definitions and results to be used.

4.1. Row-decompositions. Fix r ≥ 2, and let G be an r-partite graph on vertex classes
V1, . . . , Vr each of size kn. Suppose s ∈ [k] and pi, i ∈ [s] are positive integers with

∑

i∈[s] pi =

k. Write p = (pi : i ∈ [s]). An s-row-decomposition X = (Xi
j)i∈[s],j∈[r] of G (of type p),

consists of subsets Xi
j ⊆ Vj with |Xi

j | = pin for each i ∈ [s] and j ∈ [r] such that each Vj is

partitioned by the sets Xi
j with i ∈ [s]. We refer to the sets Xi

j as the blocks, and the sets

Xi := Xi
1 ∪ · · · ∪Xi

r for i ∈ [s] as the rows. We call the parts Xj := Vj = X1
j ∪ · · · ∪Xs

j for

j ∈ [r] the columns, so G has s rows and r columns. Given subsets A,B of different vertex
classes of G, let G[A,B] denote the bipartite subgraph of G induced by A ∪ B. We write

eG(A,B) = |G[A,B]| and define the density of G between A and B as dG(A,B) = eG(A,B)
|A||B| .

We usually write e(A,B) = eG(A,B) and d(A,B) = dG(A,B), as G is clear from the context.

The minimum diagonal density of G is defined to be the minimum of d(Xi
j ,X

i′

j′) over all

i 6= i′ and j 6= j′. If G has only one row then for convenience we define the minimum
diagonal density of G to be 1. Note that all this terminology depends on the choice of
row-decomposition of G, but this will be clear from the context.

For any i ∈ [s] with pi ≥ 2 we may obtain an (s+1)-row-decomposition ofG by partitioning
the row Xi of G. Indeed, choose positive integers y and z with y + z = pi. For each j ∈ [r]
partition Xi

j into sets Y i
j and Zi

j with |Y i
j | = yn and |Zi

j | = zn. Take p′i := y, p′s+1 := z and

p′ℓ := pℓ for each ℓ ∈ [s] \ {i}, and for each j ∈ [r] let X̂i
j := Y i

j , X̂
s+1
j := Zi

j and X̂ℓ
j := Xℓ

j

for each ℓ ∈ [s] \ {i}. Then the blocks X̂ℓ
j form an (s + 1)-row-decomposition of G of type

p′ = (p′ℓ : ℓ ∈ [s+ 1]).
Bearing in mind the proof strategy sketched above, we are happy to split rows provided

that we keep the minimum diagonal density close to 1. Thus we make the following definition.
Let G be an r-partite graph on vertex classes V1, . . . , Vr each of size pn. We say G is d-
splittable if for some p′ ∈ [p − 1] we may choose sets Si ⊆ Vi, i ∈ [r] with |Si| = p′n, such
that for any i, i′ ∈ [r] with i 6= i′ we have d(Si, Vi′ \ Si′) ≥ 1 − d. It is helpful to think of
G as being a row-decomposition with just one row; then G is d-splittable if it is possible to
partition this row into two rows as described above so that the minimum diagonal density
is at least 1 − d. Note that this definition depends on p, however this will always be clear
from the context. Note also that G can never be d-splittable if p = 1. The next proposition
shows that we can iteratively split G until we reach a row-decomposition which has high
minimum diagonal density and does not have any splittable row.
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Proposition 4.1. Suppose that 1/n ≪ d0 ≪ · · · ≪ dk ≪ 1/r and r ≥ 2. Let G be an
r-partite graph on vertex classes V1, . . . , Vr each of size kn. Then for some s ∈ [k] there
exists an s-row-decomposition X of G with minimum diagonal density at least 1 − k2ds−1

such that each row G[Xi] of G is not ds-splittable.

Proof. Initially we take the trivial 1-row-decomposition of G with one row whose blocks
are the vertex classes V1, . . . , Vr of G. We now repeat the following step. Given an s-row-
decomposition of G, if every row G[Xi] is not ds-splittable, then terminate. Alternatively, if
G[Xi] is ds-splittable for some i ∈ [s], according to some sets Sj ⊆ Xi

j , j ∈ [r], then partition

each block Xi
j into two blocks Sj and Xi

j \ Sj to obtain an (s+ 1)-row-decomposition of G.

Since G[Xi] can only be ds-splittable if pi ≥ 2, this process must terminate with s ≤ k.
Then we have an s-row-decomposition of G all of whose rows are not ds-splittable, so it
remains only to show that G has minimum diagonal density at least 1 − k2ds−1. If s = 1
then this is true by definition, so we may assume s ≥ 2. Consider any rows i 6= i′ and
columns j 6= j′. Since Xi

j and Xi′

j′ do not lie in the same row of G, at some point in the

process we must have partitioned blocks Y ℓ
j and Y ℓ

j′ into Sj, Y
ℓ
j \ Sj and Sj′, Y

ℓ
j′ \ Sj′ with

Xi
j ⊆ Sj and Xi′

j′ ⊆ Y ℓ
j′ \ Sj′ respectively. Since G[Y ℓ] was dt-splittable for some t ≤ s − 1,

we have d(Sj , Y
ℓ
j′ \ Sj′) ≥ 1 − ds−1. Then, since |Xi

j | ≥ |Sj |/k and |Xi′

j′ | ≥ |Y ℓ
j′ |/k, we have

d(Xi
j ,X

i′

j′) ≥ 1− k2ds−1, as required. �

4.2. Avoiding space barriers. Let G be an r-partite graph whose vertex classes have
size pn with δ∗(G) ≥ (p − 1)n − αn, and let J = J(G) be the clique p-complex of G. In
this section we show that if G is not d-splittable then there is no space barrier to a perfect
matching in Jp. We shall use this result in combination with the results of the next section
to find a perfect clique packing in each row. We also prove that if p < r then G contains
many copies of Kp+1; this result will play an important role in the proof of Lemma 7.2.

Lemma 4.2. Suppose that 1/n ≪ α ≪ β ≪ d ≪ 1/r and 2 ≤ p ≤ r. Let G be an r-partite
graph on vertex classes V1, . . . , Vr each of size pn with δ∗(G) ≥ (p− 1)n− αn. Suppose that
G is not d-splittable. Then

(i) for any p′ ∈ [p− 1] and sets Si ⊆ Vi, i ∈ [r] of size p′n there are at least βnp copies of
Kp in G with more than p′ vertices in G[S], where S =

⋃

i∈[r] Si, and

(ii) if p < r then there are at least βnp+1 copies of Kp+1 in G.

Proof. For (i), since G is not d-splittable, we may suppose that d(S1, Vp′+1 \Sp′+1) < 1−d.
Let A be the set of vertices in S1 with fewer than (1−d/2)(p−p′)n neighbours in Vp′+1\Sp′+1.
Write |A| = ap′n. Then (1− d/2)(1− a) < d(S1, Vp′+1 \Sp′+1) < 1− d, so a > d/2. We now
greedily form a copy of Kp′+1 in G[S] by choosing a vertex vi ∈ Si for each i ∈ [p′+1] in turn
(in increasing order). We do this so that v1 ∈ A and vi ∈ N(vj) for any j < i. There are
|A| ≥ dn/2 suitable choices for v1. For each i ∈ {2, . . . , p′} we have chosen i−1 vertices prior
to choosing vi, so there are at least |Si|−(i−1)(pn−δ∗(G)) ≥ p′n−(p′−1)(n+αn) ≥ (1−pα)n
suitable choices for vi. Finally, since v1 ∈ A has at least (p−p′)nd/2 ≥ nd/2 non-neighbours
in Vp′+1 \ Sp′+1, and at most |Vp′+1| − δ∗(G) ≤ n + αn non-neighbours in Vp′+1 in total,
it has fewer than (1 − d/2 + α)n ≤ (1 − d/3)n non-neighbours in Sp′+1. This means that
there are at least |Sp′+1| − (1 − d/3)n − (p′ − 1)(pn − δ∗(G)) ≥ dn/4 suitable choices for

vp′+1. Together we conclude that there are at least (dn/4)(dn/2)((1 − pα)n)p
′−1 ≥ 2βnp′+1
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copies of Kp′+1 in G[S]. Each such copy can be extended to a copy of Kp in G with more
than p′ vertices in S by choosing vi ∈ Vi for each p′ + 2 ≤ i ≤ p in turn, so that each vi
chosen is a neighbour of every vj with j ≤ i. For each p′ + 2 ≤ i ≤ p there are at least
pn− (i − 1)(pn − δ∗(G)) ≥ pn − (p − 1)(n + αn) ≥ (1 − pα)n suitable choices for vi, so we

obtain at least 2βnp′+1((1− pα)n)p−p′−1 ≥ βnp such copies of Kp.
For (ii), introduce new constants with β ≪ γ ≪ β′ ≪ d1 ≪ d2 ≪ d, and suppose for

a contradiction that there are fewer than βnp+1 copies of Kp+1 in G. Say that a vertex
x ∈ V (G) is bad if it lies in at least

√
βnp copies of Kp+1 in G, and let X be the set

of all bad vertices. Then
√
βnp|X| ≤ rβnp+1, so |X| ≤ r

√
βn. We now show that for

any i ∈ [r], any vertex v ∈ Vi \ X has at most (p − 1)n + γn neighbours in Vj for any
j 6= i. Without loss of generality we consider the case i = 1, i.e. v ∈ V1 \ X. Suppose
for a contradiction that |N(v) ∩ Vj| > (p − 1)n + γn for some j, say j = p + 1. Then
we may greedily form a copy of Kp+1 in G containing v by choosing x2, . . . , xp+1 with
xi ∈ Vi for each i so that each xi is a neighbour of v, x2, . . . , xi−1. We have at least
pn−(i−1)(pn−δ∗(G)) ≥ (p−i+1)n−(i−1)αn ≥ n/2 choices for each xi with i ∈ {2, . . . , p},
and at least |N(v) ∩ Vp+1| − (p− 1)(pn− δ∗(G)) ≥ (p− 1)n+ γn− (p− 1)(n+ αn) ≥ γn/2
choices for xp+1. Thus there are at least γnp/2p ≥ √

βnp copies of Kp+1 in G containing v,
a contradiction to v /∈ X.

Now we fix some v ∈ V1 \X and use the neighbourhood of v to impose structure on the
rest of the graph. We choose a set Sj ⊆ Vj of size (p− 1)n which contains or is contained in
N(v)∩Vj for each j ≥ 2. If d(Si, Vj \Sj) < 1−d1 for some i, j ≥ 2 with i 6= j, then as in part
(i) we can find at least 2β′np copies of Kp in

⋃

i≥2 Si. At least β′np of these are contained

in N(v), and so form copies of Kp+1 with v, another contradiction. So we may suppose that
d(Si, Vj \ Sj) ≥ 1− d1 for any i, j ≥ 2 with i 6= j. We now partition V1 into sets A,B,C as
follows. Let A consist of all vertices u ∈ V1 with |N(u)∩ (Vj \Sj)| ≤ d2n for every 2 ≤ j ≤ r.
Let B consist of all vertices u ∈ V1 with |N(u) ∩ (Vj \ Sj)| ≥ (1 − d2)n for every 2 ≤ j ≤ r.
Let C = V1 \ (A∪B) consist of all remaining vertices of V1. Next we bound the sizes of each
of these sets. By definition of A we have e(A,V2 \S2) ≤ d2n|A|, so some vertex in V2 \S2 has
at most d2|A| neighbours in A. So pn− |A|+ d2|A| ≥ δ∗(G) ≥ (p− 1)n−αn, from which we
obtain |A| ≤ (1+2d2)n. Next note that by definition of B we have e(B,V2\S2) ≥ (1−d2)n|B|.
So at least n/2 vertices of V2 \S2 have at least (1− 2d2)|B| neighbours in B. At least one of
these vertices is not bad, so by our earlier observation has at most (p− 1)n+ γn neighbours
in V1. Then (1− 2d2)|B| ≤ (p− 1)n + γn, so |B| ≤ (1 + 3d2)(p − 1)n.

To bound |C| we show that C ⊆ X. Consider any vertex w ∈ C. Without loss of
generality |N(w)∩ (Vp+1 \Sp+1)| > d2n and |N(w)∩ (Vp \Sp)| < (1− d2)n. Choose greedily
a vertex xj ∈ Sj for each 2 ≤ j ≤ p so that xj is a neighbour of w, x2, . . . , xj−1 and satisfies
|N(xj) ∩ (Vp+1 \ Sp+1)| ≥ (1 − √

d1)n. To see that this is possible for each 2 ≤ j ≤ p,
note that since d(Sj , Vp+1 \ Sp+1) ≥ 1 − d1, at most (p − 1)

√
d1n vertices xj ∈ Sj fail

the latter condition. Note also that at least |Sj | − |Sj \ N(w)| − ∑

2≤i<j |Sj \ N(xi)| ≥
(p−1)n−|Sj \N(w)|− (j−2)(n+αn) vertices xj ∈ Sj satisfy the neighbourhood condition.
For j < p this gives at least n/2 suitable choices for xj. On the other hand, for j = p we
have |N(w) ∩ (Vp \ Sp)| < (1 − d2)n, which implies that |Sj \N(w)| ≤ n− d2n+ αn, so we
have at least d2n/2 suitable choices for xj . So we may form at least d2(n/2)

p−1 copies of Kp

containing w in this manner. By construction, each xj in any such copy has at most
√
d1n

non-neighbours in Vp+1 \ Sp+1. Since w has at least d2n neighbours in Vp+1 \ Sp+1, we find
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a total of at least (d2n − p
√
d1n)d2(n/2)

p−1 ≥ √
βnp copies of Kp+1 in G containing w, so

w ∈ X. We deduce that C ⊆ X, so |C| ≤ |X| ≤ r
√
βn.

We therefore have |B| ≥ pn−|A|−|C| ≥ (p−1)n−3d2n, so |B| = (1±3d2)(p−1)n. Let S1

be a set of size (p−1)n which either contains or is contained in B. Then for any 2 ≤ j ≤ r we
have e(S1, Vj \Sj) ≥ min{|B|, |S1|}(1−d2)n ≥ (1−4d2)(p−1)n2, so d(S1, Vj \Sj) ≥ 1−4d2.
Also, at most 4d2(p − 1)n vertices of V1 \ S1 lie in B ∪ C, so for any 2 ≤ j ≤ r we have
e(V1\S1, Vj\Sj) ≤ d2n

2+4d2(p−1)n2 ≤ 4pd2n
2. But e(V1\S1, Vj) ≥ δ∗(G)n ≥ (p−1−α)n2,

so we obtain e(V1 \ S1, Sj) ≥ (p− 1−α)n2 − 4pd2n
2, and so d(V1 \S1, Sj) ≥ 1− 9d2. Recall

also that d(Si, Vj \ Sj) ≥ 1 − d1 for any i, j ≥ 2 with i 6= j. Since d1, d2 ≪ d we conclude
that G is d-splittable with respect to the sets Sj for j ∈ [r]. This is a contradiction, so (ii)
holds. �

5. Avoiding divisibility barriers

Let G be an r-partite graph with vertex classes of size pn such that δ∗(G) ≥ (p−1)n−αn,
and let J = J(G) be the clique p-complex of G. In the previous section we saw that if G
is not d-splittable (for small d), then there is no space barrier to a perfect matching in Jp.
In this section we instead consider divisibility barriers. Indeed, we shall see in the second
subsection that if p ≥ 3 and G is not d-splittable, then Jp cannot be close to a divisibility
barrier. However, for p = 2 there is another possibility, namely that G has the structure of
V 1 ∪ V 2 in Construction 1.2. There we described both V 1 and V 2 as rows, but with the
terminology of the previous section they should be considered as a single row. We consider
this case in the first subsection. Note that here we have Jp = J2 = G.

5.1. Pair-complete rows. Let G be an r-partite graph with vertex classes V1, . . . , Vr each
of size 2n. We say that G is d-pair-complete (with respect to S =

⋃

j∈[r] Sj) if there exist

sets Sj ⊆ Vj , j ∈ [r] each of size n such that d(Si, Sj) ≥ 1 − d, d(Vi \ Si, Vj \ Sj) ≥ 1 − d
and d(Si, Vj \ Sj) ≤ d for any i, j ∈ [r] with i 6= j. That is, G consists of two halves S
and V \ S, where each half is an almost-complete r-partite graph, and there are few edges
between halves. We will show that if G is close to a divisibility barrier, then G is either
d-splittable or d-pair-complete. For this we need the following proposition.

Proposition 5.1. Let r ≥ 2 and H be an r-partite graph whose parts V1, . . . , Vr each have
size 2. Suppose that δ∗(H) ≥ 1, and for any A ⊆ V such that |A ∩ Vj| = 1 for every j ∈ [r]
there is

(i) an edge ab with a, b ∈ A or a, b /∈ A, and
(ii) an edge ab with a ∈ A and b /∈ A.

Then for some Vj = {x, y} there is a path of even length between x and y.

Proof. Suppose for a contradiction that there is no such path. Then for any i, j ∈ [r] with
i 6= j, any vertex v ∈ Vi must have precisely one neighbour in Vj . Indeed, v must have
at least one neighbour in Vj since δ∗(H) ≥ 1, but cannot have two since then we obtain a
path of length two between these two neighbours in Vj . So for any i 6= j the graph H[Vi, Vj ]
consists of two disjoint edges. Write V1 = {x1, y1}, and for each 2 ≤ i ≤ r let xi ∈ Vi

be adjacent to xi−1 and yi ∈ Vi be adjacent to yi−1. There are then two possibilities for
H[Vr, V1].

The first case is that xr is adjacent to x1 and yr to y1. By property (ii) of A = {x1, . . . , xr},
there must be some edge xiyj. Fix such an i and j, and consider the paths x1 . . . xiyj . . . y1
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and x1 . . . xiyj . . . yry1 between x1 and y1. They have lengths i + j − 1 and i + r − j + 1,
which must both be odd, so i + j and r are both even. This argument shows that i′ + j′

must be even for any edge xi′yj′ . So by property (i) of A = {xi′ : i′ even} ∪ {yi′ : i′ odd}
there must be an edge xi′xj′ or yi′yj′ such that i′ + j′ is even. Without loss of generality
we may assume the former, and that j′ 6= i. If i′ = i then xj′xiyjyj+1 . . . yj′ is a path whose
length is congruent to j′ − j + 2 ≡ j′ + i′ − j − i+ 2 ≡ 0 modulo 2, giving a contradiction.
On the other hand, if i′ 6= i then let P be a path from xj′ to xi which does not contain xi′
and whose length has the same parity as i− j′ (this must exist since r is even and xi, xi′ and
xj′ all lie on the cycle x1x2 . . . xrx1). Then xi′xj′Pxiyjyj+1 . . . yi′ is a path whose length is
congruent to i− j′ + i′ − j + 2 ≡ 0 modulo 2, again giving a contradiction.

The second case is that xr is adjacent to y1 and yr to x1. Then x1 . . . xry1 must have odd
length, so r is odd. By property (i) of A = {xi : i even} ∪ {yi : i odd} we must have either
an edge xiyj with i+ j odd, or an edge xixj with i+ j even, or an edge yiyj with i+ j even.
In the first case x1 . . . xiyj . . . y1 is a path of even length i + j − 1. On the other hand, for
the second case we may assume that i < j, whereupon x1 . . . xixj . . . xry1 is a path of even
length r− j + i+1, and the third case is similar. Thus we have a contradiction in all cases,
so the required path exists. �

Now we can deduce the required structure for divisibility barriers in G when p = 2.

Lemma 5.2. Suppose that 1/n ≪ µ, α ≪ d ≪ 1/r and r ≥ 2. Let P ′ partition a set V into
parts V1, . . . , Vr each of size 2n. Suppose G is a P ′-partite graph with δ∗(G) ≥ n− αn, and
that there exists a partition P refining P ′ into parts each of size at least n − µn such that
Lµ
P(G) is incomplete with respect to P ′. Then G is d-splittable or d-pair-complete.

Proof. We can assume that Lµ
P(G) is transferral-free (recall from Section 2 that this means

that Lµ
P(G) does not contain any difference of basis vectors ui−uj , for some i 6= j which index

subparts of the same part of P ′). Thus for any i, j ∈ [r] with i 6= j, distinct parts A, B of P
contained in Vi, and part C of P contained in Vj, we cannot have both e(A,C) ≥ µ(2rn)2

and e(B,C) ≥ µ(2rn)2. Since all parts of P have size at least n − µn, each part of P ′

is partitioned into at most two parts of P. We can assume that P is a strict refinement
of P ′, so without loss of generality P partitions V1 into two parts V 1

1 and V 2
1 . Next we

note that there cannot be any part Vj that is not partitioned into two parts by P. For
otherwise, letting A = V 1

1 , B = V 2
1 and C = Vj , we have e(A,C) ≥ |A|δ∗(G) ≥ µ(2rn)2 and

e(B,C) ≥ |B|δ∗(G) ≥ µ(2rn)2, which contradicts Lµ
P(G) being transferral-free, as described

above. Thus each Vj is partitioned into two parts V 1
j and V 2

j by P. Form an auxiliary graph

H on 2r vertices, where for each i ∈ {1, 2} and j ∈ [r] we have a vertex xij of H corresponding

to the part V i
j of P, and we have an edge xijx

i′

j′ if and only if e(V i
j , V

i′

j′ ) ≥ µ(2rn)2. Since

δ∗(G) ≥ n−αn and each part of P has size at least n−µn, we have δ∗(H) ≥ 1. Furthermore,
for any edge ab of H, the at least µ(2rn)2 edges of G corresponding to this edge ensure
that ua + ub ∈ Lµ

P(G), where we consider a and b to index the parts of P to which they
correspond. It follows that H cannot contain a path of even length between x1j and x2j for

any j ∈ [r]. Indeed, if x1j = y0, y1, . . . , y2m = x2j are the vertices of such a path then, since

uyℓ−1
+ uyℓ ∈ Lµ

P(G) for each ℓ ∈ [2m], we have

ux1
j
− ux2

j
= uy0 − uy2m =

∑

ℓ∈[m]

(

(uy2ℓ−2
+ uy2ℓ−1

)− (uy2ℓ−1
+ uy2ℓ)

)

∈ Lµ
P(G),
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a contradiction to Lµ
P(G) being transferral-free.

We may therefore apply Proposition 5.1 to deduce that there exists some A ⊆ V (H) with
|A ∩ {x1j , x2j}| = 1 for each j ∈ [r] such that either

(i) H contains no edges ab with a, b ∈ A or a, b /∈ A, or
(ii) H contains no edges ab with a ∈ A and b /∈ A.

For each j ∈ [r] let S′
j = V 1

j if x1j ∈ A, and V 2
j otherwise. For j ∈ [r], let Sj ⊆ Vj be

a set of size n that contains or is contained by S′
j . Note that for any j 6= j′, we have

e(Sj , Vj′) ≥ nδ∗(G) ≥ (1 − α)n2, and similarly e(Vj \ Sj, Vj′) ≥ (1 − α)n2. In case (i), for
any j 6= j′ we have e(S′

j , S
′
j′) ≤ µ(2rn)2. This implies e(Sj , Vj′ \ Sj′) ≥ (1 − α − 8r2µ)n2,

and so G[Sj , Vj′ \ Sj′ ] has density at least 1 − d. Since j and j′ were arbitrary, we may
conclude that G is d-splittable. On the other hand, in case (ii), for any j 6= j′ we have
e(S′

j , Vj′ \ S′
j′) ≤ µ(2rn)2. This implies e(Sj , Sj′) ≥ (1 − α − 8r2µ)n2, and so G[Sj , Sj′ ]

has density at least 1 − d. Similarly, G[Vj \ Sj, Vj′ \ Sj′ ] has density at least 1 − d, and
G[Sj , Vj′ \ Sj′ ] has density at most d for any j 6= j′, so G is d-pair-complete. �

5.2. Avoiding divisibility barriers for p > 2. We next show that for p > 2, if G is not
d-splittable then Jp is not close to a divisibility barrier.

Lemma 5.3. Suppose that 1/n ≪ µ, α ≪ d ≪ 1/r and 3 ≤ p ≤ r. Let P ′ partition a
set V into vertex classes V1, . . . , Vr each of size pn. Suppose G is a P ′-partite graph with
δ∗(G) ≥ (p − 1)n − αn and let J = J(G) be the clique p-complex of G. Suppose P is a
partition refining P ′ into parts each of size at least n − µn such that Lµ

P(Jp) is incomplete
with respect to P ′. Then G is d-splittable.

Proof. We introduce new constants with µ, α ≪ µ′ ≪ c ≪ γ ≪ γ′ ≪ γ′′ ≪ d. We
can assume that P is a strict refinement of P ′, so without loss of generality P partitions
V1 into parts V i

1 , i ∈ [m] with 2 ≤ m ≤ p. As in the proof of Lemma 5.2, we can also
assume that Lµ

P(Jp) is transferral-free, meaning that it does not contain any difference
of basis vectors ui − uj , for some i 6= j which index subparts of the same part of P ′.
Thus for any p vertex classes Vi1 , . . . , Vip , distinct parts Ui1 , U ′

i1
of P contained in Vi1 ,

and parts Uij ⊆ Vij for 2 ≤ j ≤ p, it cannot be that
⋃p

j=1Uij and U ′
1 ∪ ⋃p

j=2 Uij both

have at least µ|V (G)|p = µ(rpn)p edges of Jp (i.e. copies of Kp). We use this to deduce
the following properties, which control the typical behaviour of neighbourhoods and certain
pairwise intersections of neighbourhoods. Note that the bound in (c) is close to the lower
bound on δ∗(G), so it says that G is mostly approximately regular from the point of view
of V1.

Claim 5.4.

(a) There are at most µ′n2 pairs (x, y) for which there exist i ∈ [m] and j ∈ [r] such that
x ∈ V i

1 , y ∈ V1 \ V i
1 and |Vj ∩N(x) ∩N(y)| ≥ (p− 2)n+ µ′n.

(b) There are at most µ′n3 triples (x, y, z) for which there exist i ∈ [m] and j ∈ [r] such
that x ∈ V i

1 , y ∈ V1\V i
1 , z ∈ V \V1, xz, yz ∈ G and |Vj∩N(x)∩N(z)| ≥ (p−2)n+µ′n.

(c) For any 2 ≤ j ≤ r there are at most 2µ′n vertices x ∈ V1 such that |N(x) ∩ Vj| ≥
(p− 1)n+ 2µ′n.

For (a), suppose for a contradiction that there are more than µ′n2 such pairs. Without
loss of generality there are at least µ′n2/rp2 pairs (x, y) with x ∈ V 1

1 and y ∈ V 2
1 such that
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|Vp ∩ N(x) ∩ N(y)| ≥ (p − 2)n + µ′n. For each such pair, we consider greedily choosing
wj ∈ Vj , 2 ≤ j ≤ p such that xw2 . . . wp and yw2 . . . wp are copies of Kp. The number of

choices for wj is Nj ≥ |Vj ∩N(x) ∩N(y)| −∑j−1
i=2 |Vj \N(wi)|. For 2 ≤ j ≤ p − 1, we have

Nj ≥ pn− (p − 1)(pn − δ∗(G)) ≥ (1− (p − 1)α)n > n/2. Also, Np ≥ (p − 2)n + µ′n− (p −
2)(pn − δ∗(G)) ≥ µ′n − (p − 2)αn ≥ µ′n/2. Considering all such pairs (x, y), we obtain at
least (µ′)2np+1/2p−1rp2 such (p+1)-tuples (x, y, w2, . . . , wp). There are at most pr+1 possible
indices for such a (p+1)-tuple, so we may choose µ(rpn)p+1 such (p+1)-tuples which all have
the same index; let (x, y, w2, . . . , wp) be a representative of this collection. Then there must
be at least µ(rpn)p edges of Jp with index i({x,w2, . . . , wp}), and at least µ(rpn)p edges of
Jp with index i({y,w2, . . . , wp}). But this contradicts Lµ

P(Jp) being transferral-free. A very
similar argument applies for (b). Indeed, suppose for a contradiction that there are more than
µ′n3 such triples. Say there are at least µ′n3/r2p2 triples (x, y, z) with x ∈ V 1

1 , y ∈ V 2
1 , z ∈ V2

such that xz, yz ∈ G and |Vp∩N(x)∩N(z)| ≥ (p−2)n+µ′n. For each such triple we consider
greedily choosing wj ∈ Vj, 3 ≤ j ≤ p such that xzw3 . . . wp and yzw3 . . . wp are copies of Kp.

The number of choices for wj is Nj ≥ |Vj∩N(x)∩N(z)|−∑j−1
i=3 |Vj\N(wi)|−|Vj\N(y)|. Thus

the same calculation as in (a) gives a contradiction. For (c), suppose for a contradiction that
there are at least 2µ′n such vertices x. For each such x, and each choice of y ∈ V1 in a different
part of P to x, we have |Vj ∩N(x) ∩N(y)| ≥ |N(x) ∩ Vj| − (pn− δ∗(G)) ≥ (p− 2)n+ µ′n.
There are at least n − µn choices of y for each x, so this contradicts (a). Thus we have
proved Claim 5.4.

Now for each i ∈ [m] and 2 ≤ j ≤ r let Xi
j consist of all vertices of Vj which have at

most |V i
1 | − γn neighbours in V i

1 . Bearing in mind the row structure we are aiming for, the
intuition is that Xi

j should approximate the jth part of the ith row. We show the following

properties that agree with this intuition: the size of Xi
j is roughly correct, and the intended

diagonal densities are close to 1.

Claim 5.5.

(d) For any i ∈ [m] and 2 ≤ j ≤ r we have |Xi
j | ≥ |V i

1 | − γ′n > n/2.

(e) For any i, i′ ∈ [m] with i 6= i′ and any 2 ≤ j ≤ r we have d(V i
1 ,X

i′
j ) ≥ 1− c.

(f) For any 2 ≤ j ≤ r at most γn vertices v ∈ Vj lie in more than one of the sets Xi
j .

Thus |Xi
j | ≤ |V i

1 | + pγ′n for any i ∈ [m], and all but 2pγ′n vertices of Vj lie in
⋃

i∈[m]X
i
j .

(g) For any i, i′ ∈ [m] with i 6= i′ and any 2 ≤ j < j′ ≤ r we have d(Xi
j ,X

i′

j′) ≥ 1− d/2.

For (d), note that e(V i
1 , Vj) ≤ ((p− 1)n+2µ′n)|V i

1 |+2µ′pn2 ≤ (p− 1+5pµ′)n|V i
1 | by (c).

Also,

e(V i
1 , Vj) ≥ |Xi

j |(|V i
1 | − (pn− δ∗(G))) + (pn− |Xi

j |)(|V i
1 | − γn)

≥ pn(|V i
1 | − γn)− |Xi

j |(1 + α− γ)n.

Therefore |Xi
j |(1 + α − γ)n ≥ (1 − 5pµ′)|V i

1 |n − pγn2, which gives (d). Next suppose for a

contradiction that (e) is false, say that d(V 1
1 ,X

2
2 ) < 1− c. Let A be the set of vertices in X2

2

with fewer than (1− c/2)|V 1
1 | neighbours in V 1

1 . Write |A| = a|X2
2 |. Then (1−a)(1− c/2) ≤

d(V 1
1 ,X

2
2 ) < 1 − c, so a ≥ c/2. Thus |A| ≥ cn/4 by (d). Each vertex in A has fewer than

|V 1
1 |−cn/4 neighbours in V 1

1 , and also fewer than |V 2
1 |−γn neighbours in V 2

1 by definition of
X2

2 . This gives at least (cn/4)
2γn triples (x, y, z) with x ∈ V 1

1 , y ∈ V 2
1 , and z ∈ X2

2 such that
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xz, yz /∈ G. At least µ′n2 pairs (x, y) therefore lie in at least 2µ′n such triples. For each of
these pairs we have |V2∩N(x)∩N(y)| ≥ pn−2(pn−δ∗(G))+2µ′n ≥ (p−2)n+µ′n. However,

this contradicts (a), so (e) holds. For (f), suppose for a contradiction that A := Xi
2 ∩Xi′

2

has size at least γn/p2, for some i, i′ ∈ [m] with i 6= i′. By definition, each vertex of A

has at most |V i
1 | − γn neighbours in |V i

1 |, so d(A,V i
1 ) ≤ 1 − γ/p. But then d(Xi′

2 , V
i
1 ) ≤

1 − γ2/p4, contradicting (e). So |A| < γn/p2, and summing over all possible values of i
and i′ we obtain the first statement of (f). This implies that

∑

i∈[m] |Xi
j | ≤ pn + mγn, so

∑

i∈[m](|Xi
j | − |V i

1 |) ≤ mγn. In combination with (d) this implies |Xi
j | ≤ |V i

1 |+ pγ′n for any

i ∈ [m]. Also, (d) gives
∣

∣

∣

⋃

i∈[m]X
i
j

∣

∣

∣
≥ ∑

i∈[m](|V i
1 | − γ′n)−mγn ≥ pn− 2pγ′n, so (f) holds.

Finally, suppose for a contradiction that (g) is false, say d(X1
2 ,X

2
3 ) < 1 − d/2. Without

loss of generality we have |V 2
1 | ≤ pn/2. Let A be the set of vertices in X2

3 with fewer
than (1 − d/4)|X1

2 | neighbours in X1
2 . (We re-use A to avoid excessive notation.) Write

|A| = a|X2
3 |. Then (1 − a)(1 − d/4) ≤ d(X1

2 ,X
3
2 ) < 1 − d/2, so a ≥ d/4. Thus |A| ≥ dn/8

by (d). Each vertex in A has fewer than |X1
2 | − dn/8 neighbours in X1

2 , and also fewer than
|V 2

1 | − γn neighbours in V 2
1 by definition of X2

3 . This gives a set T of at least (dn/8)2γn
triples (x, z, w) with x ∈ V 2

1 , z ∈ X1
2 and w ∈ X2

3 such that xw, zw /∈ G. Furthermore, since
by (e) we have d(V 2

1 ,X
1
2 ) ≥ 1 − c, all but at most c(pn)3 triples in T have the additional

property that xz ∈ G. Let P be the set of pairs (x, z) with xz ∈ G, x ∈ V 2
1 , z ∈ X1

2 that lie in
at least 2µ′n triples of T . Then |T |− c(pn)3 ≤ |P |pn+(pn)22µ′n, so |P | ≥ 3µ′n2, say. Since
|V 2

1 | ≤ pn/2 and p ≥ 3, for each (x, z) ∈ P there are more than pn/2− (pn − δ∗(G)) > n/3
vertices y such that y ∈ V1 \ V 2

1 and yz ∈ G. Note that this is a key use of the assumption
p ≥ 3, so we had to deal with the case p = 2 separately in the previous subsection. There
are therefore more than µ′n3 triples (x, y, z) with x ∈ V 2

1 , y ∈ V1 \ V 2
1 and z ∈ X1

2 such
that xz, yz ∈ G and (x, z) ∈ P . However, for any (x, z) ∈ P we have |V3 ∩N(x) ∩N(z)| ≥
pn− 2(pn− δ∗(G)) + 2µ′n ≥ (p− 2)n+ µ′n, which contradicts (b). Thus (g) holds, proving
Claim 5.5.

To complete the proof, we also need to show that the size of each part of V1 is close to an
integer multiple of n. Since each part of V1 has size at least n−µn, this will be true if V1 has
a part of size close to (p− 1)n. So for the final claim we assume that V1 does not have such
a large part; in this case we extend (c) by showing that the bipartite graph induced by any
pair of vertex classes is mostly approximately regular. We then show that most vertices in
V1 have sparse non-neighbourhoods, before finally deducing the required statement on the
sizes of the parts of V1.

Claim 5.6. Suppose V1 does not have a part of size at least (p − 1)n− γn. Then

(h) for any j, j′ ∈ [r] there are at most cn vertices z ∈ Vj such that |N(z) ∩ Vj′ | ≥
(p− 1)n+ 2µ′n,

(j) for a set V ′
1 of all but at most γn vertices x ∈ V1 we have |Vj \N(x)| = n± 2µ′n and

d(Vj \N(x), Vj′ \N(x)) ≤ γ for any 2 ≤ j, j′ ≤ r with j 6= j′, and
(k) for each i there is an integer pi such that |V i

1 | = pin± γ′′n.

For (h), note that by our assumption on the part sizes of V1, any such z lies in at least
γ2n2/2 triples (x, y, z) such that xz, yz ∈ G and x and y lie in different parts of V1. Any such
triple is counted by (b), as |Vj′ ∩N(x)∩N(z)| ≥ |N(z)∩Vj′ |− (pn−δ∗(G)) ≥ (p−2)n+µ′n,
so there can be at most cn such vertices z, as claimed. For (j) we introduce the following
notation: Nj(x) := N(x) ∩ Vj is the set of neighbours of x in Vj , and N c

j (x) := Vj \
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N(x) is the set of non-neighbours of x in Vj . Fix some j and j′, and suppose x ∈ V1 is
such that d(N c

j (x), N
c
j′(x)) ≥ γ and |Nj(x)|, |Nj′(x)| ≤ (p − 1)n + 2µ′n. We can estimate

d(Nj(x), N
c
j′(x)) as follows. Write e(Nj(x), N

c
j′(x)) = e(Vj , N

c
j′(x))−e(N c

j (x), N
c
j′(x)). Then

by (h) we have e(Vj , N
c
j′(x)) =

∑

v∈Nc
j′
(x) |N(v) ∩ Vj| ≤ ((p − 1)n + 2µ′n)|N c

j′(x)| + cn · pn.
Also, e(N c

j (x), N
c
j′(x)) ≥ γ|N c

j (x)||N c
j′(x)| ≥ γ(n− 2µ′n)|N c

j′(x)| by choice of x. This gives

e(Nj(x), N
c
j′(x)) ≤ (p− 1 + 2µ′ − (1− 2µ′)γ)n|N c

j′(x)|+ cpn2.

Since |Nj(x)| ≥ δ∗(G) ≥ (p − 1)n − αn, and |N c
j′(x)| ≥ n − 2µ′n by choice of x, we deduce

that d(Nj(x), N
c
j′(x)) ≤ 1 − γ/2. Let A be the set of vertices in Nj(x) with fewer than

(1 − γ/4)|N c
j′(x)| neighbours in N c

j′(x). Write |A| = a|Nj(x)|. Then (1 − a)(1 − γ/4) ≤
d(Nj(x), N

c
j′(x)) ≤ 1 − γ/2, so a ≥ γ/4, and |A| ≥ γn/4. Moreover, by definition of A any

z ∈ A has at least |Nj′(z)|−(1−γ/4)|N c
j′ (x)| neighbours in Nj′(x). Since |Nj′(z)| ≥ δ∗(G) ≥

(p− 1)n − αn and |N c
j′(x)| ≤ pn− δ∗(G) ≤ n+ αn, it follows that for any z ∈ A we have

|Vj′ ∩N(x) ∩N(z)| ≥ (p− 1)n − αn− (1− γ
4 )(n+ αn)

≥ (p− 2)n + γn/4− 2αn ≥ (p− 2)n + µ′n.

Furthermore, since V1 does not have a part of size at least (p − 1)n − γn, there must be
at least γn/2 neighbours y of z which lie in a different part of V1 to x. There are at
least γn/4 choices for z ∈ A, so x lies in at least γ2n2/8 triples (x, y, z) counted in (b).

Thus there are at most µ′n3

γ2n2/8 < γn/2r2 such vertices x ∈ V1 with d(N c
j (x), N

c
j′(x)) ≥ γ

and |Nj(x)|, |Nj′(x)| ≤ (p − 1)n + 2µ′n. Since by (c) at most 4µ′n vertices do not satisfy
the latter condition, summing over all j, j′ ∈ [r] gives (j). (Every vertex x ∈ V1 satisfies
|Nj(x)| ≥ δ∗(x) ≥ (p− 1)n − αn.)

For (k), consider any x, y ∈ V ′
1 as defined in (j), and let Ixyj = N c

j (x)∩N c
j (y) for j = 2, 3.

We will show that either |Ixy2 | ≤ 3
√
γn or |Ixy2 | ≥ (1 − 3

√
γ)n. For suppose that Ixy2 >

3
√
γn. Let B = N c

3(x) ∪N c
3(y). By definition of V ′

1 we have e(Ixy2 , B) ≤ e(N c
2 (x), N

c
3(x)) +

e(N c
2(y), N

c
3 (y)) ≤ 3γn|B| ≤ √

γ|Ixy2 ||B|, so there is a vertex z ∈ Ixy2 with |N(z) ∩ B| ≤√
γ|B|. Then (1−√

γ)|B| ≤ |B \N(z)| ≤ |V3 \N(z)| ≤ n+αn. This gives |B| ≤ (1+2
√
γ)n,

so |Ixy3 | = |V3\N(x)|+|V3\N(y)|−|B| ≥ (1−3
√
γ)n. Now the same argument interchanging

Ixy2 and Ixy3 shows that |Ixy2 | ≥ (1− 3
√
γ)n, as required.

Next we define a relation ∼ on V ′
1 by x ∼ y if |Ixy2 | ≥ (1− 3

√
γ)n. This is an equivalence

relation, since if |Ixy2 | ≥ (1 − 3
√
γ)n and |Iyz2 | ≥ (1 − 3

√
γ)n, then |Ixz2 | ≥ |Ixy2 | − |N c

2(y) \
N c

2(z)| ≥ (1−3
√
γ)n−((n+αn)−(1−3

√
γ)n) > 3

√
γn, so |Ixy2 | ≥ (1−3

√
γ)n as just shown.

Let C1
1 , . . . , C

t
1 be the equivalence classes of ∼, and arbitrarily choose a representative xi of

each equivalence class Ci
1.

Since each xi lies in V ′
1 , the sets N c

2(xi) each have size n ± 2µ′n by (j). Furthermore,
any two such sets intersect in at most 3

√
γn vertices, since the representatives xi each lie in

different equivalence classes. We cannot have t > p, as then (p+1)(n−2µ′n)−
(p+1

2

)

3
√
γn ≤

∣

∣

∣

⋃p+1
i=1 N c

2(xi)
∣

∣

∣
≤ |V2| ≤ pn is a contradiction, so we must have t ≤ p. Next, observe that

any vertex in Ci
1 has at most (n + 2µ′n) − (1 − 3γ)n ≤ 4γn neighbours in N c

2(xi). So
e(Ci

1, N
c
2(xi)) ≤ 4γn|Ci

1|. By averaging, some vertex v ∈ N c
2(xi) therefore has at most

4γn|Ci
1|/(n − 2µ′n) ≤ 5γ|Ci

1| neighbours in Ci
1. So (pn − |Ci

1|) + 5γ|Ci
1| ≥ |N(v) ∩ V1| ≥
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δ∗(G) ≥ (p − 1)n − αn, which implies |Ci
1| ≤ n + 6γn. Since the t ≤ p equivalence classes

Ci
1 partition V ′

1 , we deduce that t = p and |Ci
1| = n± γ′n for any i ∈ [t].

Now we show that any equivalence class Ci′
1 must be essentially contained in some part

V i
1 of V1; by symmetry it suffices to show that this is true of C1

1 . So observe that since
|N c

2(x1)| ≥ n − 2µ′n, by (f) we must have |N c
2(x1) ∩ Xi

2| ≥ n/2p for some i ∈ [m]. Fix

such an i, and suppose for a contradiction that |C1
1 ∩ V i′

1 | ≥ γn for some i′ 6= i. We
observed above that any v ∈ C1

1 has at most 4γn neighbours in N c
2(x1), so there are at

least n/2p − 4γn ≥ n/3p vertices of Xi
2 which are not neighbours of v. Then e(V i′

1 ,Xi
2) ≤

|V i′
1 ||Xi

2| − |C1
1 ∩ V i′

1 |n/3p < (1 − c)|V i′
1 ||Xi

2|, contradicting (e). We conclude that all but
at most pγn vertices of C1

1 lie in V i
1 , and thus that all but at most pγn vertices of any

equivalence class lie in the same part of V1. So for any i, i′ we have either |V i
1 ∩ Ci′

1 | ≤ pγn

or |V i
1 ∩ Ci′

1 | = |Ci′
1 | ± pγn = n± 2γ′n; (k) follows immediately since the classes C1

1 , . . . , C
t
1

partition V ′
1 and |V1 \ V ′

1 | ≤ γn by (j). This completes the proof of Claim 5.6.

To complete the proof of Lemma 5.3, note that there exist integers p1, . . . , pm such that
|V i

1 | = pin± γ′′n for each i ∈ [m]. Indeed, if V1 has a part of size at least (p− 1)n− γn, then
since each part of P has size at least n− µn, we may assume that V1 has two parts V 1

1 and
V 2
1 with respective sizes (p−1)n±γn and n±γn. On the other hand, if V1 has no such part

then the required integers pi exist by (k). We partition V1 into sets U i
1 with |U i

1| = pin for
i ∈ [m] such that each U i

1 either contains or is contained in some V i
1 . Then U i

1 contains at
least pin−γ′′n ≥ |V i

1 |−2γ′′n vertices of V i
1 for any i ∈ [m]. Furthermore, by (d) and (f), for

each 2 ≤ j ≤ r we may partition Vj into sets U i
j with |U i

j | = pin for i ∈ [m] such that each

U i
j contains at least |Xi

j | − 2pγ′n ≥ pin− 2γ′′n vertices from Xi
j . By (e) and (g) we deduce

that d(U i
j , U

i′

j′) ≥ 1− d whenever i 6= i′ and j 6= j′. In particular, d(U1
j , Vj′ \U1

j′) ≥ 1− d for

any j 6= j′, so G is d-splittable. �

Combining Lemmas 5.2 and 5.3, if G is neither d-splittable nor d-pair-complete (if p = 2)
then there is no divisibility barrier to a perfect matching in Jp. We saw in Lemma 4.2 that
there is also no space barrier to a perfect matching in Jp. So Theorem 2.3 implies that G
contains a near-balanced perfect matching. The following corollary formalises this argument.

Corollary 5.7. Suppose that 1/n ≪ γ ≪ α ≪ d ≪ 1/r and 2 ≤ p ≤ r. Let G be an r-partite
graph on vertex classes V1, . . . , Vr each of size pn with δ∗(G) ≥ (p− 1)n− αn. Suppose also
that G is neither d-splittable nor d-pair-complete. Let J = J(G) be the clique p-complex of
G. Then Jp contains a γ-balanced perfect matching.

Proof. Introduce new constants with 1/n ≪ γ ≪ α ≪ µ, β ≪ d ≪ 1/r. As described in
Section 2, the condition δ∗(G) ≥ (p − 1)n− αn implies

δ∗(J) ≥ (pn, (p− 1)n − αn, (p− 2)n − 2αn, . . . , n− (p− 1)αn) .

Suppose that Jp has no γ-balanced perfect matching. Then by Theorem 2.3 (with pn in
place of n and p in place of k) we deduce that there is either a space barrier or divisibility
barrier. Consider first a space barrier. This means that there exist p′ ∈ [p − 1] and S ⊆ V
with |S ∩ Vi| = p′n for each i ∈ [r] so that Jp is β-contained in Jr(S, p

′)p, that is, all but at
most β(rpn)p edges of Jp have at most p′ vertices in S. However, since G is not d-splittable,
Lemma 4.2(i) (with 2β(rp)p in place of β) implies that more than β(rp)pnp copies of Kp

in G have more than p′ vertices in G[S]. Since each copy of Kp in G is an edge of Jp, there
cannot be a space barrier.
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Now suppose that there is a divisibility barrier. This means that there is some partition
P of V (J) into parts of size at least δ∗p−1(J) − µpn ≥ n − 2pµn such that P refines the

partition P ′ of V (G) into V1, . . . , Vr and Lµ
P(Jp) is incomplete with respect to P ′. But if

p ≥ 3 then Lemma 5.3 (with 2pµ in place of µ) implies that G is d-splittable, contradicting
our assumption. Similarly, if p = 2 then Lemma 5.2 (with 4µ in place of µ) implies that G
is d-splittable or d-pair-complete, again contradicting our assumption. We conclude that Jp
must contain a γ-balanced perfect matching. �

6. Finding packings within rows

Recall from the proof outline given in Section 3 that step (ii) in proving Theorem 1.1 is to
find a balanced perfect Kpi-packing in each row G[Xi]. In this section we demonstrate how
this may be achieved. We need to consider two cases. The first case is where G[Xi] is neither
d-splittable nor d-pair-complete. Then Corollary 5.7 gives a γ-balanced perfect Kpi-packing
in G[Xi]. In Lemma 6.2 we show how such a matching can be ‘corrected’ to a balanced
perfect Kpi-packing in this case if pi ≥ 3, and also if pi = 2 provided that G[Xi] contains
many 4-cycles of a given type. If pi = 2 and G[Xi] does not contain such 4-cycles then
it may not be possible to find a balanced perfect matching in G[Xi]. Proposition 6.5 will
allow us to handle this case by deleting further copies of Kk from G so that the remainder of
row i does contain a balanced perfect matching. The second case is where G[Xi] is d-pair-
complete. Then we prove Lemma 6.4, which shows that G[Xi] contains a perfect matching
provided a parity condition is satisfied. Both here and later we use the fact that, if we add
or remove a small number of vertices to or from each block Xi

j of a row Xi of G which is

neither d-splittable nor d-pair-complete, then the new row obtained is neither d′-splittable
nor d′-pair-complete for d′ ≪ d. This is established by the following proposition.

Proposition 6.1. Suppose that 1/n, 1/n′ ≪ ζ ≪ d′ ≪ d ≪ 1/r and r ≥ p ≥ 1. Let G be
an r-partite graph on vertex classes V1, . . . , Vr, and for each j ∈ [r] let Xj,X

′
j ⊆ Vj be such

that |Xj | = pn, |X ′
j | = pn′ and |Xj△X ′

j | ≤ ζpn. Let X =
⋃

j∈[r]Xj and X ′ =
⋃

j∈[r]X
′
j ;

then the following statements hold.

(i) If G[X] is not d-splittable then G[X ′] is not d′-splittable.
(ii) If p = 2 and G[X] is not d-pair-complete then G[X ′] is not d′-pair-complete.

Proof. Note that n′ = (1 ± ζ)n. For (i), suppose for a contradiction that G[X ′] is d′-
splittable. Then by definition we may choose p′ ∈ [p − 1] and subsets S′

j ⊆ X ′
j with

|S′
j| = p′n′ for j ∈ [r] such that e(S′

j ,X
′
j′ \ S′

j′) ≥ (1 − d′)p′(p − p′)n′2 for any j′ 6= j. For

each j ∈ [r] we choose Sj ⊆ Xj such that |Sj| = p′n and Sj either contains or is contained
in S′

j ∩Xj . Note that |S′
j△Sj| ≤ 2ζpn and |(X ′

j \ S′
j)△(Xj \ Sj)| ≤ 2ζpn. We deduce that

for any j′ 6= j we have

e(Sj ,Xj′ \ Sj′) ≥ e(S′
j ,X

′
j′ \ S′

j′)− |S′
j \ Sj|pn− |(X ′

j′ \ S′
j′) \ (Xj′ \ Sj′)|pn

≥ (1− d′)p′(p − p′)n′2 − 4ζp2n2 ≥ (1− d)p′(p− p′)n2.

Then G[X] is d-splittable with respect to the sets Sj, a contradiction, so this proves (i).
For (ii), suppose for a contradiction that G[X ′] is d′-pair-complete. Then by definition we
may choose subsets S′

j ⊆ X ′
j with |S′

j | = n′ for j ∈ [r] such that e(S′
j , S

′
j′) ≥ (1 − d′)n′2,

e(X ′
j\S′

j ,X
′
j′\S′

j′) ≥ (1−d′)n′2 and e(S′
j ,X

′
j′\S′

j′) ≤ d′n′2 for any j′ 6= j. We take p′ = 1 and
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choose Sj for j ∈ [r] as in (i). Similar calculations as in (i) show that e(Sj , Sj′) ≥ (1− d)n2

and e(Xj \ Sj,Xj′ \ Sj′) ≥ (1− d)n2 for any j′ 6= j. We deduce that

e(Sj ,Xj′ \ Sj′) ≤ e(S′
j ,X

′
j′ \ S′

j′) + |Sj \ S′
j| · 2n+ |(Xj′ \ Sj′) \ (X ′

j′ \ S′
j′)| · 2n

≤ d′n′2 + 16ζn2 ≤ dn2.

Then G[X] is d-pair-complete with respect to the sets Sj, another contradiction, so this
proves (ii). �

We can now prove the main lemma of this section, which allows us to find balanced perfect
clique packings in graphs which are not d-splittable or d-pair-complete.

Lemma 6.2. Suppose that 1/n ≪ α, ν ≪ d ≪ 1/r, 2 ≤ p ≤ r and r! | n. Let G be an
r-partite graph on vertex classes V1, . . . , Vr each of size pn, and let J be the clique p-complex
of G. Suppose that G contains a spanning subgraph G∗ such that G∗ is not d-splittable and
δ∗(G∗) ≥ (p − 1)n − αn. If p ≥ 3, then Jp contains a balanced perfect matching. If instead
p = 2 then Jp contains a balanced perfect matching if

(i) G∗ is not d-pair-complete, and
(ii) either r < 4 or for any distinct i1, i2, i3 in [r] \ {1} there are at least νn4 4-cycles

x1xi1xi2xi3 in G with x1 ∈ V1 and xij ∈ Vij for j ∈ [3].

Proof. Introduce new constants ε, γ and d′ with 1/n ≪ ε ≪ γ ≪ α, ν ≪ d′ ≪ d ≪ 1/r.

Let I :=
([r]
p

)

, so I is the family of possible indices of edges of Jp. For any perfect matching

M in Jp and any index A ∈ I, let NM (A) be the number of edges in M with index A. Since
any vertex of J lies in precisely one edge of M , for any i ∈ [r] we must have

(2)
∑

A∈I : i∈A

NM (A) = pn.

Let N := rn/
(r
p

)

= pn/
(r−1
p−1

)

, and observe that N is an integer. Our goal is to find a

perfect matching M in Jp with NM (A) = N for every A ∈ I. To do this, we will apply
Theorem 2.3 to find a perfect matching which is near-balanced, but first we need to put
aside some configurations that can be used to correct the small differences in the number
of edges of each index. This will be unnecessary if p = r or p = r − 1, as then any perfect
matching in Jp must be balanced. Indeed, for p = r this is trivial, whilst for p = r − 1 we
note that by (2), for any i ∈ [r], the number of edges of any perfect matching which do not
contain a vertex of Vi is rn − pn = n. So for the purpose of finding configurations we may
suppose that p ≤ r − 2 (this is why we only require (ii) for r ≥ 4).

Fix a set S ⊆ [r] with |S| = p − 2 and an ordered quadruple T = (a, a′, b, b′) of distinct
members of [r] \ S. An (S, T )-configuration consists of two vertex-disjoint copies K and
K ′ of Kp−1, where K has index S ∪ {b} and K ′ has index S ∪ {b′}, and vertices v ∈ Va

and v′ ∈ Va′ such that v and v′ are both adjacent to every vertex of K ∪ K ′. Given such
an (S, T )-configuration, we can select two vertex-disjoint copies of Kp in G (that is, two
disjoint edges of Jp) in two different ways. One way is to take K ∪ {v} of index S ∪ {a, b}
and K ′ ∪ {v′} of index S ∪ {a′, b′}; we call this the unflipped state. The other way is to take
K ∪ {v′} of index S ∪ {a′, b} and K ′ ∪ {v} of index S ∪ {a, b′}; we call this the flipped state.
Let W be the set of all pairs (S, T ) as above. The first step in our proof is to find a collection
C of pairwise vertex-disjoint configurations in G which contains pγn (S, T )-configurations in
G for each (S, T ) ∈ W.
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Suppose first that p ≥ 3. To choose an (S, T )-configuration in this case we first fix c ∈ S
and find vertices v ∈ Va and v′ ∈ Va′ with |N(v)∩N(v′)∩Vc| > (p− 2+1/2p)n. To see that
this is possible, let T be the set of ordered triples (v, v′, w) with v ∈ Va, v

′ ∈ Va′ , w ∈ Vc

and vw, v′w ∈ G. For each w there are at least δ∗(G) ≥ δ∗(G∗) choices for each of v and
v′, so |T | ≥ pn((p − 1)n − αn)2. Let P be the set of ordered pairs (v, v′) that belong to at
least (p − 2 + 1/2p)n triples of T , i.e. have |N(v) ∩ N(v′) ∩ Vc| > (p − 2 + 1/2p)n. Then
|T | ≤ |P |pn+ (pn)2(p − 2 + 1/2p)n, so |P | ≥ ((p − 1)n− αn)2 − (p− 2 + 1/2p)pn2 > n2/3.
Given such a pair (v, v′), we choose the remaining vertices of the configuration greedily,
ending with the two vertices in Vc. For each vertex not in Vc, the number of choices is at
least pn−(p−1)(n−δ∗(G)) > n/2. For the two vertices in Vc, the number of choices for each
is at least |N(v) ∩N(v′) ∩ Vc| − (p− 2)(n− δ∗(G)) > n/3p. Now we choose the collection C
greedily. At each step, the configurations chosen so far cover at most 2p · |W| · pγn vertices.
Since there are at least n2/3 choices for the pair (v, v′) and at least n/3p choices for any
other vertex we are always able to choose an (S, T )-configuration which is vertex-disjoint
from any configuration chosen so far, as required.

Now consider instead the case p = 2, for which Jp = G. Recall that we can assume
r ≥ 4. Now an (S, T )-configuration consists of a 4-cycle xyzw with x ∈ Va, y ∈ Vb, z ∈ Va′

and w ∈ Vb′ , where T = (a, a′, b, b′) (we have S = ∅). Note that the unflipped state of
such a configuration has edges xy and zw, and the flipped state has edges xw and yz. If
a = 1 then by assumption there are at least νn4 such 4-cycles in G. For a 6= 1 we instead
choose fake configurations; for S = ∅ and T = (a, a′, b, b′) a fake (S, T )-configuration consists
simply of vertices xyzw with x ∈ Va, y ∈ Vb, z ∈ Va′ and w ∈ Vb′ such that xy and zw are
edges. A fake configuration should be thought of as a configuration which cannot be flipped.
There are at least (2nδ∗(G))2 ≥ n4 fake configurations for each T , so similarly to before we
may choose C greedily to consist of genuine (S, T )-configurations if a = 1, and fake (S, T )-
configurations otherwise. Indeed, at any step the configurations chosen so far cover at most
8|W|γn vertices, so for any (S, T ) ∈ W at most 8|W|γn · (2n)3 < νn4 (S, T )-configurations
share a vertex with a previously-chosen configuration.

Let V ′ =
⋃

i∈[r] V
′
i be the set of all vertices not covered by configurations in C. We now

find a matching in Jp covering V ′. Note that the configurations in C cover 2p2|W|γn vertices
in total, equally many of which lie in each vertex class, so for any i ∈ [r] we have |V ′

i | = pn′,
where n′ := n − 2p2|W|γn/r. Let G′ = G∗[V ′] and let J ′ be the clique p-complex of G′.
Then δ∗(G′) ≥ δ∗(G∗) − αn ≥ (p − 1)n′ − 2αn. Furthermore, by Proposition 6.1 G′ is not
d′-splittable, and if p = 2 then G′ is not d′-pair-complete. So we may apply Corollary 5.7
with d′, n′, 3α and ε in place of d, n, α and γ respectively to obtain that J ′

p must contain

an ε-balanced perfect matching. Extend this matching to a perfect matching M0 in Jp by
adding the configurations in C, all in their unflipped state. This adds equally many edges of
each index, so M0 is ε-balanced, and so NM0(A) = (1± ε)N for any index A ∈ I.

It remains only to flip some configurations to correct these small imbalances in the number
of edges of each index. To accomplish this, we shall proceed through the index sets A ∈ I in
order. For each A we will flip some configurations to obtain a perfect matching with precisely
N edges of each index set A′ considered in this order up to and including A. At the end
of this process we will obtain a perfect matching with precisely N edges of every index set.
Let A1 ⊆ I consist of all members of I of the form [p − 1] ∪ {i} for some p + 2 ≤ i ≤ r,
and A2 ⊆ I consist of all members of I of the form [p + 1] \ {i} for some i ∈ [p + 1]. Let
A = A1 ∪ A2 and m = |I| =

(

r
p

)

, so |A| = r. Note that if p = 2 then A contains all pairs
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{1, j} with 2 ≤ j ≤ r. Choose any linear ordering A1 ≤ A2 ≤ · · · ≤ Am of the elements of I
such that

(i) for any A ∈ I, x ∈ A and y /∈ A with y < x we have {y} ∪A \ {x} > A, and
(ii) A is a terminal segment of I.

This is possible since for any A ∈ A, x ∈ A and y /∈ A with y < x we have {y}∪A\{x} ∈ A.
Note that for any A ∈ I \A there exist x, y ∈ A and x′, y′ /∈ A such that x′ < x and y′ < y.
Crucially, the sets {x′} ∪A \ {x}, {y′} ∪A \ {y} and {x′, y′} ∪A \ {x, y} each appear after
A, by choice of the ordering.

We now proceed through the sets Ai, i ∈ [m− r] in turn (these are precisely the sets Ai

with Ai /∈ A). At each step i we will flip at most 2i−1εN configurations to obtain a perfect
matching M i such that NM i(Aj) = N for any j ≤ i and |NM i(Aj)−N | ≤ 2iεN for any j > i.
The matching M0 satisfies these requirements for i = 0, so suppose that we have achieved
this for A1, . . . , Ai−1, and that we wish to obtain M i from M i−1. If NM i−1(Ai) = N then
we may simply take M i = M i−1, so we may assume NM i−1(Ai) 6= N . First suppose that
NM i−1(Ai) > N . Since Ai /∈ A we may choose x, y ∈ Ai and x′, y′ /∈ Ai such that x′ < x and
y < y′. Furthermore, if p = 2 then we may also require that x′ = 1. We let T = (x′, x, y′, y),
S = Ai \ {x, y}, and choose a set of NM i−1(Ai) − N unflipped (S, T )-configurations in C
(we shall see later that this is possible). We flip all of these configurations (this is possible
if p = 2 since x′ = 1, so these configurations are not fake-configurations). In doing so, we
replace NM i−1(Ai) − N edges of M i−1 of index Ai = S ∪ {x, y} and NM i−1(Ai) − N edges
of M i−1 of index S ∪ {x′, y′} with NM i−1(Ai) − N edges of M i−1 of index S ∪ {x′, y} and
NM i−1(Ai)−N edges of M i−1 of index S ∪{x, y′}. The number of edges of each other index
remains the same; note that this includes any index Aj with j < i. Let M i be formed from
M i−1 by these flips; then NM i(Aj) = N for any j ≤ i by construction. Also, for any j > i
we have

|NM i(Aj)−N | ≤ |NM i−1(Aj)−N |+ |NM i−1(Ai)−N | ≤ 2 · 2i−1εN = 2iεN,

as required. On the other hand, forNM i−1(Ai) < N we obtainM i similarly by the same argu-
ment with T = (x′, x, y, y′). To see that it is always possible to choose a set of NM i−1(Ai)−N
unflipped (S, T )-configurations from C, note that there are m− r =

(p
r

)

− r steps of the pro-

cess, and that at step i exactly |NM i−1(Ai) − N | ≤ 2i−1εN members of C are flipped. So
in total at most 2m−rεN ≤ pγn members of C are flipped. Since C was chosen to contain
at least this many pairwise vertex-disjoint (S, T )-configurations for any (S, T ) ∈ W, it will
always be possible to make these choices.

At the end of this process, we obtain a perfect matching M := Mm−r in Jp such that
NM (A) = N for every A /∈ A. It remains only to show that we also have NM (A) = N for
any A ∈ A. We first consider A ∈ A1, so A = [p − 1] ∪ {i} for some i ≥ p + 2, and A is

the only index in A which contains i. Each of the
(

r−1
p−1

)

− 1 other sets A′ containing i has

NM (A′) = N = pn/
(r−1
p−1

)

, so by (2) we also have NM (A) = N . Thus NM (A) = N for any

A ∈ A1. Now consider A ∈ A2, so A = [p + 1] \ {i} for some i ∈ [p+ 1]. Note that A is the
only member of A2 which does not contain i. Since NM (A′) = N for any i ∈ A′ /∈ A2, by
(2) we have

∑

A′∈A2\{A} NM (A′) = pN . This holds for all A ∈ A2, so NM (A) = N for all

A ∈ A2. Thus M is a balanced perfect matching in Jp, as required. �

We also need to be able to find balanced perfect matchings in pair-complete rows. Recall
that an r-partite graph G with vertex classes V1, . . . , Vr of size 2n is d-pair-complete if there
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exist sets Sj ⊆ Vj, j ∈ [r] each of size n such that d(Si, Sj) ≥ 1− d, d(Vi \Si, Vj \Sj) ≥ 1− d
and d(Si, Vj \Sj) ≤ d for any i, j ∈ [r] with i 6= j. This implies that almost all vertices in Si

have few non-neighbours in Sj and almost all vertices in Vi \ Si have few non-neighbours in
Vj \ Sj . Lemma 6.4 will show that G contains a balanced perfect matching under a similar
condition, namely that there are sets Xj ⊆ Vj , j ∈ [r] each of size approximately n such
that all vertices in Xi have few non-neighbours in Xj and all vertices in Vi \ Xi have few
non-neighbours in Vj \Xj for any i 6= j, provided that X =

⋃

i∈[r]Xi has even size. Note

that we cannot omit the parity requirement on |X|, as there may be no edges between X and
V (G) \ X. The proof uses the following characterisation of multigraphic degree sequences
by Hakimi [5]. A sequence d = (d1, . . . , dn) with d1 ≥ · · · ≥ dn is multigraphic if there is a
loopless multigraph on n vertices with degree sequence d.

Proposition 6.3. ([5]) A sequence d = (d1, . . . , dn) with d1 ≥ · · · ≥ dn is multigraphic if
and only if

∑n
i=1 di is even and d1 ≤

∑n
i=2 di.

Lemma 6.4. Suppose that 1/n ≪ ζ ≪ 1/r and r − 1 | 2n. Let G be an r-partite graph on
vertex classes V1, . . . , Vr each of size 2n. For each i ∈ [r] let sets Xi and Yi partition Vi and
be such that

(i) |Xj |, |Yj | = (1± ζ)n for any j ∈ [r],
(ii) for any i 6= j, any x ∈ Xi has at most ζn non-neighbours in Xj and any y ∈ Yi has at

most ζn non-neighbours in Yj, and
(iii) X :=

⋃

i∈[r]Xi has even size.

Then G contains a balanced perfect matching.

Proof. Choose an integer n′ so that (1−5ζ)n ≤ n′ ≤ (1−4ζ)n and r−1 | n′. For each j ∈ [r]
let aj := |Xj | − n′. So 3ζn ≤ aj ≤ 6ζn for each j, and a :=

∑

j∈[r] aj = |X| − rn′ is even by

(iii) and since rn′ is divisible by r(r − 1), which is even. By Proposition 6.3, we can choose
pairs (iℓ, jℓ) with iℓ 6= jℓ for ℓ ∈ [a/2] so that each j ∈ [r] appears in precisely aj pairs. For
each ℓ ∈ [a/2] choose a matching Mℓ in G which contains an edge of G[X] of index {iℓ, jℓ},
and an edge of G[Y ] of each index A ∈

([r]
2

)

\{{iℓ, jℓ}}. We also require that these matchings
are pairwise vertex-disjoint. Such matchings may be chosen greedily using (ii), since together
they will cover a total of 2 · a/2 ·

(

r
2

)

≤ 3ζr3n ≤ n/2 vertices. Let M =
⋃

ℓ∈[a/2]Mℓ. Note

that M has a/2 edges of each index, and so covers (r−1)a/2 vertices from each Vj . For each
j ∈ [r] let X ′

j = Xj \V (M) and Y ′
j = Yj \V (M), and let X ′ = X \V (M) and Y ′ = Y \V (M).

Then |X ′
j | = |Xj |−aj = n′ and |Y ′

j | = 2n−|X ′
j|−(r−1)a/2 for any j ∈ [r]. Since r−1 divides

n′ and 2n, we conclude that r− 1 divides |X ′
j | and |Y ′

j | for any j ∈ [r]. So we may partition

X ′ and Y ′ into sets X ′
A and Y ′

A for each A ∈
(

[r]
2

)

, where for each A = {i, j}, X ′
A consists

of nX = n′/(r − 1) vertices from each of X ′
i and X ′

j , and Y ′
A consists of nY = |Y ′

1 |/(r − 1)

vertices from each of Y ′
i and Y ′

j . Now for any A ∈
([r]
2

)

, the induced bipartite graph G[X ′
A]

has minimum degree at least nX − ζn ≥ nX/2 by (ii), and so contains a perfect matching
MA of size nX ; by the same argument G[Y ′

A] contains a perfect matching M ′
A of size nY .

Finally, M ∪⋃

A(MA ∪M ′
A) is a perfect matching in G with a/2 + nX + nY edges of each

index, as required. �

However, there are some r-partite graphs G on vertex classes V1, . . . , Vr of size 2n which
satisfy δ∗(G) ≥ n−αn and are neither d-splittable nor d-pair-complete but do not contain a
balanced perfect matching. For example, let H be a graph with vertex set {xi, yi : i ∈ [r]},
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where xixj and yiyj are edges for any i 6= j except when i = 1, j = 2, and x1y2 and x2y1
are edges. Form G by ‘blowing up’ H, that is, replace each xi and yi by a set of n vertices,
where r − 1 | 2n, and each edge by a complete bipartite graph between the corresponding
sets. Then G contains 2rn vertices, and so any balanced perfect matching M in G contains
2n/(r− 1) edges of each index. Let X be the vertices of G which correspond to some vertex
xi of H. Then |X| = rn and any edge of M covering a vertex of X either covers two vertices
of X or has index {1, 2}. There are exactly 2n/(r − 1) edges in M of the latter form, so
we must have rn = |X| ≡ 2n/(r − 1) modulo 2. We conclude that G contains no balanced
perfect matching if this congruence fails (e.g. if r = 5 and n is even but not divisible by
4). However, δ∗(G) = n, and it is easily checked that G is neither d-splittable nor d-pair-
complete if d ≪ 1. Other examples can be obtained similarly. Note that G does contain a
perfect matching by Corollary 5.7, but this cannot be balanced. In later arguments, such
graphs will only cause difficulties when the row-decomposition has one row of this form (with
pi = 2), and every other row has pi = 1. In such cases the following proposition will enable
us to delete further copies of Kk so that the subgraph remaining has a balanced perfect
Kpi-packing in every row i.

Proposition 6.5. Suppose that 1/n ≪ γ, α ≪ 1/r, r! divides n and r ≥ k ≥ 2. Let G
be an r-partite graph on vertex classes X1, . . . ,Xr of size kn which admits a (k − 1)-row-
decomposition into pairwise-disjoint blocks Xi

j with |Xi
j | = pin for i ∈ [s] and j ∈ [r], where

p1 = 2 and p2, . . . , pk−1 = 1. Suppose that G[X1] contains a γ-balanced perfect matching
M ′, and that for any i 6= i′ and j 6= j′ any vertex v ∈ Xi

j has at most αn non-neighbours in

Xi′

j′. Then there exists an integer D ≤ 2γn and a Kk-packing M in G such that r! divides

n−D, M covers piD vertices in Xi
j for any i ∈ [s] and j ∈ [r], and G[X1 \ V (M)] contains

a balanced perfect matching.

Proof. Note that |M ′| = rn, and since M ′ is γ-balanced, |NA(M
′) − NB(M

′)| ≤ γrn/
(r
2

)

for any A,B ∈
([r]
2

)

. So we may write M ′ = M0 ∪M1, where M0 is a balanced matching in

G[X1], r · r! divides |M0|, and |M1| ≤ 2γrn. Note that M0 covers 2|M0|/r vertices in each
X1

j , j ∈ [r], so M1 covers the remaining 2D vertices in each X1
j , where D := n − |M0|/r.

Note also that |M1| = Dr, D ≤ 2γn, and r! divides |M0|/r = n −D. We will construct a

sequence M1, . . . ,Mk−1, where Mi is a Ki+1-packing in G[
⋃

i′∈[i]X
i′ ] that covers 2D vertices

in X1
j and D vertices in Xi′

j for each 2 ≤ i′ ≤ i and j ∈ [r]. Each Mi will have size |Mi| = Dr,

and will be formed by adding a vertex of Xi to each copy of Ki in Mi−1.
Suppose that we have formed Mi in this manner for some i ≥ 1, and now we wish to

form Mi+1. Let Z be the set of ordered pairs (j, q) with j ∈ [r] and q ∈ [D]. We form a
bipartite graph B whose vertex classes are Mi and Z, where a copy K ′ of Ki+1 in Mi and
a pair (j, q) are connected if j /∈ i(K ′), that is, if K ′ contains no vertex from Xj . Note that
any K ′ in Mi has degree (r − i− 1)D in B, as there are r − i− 1 choices for j ∈ [r] \ i(K ′)
and D choices for q ∈ [D]. The same is true of any pair (j, q) in Z, as |Mi| = Dr, and
(i+1)D cliques in Mi intersect Xj . So B is a regular bipartite graph, and therefore contains
a perfect matching. Let f : Mi → Z be such that {K ′f(K ′) : K ′ ∈ Mi} is a perfect matching
in B. For each K ′ ∈ Mi we extend K ′ to a copy of Ki+2 in G by adding a vertex from Xi+1

j ,

where f(K ′) = (j, q) for some q ∈ [D]. Such extensions may be chosen distinctly, since any
K ′ ∈ Mi has at least n− |K ′|αn ≥ n/2 ≥ D possible extensions to Xi+1

j for any j /∈ i(K ′).
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Since every pair in Z was matched to some K ′ ∈ Mi, the Ki+2-packing Mi+1 covers precisely
D vertices from Xi+1

j for each j ∈ [r].
At the end of this process we obtain a Kk-packing M := Mk−1 in G which covers 2D

vertices from X1
j and D vertices from Xi

j for i ≥ 2 and j ∈ [r]. By construction M0 is a

balanced perfect Kpi-packing in G[X1 \ V (M)] and r! divides |M0|/r = n−D, as required.
�

7. Covering bad vertices

The final ingredient of the proof is a method to cover ‘bad’ vertices. The row-decomposition
of G will have high minimum diagonal density, which implies that most vertices have high
minimum diagonal degree. However, we need to remove those ‘bad’ vertices which do not
have high minimum diagonal degree, so that we can accomplish step (iii) of the proof out-
line in Section 3, which is to glue together the perfect clique packings in each row to form a
perfect Kk-packing in G. Lemma 7.2 will show that we can cover the bad vertices of G by
vertex-disjoint copies of Kk, whilst keeping the block sizes balanced and fixing the parity
of any pair-complete row, so that each row contains a clique packing covering all of the
undeleted vertices. First we need some standard definitions. An s× r rectangle R is a table
of rs cells arranged in s rows and r columns. We always assume that s ≤ r. A transversal
T in R is a collection of s cells of the grid so that no two cells of T lie in the same row or
column. We need the following simple proposition.

Proposition 7.1. Suppose that R is an s × r rectangle, where r ≥ s ≥ 0 and r ≥ 1.
Suppose that at most r cells of R are coloured, such that at most one cell is coloured in each
column, and at most r − 1 cells are coloured in each row. Then R contains a transversal of
non-coloured cells.

Proof. We proceed by induction on s. Note that the proposition is trivial for the cases
s = 0, 1 and r = s = 2. Now assume that r ≥ 3 and s ≥ 2. Choose a row with the most
coloured cells, and select a non-coloured cell in this row (this is possible since at most r− 1
of the r cells in this row are coloured). Let R′ be the (s− 1)× (r− 1) subrectangle obtained
by removing the row and column containing this cell. Then it suffices to find a transversal
of non-coloured cells in R′. Note that R′ has at most r − 1 coloured cells, as if R had
any coloured cells, then we deleted at least one coloured cell. Also, since R had at most
r < 2(r − 1) coloured cells, R′ must have at most r − 2 cells coloured in any row, since we
removed the row containing the most coloured cells. Since R′ contains at most one coloured
cell in any column, the required transversal in R′ exists by the induction hypothesis. �

The remainder of this section is occupied by the proof of Lemma 7.2. This is long and
technical, so to assist the reader we first give an overview. We start by imposing structure
on the graph G, fixing a row-decomposition with high minimum diagonal density. Let Xi

j ,

i ∈ [s], j ∈ [r] be the blocks of this row-decomposition. Then we identify vertices that are
‘bad’ for one of two reasons: (i) not having high minimum diagonal degree, or (ii) belonging
to a pair-complete row and not having high minimum degree within its own half. We assign
each bad vertex v to a row in which it has as many blocks as possible that are ‘bad’ for
v, in that they have many non-neighbours of v, so that there are as few bad blocks for v
as possible in the other rows. We also refer to the resulting sets W i

j , i ∈ [s], j ∈ [r] as
blocks, as although they may not form a row-decomposition, since few vertices are moved
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they retain many characteristics of a row-decomposition. If the row-decomposition has type
p = (pi : i ∈ [s]) then |W i| is approximately proportional to pi for i ∈ [s]. We establish some
properties of the W i

j ’s in Claim 7.3. Next, we show how to find various types of Kk in G
that will form the building blocks for the deletions. These will be ‘properly distributed’, in
that they have pi vertices (the ‘correct number’) in row i for i ∈ [s], or ‘ij-distributed’ for
some i, j, in that they have ‘one too many’ vertices in row i and ‘one too few’ vertices in
row j. They will also have an even number of vertices in each half of pair-complete rows so
as to preserve parity conditions, except that sometimes we require a clique that is ‘properly-
distributed outside of row ℓ’ to fix the parity of a pair-complete row ℓ. Claim 7.4 analyses a
general greedy algorithm for finding copies of Kk, and then Claim 7.5 deduces five specific
corollaries on finding building blocks of the above types. In Claim 7.6 we use ij-distributed
cliques to balance the row sizes, so that the remainder of row ℓ has size proportional to
pℓ for ℓ ∈ [s]. There are two cases according to whether G has the same row structure as
the extremal example; if it does we also ensure in this step that the remainder of each half
in pair-complete rows has even size. Next, in Claim 7.7 we put aside an extra Kk-packing
that is needed to provide flexibility later in the case when there are at least two rows with
pi ≥ 2. Then in Claim 7.8 we cover all remaining bad vertices and ensure that the number
of remaining vertices is divisible by rk · r!. Next, in Claim 7.9 we choose a Kk-packing so
that equally many vertices are covered in each part Vj. Then in Claim 7.10 we choose a final
Kk-packing so that the remaining blocks all have size proportional to their row size. After
deleting all these Kk-packings we obtain G′ with an s-row-decomposition X ′ that satisfies
conclusion (i) of Lemma 7.2. To complete the proof, we need to satisfy conclusion (ii), by
finding a balanced perfect Kpi-packing in row i for each i ∈ [s]. We need to consider two
cases according to whether or not there are multiple rows with pi ≥ 2; if there are, then we
may need to make some alterations to the Kk-packing from Claim 7.7. Finally, we apply
the results of the previous section to find the required balanced perfect clique packings.

Lemma 7.2. Suppose that 1/n+ ≪ α ≪ 1/r, r ≥ k ≥ 3 and r > 3. Let P ′ partition a
set V into r parts V1, . . . , Vr each of size n+, where rn+/k is an integer. Suppose that G
is a P ′-partite graph on V with δ∗(G) ≥ (k − 1)n+/k. Suppose also that if rn+/k is odd
and k divides n+ then G is not isomorphic to the graph Γn+,r,k of Construction 1.2. We
delete the vertices of a collection of pairwise vertex-disjoint copies of Kk from G to obtain
V ′
1 , . . . , V

′
r , V

′ :=
⋃

j∈[r] V
′
j and G′ = G[V ′], such that |V ′

j | = kn′ for j ∈ [r], where r! | n′

and n′ ≥ n+/k − αn. We can perform this deletion so that G′ has an s-row-decomposition
X ′, with blocks X ′i

j for i ∈ [s], j ∈ [r] of size pin
′, where pi ∈ [k] with

∑

i∈[s] pi = k, with

the following properties:

(i) For each i, i′ ∈ [s] with i 6= i′ and j, j′ ∈ [r] with j 6= j′, any vertex v ∈ X ′i
j has at least

pi′n
′ − αn′ neighbours in X ′i′

j′.

(ii) For every i ∈ [s] the row G[X ′i] contains a balanced perfect Kpi-packing.

Proof. Introduce new constants with 1/n ≪ d0 ≪ d1 ≪ · · · ≪ dk ≪ α. Let n be the
integer such that n+ − k + 1 ≤ kn ≤ n+. Note that kn− δ∗(G+) ≤ ⌊n+/k⌋ = n, so

any vertex has at most n non-neighbours in any other part. (†)
Let X be formed from V by arbitrarily deleting n+ − kn vertices in each part. We fix an
s-row-decomposition of G1 := G[X]. Recall that this consists of pairwise disjoint blocks
Xi

j ⊆ Vj with |Xi
j | = pin for each i ∈ [s], j ∈ [r], for some s ∈ [k] and positive integers
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pi, i ∈ [s] with
∑

i∈[s] pi = k. By Proposition 4.1 we may fix this row-decomposition to

have minimum diagonal density at least 1 − k2ds−1, and such that each row G1[X
i] is not

ds-splittable. Having fixed s and the row-decomposition of G1, introduce new constants
with ds−1 ≪ d′0 ≪ d′1 ≪ · · · ≪ d′2s+2 ≪ ds. For each i ∈ [s] with pi = 2, let d(i) denote

the infimum of all d such that G1[X
i] is d-pair-complete. This gives us at most s values of

d(i), so we may choose t ∈ [2s + 2] such that there is no i ∈ [s] with d′t−2 < d(i) ≤ d′t. We
let d := d′t−1, d

′ := d′t, and introduce further new constants ν, η, β, β′, ζ, γ, γ′, d′′ and ω such
that

1/n+ ≪ ν ≪ η ≪ d ≪ β ≪ β′ ≪ ζ ≪ γ ≪ γ′ ≪ d′′ ≪ d′ ≪ ω,α ≪ 1/r ≤ 1/k.

These are the only constants which we shall use from this point onwards. The purpose
of these manipulations is that our fixed row-decomposition has three important properties.
Firstly, it has minimum diagonal density at least 1− d, since d = d′t−1 ≥ k2ds−1. Secondly,

any row G1[X
i] is not d′-splittable, since d′ = d′t ≤ ds. Thirdly, any row G1[X

i] which
is d′-pair-complete is d-pair-complete, since d(i) ≤ d′ = d′t by definition of d(i), and so
d(i) ≤ d′t−2 < d′t−1 = d by choice of t.

Suppose first that s = 1, so G1 has only one row X1, and p1 = k. Fix n − r! ≤ n′ ≤ n
such that r! | n′, and let C = n+ − kn′. Then 0 ≤ C ≤ kr! + k. Also, since rn+/k and
r(kn′)/k are integers, rC/k is also an integer. We choose rC/k pairwise-disjoint copies of
Kk in G which together cover C vertices in each Vj . To see that this is possible note that,

by (†), for any A ∈
([r]
k

)

we may greedily choose the vertices of a copy of Kk in G of index A;
this gives at least n choices for each vertex, of which at most n/2 (say) have been previously
used, so some choice remains. Note that our use of (†) here is not tight, in the sense that the
argument would still be valid if n was replaced by n+ o(n) in the statement of (†). This will
be true of all our applications of (†) except for that in Claim 7.6. We delete all of these copies
of Kk from G, and let G′ be the resulting graph. We let X ′1

j consist of the kn′ undeleted

vertices of Vj for each j ∈ [r]. Then the sets X ′1
j for j ∈ [r] form a 1-row-decomposition of

G′, which is not d′′-splittable by Proposition 6.1. Since p1 = k ≥ 3, G′ = G′[X ′1] contains a
balanced perfect Kk-packing by Lemma 6.2.

We may therefore assume that s ≥ 2. From each block Xi
j we shall obtain a set W i

j by
moving a small number of ‘bad’ vertices between blocks, and reinstating the vertices deleted
in forming X. As a consequence the sets W i

j will not form a proper row-decomposition (for

example, blocks in the same row may have different sizes). However, since only a small
number of vertices will be moved or reinstated, the partition of V (G) into sets W i

j will

retain many of the characteristics of the s-row-decomposition of G1 into blocks Xi
j. We

therefore keep the terminology, referring to the sets W i
j as ‘blocks’, and the W i =

⋃

j W
i
j

and Wj =
⋃

i W
i
j as ‘rows’ and ‘columns’ respectively. Perhaps it is helpful to think of the

sets W i
j as being containers which correspond to the blocks Xi

j , between which vertices may

be transferred. It is important to note, however, that the blocks Xi
j will remain unchanged

throughout the proof. Furthermore, we shall sometimes refer to the row G[W i] simply as
row i, but we say that a row i is pair-complete if G1[X

i] is d-pair-complete. This means
that the truth of the statement ‘row i is pair-complete’ depends only on our fixed row-
decomposition of G1, and not on the ‘blocks’ W i

j or their subsets defined later. Note that if

pi = 2 and row i is not pair-complete then G[Xi] is not d′-pair-complete.
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We start by identifying the bad vertices, which may be moved to a different block. For
each i ∈ [s] and j ∈ [r] let Bi

j consist of all vertices v ∈ Xi
j for which there exist i′ 6= i and

j′ 6= j such that |N(v) ∩Xi′

j′ | ≤ (1−
√
d)pi′n. We must have |Bi

j | ≤ rk
√
dpin, otherwise for

some i′ 6= i and j′ 6= j there are more than
√
dpin vertices in Xi

j with at most (1−
√
d)pi′n

neighbours in Xi′

j′ . Then d(Xi
j ,X

i′

j′) <
√
d · (1 −

√
d) + (1 −

√
d) · 1 = 1 − d contradicts the

minimum diagonal density of G1.
Next, for each i ∈ [s] for which row i is pair-complete, by definition there are sets T i

j ⊆ Xi
j

of size n for each j ∈ [r] such that d(T i
j , T

i
j′) ≥ 1−d and d(Xi

j \T i
j ,X

i
j′ \T i

j′) ≥ 1−d for any

j 6= j′. For each j ∈ [r], we let B′i
j consist of all vertices v ∈ T i

j for which there exists j′ 6= j

such that |N(v) ∩ T i
j′ | ≤ (1 −

√
d)n, and also all vertices v ∈ Xi

j \ T i
j for which there exists

j′ 6= j such that |N(v) ∩ (Xi
j′ \ T i

j′)| ≤ (1−
√
d)n. We must have |B′i

j| ≤ 2r
√
dn, otherwise

(without loss of generality) there exists some j′ 6= j for which more than
√
dn vertices in T i

j

have at most (1−
√
d)n neighbours in T i

j′ . Then d(T i
j , T

i
j′) <

√
d·(1−

√
d)+(1−

√
d)·1 = 1−d

contradicts the choice of the sets T i
j . Thus we have bad sets Bi

j and B′i
j for i ∈ [s], j ∈ [r].

We also consider the n+ − kn deleted vertices in each part to be bad. Let B be the set of
all bad vertices. The remaining vertices Y are good; let Y i

j = Xi
j \ B, Y i =

⋃

j∈[r] Y
i
j and

Yj =
⋃

i∈[s] Y
i
j for each i and j, so Y =

⋃

i∈[s] Y
i.

Let v be any vertex of G. We say that a block Xi
j is bad with respect to v if |N(v)∩Xi

j | <
pin − n/2, that is, if v has more than n/2 non-neighbours in Xi

j . So if v is a good vertex,
then the set of blocks which are bad with respect to v is a subset of the set of blocks in the
same row and column as v. Also, by (†) for any v ∈ V (G) at most one block in each other
column can be bad with respect to v. Similarly as with the notion of pair-completeness, this
definition fixes permanently which blocks are bad with respect to a vertex v. We shall later
sometimes refer to a ‘block’ W i

j being bad with respect to v; this should always be taken to

mean that Xi
j is bad which respect to v. We say that a block is good with respect to v if it

is not bad with respect to v.
We now define the sets W i

j for each i ∈ [s] and j ∈ [r] as follows. Any vertex in Y i
j is

assigned to W i
j . It remains only to assign the bad vertices; each bad vertex v ∈ Vj is assigned

to W i
j , where i is a row containing the most blocks Xi

j which are bad with respect to v (if

more than one row has the most bad blocks then choose one of these rows arbitrarily). For
each pair-complete row i, we also modify the sets T i

j to form sets Si
j. Indeed, S

i
j is defined to

consist of all vertices of T i
j∩Y i

j , plus any vertex in W i
j \Y i

j which has at least n/2 neighbours

in T i
j′ for some j′ 6= j. We let Si :=

⋃

j∈[r] S
i
j for any such i. This completes the phase of

the proof in which we impose structure on G. The next claim establishes some properties of
the decomposition into ‘blocks’ W i

j .

Claim 7.3. (Structural properties)

(A1) At most βn/2 vertices of G are bad.
(A2) We have Y i

j ⊆ W i
j and (pi − β/2)n ≤ |Y i

j | ≤ |W i
j | ≤ (pi + β/2)n for any i ∈ [s] and

j ∈ [r]. Furthermore, if row i is pair-complete then |Y i
j ∩ Si

j|, |Y i
j \ Si

j | ≥ n− βn/2 for

any j ∈ [r].
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(A3) Let v ∈ Y i
j . Then v has at most βn non-neighbours in W i′

j′ for any i′ 6= i and j′ 6= j.

Furthermore, if row i is pair-complete and j′ 6= j then v has at most βn non-neighbours
in Si

j′ if v ∈ Si
j, and at most βn non-neighbours in W i

j′ \ Si
j′ if v /∈ Si

j .

(A4) Let v ∈ W i
j . Then v has at most 2n/3 non-neighbours in any block W i′

j′ which is good

with respect to v. Furthermore, if row i is pair-complete then there is some j′ 6= j
such that v has at most 2n/3 non-neighbours in Si

j′ if v ∈ Si
j , and at most 2n/3

non-neighbours in W i
j′ \ Si

j′ if v /∈ Si
j.

(A5) For any i with pi ≥ 2, there are at least γ′npi+1 copies of Kpi+1 in G[Y i]. Furthermore,
if row i is pair-complete then there are at least γ′n3 copies of K3 in G[Y i ∩ Si] and at
least γ′n3 copies of K3 in G[Y i \ Si].

Proof. For (A1), note that since there were at most rk
√
dpin+2r

√
dn bad vertices in each

Xi
j , the total number of bad vertices is at most rk(rk2

√
dn + 2r

√
dn) + rk ≤ βn/2. For

(A2), note that Y i
j ⊆ W i

j , and any vertex of Xi
j \ Y i

j or W i
j \Xi

j is bad. Since |Xi
j | = pin,

and there are at most βn/2 bad vertices by (A1), we conclude that (A2) holds. For (A3),

note that since v is good we have |Xi′

j′ \ N(v)| ≤
√
dpi′n for any i′ 6= i and j′ 6= j. Since

|W i′

j′ \Xi′

j′ | ≤ βn/2 by (A1), we conclude that |W i′

j′ \N(v)| ≤ βn, as required. Similarly, if row

i is pair-complete and v ∈ Si
j, then v ∈ T i

j, so v being good implies that |T i
j′ \N(v)| ≤

√
dn

for any j′ 6= j. On the other hand, if v ∈ W i
j \ Si

j, then v ∈ Xi
j \ T i

j, so v being good

implies that |(Xi
j′ \ T i

j′) \N(v)| ≤
√
dn for any j′ 6= j. Any non-neighbour of v in Si

j′△T i
j′

or W i
j′ \Xi

j′ must be a bad vertex; by (A1) this completes the proof of (A3).

Next, for (A4) suppose that W i′

j′ is good with respect to v. Recall that this means

|Xi′

j′ \ N(v)| ≤ n/2. Since any vertex in W i′

j′ \ Xi′

j′ is bad, we find that |W i′

j′ \ N(v)| ≤
n/2 + βn/2 ≤ 2n/3 by (A1). So suppose now that row i is pair-complete. If v is good,
then the ‘furthermore’ statement holds by (A3), so we may suppose that v ∈ W i

j \ Y i
j . If

v ∈ Si
j then by definition |N(v) ∩ T i

j′ | ≥ n/2 for some j′ 6= j, so |T i
j′ \ N(v)| ≤ n/2; then

|Si
j′ \ N(v)| ≤ 2n/3 by (A1), since any vertex in Si

j′△T i
j′ is bad. On the other hand, if

v /∈ Si
j then by definition |N(v) ∩ T i

j′ | < n/2, so |T i
j′ \N(v)| > n/2, for any j′ 6= j. By (†)

this implies |(Xi
j′ \ T i

j′) \N(v)| < n/2, and so |(W i
j′ \ Si

j′) \N(v)| ≤ 2n/3 by (A1).

Finally, for (A5) suppose first that row i is pair-complete, so pi = 2. Then by (A2) we
have |Y i

1 ∩ Si
1|, |Y i

2 ∩ Si
2|, |Y i

3 ∩ Si
3| ≥ n − βn/2. Furthermore, by (A3) any vertex in one of

these three sets has at most βn non-neighbours in each of the other two sets. So we may
choose vertices v1 ∈ Y i

1 ∩ Si
1, v2 ∈ Y i

2 ∩ Si
2 ∩ N(v1) and v3 ∈ Y i

3 ∩ Si
3 ∩ N(v1) ∩ N(v2) in

turn with at least n− 3βn choices for each vertex. We conclude that there are at least n3/2
copies of K3 in G[Y i ∩ Si]. The same argument applied to the sets Y i

1 \Si
1 shows that there

are at least n3/2 copies of K3 in G[Y i \Si]. On the other hand, if row i is not pair-complete,
then we simply wish to find at least γ′npi+1 copies of Kpi+1 in G[Y i]. Since G1[X

i] is not
d′-splittable, by Lemma 4.2(ii) (with 2γ′ in place of β) there are at least 2γ′npi+1 copies of
Kpi+1 in G1[X

i]. By (A1) at most β(pin)
pi+1 ≤ γ′npi+1 such copies contain a bad vertex;

this leaves at least γ′npi+1 copies of Kpi+1 in G[Y i]. �
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In the next claim we analyse a general greedy algorithm that takes some fixed clique K ′′

in which all but at most one vertex is good, and extends it to a copy of Kk with prescribed
intersections with the blocks, described by the sets A1, . . . , As.

Claim 7.4. (Extending cliques) Let K ′′ be a clique in G on vertices v1, . . . , vm, where
v2, v3, . . . , vm are good. Suppose that A1, . . . , As ⊆ [r] are pairwise-disjoint sets such that for
each q ∈ [m] there is some i ∈ [s] and j ∈ Ai such that vq ∈ W i

j . Suppose also that for each

i ∈ [s] one of the following five conditions holds:

(a) for every j ∈ Ai, W
i
j contains some vq with q ∈ [m],

(b) |Ai| ≤ pi and V (K ′′) = ∅,
(c) |Ai| ≤ pi and there is some block W i

j with j ∈ Ai which is good with respect to v1 and

does not contain a vertex of K ′′,
(d) |Ai| ≤ pi and v1 ∈ W i,
(e) |Ai| < pi.

Let a :=
∑

i∈[s] |Ai|. Then for any b1, . . . , bs ∈ {0, 1} there are at least ωna−m copies K ′ of

Ka in G[Y ∪ {v1}] which extend K ′′ and satisfy the following properties.

(i) K ′ intersects precisely those W i
j with i ∈ [s] and j ∈ Ai.

(ii) For any pair-complete row i such that |Ai| = 2 and V (K ′′) ∩ W i = ∅ we have that
|V (K ′) ∩ Si| is even.

(iii) Consider any pair-complete row i such that |Ai| = 1 and write {j} = Ai. If W i
j is good

with respect to v1 and does not contain a vertex of K ′′ then |V (K ′) ∩ Si| = bi.

Proof. If V (K ′′) 6= ∅, then by relabelling the columns Wj if necessary, we may assume that
for any i ∈ [s] for which (c) holds, the block W i

maxAi
is good with respect to v1 and does not

contain a vertex of K ′′. We also note for future reference that the only properties of good
vertices used in the proof of this claim will be those in (A3).

First we define the greedy algorithm for extending K ′′ to K ′, and then we will show that
we have many choices for the vertex at each step of the algorithm. We proceed through
each column Vj, j ∈ [r] in turn. If j is not in Ai for any i ∈ [s], then we take no action,
since K ′ will not have a vertex in this column. Similarly, if vq ∈ Wj for some q ∈ [m], then
we again take no action, since we already have a vertex of K ′ in this column, namely vq;
note that vq ∈ W i

j for the unique i such that j ∈ Ai, since the sets Aℓ are pairwise-disjoint.

Now suppose that j ∈ Ai for some i ∈ [s], and V (K ′′) ∩ Wj = ∅. Let v′1, . . . , v
′
t−1 be the

vertices previously chosen by the algorithm (so not including v1, . . . , vm). We choose a vertex
v′t ∈ Y i

j ∩⋂

ℓ∈[m]N(vℓ) ∩
⋂

ℓ∈[t−1]N(v′ℓ), so {v1, . . . , vm, v′1, . . . , v
′
t} induces a clique in G. If

row i is pair-complete, |Ai| = 2, V (K ′′) ∩W i = ∅ and we have previously selected a vertex
v′ℓ in W i, then we also add the requirement that v′t ∈ Si if and only if v′ℓ ∈ Si. If instead row
i is pair-complete and meets the conditions of (iii) then we instead add the requirement that
v′t ∈ Si if and only if b = 1. After proceeding through every j ∈ [r] we have a vertex of W i

j for

every i ∈ [s] and j ∈ Ai (some of which are the vertices of K ′′). We let K ′ be the subgraph
of G induced by these vertices. Then K ′ is a clique of size a in G which extends K ′′ and
satisfies (i). The additional requirements on the choice of vertices from any pair-complete
row i imply that K ′ must satisfy (ii) and (iii) also.

Having defined the greedy algorithm, we will now show that there are at least n/4 choices
at each step. First we consider the number of choices for some v′t in Y i

j , where row i is not

a pair-complete row satisfying the conditions in (ii) or (iii). Note that since we are making
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this choice, Wj does not contain a vertex of K ′′, so (a) does not apply to row i. Let

P := {v1, . . . , vm, v′1, . . . , v
′
t−1} and P i := (P ∩W i) \ v1.

Then |P i| ≤ |Ai|−1 ≤ pi−1. We need to estimate |Y i
j ∩

⋂

v∈P N(v)|. Note that each v ∈ P i

has |Y i
j \ N(v)| ≤ n by (†). If V (K ′′) 6= ∅, then write N ′ := Y i

j \ N(v1), so |N ′| ≤ n also;

if V (K ′′) = ∅ we let N ′ = ∅. Observe that any vertex of P \ {P i ∪ v1} is good, either by
assumption (for v2, . . . , vm) or by selection (since the greedy algorithm only selects vertices

from some Y i′

j′ ). Then any vertex of P \ {P i ∪ v1} = P \W i lies in Y i′ for some i′ 6= i, and

therefore has at most βn non-neighbours in Y i
j by (A3). So |Y i

j ∩⋂

v∈P N(v)| is at least

(3) |Y i
j | − |P i|n− |N ′| − rβn

(A2)

≥ pin− (pi − 1)n− n− (r + 1)βn = −(r + 1)βn.

Whilst this crude bound does not imply that we have even one possible choice for v′t, we will
now show that any of the assumptions (b)–(e) improves some part of the bound by at least
n/3, which implies that there are at least n/3−(r+1)βn ≥ n/4 choices for v′t. If (b) pertains
to row i (so V (K ′′) = ∅), then we have |N ′| = 0 instead of |N ′| ≤ n. If (d) or (e) pertains to
row i, then we have the bound |P i| ≤ pi− 2 in place of |P i| ≤ pi − 1. The same is true if (c)
pertains to row i, unless we are choosing the final vertex in W i, that is j = maxAi. Then
our initial relabelling implies that W i

j is good with respect to v1, so (A4) gives the bound

|N ′| = |Y i
j \N(v1)| ≤ 2n/3 in place of |N ′| ≤ n. In all cases the improvement of at least n/3

to (3) yields at least n/3− (r + 1)βn ≥ n/4 choices for v′t.
It remains to consider the number of choices for some v′t in Y i

j , where row i is a pair-

complete row satisfying the conditions in (ii) or (iii). Suppose first that row i has the
conditions of (ii), namely |Ai| = 2 = pi and V (K ′′) ∩W i = ∅. Suppose also that we have
previously selected a vertex v′ℓ ∈ W i. Then we must ensure that v′t ∈ Si

j if and only if

v′ℓ ∈ Si. Note that these conditions imply that either (b) or (c) pertains to row i. We will
show that |N ′| ≤ 2n/3 in either case. In case of (b) this holds because N ′ is empty. In case
of (c), v′t is the final vertex to be selected in row i, and so our initial relabelling implies that
W i

j is good with respect to v1; then |N ′| ≤ 2n/3 by definition. Since v′ℓ is a good vertex (by

choice), if v′ℓ ∈ Si then by (A3) we have |Si
j \ N(v′ℓ)| ≤ βn, or if v′ℓ /∈ Si then by (A3) we

have |(Y i
j \ Si

j) \N(v′ℓ)| ≤ βn. In the former case we have

∣

∣

∣

∣

∣

Y i
j ∩ Si

j ∩
⋂

v∈P

N(v)

∣

∣

∣

∣

∣

≥ |Y i
j | − |N ′| − rβn ≥ n/4;

similarly, in the latter case we obtain |(Y i
j \Si

j)∩
⋂

v∈P N(v)| ≥ n/4. So in either case there

are at least n/4 possible choices for v′t. Finally, suppose that row i has the conditions of
(iii), namely |Ai| = 1 and W i

j is good with respect to v1 (and W i
j does not contain a vertex

of K ′′ since we are choosing v′t). Then |N ′| ≤ 2n/3 by (A4), so |Y i
j ∩Si

j ∩
⋂

v∈P N(v)| ≥ n/4

and |(Y i
j \ Si

j) ∩
⋂

v∈P N(v)| ≥ n/4, giving us at least n/4 choices for v′t, regardless of the
value of b.

In conclusion, there are at least n/4 suitable choices for each of the a−m vertices chosen
by the greedy algorithm in extending K ′′ to K ′, giving at least ωna−m choices for K ′, as
required. �
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Now we describe the various types of Kk that will form the building blocks for the dele-
tions. Recall that the number of vertices in each row W i is approximately proportional to
pi. We say that a copy K ′ of Kk in G is properly-distributed if

(i) |V (K ′) ∩W i| = pi for each i ∈ [s], and
(ii) |V (K ′) ∩ Si| is even for any pair-complete row i ∈ [s].

Also, for any i, j ∈ [s] with i 6= j we say that a copy K ′ of Kk in G is ij-distributed if

(i) |V (K ′) ∩ W i| = pi + 1, |V (K ′) ∩ W j| = pj − 1, and |V (K ′) ∩ W ℓ| = pℓ for each
ℓ ∈ [s] \ {i, j}, and

(ii) |V (K ′) ∩ Sℓ| is even for any pair-complete row ℓ 6= i, j.

Note that an ij-distributed clique K ′ has ‘one too many’ vertices in row i, and ‘one too few’
in row j. By deleting such cliques we can arrange that the size of each row W i is exactly
proportional to pi. Thereafter we will only delete properly-distributed copies of Kk, so that
this property is preserved. Also, condition (ii) in both definitions ensures that we preserve
the correct parity of the halves in pair-complete rows. Finally, we say that a copy K ′ of Kk

in G is properly-distributed outside row ℓ if

(i) |V (K ′) ∩W i| = pi for each i ∈ [s], and
(ii) |V (K ′) ∩ Si| is even for any pair-complete row i 6= ℓ.

Thus K ′ almost satisfies the definition of ‘properly-distributed’, except that if row ℓ is pair-
complete it may fail the parity condition for the halves. In the next claim we apply Claim 7.4
to finding the building blocks just described.

Claim 7.5. (Building blocks) We can find copies of Kk in G as follows.

(i) Let A1, . . . , As ⊆ [r] be pairwise-disjoint with |Ai| = pi for each i ∈ [s]. Then there are
at least ωnk properly-distributed copies K ′ of Kk in G such that for any i ∈ [s], K ′

intersects W i in precisely those W i
j with j ∈ Ai.

(ii) Any vertex v ∈ V (G) lies in at least ωnk−1/4 properly-distributed copies of Kk in G.
(iii) Let i, j ∈ [s] be such that pi ≥ 2 and i 6= j. Then there are at least γnk ij-distributed

copies K ′ of Kk in G[Y ]. Furthermore, if row i is pair-complete then for any b ∈ {0, 3}
there are at least γnk such copies K ′ of Kk with |V (K ′) ∩ Si| = b.

(iv) Let i, j ∈ [s] be such that pi = 1 and i 6= j. Suppose uv is an edge in G[W i] such that
u is a good vertex. Then there are at least ωnk−2 ij-distributed copies K ′ of Kk in G
that contain u and v. Furthermore, if row j is pair-complete then for any b ∈ {0, 1}
there are at least ωnk−2 such copies K ′ of Kk with |V (K ′) ∩ Sj| = b.

(v) Let i ∈ [s] be such that row i is pair-complete, and uv be an edge in G[W i] such that u
is good. Then there are at least ωnk−2 copies of Kk in G which contain both u and v
and are properly-distributed outside row i.

Proof. For (i) we apply Claim 7.4 to A1, . . . , As with V (K ′′) = ∅, so condition (b) pertains
to all rows. This gives at least ωnk copies K ′ of Kk in G such that K ′ intersects precisely
those W i

j with i ∈ [s] and j ∈ Ai, and |V (K ′) ∩ Si| is even for any pair-complete row i.

Since |Ai| = pi for each i ∈ [s], each such K ′ is properly-distributed. Next we consider (iii),
as this is also a simple application of Claim 7.4; we will come back to (ii). We begin by
choosing a copy K ′′ of Kpi+1 in G[Y i]. By (A5), there are at least γ′npi+1 such copies, and
if row i is pair-complete, there are at least γ′npi+1 such copies with precisely b vertices in
Si. Fix any such K ′′ and let Ai be the set of q ∈ [r] such that K ′′ has a vertex in column
Vq, so |Ai| = pi + 1. Now choose pairwise-disjoint subsets Aℓ ⊆ [r] \ Ai with Aj = pj − 1
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and |Aℓ| = pℓ for every ℓ ∈ [s] \ {i, j}. We may apply Claim 7.4 with K ′′ and the sets Aℓ

for ℓ ∈ [s], as condition (a) of the claim applies to row i, condition (e) applies to row j, and
condition (c) applies to all other rows (since every vertex of K ′′ is good). We deduce that
there are at least ωnk−pi−1 copies K ′ of Kk which extend K ′′ such that |V (K ′)∩W ℓ| = |Aℓ|
for any ℓ ∈ [s] and |V (K ′) ∩ Sℓ| is even for any pair-complete row ℓ 6= i, j. Each such K ′ is
ij-distributed, so in total we have at least γ′ωnk ≥ γnk copies K ′ of Kk with the required
properties.

For (ii), (iv) and (v) we proceed similarly, but in each of these cases we have the possibility
that the vertex v might be bad, so satisfying requirement (c) in Claim 7.4 is no longer trivial.
We consider the blocks as an s× r rectangle R, and colour those blocks which are bad with
respect to v. Our strategy will be to delete some appropriate rows and columns from R, apply
Proposition 7.1 to find a transversal T of non-coloured blocks in the remaining subrectangle
R′, and then use T to choose sets Ai for i ∈ [s] which meet the conditions of Claim 7.4.
(The notation T is not intended to suggest any relationship with the sets T i

j .) We note the
following properties of R:

(R1) any column not containing v has at most one coloured block,
(R2) at most r − 2 coloured blocks lie outside the row containing v,
(R3) any row not containing v has at most r − 3 coloured blocks.

To see this, recall that we observed (R1) earlier, and (R2) follows because v lies in a row in
which it has the most bad blocks. This also implies (R3), as any row not containing v has
at most (r − 1)/2 ≤ r − 3 coloured blocks, using the assumption that r > 3.

For (ii), we let ℓ and jℓ be such that v ∈ W ℓ
jℓ
, and suppose first that row ℓ is not pair-

complete (we postpone the case where ℓ is pair-complete to the end of the proof). We
remove the row and column containing v to obtain an (s − 1) × (r − 1) subrectangle R′.
Since R′ contains at most r−2 coloured blocks, with at most one in each column, it contains
a transversal T of non-coloured blocks by Proposition 7.1. For each i ∈ [s] \ {ℓ} let ji be
such that T includes W i

ji
. Choose any pairwise-disjoint subsets Ai ⊆ [r] with ji ∈ Ai and

|Ai| = pi for each i ∈ [s]. We may apply Claim 7.4 to Ai, i ∈ [s] with V (K ′′) = {v1} = {v},
since condition (d) pertains to row ℓ, and condition (c) pertains to all other rows. This
yields at least ωnk−1 copies K ′ of Kk which extend K ′′ such that |V (K ′) ∩ Si| is even for
any pair-complete row i and |V (K ′) ∩ W i| = |Ai| = pi for any i ∈ [s]. Each such K ′ is a
properly-distributed copy of Kk in G containing v.

For (iv), let ju and jv be the columns with u ∈ Vju and v ∈ Vjv , and let Ai = {ju, jv}.
So |Ai| = 2 = pi + 1. Suppose first that pj = 1. In this case we delete rows i and j and
columns ju and jv from R, leaving an (s − 2) × (r − 2) subrectangle R′. Then R′ has at
most one coloured block in each column, at most r − 3 coloured blocks in each row, and at
most r − 2 coloured blocks in total, so contains a transversal T of non-coloured blocks by
Proposition 7.1. For each ℓ ∈ [s] \ {i, j} let qℓ be the column such that T includes W ℓ

qℓ
, and

choose pairwise-disjoint subsets Aℓ ⊆ [r] \Ai for ℓ ∈ [s] \ {i} such that qℓ ∈ Aℓ and |Aℓ| = pℓ
for each ℓ ∈ [s] \ {i, j}, and Aj = ∅. Now suppose instead that pj ≥ 2. In this case we delete
row i and columns ju and jv from R, leaving an (s− 1)× (r − 2) subrectangle R′. Then R′

has at most one coloured block in each column, at most r − 3 coloured blocks in each row,
and at most r− 2 coloured blocks in total. Since pj ≥ 2 we have r− 2 ≥ k− 2 ≥ s− 1, so we
may again apply Proposition 7.1 to find a transversal T of non-coloured blocks in R′. For
each ℓ ∈ [s] \{i} let qℓ be the column such that T includes W ℓ

qℓ
, and choose pairwise-disjoint
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subsets Aℓ ⊆ [r] \ Ai for ℓ ∈ [s] \ {i} such that qℓ ∈ Aℓ for any ℓ ∈ [s] \ {i}, |Aℓ| = pℓ
for each ℓ ∈ [s] \ {i, j}, and |Aj | = pj − 1. In either case we may apply Claim 7.4 with
V (K ′′) = {u, v}, since conditions (a), (e) and (c) of Claim 7.4 pertain to rows i, j and all
other rows respectively. We deduce that there are at least ωnk−2 copies K ′ of Kk in G
which extend K ′′ such that |V (K ′) ∩ W ℓ| = |Aℓ| for any ℓ ∈ [s] and |V (K ′) ∩ Sℓ| is even
for any pair-complete row ℓ 6= i, j. Each such K ′ is ij-distributed. Furthermore, if row j is

pair-complete, then we can apply Claim 7.4(iii), as W j
qj ∈ T is good with respect to v by

definition of T , to see that there are at least ωnk−2 such copies K ′ with |V (K ′) ∩ Sj | = b,
as required.

For (v), we again let ju and jv be the columns with u ∈ Vju and v ∈ Vjv and Ai = {ju, jv}.
So |Ai| = 2 = pi. We delete row i and columns ju and jv from R, leaving an (s− 1)× (r− 2)
subrectangle R′. Then R′ has at most one coloured block in each column, at most r − 3
coloured blocks in each row, and at most r−2 coloured blocks in total. Since pi = 2 we have
r − 2 ≥ k − 2 ≥ s − 1, so as before Proposition 7.1 yields a transversal T of non-coloured
blocks in R′. We let W ℓ

qℓ
, ℓ ∈ [s]\{i} be the blocks of T , and choose pairwise-disjoint subsets

Aℓ ⊆ [r] \ Ai such that qℓ ∈ Aℓ and |Aℓ| = pℓ for any ℓ ∈ [s] \ {i}. We may apply Claim 7.4
with V (K ′′) = {u, v}, since conditions (a) and (c) of Claim 7.4 pertain to row i and all other
rows respectively. So there are at least ωnk−2 copies K ′ of Kk in G which extend K ′′ such
that |V (K ′)∩W ℓ| = |Aℓ| = pℓ for any ℓ ∈ [s] and |V (K ′)∩Sℓ| is even for any pair-complete
row ℓ 6= i. Each such Kk is properly-distributed outside row i.

Finally we consider the case of (ii) where row ℓ (containing v) is pair-complete. By (A4)
and (A2) there are at least n/4 vertices u ∈ Y ℓ∩N(v) such that |{u, v}∩Sℓ| is even. For any
such u, by (v) there are at least ωnk−2 copies K ′ of Kk which extend uv and are properly-
distributed outside row ℓ. Each such K ′ is properly-distributed since V (K ′) ∩ Sℓ = {u, v},
so v lies in at least ωnk−1/4 properly-distributed copies of Kk. �

We now use Claim 7.5 to select several Kk-packings in G whose deletion leaves a subgraph
G′ which satisfies the conclusions of the lemma. The choice of these packings will vary
somewhat according to the row structure of G. We say that G has the extremal row structure
if it has the same row structure as the graphs Γn,r,k of Construction 1.2, that is, if there is
some row i ∈ [s] with pi ≥ 2 which is pair-complete, and pi′ = 1 for any i′ 6= i; this case
requires special attention. The first step is the following claim, which balances the row sizes,
so that the remainder of row i has size proportional to pi for i ∈ [s]. This is the only step
of the proof that requires the exact minimum degree condition (whether or not G has the
extremal row structure).

Claim 7.6. (Balancing rows) There is a Kk-packing M1 in G such that |M1| ≤ βrk2n
and |W i \ V (M1)| = pi(rn

+/k − |M1|) is a constant multiple of pi for each i ∈ [s]. If G has
the extremal row structure we can also require that |Si \V (M1)| is even for the unique i ∈ [s]
with pi = 2.

Proof. We write ai := |W i| − pirn
+/k for each i ∈ [s], where we recall that rn+/k is an

integer, so ai is an integer. Then
∑

i∈[s] ai = |V (G+)| − rn+ = 0. Let I+ = {i : ai > 0},
I− = {i : ai < 0} and a :=

∑

ai>0 ai = −∑

ai<0 ai. Recall that n+ − k + 1 ≤ kn ≤ n+

and (1 + β/2)pirn ≥ |W i| = ∑

j∈[r] |W i
j | ≥ (1 − β/2)pirn for each i by (A2). This gives

|ai| ≤ βrkn for each i and a ≤ βrk2n. We choose sequences (iℓ : ℓ ∈ [a]) and (i′ℓ : ℓ ∈ [a]) so
that each i ∈ I+ occurs ai times as some iℓ, and each i ∈ I− occurs −ai times as some i′ℓ.
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We divide the remainder of the proof into two cases according to whether or not G has the
extremal row structure.

Case 1: G does not have the extremal row structure. We start by showing that for
any i ∈ I+ with pi = 1 there is a matching Ei in G[W i] of size ai, each of whose edges
contains a good vertex. We let aij := |W i

j | − n+/k for each j ∈ [r], so |aij | ≤ βn for each j

by (A2); note that the aij are not necessarily integers. Then |W i
j | = n+/k + aij ≥ n + aij.

By (†), any v ∈ W i
j′ for any j′ 6= j has at least aij neighbours in W i

j . We fix a matching

M in the bipartite graph G[W i
1 ∪W i

2] which is maximal with the property that every edge
contains a good vertex. We will show that |M | ≥ ai1 + ai2. For suppose otherwise. Then
we may fix u ∈ Y i

1 and v ∈ Y i
2 which are not covered by M . As noted above, u has at

least ai2 neighbours in W i
2, and v has at least ai1 neighbours in W i

1. Since u and v are good
vertices, each of these neighbours must be covered by M , by maximality of M . Thus there
must be an edge w1w2 in M with w1 ∈ N(v) and w2 ∈ N(u). Now removing w1w2 from
M and adding the edges w1v and w2u contradicts the maximality of M . We conclude that
|M | ≥ ai1 + ai2. Now we greedily extend M to a maximal matching Ei in G[W i] for which
every edge of Ei \M contains a vertex of Y i

1 . Then Ei covers at least aij vertices in W i
j for

each j ≥ 3, and so has total size at least
∑

j∈[r] aij = ai; by removing edges we may take Ei

to have size exactly ai, as claimed.
We now proceed through each ℓ ∈ [a] in turn. For each ℓ, if piℓ = 1 then we choose an

edge e ∈ Eiℓ which has not been used for any ℓ′ < ℓ (this is possible as iℓ occurs aiℓ = |Eiℓ |
times as some iℓ′). We extend e to an iℓi

′
ℓ-distributed copy Kℓ of Kk in G, so that Kℓ is

vertex-disjoint from any Kℓ′ previously selected for ℓ′ < ℓ and from any of the edges of
⋃

i∈I+ Ei other than e itself. Then the extension of e to Kℓ must avoid a set of at most

ka+2a ≤ β′n ‘forbidden vertices’. By Claim 7.5(iv), there are at least ωnk−2 > β′n(rn+)k−3

extensions of e to an iℓi
′
ℓ-distributed copy of Kk, so we may choose K ′ as desired. Similarly,

if piℓ ≥ 2 then we choose an iℓi
′
ℓ-distributed copy Kℓ of Kk in G which is vertex-disjoint from

any previously chosen copy of Kk and from the matchings Ei. As before this means we must
avoid at most β′n forbidden vertices. By Claim 7.5(iii), there are at least γnk ≥ β′n(rn+)k−1

iℓi
′
ℓ-distributed copies of Kk in G, so we can choose Kℓ as desired. At the end of this process

we have a Kk-packing M1 := {Kℓ : ℓ ∈ [a]} with |M1| = a ≤ βrk2n.
Now consider any i ∈ [s]. If i ∈ I+ (so ai > 0) then each copy of Kk in M1 had pi vertices

in W i, except for ai copies which had pi + 1 vertices in W i (these are the Kℓ with iℓ = i).
On the other hand, if i /∈ I+ (so ai ≤ 0) then each copy of Kk in M1 had pi vertices in W i,
except for −ai copies which had pi − 1 vertices in W i (these are the Kℓ with i′ℓ = i). In any
case |W i∩V (M1)| = pi|M1|+ai = pia+ |W i|−pirn

+/k. Then |W i\V (M1)| = pi(rn
+/k−a)

is a constant multiple of pi for each i ∈ [s], so the proof of Case 1 is complete.

Case 2: G has the extremal row structure. Let i∗ be the unique row such that pi∗ = 2,
so row i∗ is pair-complete and pi = 1 for any i 6= i∗. Recall that in this case we must satisfy
the additional condition that |Si∗ \ V (M1)| is even. We divide the proof into two further
cases according to whether or not a = 0.

Case 2.1: a > 0. We start by choosing copies Kℓ of Kk for ℓ < a exactly as in Case 1. For
ℓ = a we consider three further cases, according to the value of i∗.

Case 2.1.1: i∗ = ia. As in Case 1, we use Claim 7.5(iii) to choose Ka to be an iai
′
a-

distributed copy of Kk in G that does not include a forbidden vertex. However, we also
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choose Ka so that |Si∗ \⋃ℓ∈[a] V (Kℓ)| is even. This is possible as by Claim 7.5(iii) there are

at least γnk iai
′
a-distributed copies K ′ of Kk in G for each choice of parity of |V (K ′)∩ Sia |.

Case 2.1.2: i∗ = i′a. As in Case 1, we use Claim 7.5(iv) to extend an edge e ∈ Eia

to an iai
′
a-distributed copy Ka of Kk in G avoiding all forbidden vertices. Here we again

impose the additional requirement that |Si∗ \⋃ℓ∈[a] V (Kℓ)| is even. This is possible as by

Claim 7.5(iv) there are at least ωnk−2 extensions of e to an iai
′
a-distributed copy K ′ of Kk

in G for each choice of parity of |V (K ′) ∩ Si′a |.
Case 2.1.3: i∗ 6= ia, i

′
a. In this case, instead of choosing the extension Ka of e ∈ Eia to

be iai
′
a-distributed, we extend e to an iai

∗-distributed copy Ka of Kk in G which avoids
any forbidden vertices (using Claim 7.5(iv) as before). The Kk-packing M1 then covers ‘one

too many’ vertices in W i′a and ‘one too few’ in W i∗. To correct this imbalance, we apply
Claim 7.5(iii) to choose an i∗i′a-distributed copy K ′ of Kk in G such that K ′ is vertex-disjoint
from M1 and |Si∗ \ (V (K ′) ∪ V (M1))| is even. We add K ′ to M1.

In each of the cases 2.1.1, 2.1.2, 2.1.3 we have |W i \ V (M1)| = pi(rn
+/k − a) for each

i ∈ [s] as in Case 1. We also have |Si∗ \ V (M1)| even by construction, and |M1| ≤ βrk2n,
noting in Case 2.1.3 that we could have improved the bound on a to a ≤ βrk2n − 1. This
completes the proof in Case 2.1.

Case 2.2: a = 0. Note that ai = 0 for each i ∈ [s], so |W i|/pi = rn+/k is constant
initially. If |Si∗ | is even then M0 = ∅ has the required properties, so we may assume |Si∗ | is
odd. Now suppose that for some i 6= i∗ there is an edge uv in G[W i] such that u is good.
By Claim 7.5(iv) we may extend uv to an ii∗-distributed copy K1 of Kk in G. Now apply
Claim 7.5(iii) to choose an i∗i-distributed copy K2 of Kk in G which does not intersect K1

so that |Si∗ \ (V (K1) ∪ V (K2)| is even. We then have M1 = {K1,K2} with the required
properties. So we may assume that no such edge exists. Now suppose instead that G[W i∗ ]
contains an edge uv such that u is good and |{u, v} ∩ Si∗ | = 1. By Claim 7.5(v) we may
extend uv to a copy K ′ of Kk which is properly-distributed outside row i∗. We may take
M1 = {K ′}, as then |V (M1)∩Si| = pi for any i ∈ [s] and |Si∗ \V (M1))| is even. So we may
assume that no such edge exists. It follows that |W i

j | ≤ n for any i 6= i∗ and j ∈ [r]. Indeed,

if |W i
j | > n then choose j′ 6= j and a good vertex u ∈ Y i

j′. Then u has a neighbour v ∈ W i
j ,

since u has at most n non-neighbours in any part, but we assumed no such edge uv exists.
Likewise, it follows that |Si∗

j |, |W i∗
j \ Si∗

j | ≤ n for any j ∈ [r]. For if (say) |Si∗
j | > n, then

choose j′ 6= j and u ∈ Y i∗

j′ \ Si∗

j′ ; then u has a neighbour v ∈ Si∗
j , giving an edge uv that we

assumed did not exist.
Now for any j ∈ [r] we have |W i∗

j | ≤ 2n, |Si∗
j | ≤ n, |W i∗

j \ Si∗
j | ≤ n, and |W i

j | ≤ n for

any i 6= i∗. Since |Wj| = |Vj | = n+ ≥ kn, we have n+ = kn, and equality holds in each

of these inequalities. Then k divides n+ and rn+/k = rn = |Si∗ | is odd. Now, any good
vertex u ∈ Y i

j for i ∈ [s] and j ∈ [r] has δ∗(G) ≥ (k − 1)n neighbours in Vj′ for any j′ 6= j.

If i 6= i∗ then none of these can lie in W i
j′ , so we conclude that N(u) ∩ Vj′ = Vj′ \ W i

j′ .

Similarly, we deduce that any u ∈ Y i∗
j ∩ Si∗

j has N(u) ∩ Vj′ = Vj′ \ (W i∗

j′ \ Si∗

j′ ) and any

u ∈ Y i∗
j \ Si∗

j has N(u) ∩ Vj′ = Vj′ \ Si∗

j′ for any j′ 6= j. It follows that for any i 6= i′

and j 6= j′ any vertex v ∈ W i
j has |N(v) ∩ W i′

j′ | ≥ |Y i′

j′ | ≥ (1 − β)pi′n. Furthermore, any

vertex v ∈ Si∗
j has |N(v) ∩ Si∗

j′ | ≥ |Y i∗

j′ ∩ Si∗

j′ | ≥ (1 − β)n, and any vertex v ∈ W i
j′ \ Si

j has
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|N(v) ∩ (W i
j′ \ Si

j′)| ≥ |Y i
j′ \ Si

j′ | ≥ (1 − β)n. So every vertex of G satisfies property (A3),
which was shown to hold for all good vertices of G in Claim 7.3. This was the only property
of good vertices used in the proof of Claim 7.4. So we may consider every vertex of G to be
good when applying Claim 7.4, and therefore also when applying Claim 7.5. The argument
above then shows that we may choose M1 as desired if there exists any edge uv in W i for
any i 6= i∗, or any edge uv in W i∗ such that |{u, v} ∩ Si∗ | = 1. Since G is not isomorphic to
Γn+,r,k, there must be some such edge. This completes the proof of Case 2.2, and so of the
claim. �

In the next claim we put aside an extra Kk-packing M2 that is needed to provide flexibility
later in the case when there are at least two rows with pi ≥ 2. If instead G has at most
one row i with pi ≥ 2 then we take M2 = ∅. The proof of the claim is immediate from
Claim 7.5(iii) so we omit it.

Claim 7.7. (Preparing multiple rows with pi ≥ 2) Suppose that at least two rows of G
have pi ≥ 2. Then there is a Kk-packing M2 vertex-disjoint from M1 such that

(i) every vertex covered by M2 is good, and
(ii) M2 consists of ⌈ηn⌉ ij-distributed copies of Kk in G[Y ] for each ordered pair (i, j) with

i, j ∈ [s], i 6= j and pi, pj ≥ 2.

Note that (ii) implies that |M2| ≤ βn and |W i \ V (M1 ∪M2)|/pi is constant for i ∈ [s] by
choice of M1. The latter property will be preserved when we remove all subsequent packings,
as they will only consist of properly-distributed cliques. Next we cover all remaining bad
vertices and ensure that the number of remaining vertices is divisible by rk · r!. For this, let
B′ denote the set of all bad vertices in G which are not covered by M1 ∪M2, and note that
by (A1) we have |B′| ≤ βn/2.

Claim 7.8. (Covering bad vertices and ensuring divisibility) There is a Kk-packing
M3 vertex-disjoint from M1∪M2, consisting of at most βn properly-distributed copies of Kk,
such that

(i)
⋃

i∈[3]Mi covers every vertex of B′, and

(ii) the number of vertices not covered by
⋃

i∈[3]Mi is divisible by rk · r!.
Proof. Fix βn/2 ≤ C ≤ βn so that C ≡ rn+/k − |M1 ∪ M2| modulo r · r! (recall that
rn+/k is an integer). We will greedily choose M3 to consist of C copies of Kk. As long
as some vertex v ∈ B′ remains uncovered, we choose some such v and select a properly-
distributed copy of Kk containing v. Once every vertex in B′ is covered we repeatedly
choose a properly-distributed copy of Kk until we have C copies of Kk in total. At any
step there are at most k(|M1 ∪M2|+C) ≤ β′n forbidden vertices covered by M1 ∪M2 or a
previously-chosen member of M3, so there will always be a suitable choice available for the
next member of M by Claim 7.5(i) or (ii). Fix such an M3. Then |V (G)\⋃i∈[3] V (Mi)|/k =

rn+/k−|M1∪M2|−C ≡ 0 modulo r ·r!, so |V (G)\⋃i∈[3] V (Mi)| is divisible by kr ·r!. �

The penultimate Kk-packing is chosen so that equally many vertices are covered in each
part Vj .

Claim 7.9. (Balancing columns) There is a Kk-packing M4 vertex-disjoint from
⋃

i∈[3]Mi,

consisting of properly-distributed cliques, such that
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(i) |Vj ∩
⋃

i∈[4] V (Mi)| = k|⋃i∈[4]Mi|/r for any j ∈ [r],

(ii) |⋃i∈[4] V (Mi)| ≤ β′n/2, and

(iii) rk · r! divides |M4|.
Proof. We let a′j := |⋃i∈[3] V (Mi)∩Vj|−k|⋃i∈[3]Mi|/r for each j ∈ [r]. So

∑

j∈[r] |V (Mi)| =
0, and |a′j | ≤ |⋃i∈[3] V (Mi)| ≤ 2βrk3n for each j ∈ [r]. Note also that each a′j must

be an integer since r divides both |V (G) \ ⋃

i∈[3] V (Mi)| (by choice of M3) and |V (G)|
(by assumption). Similarly to the proof of Claim 7.6, we let J+ := {j ∈ [r] : a′j > 0},
J− := {j ∈ [r] : a′j < 0}, and a′ :=

∑

j∈J+ a′j = −∑

j∈J− a′j. We form sequences j1, . . . , ja′

and j′1, . . . , j
′
a′ such that each j ∈ J+ occurs a′j times as some jq, and each j ∈ J− occurs −a′j

times as some j′q. Now, for each q ∈ [a′] choose sets Aq, A
′
q ∈

([r]
k

)

such that jq ∈ Aq and A′
q =

(Aq \ {jq})∪{j′q}. For each A ∈
([r]
k

)

let NA and N ′
A be the number of times that A appears

as some Aq or A
′
q respectively. Note that NA ≤ a′ ≤ 2βr2k3n, so 2βr2k3n+N ′

A−NA ≥ 0 for

any A ∈
([r]
k

)

. Fix an integer C ′ such that kr · r! divides C ′ and 2βr2k3n ≤ C ′ ≤ 3βr2k3n.
We choose M4 to consist of C ′+N ′

A−NA properly-distributed copies of Kk in G with index

A for each A ∈
([r]
k

)

. Since
∑

A∈([r]k )
(N ′

A−NA) = 0, this will give us |M4| = C ′
(r
k

)

; note that

rk · r! then divides |M4|. We also require that these copies are pairwise vertex-disjoint, and
vertex-disjoint from

⋃

i∈[3]Mi. We may choose M4 greedily, since by Claim 7.5(i), for any

A ∈
([r]
k

)

there are ωnk copies of Kk in G with index A, and when choosing each copy we only

need to avoid the at most 2βrk3n+
(r
k

)

C ′ vertices covered by
⋃

i∈[3]Mi or previously chosen

members of M4. Now, since for any q ∈ [a′] we have Aq \A′
q = {jq} and A′

q \Aq = {j′q}, for
any j ∈ [r] we have

|V (M4) ∩Wj | =
∑

A∈([r]k ):j∈A

(C ′ +N ′
A −NA) = C ′

(

r − 1

k − 1

)

− a′j =
k|M4|

r
− a′j .

Then |Vj ∩
⋃

i∈[4] V (Mi)| = k|M4|/r − a′j + |⋃i∈[3] V (Mi) ∩ Vj | = k|⋃i∈[4]Mi|/r for any

j ∈ [r]. Finally, |⋃i∈[4] V (Mi)| ≤ C ′
([r]
k

)

+ 2βrk3n ≤ β′n/2. �

The final Kk-packing is chosen so that the remaining blocks all have size proportional to
their row size.

Claim 7.10. (Balancing blocks) There is a Kk-packing M5 vertex-disjoint from
⋃

i∈[4]Mi,

consisting of properly-distributed cliques, such that defining M =
⋃

i∈[5]Mi, X ′i
j := W i

j \
V (M), X ′i =

⋃

j∈[r]X
′i
j and X ′ =

⋃

i∈[s]X
′i = V (G) \ V (M), we have |X ′i

j | = pin
′ for any

i ∈ [s] and j ∈ [r], where n′ = |X ′|/kr is an integer divisible by r! with n′ ≥ n− ζn/2. Thus
X ′i

j forms a row-decomposition of G′ := G[X ′] of type p. Furthermore, any vertex v ∈ X ′i
j

has at most βn ≤ αn′ non-neighbours in any X ′i′

j′ with i′ 6= i.

Proof. For each i ∈ [s] and j ∈ [r] we let W ′i
j = W i

j \ V (
⋃

i∈[4]Mi), W
′i :=

⋃

j∈[r]W
′i
j,

W ′
j :=

⋃

i∈[s]W
′i
j , and W ′ =

⋃

j∈[r]W
′
j. We may fix an integer D so that |W ′i| = piD for

any i ∈ [s], since |W i \ V (M1 ∪M2)|/pi is constant for i ∈ [s] and each clique in M3 ∪M4 is
properly-distributed. Recall also that |W ′

j | is constant for each j ∈ [r] by choice of M4. Let
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Q = (qij) be the s by r integer matrix whose (i, j) entry is qij = |W ′i
j| − piD/r. Then each

row of Q sums to zero. Furthermore, since |W ′
j | is constant for each j ∈ [r] we have

∑

i∈[s]

qij =
∑

i∈[s]

(|W ′i
j | − piD/r) = |W ′

j| − |W ′|/r = 0,

i.e. each column of Q also sums to zero. We also have
∑

i,j |qij | ≤ β′n using (A2) and Claim

7.9(ii).
We write Q =

∑

A∈QA, where Q is a multiset of matrices. Each matrix in Q is of the form

Qabcd, for some a, c ∈ [s] and b, d ∈ [r], defined to have (i, j) entry equal to 1 if (i, j) = (a, b)
or (i, j) = (c, d), equal to −1 if (i, j) = (a, d) or (i, j) = (c, b), and equal to zero otherwise.
To see that such a representation is possible, we repeat the following step. Suppose qab > 0
for some a, b. Since each row and column of Q sum to zero, we may choose c, d such that
qad < 0 and qcb < 0. Then Q′ := Q−Qabcd is an s by k integer matrix in which the entries of
each row and column sum to zero. Also, writing Q′ = (q′ij), we have

∑

i,j |q′ij | ≤
∑

i,j |qij |−2.

By iterating this process at most
∑

i,j |qij |/2 times we obtain the all-zero matrix, whereupon

we have expressed Q in the required form with |Q| ≤ β′n, counting with multiplicity.
Let P denote the set of all families A of pairwise vertex-disjoint subsets Ai ⊆ [r] with

|Ai| = pi for i ∈ [s]. To implement a matrix Qabcd ∈ Q we fix any two families A,A′ such
that b ∈ Aa and d ∈ Ac, and A′ is formed from A by swapping b and d. That is, A′

i = Ai if
i ∈ [s]\{a, c}, A′

a = (Aa\{b})∪{d} and A′
c = (Ac \{d})∪{b}. For each A ∈ P let QA be the

number of times it is chosen as A for some Qabcd, and Q′
A the number of times it is chosen as

A′ for some Qabcd. Fix an integer C ′′ such that kr · r! divides C ′′ and rkβ′n ≤ C ′′ ≤ 2rkβ′n.
For each A ∈ P let NA = C ′′ +QA −Q′

A, so NA ≥ 0.
Now we greedily choose M5 to consist of NA copies of K ′ for each A ∈ P, each of

which will intersect each W i in precisely those W i
j such that j ∈ Ai. Then we will have

|M5| =
∑

A∈P NA = C ′′|P| ≤ ζn/2. When choosing any copy of Kk we must avoid the
vertices of copies of Kk which were previously chosen for M5, or which lie in

⋃

i∈[4]Mi;

there are at most kζn such vertices. By Claim 7.5(i), for any A ∈ P there are at least ωnk

properly-distributed copies of Kk in G which intersect each W i in precisely those W i
j such

that j ∈ Ai, so we can indeed choose M5 greedily. This defines M , X ′i
j, X

′i, X ′
j , X

′, n′, G′

as in the statement of the claim. Note that |M | ≤ ζn, and kr · r! divides |X ′| by Claims
7.8(ii) and 7.9(iii) and the choice of C ′′.

Finally, consider the number of vertices used in W a
b , where a ∈ [s], b ∈ [r]. If A ∈ P is

chosen uniformly at random, then Aa is a uniformly random subset of size pa, so contains b
with probability pa/r. So if we chose C ′′ copies of each A ∈ P we would choose paN vertices
in W a

b , where N := C ′′|P|/r. However, since we choose NA copies of each A ∈ P, we need

to adjust by QA −Q′
A. These are chosen so that for each matrix Qabcd ∈ Q we choose one

more vertex in each of W a
b and W c

d , and one fewer vertex in each of W a
d and W c

b . Since
Q =

∑

A∈QA we thus use paN + qab vertices in W a
b . This gives |X ′a

b | = |W ′a
b | − paN − qab =

pa(D/r −N). Writing n′ = D/r −N , we have n′ = |X ′|/kr, so n′ is an integer divisible by
r!. Note also that n − n′ ≤ |V (M)|/kr ≤ ζn/2. Lastly, by choice of M3 every bad vertex

is covered by M , so any vertex v ∈ X ′i
j has at most βn ≤ αn′ non-neighbours in any X ′i′

j′

with i′ 6= i and j′ 6= j by (A3). �
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After deleting M as in Claim 7.10, we obtain G′ with an s-row-decomposition X ′ that
satisfies conclusion (i) of Lemma 7.2. To complete the proof, we need to satisfy conclusion
(ii), by finding a balanced perfect Kpi-packing in row i for each i ∈ [s].

Observe first that it is straightforward to find such a packing in row i if pi 6= 2. Indeed, for
each i ∈ [s] there is a trivial balanced perfect K1-packing in G[X ′i], namely {{v} : v ∈ X ′i};
this gives the desired packing if pi = 1. Now suppose that pi ≥ 3 for some i ∈ [s], and
recall that G1[X

i] was not d′-splittable (this is true of any row of G1). For any j ∈ [r] we
have |Xi

j△W i
j | ≤ 2βn by (A2) and |W i

j△X ′i
j | = pin − pin

′ ≤ (ζ/2)pin by choice of n′, so

|Xi
j△X ′i

j| ≤ ζpin. Proposition 6.1 then implies that G[X ′i] is not d′′-splittable, so G[X ′i]
contains a balanced perfect Kpi-packing by Lemma 6.2.

It follows that if there is no row i with pi = 2, then we have conclusion (ii), so the proof
is complete in this case. We may therefore assume that at least one row satisfies pi = 2, and
consider two cases according to whether or not any other row has pi ≥ 2.

Case 1: There is exactly one row i with pi ≥ 2.

Case 1.1: G has the extremal row structure. This means that G has one pair-
complete row i∗, and pi = 1 for any i 6= i∗. There is a trivial balanced perfect K1-packing
in G[X ′i] for any i 6= i∗, so it remains only to find a balanced perfect matching in G[X ′i∗ ].
Since row i∗ is pair-complete, we chose sets Si∗

j for j ∈ [r] when forming the sets W i
j . Let

S′i∗
j := Si∗

j ∩X ′i
j = Si∗

j \ V (M) for each j ∈ [r]. Then

(1 + β)n
(A2)

≥ |W i∗
j | − |Y i∗

j \ Si∗
j | ≥ |Si∗

j | ≥ |S′i∗
j | ≥ |Si∗

j | − |M |
(A2)

≥ (1− β/2)n − ζn,

and so |S′i∗
j | = (1 ± 2ζ)n′ for each j ∈ [r]. Recall also that in this case we required that

|Si∗ \ V (M1)| was even when choosing M1, and M2 was empty. Furthermore, any copy K ′

of Kk in M3 ∪M4 ∪M5 was chosen to be properly-distributed, so in particular |K ′ ∩ Si∗ | is
even. We conclude that |Si∗ \ V (M)| is even. Since every bad vertex of G was covered by
M3 ⊆ M , by (A3) for any j′ 6= j any vertex in S′i∗

j has at most βn ≤ 2ζn′ non-neighbours

in S′i∗

j′ , and any vertex in X ′i∗
j \S′i∗

j has at most βn ≤ 2ζn′ non-neighbours in X ′i∗

j′ \S′i∗

j′ by

(A3). By Lemma 6.4 (with 2ζ in place of ζ) we conclude that G[X ′i∗ ] contains a balanced
perfect matching, completing the proof in this case.

Case 1.2: pℓ = 2 for some ℓ, pi′ = 1 for any i′ 6= ℓ, but row ℓ is not pair-complete.
Recall that this means that G1[X

ℓ] was not d′-pair-complete. Moreover, just as for rows
with pi ≥ 3, we have that G1[X

ℓ] was not d′-splittable and that |Xℓ
j△X ′ℓ

j| ≤ ζ(2n) for

any j ∈ [r]. Proposition 6.1 therefore implies that G[X ′ℓ] is neither d′′-splittable nor d′′-
pair-complete, so G[X ′ℓ] contains a ν-balanced perfect matching by Corollary 5.7. Then
Proposition 6.5 implies that there exists an integer D ≤ 2νn′ and a Kk-packing M∗ in G
such that r! divides n′′ := n′ −D, M∗ covers piD vertices in X ′i

j for any i ∈ [s] and j ∈ [r],

and G[X ′ℓ \ V (M∗)] contains a balanced perfect matching. Note that since n′ ≥ n − ζn/2
we have n′′ ≥ n+/k − ζn. We add the copies of Kk in M∗ to M , and let X ′′i

j, X
′′i, X ′′, G′′

be obtained from X ′i
j, X

′i, X ′, G′ by deleting the vertices covered by M∗. This leaves an

s-row-decomposition of G′′ into blocks X ′′i
j of size pin

′′, in which G[X ′′ℓ] contains a balanced

perfect matching. As before G[X ′′i] contains a trivial balanced K1-packing for every i 6= ℓ.

Finally, any vertex v ∈ X ′i
j has lost at most k|M∗| ≤ βn neighbours in X ′i′

j′ for any i 6= i′

and j 6= j′, so still has at least pi′n
′ − 2βn ≥ pi′n

′′ − αn′′. So the enlarged matching M ,
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restricted blocks X ′′i
j and G′′ satisfy (i) and (ii) with n′′ in place of n′, which completes the

proof in this case.

Case 2: There are at least two rows i with pi ≥ 2. In this case we modify the cliques in
M2 and the blocks X ′i

j so that after these modifications G[X ′i] contains a balanced perfect

Kpi-packing for each i ∈ [s]. We proceed through each i ∈ [s] in turn. When considering any

i ∈ [s] we leave all blocks X ′i′
j with i′ 6= i unaltered. We observed previously that if pi 6= 2,

then G[X ′i] contains a balanced perfect Kpi-packing, so no modifications are required to
achieve the desired packings in such rows.

This leaves only those rows i ∈ [s] with pi = 2 to consider. Suppose first that row i is pair-
complete. As in Case 1.1 we let S′i

j = Si
j ∩X ′i

j for each j ∈ [r], which gives |S′i
j| = (1±2ζ)n′

for each j ∈ [r], and for any j′ 6= j, any vertex in S′i
j has at most 2ζn′ non-neighbours in

S′i
j′ , and any vertex in X ′i

j \ S′i
j has at most 2ζn′ non-neighbours in X ′i

j′ \ S′i
j′ . If |S′i| is

even then G[X ′i
j ] contains a balanced perfect matching by Lemma 6.4. So we may suppose

that |S′i| is odd. Fix any i′ with i′ 6= i and pi′ ≥ 2. We choose any i′i-distributed copy K ′ of
Kk in M2, let x be the vertex of K ′ in X ′i, and let j be such that x ∈ X ′i

j. By Claim 7.7(i),

every vertex in K ′ is good, so at least 2n′ − kβn vertices y ∈ X ′i
j are adjacent to every

member of V (K ′) \ {x}. So we may choose a vertex y ∈ X ′i
j ∩

⋂

v∈V (K ′)\{x} N(v) such that

|{x, y}∩Si
j | is odd. We replace K ′ in M by the copy of Kk in G induced by {y}∪V (K ′)\{x},

and replace y by x in X ′i
j and G′. We also delete y from S′i

j if y ∈ S′i
j , and add x to S′i

j if

x ∈ Si
j. So |S′i

j| is now even. Since x is good, we may now apply Lemma 6.4 as in Case 1.1

to find a balanced perfect matching in G[X ′i].
Finally suppose that pi = 2 and row i is not pair-complete, that is G1[X

i] was not d′-
pair-complete. Since G1[X

i] was also not d′-splittable, as before Proposition 6.1 implies that
G[X ′i] is neither d′′-splittable nor d′′-pair-complete. Fix any i′ with i′ 6= i and pi′ ≥ 2. Recall
that M2 contains ⌈ηn⌉ copies K ′ of Kk in G[Y ] which are i′i-distributed. We can fix q ∈ [r]
so that at least ηn/r such K ′ have exactly one vertex in Y i

q . We assign arbitrarily ηn/r such

K ′ to each ordered triple (i1, i2, i3) of distinct elements of [r] \ {q}, so that at least ηn/r4

of the K ′ are assigned to each triple. Now, fix any triple (j1, j2, j3) and any K ′ which was
assigned to it. Let x be the vertex of K ′ in Y i

q , and consider paths xx1x2x3y of length 4 in

G with xℓ ∈ X ′i
jℓ
for ℓ ∈ [3] and y ∈ X ′i

q ∩
⋂

v∈V (K ′)\{x} N(v). Since every vertex of K ′ \{x}
is good and does not lie in W i, at most kβn vertices y ∈ X ′i

q fail to be adjacent to all of
V (K ′) \ {x}. Choosing x1, x2, x3 and y in turn, recalling (†) and n′ ≥ n− ζn/2, there are at
least 2n′−n ≥ (1−ζ)n′ choices for each xℓ, and at least 2n′−n−(k−1)βn ≥ (1−ζ)n′ choices
for y. We obtain at least n4/2 such paths, and so we may fix some y = y(x) which lies in at
least n3/5 such paths. For each of these n3/5 paths xx1x2x3y we add a ‘fake’ edge between
y and x1. Then allowing the use of fake edges, y lies in at least n3/5 4-cycles x1x2x3y of
length 4 in G with xℓ ∈ X ′i

jℓ
for ℓ ∈ [3]. We introduce fake edges in this manner for every

K ′ in M2 which was assigned to the triple (j1, j2, j3), for every ordered triple (j1, j2, j3) of
distinct elements of [r]\{q}. Let G∗ be the graph formed from G[X ′i] by the addition of fake
edges. Then by construction, for any triple (j1, j2, j3) there are at least (ηn/r

4)(n3/5) ≥ νn4

4-cycles yx1x2x3 in G∗ with y ∈ X ′i
q and xℓ ∈ X ′i

jℓ
for ℓ ∈ [3]. Furthermore, G∗ contains

a spanning subgraph G[X ′i] which is neither d′′-splittable nor d′′-pair-complete, and has
δ∗(G[X ′i]) ≥ 2n′ − n ≥ n′ − ζn. Then G∗ contains a balanced perfect matching M∗ by
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Lemma 6.2 (with q in place of 1). Of course, M∗ may contain fake edges. However, any
fake edge in M∗ is of the form y(x)x1, where x1 is a neighbour of x, and x lies in some K ′

in M2. Since y(x) is uniquely determined by x and M∗ is a matching, at most one edge in
M∗ has the form y(x)x1 for each x. Furthermore, by choice of y = y(x), {y} ∪ V (K ′) \ {x}
induces a copy K ′

y of Kk in G, and xx1 is an edge. So we may replace K ′ in M2 by K ′
y,

replace y in X ′i
q by x (note that x is good), and the fake edge yx1 in M∗ by the edge xx1 of

G. We carry out these substitutions for every fake edge in M∗, at the end of which M∗ is a
perfect matching in G[X ′i], which is balanced since each edge was replaced with another of
the same index.

When considering row i we only replace cliques of M2 that are i′i-distributed for some
i′ 6= i. These cliques uniquely determine i, so do not affect the replacements for other rows.
We may therefore proceed through every i ∈ [s] in this manner. After doing so, the modified
blocks X ′i

j are such that G[X ′i] contains a balanced perfect Kpi-packing for any i ∈ [s], i.e.

this row-decomposition of the modified G′ satisfies condition (ii) of the lemma. Note that
we still have |X ′i

j | = pin
′ for any i ∈ [s]. Since we only replaced good vertices with good

vertices, every vertex in any modified block X ′i
j is good, and so condition (i) of the lemma

holds as in Claim 7.10. This completes the proof of Lemma 7.2.

8. Completing the proof of Theorem 1.1

In this section we combine the results of previous sections to prove Theorem 1.1. For this
we also use a theorem of Daykin and Häggkvist [3], which gives a minimum vertex degree
condition which is sufficient to ensure the existence of a perfect matching in a k-partite
k-graph whose vertex classes each have size n.

Theorem 8.1 ([3]). Suppose that G is a k-partite k-graph whose vertex classes each have
size n, in which every vertex lies in at least k−1

k nk−1 edges. Then G contains a perfect
matching.

We can now give the proof of Theorem 1.1, as outlined in Section 3, which we first restate.

Theorem 1.1. For any r ≥ k there exists n0 such that for any n ≥ n0 with k | rn the
following statement holds. Let G be an r-partite graph whose vertex classes each have size n
such that δ∗(G) ≥ (k − 1)n/k. Then G contains a perfect Kk-packing, unless rn/k is odd,
k | n, and G ∼= Γn,r,k.

Proof. First suppose that k = 2, so a perfect Kk-packing is a perfect matching. If r = 2
then G is a bipartite graph with minimum degree at least n/2, so has a perfect matching.
For r ≥ 3 the result follows from Tutte’s theorem, which states that a graph G on the
vertex set V contains a perfect matching if and only if for any U ⊆ V the number of odd
components (i.e. connected components of odd size) in G[V \U ] is at most |U |. To see that
this implies the theorem for k = 2, suppose for a contradiction that there is some U ⊆ V
for which G[V \ U ] has more than |U | odd components. Clearly |U | < |V |/2 = rn/2. So by
averaging U has fewer than n/2 vertices in some Vj . Since δ

∗(G) ≥ n/2, every v ∈ V \Vj has
a neighbour in Vj \ U , so G[V \ U ] has at most |Vj \ U | ≤ n components. So we must have
|U | < n. But then U must have fewer than n/r ≤ n/3 vertices in some Vj , so any v ∈ V \Vj

has more than n/6 neighbours in Vj . It follows that G[V \ U ] has at most 5 components,
so |U | < 5. So any v ∈ V \ Vj actually has more than n/2 − 5 > n/3 neighbours in Vj , so
G[V \U ] has at most 2 components. So |U | ≤ 1. If |U | = 1 then |V \U | is odd, so G[V \U ]
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cannot have 2 odd components. The only remaining possibility is that |U | = 0 and G has 2
odd components. Let C1 and C2 be these components, and for each i ∈ [2] and j ∈ [r] let V i

j

be the vertices of Vj covered by Ci. Then |V i
j | ≥ δ∗(G) ≥ n/2, so we deduce that |V i

j | = n/2

and G[V i
j , V

i
j′ ] is a complete bipartite graph for any i ∈ [2] and j 6= j′. So |C1| = rn/2 is

odd, 2 divides n and G is isomorphic to Γn,r,2, contradicting our assumption.
We may therefore assume that k ≥ 3. If r = k = 3 then Theorem 1.1 holds by the result

of [9]. So we may assume that r > 3. We introduce a new constant d with 1/n ≪ d ≪ 1/r.
Since r > 3 and r ≥ k ≥ 3 we may apply Lemma 7.2 (with n and d in place of n+ and α)
to delete the vertices of a collection of pairwise vertex-disjoint copies of Kk from G. Letting
V ′ be the set of undeleted vertices, we obtain G′ = G[V ′] and an s-row-decomposition of
G′ into blocks X ′i

j of size pin
′ for i ∈ [s] and j ∈ [r], for some s ∈ [k] and pi ∈ [k] with

∑

i∈[s] pi = k, such that r! | n′, n′ ≥ n/k − dn and

(i) for each i, i′ ∈ [s] with i 6= i′ and j, j′ ∈ [r] with j 6= j′, any vertex v ∈ X ′i
j has at least

pi′n
′ − dn′ neighbours in X ′i′

j′ , and

(ii) for every i ∈ [s] the row G[X ′i] contains a balanced perfect Kpi-packing M i.

Note that we must have |M i| = rn′ for any i ∈ [s].
Now we implement step (iii) of the proof outline, by constructing auxiliary hypergraphs,

perfect matchings of which describe how to glue together the perfect Kpi-packings in the
rows into a perfect Kk-packing of G. We partition [k] arbitrarily into sets Ai with |Ai| = pi
for i ∈ [s]. Let Σ denote the set of all injective functions σ : [k] → [r]. For each i ∈ [s] we

partition M i into sets Ei
σ of size N := rn′(r−k)!

r! for σ ∈ Σ, so that each member of Ei
σ has

index σ(Ai). To see that this is possible, fix any B ∈
([r]
pi

)

. Since M i is balanced, rn′/
( r
pi

)

members of M i have index B. Note that there are pi!(r−pi)!
(r−k)! members of Σ with σ(Ai) = B.

Since pi!(r−pi)!
(r−k)! · N = rn′/

( r
pi

)

we may choose the sets Ei
σ as required. For every σ ∈ Σ,

we form an auxiliary s-partite s-graph Hσ with vertex classes Ei
σ for i ∈ [s], where a set

{e1, e2, . . . , es} with ei ∈ Ei
σ for each i ∈ [s] is an edge of Hσ if and only if xy ∈ G for any

i 6= j, x ∈ ei and y ∈ ej . Thus Hσ has N vertices in each vertex class, and e1e2 . . . es is an
edge of Hσ if and only if

⋃

j∈[s] V (ej) induces a copy of Kk in G.

Next we show that each Hσ has high minimum degree. Fix σ ∈ Σ and i ∈ [s]. Then
for any ei ∈ Ei

σ, ei is a copy of Kpi in G[X ′i] with index σ(Ai), and so by (i) each vertex
x ∈ V (ei) has at most dn′ non-neighbours in each X ′ℓ

j with ℓ 6= i and j /∈ σ(Ai). So at

most pidn
′ vertices of X ′ℓ

j are not neighbours of some vertex of ei. Now we can estimate the

number of (s − 1)-tuples (ej ∈ Ej
σ : j ∈ [s] \ {i}) so that {e1, . . . , es} is not an edge of Hσ.

There are fewer than k choices for j ∈ [s] \ {i}, at most pidn
′ elements ej ∈ Ej

σ that contain

a non-neighbour of some vertex of ei, and at most N s−2 choices for ej′ ∈ Ej′
σ , j′ ∈ [s]\{i, j}.

So the number of edges of Hσ containing ei is at least N s−1 − kpidn
′N s−2 ≥ k−1

k N s−1.
Since ei was arbitrary, Lemma 8.1 gives a perfect matching in each Hσ. This corresponds to
a perfect Kk-packing in G covering the vertices of

⋃

i∈[s] V (Ei
σ), where V (Ei

σ) denotes the

vertices covered by members of Ei
σ. Combining these perfect Kk-packings, and adding the

pairwise vertex-disjoint copies of Kk deleted in forming G′, we obtain a perfect Kk-packing
in G. �
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9. Concluding remarks

By examining the proof, one can obtain a partial stability result, i.e. some approximate
structure for any r-partite graph G with vertex classes each of size n, where k | rn, such
that δ∗(G) ≥ (k − 1)n/k − o(n), but G does not contain a perfect Kk-packing. To do this,
note that under this weaker minimum degree assumption, the n in (†) must replaced by
n+ o(n). We now say that a block Xi

j is bad with respect to v if v has more than n/2+ o(n)

non-neighbours in Xi
j, so it is still true that at most one block in each column is bad with

respect to a given vertex. Then each of our applications of (†) proceeds as before, except
for in Claim 7.6, where we used the exact statement of (†) (i.e. the exact minimum degree
hypothesis). This was needed to choose a matching Ei in G[W i] of size ai, each of whose
edges contains a good vertex, for each i ∈ I+ with pi = 1. If we can choose such matchings
Ei then the rest of the proof to give a perfect Kk-packing still works under the assumption
δ∗(G) ≥ (k − 1)n/k − o(n). So we can assume that there is some i ∈ I+ with pi = 1 for
which no such matching exists. Since the number of bad vertices and ai are o(n), it follows
that W i is a subset of size rn/k + o(n) with o(n2) edges, i.e. we have a sparse set of about
1/k-proportion of the vertices. On the other hand, this is essentially all that can be said
about the structure of G, as any such G with an independent set of size rn/k + 1 cannot
have a perfect Kk-packing.
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