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We prove that a graph has an r-bounded subdivision of a 
wheel if and only if it does not have a graph-decomposition of 
locality r and width at most two.
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1. Introduction

In [3] we introduced local 2-separators of graphs and proved a local version of the 
2-separator theorem. Here, we give an application of that theorem.

An important class of graphs is the class of series-parallel graphs. A well-known fact 
about this class is that a graph has a tree-decomposition of width at most two if and 
only if it has no K4-subdivision. We prove an analogue of this fact in our new context 
of local separators.

Examples of graphs of diameter r are r-bounded subdivisions, see Fig. 1 for an example 
and Section 2 for details. The main result of this paper is the following.
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Fig. 1. An example of a subdivision of a wheel that is r-bounded. Here all the shaded triangularly shaped 
faces have length at most r.

Theorem 1.1. Let G be a graph and r ∈ N ∪ {∞} be a parameter. Then precisely one of 
the following holds.

1. G has an r-bounded subdivision of a wheel;
2. G has a graph-decomposition of locality r and width at most two.

Related results. Shallow minors were introduced in 1994 by Plotkin, Rao and Smith 
[13], and bounded subdivisions are a particular type of shallow minors. Recently shallow 
minors received attention in the context of the systematic analysis of Sparsity, see in 
particular the book of Nešetřil and Ossana de Mendez [12] and [7,8,10,11] for some recent 
work on shallow minors. While research in this area so far has focused on exploring the 
asymptotic relationships between various classes of sparse graphs, to my knowledge, 
Theorem 1.1 is the first genuine example of an explicit characterisation by excluded 
shallow minors or bounded subdivisions.

In [16], Thomassen proved that every graph with e(G) ≥ 2n − 2 contains a special 
K4-subdivision; that is, a cycle together with a single vertex that has three neighbours 
on the cycle. For e(G) = 2n − 3, Thomassen characterised graphs without a special 
K4-subdivision in terms of admitting a (K3, K3,3)-cockade (in modern terms these are 
just tree-decomposition of adhesion two with complete separators whose parts are K3 or 
K3,3).

The grid theorem [6,14] says that a graph either has a large grid as a minor or else a 
tree-decomposition of bounded width. In spirit this is a similar statement to Theorem 1.1: 
the absence of a specific substructure is characterised by the existence of a global graph-
decomposition. However, there is a difference in the quantification. Indeed, Theorem 1.1
is exact in the sense that the two conditions in there are mutually exclusive, unlike for 
the grid theorem (even in the most recent version of [5]).

A natural continuation of our research might be to prove a grid theorem for shallow 
minors, as follows.

Open Problem 1.2. Given a parameter r, characterise the graphs with graph-decomposi-
tions of bounded width and locality at least r.
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2. Bounded subdivisions

We assume that the reader is familiar with [3]; in particular with the definition of 
local cutvertices and local 2-separators; for convenience we recall the main definitions 
from there in Appendix A. A connected graph is r-locally 2-connected if it does not have 
an r-local cutvertex and it has a cycle of length at most r (in particular such graphs 
have at least three vertices). So there are no r-locally 2-connected graphs for r < 3. A 
graph is r-locally 2-connected if all its components are r-locally 2-connected.

A connected r-locally 2-connected graph is r-locally 3-connected if it does not have 
an r-local 2-separator and it has at least four vertices. A graph is r-locally 3-connected
if all its components are r-locally 3-connected.

Lemma 2.1. A 3-connected graph G whose cycles of length at most r generate all its 
cycles is r-locally 3-connected.

Proof. By definition 3-connected graphs have at least four vertices.
Suppose for a contradiction that the graph G has an r-local cutvertex. Call it v. Let 

P be a path of G joining two neighbours of v in different components of the punctured 
ball Br/2(v) −v. Let P +v be the graph obtained from P by adding the vertex v together 
with its two incident edges to the endvertices of P . By construction P + v is a cycle. By 
assumption the cycle P + v is generated by cycles of length at most r. Pick a component 
of Br/2(v) − v containing an endvertex of the path P . Denote it by K. Let W be the set 
of edges incident with the vertex v to the component K. As the cycle P + v intersects 
the edge set W oddly (in fact just once), there needs to be a generating cycle o such that 
it intersects the edge set W oddly; and so just once as it has no more than two edges 
incident with the vertex v. As o is a cycle of the ball Br/2(v), we conclude that o − v

is a subset of the component K. So o intersects the edge set W in two edges. This is a 
contradiction. Thus G has no r-local cutvertex.

The proof that G has no r-local 2-separator is analogous.1 �
A wheel is a graph obtained from a cycle by adding a single vertex and connecting it 

to all vertices of the cycle. A subdivision of a wheel is r-local if its cycles of length at 
most r generate all its cycles. An r-weighted wheel is a graph isomorphic to a wheel with 
integer-valued length assigned to its edges such that if one replaced each edge by a path 
of its length, then the resulting graph is an r-local subdivision of a wheel.

Lemma 2.2. r-weighted wheels are r-locally 3-connected.

1 The structure of that case is really the same as for local cutvertices. First suppose for a contradiction 
that there is a local 2-separator. Then construct a (long) cycle of G that ‘traverses’ this local 2-separator. By 
assumption it is generated by short cycles (those of length at most r). As in the other case, we conclude that 
there also must be a short cycle that traverses the local 2-separator. This will be the desired contradiction 
as local 2-separators are separating the graph locally and hence cannot be traversed by a short cycle.
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Proof. Wheels are 3-connected. Hence this follows from Lemma 2.1. �
Remark 2.3. All graphs in this paper are weighted graphs; that is, graph with length 
assigned to their edges. All edge-lengths are positive integers. For most of our lemmas it 
does not make a difference that we consider weighted graphs instead of usual graphs. In 
the few places, where it matters, we point that out explicitly. It is essential in this paper 
that we work with weighted graphs as the torsos of graph-decompositions are weighted 
graphs.

Moreover, all graphs considered in the paper are simple; that is, they do not have 
loops or parallel edges.

Lemma 2.4. Any r-local subdivision of a wheel has diameter at most r.

Proof. We denote the center of the wheel by c. The rim is the unique cycle of a (subdi-
vision of a) wheel that does not contain the vertex c. We distinguish two cases.

Case 1: the rim has length more than r. By r-locality of the wheel, every vertex is in 
a cycle of length at most r. This cycle must contain the center c. So every vertex has 
distance at most r/2 from the center. So the diameter is at most r.

Case 2: the rim has length at most r. Let x and y be two arbitrary vertices. By 
assumption they are each contained in a cycle of length at most r. If both these cycles 
contain the center, then both these vertices have distance at most r/2 from the center, 
so distance at most r from another. Otherwise one of these cycles must be the rim. The 
other cycle must contain a vertex from the rim. So x and y both have distance at most 
r/2 from that vertex, and so distance at most r from another. �

We refer to the triangles of a wheel containing the center of the wheel as the pieces
of the wheel (these are all the triangles of the wheel except in the case of K4). A piece
of a subdivision of a wheel is a cycle obtained by subdividing a piece.

In our definition of when a subdivision of a wheel is r-local, we were flexible about the 
structure of the generating set of cycles. As most cycles in wheels use the center, we can 
– in fact – be more explicit as follows. We say that a subdivision of a wheel is r-bounded
if all its pieces have length at most r. Our aim is to prove the following.

Lemma 2.5. Every r-local subdivision of a wheel contains a subdivision of a wheel that is 
r-bounded.

First we do some preparation. We say that a subdivision of a wheel has an r-explicit
generating set if either all its pieces have length at most r or else all its pieces except 
for one have length at most r and the rim (that is, the unique cycle not containing the 
center) has length at most r.

Example 2.6. Every subdivision of a wheel with an r-explicit generating set is r-local.
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Lemma 2.7. Every subdivision of a wheel with an r-explicit generating set contains a 
subdivision of a wheel that is r-bounded.

Proof. It suffices to show that every subdivision of a wheel where all but one of the 
pieces have length at most r and the rim has length at most r, contains an r-bounded 
subdivision of a wheel. In fact we will find an r-bounded subdivision of the 3-wheel K4
as follows. By assumption there are two adjacent pieces – that is, two pieces sharing at 
least one edge – of length at most r. Each of these pieces shares at least one edge with 
the rim. Let H be the union of the rim with these two adjacent pieces. As not all edges 
of the rim are in these two adjacent pieces, the graph H is a subdivision of K4. There 
is a unique vertex in the intersection of the old rim and the two old adjacent pieces. We 
see this graph H = K4 as a 3-wheel with that vertex as the center. Then the pieces are 
precisely the two adjacent old pieces and the old rim. So the graph H is an r-bounded 
subdivision of a 3-wheel. �
Lemma 2.8. Every r-local subdivision of a wheel contains a subdivision of a wheel that 
has an r-explicit generating set.

In the proof, we use the following notion: a cycle is geodesic within a graph G if it 
contains a shortest path of G between any two of its vertices.

Proof. By suppressing vertices of degree two if necessary, it suffices to prove the lemma 
for r-weighted wheels. Let W be an r-weighted wheel. We prove this lemma by induction 
on the size of W (to be precise, the number of degree three vertices on its rim).

Base Case: the wheel W is the graph K4. Assume we are given a set of cycles of length 
at most r that together generate all cycles of W . As every cycle of K4 is a piece or the 
rim, either all cycles in the generating set are pieces or else all but one are pieces and 
the last one is the rim. This means that for K4 any generating set is r-explicit.

Now assume that W is a wheel with at least four vertices on the rim.
Case 1: all geodesic cycles of W of length at most r are pieces or the rim. As every 

cycle in the generating set has length at most r, it is generated by geodesic cycles of 
length at most r. Hence the pieces and the rim together generate all cycles of W . So 
either all pieces of W must have length at most r, or else the rim has length at most r
and all but at most one piece has length at most r. Thus the wheel W has an r-explicit 
generating set.2

Case 2: not Case 1; that is, there is a geodesic cycle o of W of length at most r that 
is not the rim or a piece.

Our strategy in this case will be to find an r-local subdivision of a wheel within W
with less branching vertices on the rim. This smaller wheel will then have an r-explicit 
generating set by induction.

2 Note that we do not apply the induction hypothesis in Case 1. So strictly speaking the base case is a 
special case of Case 1.
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As the rim is the only cycle that does not contain the center of the wheel W , the 
cycle o must contain the center. As the cycle o is not a piece, it must contain at least one 
chord, denote it by x. Let W ′ be the subgraph of W obtained by deleting the chord x of 
the cycle o. As the wheel W is not the 3-wheel K4, the subgraph W ′ is a subdivision of a 
wheel. Let C be a set of cycles of length at most r generating all cycles of W . Let P be a 
shortest path between the two endvertices of the chord x included in the geodesic cycle 
o. We obtain C′ from C by replacing in each element of C the chord x by the subpath 
P of o. The set C′ is a set of closed walks3 of the graph W ′ of length at most r that 
generates all its cycles. Hence the subdivision W ′ is r-local. By induction, the graph W ′

has a subdivision with an r-explicit generating set. This completes the proof. �
Proof of Lemma 2.5. Combine Lemma 2.7 and Lemma 2.8. �
3. Reduction to the locally 3-connected case

A graph H is called an r-local cut-subgraph of a graph G if H is obtained from G by 
successively deleting edges and vertices and cutting at r-local 1-separators and r-local 
2-separators. Here we follow the convention that after cutting at a local 2-separator, we 
immediately replace the torso edges by paths of the same length.

Example 3.1. A cycle of length � ≥ r + 1 has a path with the same number of edges as 
a cut-subgraph but not as a subgraph.

If H is a disconnected cut-subgraph of a graph G, then two of its edges can be copies 
of the same edge of G, one of which lying on a replacement path for a torso edge.

In contrast to Example 3.1, if the smaller graph H is sufficiently connected and not 
too big, the cut-subgraph relation is just the usual subgraph relation, as shown in the 
following technical lemma.

Lemma 3.2. Assume a graph H is an r-local cut-subgraph of a graph G. If the graph H
has diameter at most r, then it is a subgraph of G.

Proof. We prove this by induction on the number of operations required to obtain H
from G. Let G′ be the graph obtained from G by performing the first operation. By 
induction, H is a subgraph of G′. If G′ is a subgraph of G, we are fine. Hence we are left 
with two cases.

Case 1: G′ is obtained from G by locally cutting a local cutvertex x. By the definition 
of r-local cutting, two slices of the same vertex have distance more than r. As the graph 
H has diameter at most r, at most one slice of the vertex x is in the graph H. If existent, 
denote such a slice of x in H by x′. Let G′′ be the subgraph of G′ obtained by deleting 

3 Every closed walk can be written as a concatenation of cycles of smaller length. Hence it suffices to 
construct a generating set consisting of closed walks in order to apply the induction hypothesis.
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all slices of x different from x′ – and if no slice of x is in H, we delete all slices of x. By 
construction, the graph G′′ has the graph H as a subgraph. The graph G′′ is equal to 
the subgraph of G obtained by deleting all edges incident with x that are not incident 
with x′. Thus H is a subgraph of the graph G.

Case 2: G′ is obtained from G by r-locally cutting at an r-local separator {x, y}. By 
[3, Observation 5.2], no two slices of the same vertex of the local separator {x, y} are in 
the graph H. If one of the vertices x or y has no slice in the graph H, then we treat this 
case as Case 1. Hence we may assume, and we do assume, that both vertices x and y
have slices in the graph H. Denote these slices by x′ and y′, respectively. If these slices 
come from different components of Exr(x, y) − x − y, then we treat each slice separately 
as in Case 1. Hence we may assume, and we do assume, that both slices x′ and y′ come 
from the same component of Exr(x, y) − x − y. Denote that component by K.

Let P be a path of the graph G corresponding to the torso edge x′y′ of the graph G′. 
We denote the path of G′ by which the torso edge x′y′ is replaced by P ′.

If the graph H does not contain any interior vertex of the path P ′, then we treat each 
slice separately as in Case 1. Hence we may assume, and we do assume, that the graph 
H contains an interior vertex of the path P ′.

Sublemma 3.3. There does not exist a vertex z of G that has two copies in the graph H.

Proof. Suppose for a contradiction there is such a vertex z. Then z must have a copy in 
the path P ′ and a copy in P . As the graph H has diameter at most r, there is a path Q of 
length at most r between these two copies of z in the graph H, and so in the supergraph 
G′. As no interior vertex of the path P ′ has a neighbour outside the path P ′, the path 
Q must contain one of the endvertices of the path P ′. Let v be such an endvertex with 
Qv ⊆ P ′. Denote by R the subpath of the path P from which the subpath Qv of P ′ is 
cloned from. Then vQR is a walk between two different slices of the vertex from which 
v is cloned from. This path has length at most r. As two slices never have distance at 
most r by [3, Observation 5.2], we derive at a contradiction. So there cannot be a vertex 
z of G that has two copies in the graph H. �

We obtain the graph G′′ from the graph G′ by deleting all slices of the vertices x and 
y except for x′ and y′, deleting all torso-edge replacement paths between slices different 
from x′ and y′ – and by deleting all vertices of the paths P and P ′ that are not in the 
graph H. By construction, the graph G′′ has the graph H as a subgraph.

Sublemma 3.4. G′′ is a subgraph of G.

Proof. Label an interior vertex of the path P of G by P ′ if it has a clone in the graph 
H that is on the path P ′. Label it by P if it has a clone in the graph H that is on the 
path P . Otherwise do not give it any label. We claim that the graph G′′ is a subgraph 
of the graph G. To see that delete from G all edges incident with x or y that are not 



28 J. Carmesin / Journal of Combinatorial Theory, Series B 161 (2023) 21–51
incident with x′ or y′, delete interior vertices of P without a label, for vertices with label 
P ′ delete all its incident edges that go to a vertex outside P ′. By Sublemma 3.3 the 
resulting subgraph of G is equal to G′′. �

By Sublemma 3.4, the graph G is a supergraph of the graph G′′, which in turn is a 
supergraph of H. �
Corollary 3.5. If a graph G contains a graph H that is an r-local subdivision of a wheel 
as a cut-subgraph, then H is a subgraph of G.

Proof. By Lemma 2.4 r-local subdivisions of wheels have diameter at most r. So the 
corollary follows from Lemma 3.2. �
Theorem 3.6. Let G be a graph and r ∈ N ∪ {∞} be a parameter. Then precisely one of 
the following holds.

1. G has an r-bounded subdivision of a wheel;
2. G has a graph-decomposition of locality r and adhesion at most two such that all 

torsos are cycles or single edges.

Proof that Theorem 3.6 implies Theorem 1.1. The only difference between these two 
theorems is the formulation of the second condition. Clearly, any graph-decomposition 
as in condition 2 of Theorem 3.6 can be refined to yield a graph-decomposition as in 
Theorem 1.1. �

In the next section we prove the following.

Lemma 3.7. Every r-locally 3-connected graph contains an r-local subdivision of a wheel.

Proof that Lemma 3.7 implies Theorem 3.6. Let G be a graph and r be a parameter. 
Take the r-local block-cutvertex-graph-decomposition of G as in [3, Theorem B.1]. Then 
we take the r-local 2-separator decomposition [3, Theorem 1.2] of each block that is 
not a single edge. If all torsos of these decompositions are cycles, then we can stick 
these graph-decompositions together to obtain the graph-decomposition in condition 2 
of Theorem 3.6.

Hence we may assume, and we do assume, that one of the torsos of these decom-
positions is r-locally 3-connected. Call that torso β. The 2-block γ containing β is a 
cut-subgraph of G. To see that cut all local cutvertices contained in that block and then 
delete all vertices outside that block. And β is a cut-subgraph of γ. To see that cut all 
local 2-separators contained in β and then delete all vertices outside β. By Lemma 3.7
the torso β has a subgraph H that is an r-local subdivision of a wheel. To summarise, H
is a cut-subgraph of G. By Corollary 3.5, H is a subgraph of G; that is, G has an r-local 
subdivision of a wheel. By Lemma 2.5, G has an r-local subdivision of a wheel.
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By Lemma 2.2 conditions 1 and 2 in Theorem 3.6 mutually exclusive. �
4. From local 3-connectivity to a bounded wheel

This section is dedicated to the proof of Lemma 3.7, which is our last step in the 
proof of the main result stated in the Introduction. This proof is subdivided into several 
subsections. In Subsection 4.1, we prove that any weighted r-locally 3-connected graph 
contains a geodesic cycle of length at most r with at least four edges or else a certain 
K−

4 -subgraph. In Subsection 4.2, we use this particular K−
4 -subgraph to construct a 

bounded wheel as a subgraph. Hence it remains to construct a bounded subdivision of 
a wheel using that geodesic cycle. This is done in several steps.

In Subsection 4.3 we construct a bounded fan in any r-locally 3-connected graph. In 
Subsection 4.4, we give conditions under which we can construct an r-local subdivision 
of the 3-wheel (that is, K4) or the 4-wheel. In Subsection 4.5, and Subsection 4.6 we 
show how one can combine the results of the previous subsections to give a proof of 
Lemma 3.7.

4.1. A dichotomy result

Recall that a cycle is geodesic within a graph G if it contains a shortest path of G
between any two of its vertices.

We say that a weighted graph G is triangular (with parameter r) if all its geodesic 
cycles of length at most r are triangles and it contains an edge e that is a shortest path 
between its endvertices that is in at least two triangles of length at most r.

Example 4.1. A chordal graph that has the graph K−
4 as a subgraph, where all edges 

have unit length, is triangular for every parameter r ≥ 1.

Theorem 4.2. Every r-locally 3-connected (weighted) graph has geodesic cycle of length 
at most r with at least four edges or it is triangular with parameter r.

First we do some preparation.

Lemma 4.3. Let G be a graph with a K−
4 subgraph such that its two triangles have length 

at most r. Then G contains a cycle of length at most r with at least four edges – or it 
contains an edge that is a shortest path between its endvertices that is in at least two 
triangles of length at most r.

Proof. Let e be the unique edge of the K−
4 -subgraph that is in both its triangles. Let P

be a shortest path between the endvertices of the edge e. If the path P is equal to the 
edge e, we are done. Thus we may assume, and we do assume, that the path P contains 
at least two edges. If the path P contains at least three edges, consider the cycle P + e. 
This cycle has length at most r as it can be obtained from a triangle of K−

4 of length at 
most r by replacing its path of two edges between the endvertices of e by the (shortest) 
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path P . Hence we may assume, and we do assume, that the path P consists of precisely 
two edges. Thus there is one of the two triangles of K−

4 of length at most r that does 
not contain the middle vertex of the path P . We obtain a cycle with four edges from 
that triangle by replacing the edge e by the path P . As P is a shortest path, this 4-cycle 
has length at most r. �
Lemma 4.4. Every r-locally 3-connected graph G contains a cycle of length at most r
with at least four edges – or it is triangular.

Proof. As G is r-locally 2-connected, it includes a cycle o of length at most r. As we are 
done otherwise, we may assume, and we do assume, that o is a triangle. As G is r-locally 
3-connected, the component containing o has another vertex. Let v be a vertex of o that 
has a neighbour outside o. Denote this neighbour by w. Consider the punctured ball 
Br/2(v) − v. In there, there is a path P from w to some neighbour of v on the triangle 
o. Then P + v is a cycle (recall the definition of P + v from the proof of Lemma 2.1). 
By [3, Lemma 4.3] and [3, Lemma 3.1], the cycle P + v is generated by cycles of length 
at most r. Similarly as above, we may assume, and we do assume, that all of them are 
triangles. As the cycle P + v contains precisely one edge incident with the vertex v on 
o, one of the generating triangles must contain an odd number of edges incident with v
on the cycle o. Thus there is a generating triangle o′ sharing precisely one edge with the 
triangle o. Hence the two triangles o and o′ form a K−

4 subgraph.
If G has a cycle of length at most r that is not a triangle, we are done. Otherwise, by 

Lemma 4.3 the graph G is triangular. �
Proof of Theorem 4.2. By Lemma 4.4, we may assume, and we do assume, that the 
graph G has a cycle o of length at most r with at least four edges.

Pick a cycle o of minimal length amongst all cycles with at least four edges. If o
is geodesic, we are done. So suppose that the cycle o is not geodesic. Then there is a 
shortcut between two of its vertices; that is a path joining two vertices of the cycle o
whose length is strictly shorter than the distance between these vertices on the cycle 
o. Such a shortcut cuts the cycle o into two cycles, each of strictly smaller length. By 
minimality of o, both these new cycles must be triangles. In particular, the shortcut must 
be a single edge. Denote that edge by e. To summarise, we have found an edge e that 
is a shortest path between its endvertices that is contained in two triangles of length at 
most r.

If all geodesic cycles of length at most r of G are triangles, then G is triangular. 
Otherwise G has a geodesic cycle of length at most r that is not a triangle, which is the 
other outcome of the theorem. This completes the proof. �
4.2. The triangular case

In this subsection we prove the following special case of Lemma 3.7.



J. Carmesin / Journal of Combinatorial Theory, Series B 161 (2023) 21–51 31
Lemma 4.5. Let G be a (weighted) r-locally 3-connected graph that is triangular with 
parameter r. Then G contains an r-weighted wheel as a subgraph.

Proof. As G is triangular, it contains an edge e that is a shortest path between its 
endvertices, and there are two triangles of length at most r containing e. Denote the 
two endvertices of the edge e by v and w. Denote the two vertices on the triangles not 
incident with the edge e by x and y. To summarise, the vertices x, y, v and w span a 
K−

4 -subgraph.
Now we construct the following auxiliary graph. Its vertex set consists of the edges 

incident with the vertices v or w different from the edge e. Two such edges e1 and e2
are adjacent in this auxiliary graph if there is a geodesic cycle of G of length at most r
containing the edges e1 and e2. We denote this auxiliary graph by H.

Sublemma 4.6. In the graph H there is a path from the vertex vx of H to the vertex vy.

Proof. By assumption, the punctured explorer-neighbourhood Exr(v, w) − v−w is con-
nected. Let P be a path of Exr(v, w) from the vertex x to the vertex y. Let o be the cycle 
obtained from the path P by adding the vertex v. By [3, Lemma 4.3] and [3, Lemma 
3.1], there is a set C of cycles of length at most r of G generating the cycle o. As the 
geodesic cycles generate all cycles, we pick the set C so that it only contains geodesic 
cycles. As the graph G is triangular, all cycles in the set C are triangles.

Now let k be the connected component of the graph H containing the vertex vx. Each 
triangle in the set C containing the vertex v or w gives rise to precisely one edge of the 
graph H. So each of the generating triangles contains an even number of edges that are 
vertices of the component k. As the cycle o is equal to the sum over the cycles in C
– evaluated over the field F2 –, it also must contain an even number of edges that are 
vertices of the component k. By construction, it contains precisely two edges that are 
vertices of the auxiliary graph H; these are the edges vx and vy of the graph G. And 
the vertex vx is in the component k by construction. So also the vertex vy of H must 
be in the component k. Thus the vertices vx and vy are in the same component of the 
graph H. �

An edge of the auxiliary graph H between vertices e1 and e2 is green if all geodesic 
cycles of the graph G of length at most r containing e1 and e2 contain the edge e. Other 
edges of H are red. We distinguish two cases.

Case 1: there is a path in the graph H from the set {vx, wx} to the set {vy, wy}
consisting only of red edges.4 Let o1, ..., on be cycles giving rise to the edges of that path. 
As all these edges are red, we may pick, and we do pick, the cycles oi such that they do 
not contain the edge e. As G is triangular, all these cycles are triangles. So none of these 
triangles can use both of the vertices v and w. So there is one of these vertices, say v, 

4 This case includes the trivial case where xy is an edge of G. We will not use this in our argument.
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that is a vertex of all these triangles. Thus the vertex v is the center of a wheel, whose 
pieces are the triangles o1,..., on, vxw and vyw. As all its pieces have length at most r, 
this wheel is an r-weighted wheel.

Case 2: not Case 1; that is, there is a cut of the graph H separating the set {vx, wx}
from {vy, wy} that consists only of green edges.

Let S be the set of vertices reachable from the set {vy, wy} by a path using only red 
edges. Let b be the cut of the graph H between the set S and its complementary vertex 
set. The cut b must be nonempty by Sublemma 4.6. Let g be an arbitrary edge of the 
cut b. By construction of b, there is a red path (that is a path all whose edges are red) 
from {vx, wx} to an endvertex of g. Denote this path by P and the endvertex of P by 
z. For later reference, we point out that only one endvertex of the edge g can be in the 
set {vx, wx}, as both these vertices are on the same side of b.

Let o1, ..., on be cycles giving rise to the edges of the path P . As all these edges are 
red, we may pick, and we do pick, the cycles oi such that they do not contain the edge 
e. As G is triangular, all these cycles are triangles. So none of these triangles can use 
both of the vertices v and w. So there is one of these vertices, say v, that is a vertex of 
all these triangles. Let o be a cycle giving rise to the edge g.

We claim that the vertex v is the center of a wheel, whose pieces are the triangles 
o1,..., on, o and vxw. As all these cycles have length at most r, this wheel would be an 
r-weighted wheel. So all that remains to show is that there are at least three pieces; that 
is, that there is at least one cycle oi. In other words, the path P must not consists of a 
single vertex. This is not the case, indeed, as the triangle o would then share two edges 
with the triangle vxw. Then the triangles o and vxw would be identical, so the cycle o
would give rise to the edge between the vertices vx and wx. As pointed out above, this 
violates the choice of the edge g. Hence there is at least one cycle oi, and so o1,..., on, o
and vxw form the pieces of an r-weighted wheel centered at the vertex v. �
4.3. Constructing fans

A fan of parameter r centered around a vertex v is a sequence of oriented cycles 
o1, ..., on that all have length at most r and contain the vertex v that satisfy the following.

1. The intersection oi ∩ oj = {v} if |i − j| ≥ 2; and
2. each cycle oi has the form vLiMiRiv for subpaths Li, Mi and Ri such that Ri =

Li+1 = oi+1 ∩ oi for all5 i ∈ [n − 1].

See Fig. 2. We refer to the vertex v as the center of the fan. The start (or starting edge) 
of a fan is the first edge of the directed path L1 and the end (or ending edge) of the fan 
is the last edge of directed path Rn. Note that the starting edge and ending edge are 
always incident with the center of the fan.

5 We denote by [n] the set of the first n natural numbers except zero; that is {1, 2, .., n}.
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Fig. 2. A fan centered at the vertex v. The paths Mi are highlighted in grey.

A pre-fan of parameter r centered around the vertex v is a sequence of oriented cycles 
o1, ..., on that all have length at most r and contain the vertex v such that the vertex 
before after v on oi is equal to the vertex just after v on oi+1 (for i ∈ [n − 1]). The start
of a pre-fan is the edge of o1 just after v and the end of the fan is the edge just before v
on on.

Example 4.7. Every fan is a pre-fan.

Roughly speaking, the next lemma gives a way how pre-fans can be ‘improved to’ 
fans.

We say that a pre-fan (v, o1, ..., on) contains another pre-fan (v, o′1, ..., o′n) if 
⋃
oi ⊇

⋃
o′i; that is, the first pre-fan contains the second as a subgraph. Given a pre-fan F =

(o1, ..., on), we refer to the cycles oi as the pieces of the pre-fan F .

Lemma 4.8. Every pre-fan F ′ of parameter r centered at v contains a fan F of parameter 
r centered at v that has the same start and end.

Moreover, if the pre-fan F ′ has at least two pieces and the start is only an edge of its 
first cycle, and its end is only an edge of its last cycle, then the fan F has at least two 
pieces.

Proof. Let (v, o1, ..., on) be a pre-fan of parameter r centered at v. We consider the 
following operation. Assume two cycles oi and oj with i < j share a vertex x. Let Ri

be the path from x to v in the cyclic orientation of oriented cycle oi, and let Lj be the 
path from v to x in the cyclic orientation of the oriented cycle oj. We obtain o′i from oi
by replacing the directed path Ri by the reverse of the directed path Lj. Similarly, we 
obtain o′j from oj by replacing the directed path Lj by the reverse of the directed path 
Ri. If the path Ri is not longer than the path Lj, then (v, o1, ..., oi, o′j , oj+1, ..., on) is a 
pre-fan of parameter r centered at v. Otherwise (v, o1, ..., oi−1, o′i, oj , ..., on) is a pre-fan 
of parameter r centered at v. We refer to this new pre-fan as the reduction of the pre-fan 
(v, o1, ..., on) at the vertex x along the indices i and j. Clearly a reduction of a pre-fan 
F ′ has the same start and end as F ′ and is contained in F ′.

Fans are fixed points for the reduction operation. In fact, it will follow from this proof 
that they are the only fixed points. This might suggest the following proof strategy.

Given a pre-fan, we shall iteratively apply reductions to it. We shall show that this 
procedure eventually stops, and that when it stops we have reduced the pre-fan to a fan.
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Sublemma 4.9. Assume (v, ̂o1, ...ôm) is obtained from (v, o1, ...on) by a reduction at a 
vertex x along indices i < j − 1. Then n > m.

Proof. By construction m = n − (j − i + 1). �
By Sublemma 4.9, each time we perform a reduction along indices with distance at 

least two, the number of cycles shrinks. Hence eventually such reductions must be no 
longer possible; that is, cycles oi and oj with i < j− 1 can only intersect in the vertex v. 
For i ∈ [n −1], let Ri be a maximal subpath of the oriented cycle oi ending at the vertex 
v such that (the reverse of the directed path) Ri is a subpath of the oriented cycle oi+1. 
Let Li+1 = Ri. Let Mi be the subpath of the oriented cycle oi from the last vertex of 
the path Li to the first vertex of the path Ri.

We have shown that the cycle oi cannot intersect the cycle oi+1 in the subpath Li− v

(as this would intersect the cycle oi−1). If they intersect in an interior point of the path 
Mi, then applying a reduction at this point increases the length of the path Ri but 
leaves all paths Rk with k 	= i invariant. Also cycle length cannot increase during such a 
reduction. Hence we can only perform a bounded number of such reductions. After such 
reductions are no longer possible, the intersection of the cycles oi and oi+1 is precisely 
Ri. Doing this analysis for all indices i ∈ [n − 1] yields that we have a fan.

To see the ‘Moreover’-part note that under these assumptions our constructions ensure 
that the first piece never contains the ending edge and the last piece never contains the 
starting edge. Thus the final fan needs to have at least two pieces. �

Roughly speaking, the next lemma gives conditions under which pre-fans exist.

Lemma 4.10. Let G be a (weighted) r-locally 3-connected graph. Assume there is a cycle 
o′ containing vertices v0 and v1 that are not adjacent on the cycle o′. Assume o′ includes 
a shortest path P from v0 to v1.

There is a pre-fan of parameter r centered at some vertex vi none of whose pieces 
contains the vertex vi+1 (for some i ∈ F2). And there is a cycle o of length at most r
including P such that the start and end of the pre-fan are on the cycle o.

Moreover, if o 	= o′, then o is geodesic.

Remark 4.11. If all edges of the graph G have length one, then the vertices v0 and v1

cannot be adjacent in the graph G. Indeed, then the path P would have length one and 
thus v0 and v1 would be adjacent on the cycle o′.

Proof of Lemma 4.10. A cycle R of the explorer-neighbourhood Exr(v0, v1) is valid if it 
contains the vertex v0 but not the vertex v1, and it contains the two neighbours of v0 on 
o′.

Sublemma 4.12. There is a valid cycle.
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Proof. As the graph G is r-locally 3-connected, the punctured explorer-neighbourhood 
Exr(v0, v1) −v0−v1 is connected. So there is a path Q of Exr(v0, v1) −v0−v1 joining the 
two neighbours of the vertex v0 on the cycle o′, which by assumption are both different 
from the vertex v1. Then Q + v0 is a valid cycle. �

A cycle is friendly if it has length at most r, and if it contains both vertices vi, then 
it has the path P as a subpaths; moreover we require that it is geodesic.

Sublemma 4.13. Any valid cycle has a generating set of friendly cycles.

Proof. Let Q′ be a valid cycle. By [3, Lemma 4.3] and [3, Lemma 3.1] Q′ is generated 
by cycles of length at most r. We shall show by induction that any cycle x of length at 
most r has a generating set of friendly cycles. If x is not geodesic, then it is generated by 
two shorter cycles, which by induction have a generating set of friendly cycles. Hence we 
may assume, and we do assume, that the cycle x contains the vertices v0 and v1 but not 
the path P . Denote by X1 and X2 the two subpaths of the cycle x from v0 to v1. As P is 
a shortest path from v0 to v1, the closed walks PX1 and PX2 both have length at most 
the length of x. If one closed walk PXi is not a cycle, then it is an edge-disjoint union 
of cycles, and all cycles in this union have strictly fewer edges than the original cycle x. 
If PXi is a non-geodesic cycle, then it is generated by two shorter cycles. To summarise, 
either PXi is a friendly cycle or by induction it is generated by a set of friendly cycles. 
Thus we have shown that any cycle x in the generating set for the valid cycle Q′ has a 
generating set of friendly cycles, so Q′ has a generating set of friendly cycles. �

By Sublemma 4.12 and Sublemma 4.13, there is a valid cycle with a generating set 
of friendly cycles. Call such a valid cycle R. Denote a generating set of R consisting of 
friendly cycles by C.

By D we denote the set of all c ∈ C that contain both vertices v0 and v1. We distinguish 
two cases.

Case 0: |D| is even.
Now define the following auxiliary graph. Its vertex set are the cycles of C \ D that 

contain the vertex v0, the two subpaths of o′ between v0 and v1, and for each d ∈ D
we take the v0-v1-path d \ P . We denote the set of these paths by D′. We add an edge 
between any two vertices of the auxiliary graph whose corresponding cycles or paths 
share an edge incident with the vertex v0. We refer to this auxiliary graph as A0.

Sublemma 4.14. In the graph A0, there is a path from the vertex P to some other vertex 
in D′ ∪ {o′ \ P}.

Proof. Let K be the component of the graph A0 containing the vertex P . Denote by 
e the edge of P incident with its endvertex v0. Consider the sum S over all c ∈ C \ D
that are in the component K (over F2). This sum has even degree at every vertex – in 
particular the vertex v0. As |D| is even, and the sum over all c ∈ C is nontrivial at the 
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edge e, also the sum S is nontrivial at the edge e. So there must be another edge incident 
with the vertex v0 at which the sum S is non-zero. Denote such an edge by f .

If the edge f is in the cycle R, then f is on the cycle o′. As the edge f is not on the 
path P , it must be on the path o′ \ P . Thus the vertex o′ \ P of the graph A0 would 
be in the component K, as desired. Otherwise the edge f is not on R. So it must be on 
some d ∈ D. As the edge f is not on the path P , it must be on the path d \P . Thus the 
vertex d \ P of A0 would be in the component K, which completes the proof. �

By Sublemma 4.14, there is a path Q in the graph A0 from P to some vertex in 
D′∪{o′\P}. We pick a shortest such path. Then all interior vertices have their associated 
cycles in the set C \ D. These cycles form the pieces of a pre-fan centered at the vertex 
v0 of parameter r. Denote that pre-fan by F . If the endvertex of the path Q is o′ \P , we 
pick o = o′. Otherwise there is some d ∈ D such that d \ P is the endvertex of the path 
Q. We pick o = d. By construction, the path P is included in the cycle o, and this cycle 
has length at most r. Also the starting edge and the ending edge of the pre-fan F are 
on o. As none of the cycles of the pre-fan contains the vertex v1 by construction, this 
completes this case.

Moreover, if o 	= o′, then o ∈ C and so it is geodesic.
Case 1: |D| is odd. This case is somewhat similar to Case 0 with the roles of ‘v0’ and 

‘v1’ interchanged.
The graph A1 is defined like the graph A0 with the vertex ‘v1’ in place of the vertex 

‘v0’. We define D′ as in Case 0. Similarly as Sublemma 4.14 one proves the following.

Sublemma 4.15. In the graph A1, there is a path from the vertex P to some other vertex 
in D′ ∪ {o′ \ P}.

Proof. This is the same as the proof of Sublemma 4.14 with ‘v1’ in place of ‘v0’ and ‘A1’ 
in place of ‘A0’, and ‘odd’ in place of ‘even’. In particular, we argue as follows: ‘As |D|
is odd, and the sum over all c ∈ C is trivial at the edge e, the sum S is nontrivial at the 
edge e.’ Indeed, unlike in Case 0, here e /∈ R. �

The rest of this case is the same as in Case 0 with ‘v1’ in place of ‘v0’ and ‘A1’ in 
place of ‘A0’. �
4.4. Detecting bounded subdivisions of the 3-wheel or the 4-wheel

The purpose of this subsection is to prove Lemma 4.16 stated below.
A theta-graph (of parameter r) is a graph θ consisting of two vertices v and w and 

three internally disjoint paths between them such that at least two of the cycles obtained 
by concatenating a pair of these paths have length at most r. The vertices v and w are 
referred to as the branching vertices of θ. The three paths from v to w are referred to as 
arms, see Fig. 3.
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Fig. 3. A theta-graph with branching vertices v and w.

Fig. 4. A graph that is 3-connected but not r-locally 3-connected as can be seen by considering the explorer-
neighbourhood Exr(x, y). Lengths of edges are given in grey.

Lemma 4.16. Let G be a graph that contains a theta-graph θ of parameter r such that 
there is a cycle o of length at most r containing a branching vertex of θ and a path P
between interior vertices of different arms of θ that avoids the branching vertices of θ. 
Then G contains an r-local subdivision of the 3-wheel or the 4-wheel.

Example 4.17. The assumption that the cycle o contains a branching vertex cannot be 
omitted. An example demonstrating this is depicted in Fig. 4. Indeed, this graph has a 
theta-subgraph of parameter r, whose two branching vertices are denoted by x and y in 
the figure. This subgraph is obtained from the graph depicted by deleting the two edges 
of length r′ = (r/2) −1 that are incident with neither x nor y. This graph does not contain 
an r-local subdivision of a wheel as the graph obtained by r-locally cutting at the r-local 
2-separator {x, y} is a series-parallel graph. Hence this graph has a graph-decomposition 
of locality r and width two.

Instead of proving Lemma 4.16 directly, we shall deduce it from a variant, Lemma 4.21
stated below. Next we develop the context of Lemma 4.21.

A graph G is in the class W if it is obtained from a theta-graph θ of parameter r
by attaching6 a path P at interior vertices of different arms of the theta-graph θ such 
that G contains a cycle of length at most r including P . A weighted suppression of a 
graph is obtained by iteratively suppression vertices of degree two. Here the length of the 
suppression edge is the sum of the length of the two edges incident with the suppressed 
vertex.

6 Here attaching a path means that we add this path disjointly and then identify its endvertices as 
prescribed.
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Fig. 5. A graph in the class W∗.

Lemma 4.18. Any graph in W is a subdivision of the graph K4 such that there is a 
spanning tree all whose fundamental7 cycles have length at most r.

In particular, weighted suppressions of graphs in W are r-locally 3-connected.

Proof. Clearly any graph in the class W is a subdivision of the graph K4. It remains to 
construct a spanning tree such that all its fundamental cycles have length at most r.

Let o1 and o2 be two cycles of length at most r included in the theta-graph. Let X be 
a subpath of the theta-graph that together with the path P forms a cycle of length at 
most r. Note that the path X avoids at least one edge of every arm of the theta graph. 
Pick an edge e1 on an arm of the theta-graph that is in o1 but not in o2 so that e1 is not 
in X. Similarly, pick an edge e2 on an arm of the theta-graph that is in o2 but not in o1

so that e2 is not in X. Now pick an edge e3 on the path P arbitrarily. By construction 
the graph G − e1 − e2 − e3 is a spanning tree of G. Its fundamental cycles are o1, o2 and 
XP , all of which have length at most r as G ∈ W.

The ‘In particular’-part follows from the fact that the fundamental cycles of any 
spanning tree generate all cycles and Lemma 2.1. �

A graph G is in the class W∗ if it is obtained from a theta-graph θ of parameter r by 
attaching a path P at interior vertices of different arms of the theta-graph θ and another 
path Q at a branching vertex and some interior vertex of an arm that also contains a 
vertex of P such that in this arm this endvertex of P is in between the two endvertices 
of Q – in such a way that G contains a cycle of length at most r including both P and 
Q, see Fig. 5.

Lemma 4.19. Any graph in W∗ is a subdivision of the 4-wheel and all its cycles are 
generated by cycles of length at most r.

In particular, the weighted suppressions of graphs in W∗ are r-locally 3-connected.

7 Given a spanning tree T and an edge e not in T , the fundamental cycle of e (with respect to T ) is the 
unique cycle of the graph T + e.
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Proof. Let G be a graph in the class W∗. Remove the branching vertex of the theta-
graph that has degree four in G. Call that vertex v. Then remove all vertices of degree 
one iteratively. The resulting graph is a cycle o. In the graph G, there are four paths 
from o to v that only intersect at the common vertex v. Thus G is a subdivision of a 
4-wheel.

Let o1 and o2 be two cycles of the theta-graph of length at most r. Note that o1 and 
o2 together cover all edges of the theta-graph. By assumption there is a cycle u of length 
at most r including the paths P and Q. Let x be the endvertex of the path Q different 
from the branching vertex v. One of the cycles o1 or o2, say o1, contains the vertex x. So 
the cycle o1 contains a path of length at most r/2 between the vertices v and x. Denote 
this path by R1. The cycle u contains a path of length at most r/2 between v and x. 
Denote that path by R2. As the path R2 contains precisely one of the paths P and Q, it 
is distinct from the path R1. Thus the closed walk obtained by concatenating the paths 
R1 and R2 includes a cycle. Denote that cycle by o3. See Fig. 5.

Sublemma 4.20. The cycles o1, o2, o3 and u generate all cycles of the graph G.

Proof. The cycles o1 and o2 generate all cycles of the theta-graph. There is a unique 
arm A of the theta-graph containing the two endvertices of the path Q. Let o′3 be the 
cycle obtained from the path Q by joining its two endvertices in that arm. The cycle o′3
is generated by the cycles o3, o1, o2 and u. To see that note that one of o3 or o3 + u

is a closed walk that traverses the path P exactly once but does not traverse the path 
Q. By adding the cycles o1 and o2 we can ensure that this closed walk intersects the 
theta-graph only in the arm A. Thus we have shown that o3, o1, o2, u generate a closed 
walk that traverses P exactly once and otherwise only uses edges from the arm A; so 
this closed walk is equal to o′3.

Let u′ = u + o′3, which is a cycle containing the path P but not the path Q.
The cycles o1, o2, o′3 and u′ clearly generate all cycles of G. Hence o1, o2, o3 and u

generate all cycles of the graph G. �
The ‘In particular’-part follows from Lemma 2.1. �

Lemma 4.21. Let G be a graph as in Lemma 4.16.
Then G contains a graph in the class W ∪W∗.

Proof that Lemma 4.21 implies Lemma 4.16. This is a direct consequence of Lemma 
4.18 and Lemma 4.19. �

We prepare to prove Lemma 4.21. Let θ, o and P be as in Lemma 4.16.
An arc is a nontrivial8 subpath Q of o such that Q intersects the theta-graph θ

precisely in its endvertices. We say that Q is a (θ-)bridge if its endvertices are interior 

8 A path is nontrivial if it contains at least one edge.
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vertices of different arms of the theta-graph θ. Otherwise, we say that Q is a (θ-)detour. 
Note that the path P from the assumption includes a bridge, so there is at least one 
bridge.

Remark 4.22. In this proof we will step by step improve the theta-graph θ and the cycle 
o. Roughly speaking, this means that we will eliminate the arcs one by one – until at 
most two of them are left over. Then we will find a configuration in the classes W or 
W∗. We start by describing relevant properties of arcs.

No two arcs have adjacent internal vertices (here a vertex of a path is internal if it is 
not an endvertex). We say that an arc R is adjacent to an arc S if there is a subpath 
X of o joining some of their endvertices such that this subpath does not contain any 
internal vertices of arcs.

Example 4.23. If there are at least three arcs, then each arc is adjacent to precisely two 
other arcs. These two arcs are distinct.

We say that an arc R is weakly adjacent to an arc S if it is adjacent to S and the 
endvertex of R on an arc X witnessing adjacency is a branching vertex of θ. It is strongly 
adjacent if the endvertex of R on such a path X is not a branching vertex of θ.

Example 4.24. An adjacent arc that is not weakly adjacent is strongly adjacent. If there 
are at least three arcs, then no two arcs can be strongly adjacent and weakly adjacent.

The endvertices of a detour Q are contained in a single arm. This arm is uniquely 
determined – unless the two endvertices of the detour are the two branching vertices of 
θ. In this case, we choose the unique arm that does not contain any endvertex of the 
path P . We refer to this uniquely defined arm as the arm circumvented by Q (relative 
to the bridge P ). The replacement path of Q is the unique subpath of the circumvented 
arm between the two endvertices of Q. We denote the replacement path of Q by Q′.

Given a bridge B, a detour Q is B-free if its replacement path Q′ has no internal 
vertex that is an endvertex of B.

Lemma 4.25. Assume there is exactly one bridge B, and at least one detour. Then there 
is a detour that is B-free or that is strongly adjacent to B – or else θ ∪ o is in the class 
W∗.

Proof. By assumption there is a detour Q that is adjacent to the bridge B. We may 
assume, and we do assume, that the detour Q is weakly adjacent and not B-free. In 
particular, one endvertex of Q is not a branching vertex of θ. Thus if B and Q are the 
only arcs, then the graph θ ∪ o is in the class W∗. Hence we may assume, and we do 
assume, that there is another detour. By Example 4.23, there is a detour R adjacent to 
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Fig. 6. The path S is highlighted in grey.

B that is distinct from Q. By relabelling the branching vertices if necessary, we may 
assume, and we do assume, that the branching vertex v is an endvertex of the detour Q.

Next we construct a subtrail S of the cycle o, see Fig. 6 (this subtrail of o is a subpath 
of o or equal to o). Start the detour Q at the endvertex different from the branching 
vertex v all the way to the vertex v, then follow the replacement path Q′ until you hit 
an endvertex of B (which must happen eventually as the detour Q is not B-free by 
assumption), take the bridge B, follow the cycle o until you hit the detour R, then follow 
R. Denote this trail by S.

We refer to the first vertex of the trail S on the detour R by w. If the vertex w is 
not a branching vertex, then R is strongly adjacent to B, and we are done. Hence we 
may assume, and we do assume, that w is a branching vertex. As S is a trail, its interior 
vertices v and w cannot be identical.

Hence the two endvertices of the trail S cannot be branching vertices, and thus are 
interior vertices of arms of θ. As the path o \ S (between the two endvertices of S) 
does not include a bridge and no branching vertex of θ, this path must have both its 
endvertices on a single arm of θ.

Denote the endvertex of the detour R different from w by z. By the above, the vertex 
z is on the arm of the theta-graph θ circumvented by Q. Note that the replacement path 
Q′ is equal to the subpath of this arm from v to the endvertex of B on that arm. As S
is a trail, its endvertex z cannot be on the subpath Q′. So the replacement path for R
is disjoint from the path Q′, and so in particular does not contain the endvertex of the 
bridge B on the arm circumvented by R. Thus the detour R is B-free. This completes 
the proof. �
Lemma 4.26. If there is at most one bridge, then θ∪o has a subgraph in the class W∪W∗.

Proof. From the graph H = θ ∪ o we pick a theta-graph θ′ of parameter r and a cycle 
o′ of length at most r containing a branching vertex of θ′ so that o′ has only a single 
bridge. Such a choice is possible as we could simply take θ and o. Now we pick o′ and 
θ′ amongst all possible choices so that there are as few detours as possible. By replacing 
‘(θ, o)’ by ‘(θ′, o′)’ if necessary, we may assume, and we do assume, that (θ, o) has as few 
detours as possible. Denote the unique θ-bridge included in o by P . Assume that the 
graph H has no subgraph in the class W∗.
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Suppose for a contradiction, there is a θ-detour included in the cycle o. Let Q be a 
detour. By Lemma 4.25, we may assume, and we do assume, that Q is P -free or strongly 
adjacent to P . We denote the arm circumvented by Q by A, and the replacement path 
for Q by Q′.

We distinguish two cases.
Case 1: the length of Q′ is at most the length of Q. We obtain o′ from o by replacing 

the path Q by Q′. As the bridge P and the detour Q are internally disjoint, the closed 
walk o′ includes the path P . We obtain o′′ from o′ by taking a cycle included in the 
closed walk o′ that includes the path P . This ensures that P is a θ-bridge included in o′′. 
Now let R be a subpath of o′′ that intersects θ precisely at its endvertices. As o′′ \ θ ⊆ o, 
this subpath R is a subset of the cycle o. Thus R is equal to the bridge P or a detour 
included in o. We conclude that P is the only θ-bridge included in o′′ and there are 
strictly less θ-detours included in o′′. It follows that the path o′′ \P includes a branching 
vertex of θ. Hence the pair (θ, o′′) contradicts the minimality of (θ, o). Thus we get a 
contradiction in this case.

Case 2: the length of Q′ is strictly larger than the length of Q. We obtain θ′ from the 
theta-graph θ by replacing the path Q′ by Q. As the path Q does not contain any other 
vertices of θ except for its endvertices, the graph θ′ is a theta-graph. And its parameter is 
at most that of θ. Note that the theta-graphs θ and θ′ have the same branching vertices. 
In particular, the cycle o includes a branching vertex of the theta-graph θ′. By our choice 
of Q according to Lemma 4.25, we have to consider the following two subcases.

Case 2A: the detour Q is P -free. As the bridge P and the detour Q are internally 
disjoint, the path P is a θ′-bridge included in o. And it is the only θ′-bridge. All θ′-detours 
include some θ-detour aside from Q. Thus there are less θ′-detours than θ-detours. This 
gives a contradiction to the choice of (θ, o) in this subcase.

Case 2B: the detour Q is strongly adjacent to P . We obtain P ′ from P by adding a 
subpath X from an endvertex of P to an endvertex of Q witnessing that P and Q are 
strongly adjacent. Hence the path P ′ does not contain any branching vertex, and so is a 
θ′-bridge. All other θ′-arcs are included in o and are disjoint from the subpath X of o, 
and include θ-arcs. These θ-arcs are θ-detours. So P ′ is the only θ′-bridge. As Q is not 
included in a θ′-arc, this gives a contradiction to the choice of (θ, o) in this subcase.

Having considered all cases, we conclude that there is no detour. Hence the graph 
θ ∪ o is in the class W. This completes the proof. �

We refer to one of the branching vertices included in the cycle o as v. We say that a 
bridge Q is primary if it has an endvertex x such that a shortest path within the cycle o
from x to the vertex v includes the bridge Q. A bridge that is not primary is secondary.

Lemma 4.27. If there is a primary bridge Q, then there is a cycle u of length at most r
containing v such that Q is the only θ-bridge of u.
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Proof. As the bridge Q is primary, it has an endvertex x such that the shortest path S
from x to v within the cycle o includes the primary bridge Q. Take a shortest subpath S′

of the path S starting at v that includes a bridge. By minimality, the path S′ includes 
only a single bridge, and edges of S′ outside this bridge are on the theta-graph θ or in 
detours. Denote that single bridge on S′ by Q′ and the endvertex of S′ different from 
v by x′. As the theta-graph θ has parameter r, it includes a path R from x′ to v of 
length at most r/2. The concatenation of the paths S′ and R is a closed walk of length 
at most r that traverses the bridge Q′ once. It contains the vertex v. Hence this closed 
walk includes a cycle u including the bridge Q′. By construction, this cycle u has exactly 
one bridge. �
Lemma 4.28. There cannot be two secondary bridges.

Proof. Either there is a single vertex of the cycle o that has maximum distance from 
the vertex v in the cycle o, or there is an edge of o such that its two endvertices are 
the only vertices with maximum distance from v. We refer to these vertices as barriers. 
As different bridges do not have adjacent interior vertices (and if there are two barriers 
they are adjacent), there can be at most one bridge that has a barrier as an interior 
vertex.

It suffices to show that any bridge Q that has no barrier as an interior vertex is pri-
mary. Let x and y be the two endvertices of the bridge Q. Now consider the path o − v. 
In the middle we have the barriers. As the bridge Q has no barrier as an internal vertex, 
the vertices x and y must be on the same side of the barriers on o − v. Take the vertex 
of x or y that is nearest to the barriers. The shortest path to v in o from that vertex 
includes the bridge Q. Thus Q is a primary bridge. Hence all but at most one bridge is 
primary. �

We conclude this subsection as follows.

Proof of Lemma 4.21. Let G be a graph that contains a theta-graph θ of parameter r
such that there is a cycle o of length at most r containing a branching vertex of θ and a 
path P between interior vertices of different arms of θ that avoids the branching vertices 
of θ. Let H be the subgraph of G obtained by taking the union of the theta-graph θ and 
the cycle o.

If there is a primary bridge, then by Lemma 4.27 we can modify the cycle o so that 
there is only one θ-bridge. Otherwise by Lemma 4.28, there is only a single bridge. In 
either case, we may assume, and we do assume, that there is only a single bridge. By 
Lemma 4.26, θ ∪ o has a subgraph in the class W ∪W∗. �

As we have shown after the statement of Lemma 4.21 above that it implies 
Lemma 4.16, we have also completed the proof of that lemma.
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4.5. Finding bounded wheels

In this subsection we prove two lemmas, which allow us to find bounded wheels in 
certain situations. They are used in the proof of Lemma 3.7.

Roughly speaking, the next lemma says that we can improve a given theta-graph or 
else we find a bounded subdivision of a wheel.

Lemma 4.29. Assume G has a theta-graph θ of parameter r with branching vertices v
and w. Let o be a cycle of length at most r including a shortest v-w-path. Then there is 
a theta-graph θ′ of parameter r whose branching vertices are v and w that includes the 
cycle o – or G includes an r-local subdivision of a wheel.

Proof. A weak θ-bridge is a path P that does not contain any branching vertices of θ
but joins interior vertices of different arms of θ. If the cycle o included a weak θ-bridge, 
then G includes an r-local subdivision of a wheel by Lemma 4.16.

Hence we may assume, and we do assume, that o includes no weak θ-bridge. Hence 
each of the two v-w-paths included in o intersects at most one arm of θ at interior vertices. 
So there is an arm Q of θ that intersects the cycle o precisely in the vertices v and w. 
So o ∪Q is a theta-graph. By assumption, the cycle o includes a shortest v-w-path; call 
it R. To see that o ∪Q is a theta-graph of parameter r, we show that the cycle RQ has 
length at most r. Let o′ be a cycle including Q of length at most r included in the old 
theta-graph θ. As R is a shortest v-w-path, the length of RQ is at most that of o′. So 
RQ has length at most r. Thus o ∪Q is a theta-graph of parameter r, as desired. �

Roughly speaking, the next lemma gives conditions under which a bounded wheel can 
be built from a bounded fan.

Lemma 4.30. Assume G has a cycle o of length at most r. Assume there is a fan F of 
parameter r centered at a vertex v of o whose ending and starting edges are the two edges 
incident with v on o. Assume there is a vertex w of o not contained in the fan F . Assume 
no piece of F contains interior vertices of both v-w-paths included in o.

Then G has an r-local subdivision of a wheel.

Proof. We denote the two v-w-paths included in o by P1 and P2. If a piece oi of the fan 
F contains an interior vertex of a path Pk, then we colour that piece with that path Pk. 
By assumption each of piece oi is coloured with at most one path Pk, while some may 
not be coloured at all.

As the first and last piece of the fan F are coloured with different paths Pk, the fan 
F has at least two pieces. Moreover, there are two pieces oi and oj with i < j that 
are coloured with different paths Pk such that all pieces om in between (that is, with 
i < m < j) are not coloured at all. Now we consider the subfan oi, ..., oj of the original 
fan F . Denote that subfan by F ′.
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We claim that the subgraph of G that is the union of the cycle o and the fan F ′

includes an r-local subdivision of a wheel. The center of this wheel is the vertex v, its 
pieces are the pieces om of the fan F ′ with i < m < j, cycles o′i and o′j constructed from 
oi and oj , respectively, and a cycle o′ constructed from o as follows.

By symmetry, we assume that the piece oi contains interior vertices of the path P1, 
and the piece oj contains interior vertices of the path P2. Let a1 be a vertex of the piece 
oi on the path P1 that is nearest to the vertex w on P1; note that this uniquely defines 
the vertex a1.

As the path P1−v is disjoint from the piece oi+1, the vertex a1 is an interior vertex of 
the subpath LiMi of the piece oi. Let Q1 be the subpath of the path LiMi from v to a1.

Similarly, let a2 be a vertex of the piece oj on the path P2 that is nearest to the vertex 
w on P2. And let Q2 be the subpath of the path MjRj from a2 to v.

Given k ∈ {1, 2}, one of the paths vPkak and Qk is not longer than the other; pick 
such a path and denote it by Sk.

Sublemma 4.31. Given k ∈ {1, 2}, the path Sk intersects a piece om with i ≤ m ≤ j only 
in the vertex v – unless k = 1 and m = i or else k = 2 and m = j. The paths S1 and S2

intersect only at the vertex v.

Proof. By symmetry, it suffices to consider the case where k = 1. If the path S1 is chosen 
to be a subpath of the path P1 (which is included in the cycle o), the sublemma is immedi-
ate. So we may assume, and we do assume that the path S1 is a subpath of the piece oi. As 
a piece om with i < m ≤ j does not intersect the subpath LiMi of the piece oi in interior 
vertices, the piece om intersects the path S1 only in the vertex v. It remains to show that 
the paths S1 and S2 intersect only in the vertex v. If one of them is a subpath of a path 
Pk, this is immediate. Otherwise, the paths S1 and S2 are proper subpaths of the paths 
LiMi and MjRj containing the vertex v, and thus can only intersect in the vertex v. �

We obtain the cycle o′i from oi by replacing the path Q1 by S1. Similarly, we obtain 
the cycle o′j from oj by replacing the path Q2 by S2. We obtain the cycle o′ from o by 
replacing the paths vPkak by the paths Sk (for k = 1, 2).

By the choice of the vertex ak and Sublemma 4.31, the cycle o′ intersects the cycle o′i
precisely in the path S1, and o′ intersects the cycle o′j precisely in the cycle S2.

By Sublemma 4.31, the cycles o′, o′i, o′j and om with i < m < j are the pieces of a 
subdivision of a wheel. By construction all these pieces have length at most r. Thus this 
subdivision of a wheel is r-local. �
4.6. Final step

Proof of Lemma 3.7. Let G be an r-locally 3-connected graph. Our aim is to find an r-
local subdivision of a wheel. By Theorem 4.2, the graph G is triangular with parameter 
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r or has a geodesic cycle of length at most r with at least four edges. If it is triangular, 
we are done by Lemma 4.5.

Hence we may assume, and we do assume, that G has a geodesic cycle of length 
at most r with at least four edges. Denote that cycle by o′. Pick two vertices v0 and 
v1 that are not adjacent on the cycle o′. Let P be a shortest v0-v1-path included in 
the geodesic cycle o′. Now apply Lemma 4.10 to o′, v0 and v1. We get a pre-fan F of 
parameter r centered at some vertex vi none of whose pieces contains the vertex vi+1 (for 
some i ∈ F2). And there is a geodesic cycle o of length at most r including P such that 
the start and end of the pre-fan are the neighbours of vi on o. By Lemma 4.8, we may 
assume, and we do assume, that the pre-fan F is a fan. By symmetry, we may assume, 
and we do assume, that the center of the fan F is v0.

As we would be done otherwise, by Lemma 4.30 there is a piece oi of the fan F that 
contains interior vertices of the two v0-v1-paths included in the cycle o. Indeed, all other 
assumptions of that lemma are satisfied by o and F .

Sublemma 4.32. There is a theta-graph θ of parameter r containing a shortest path be-
tween its branching vertices with at least two edges.

Proof. Let Q be a subpath of the cycle oi that intersects the cycle o precisely at its 
endvertices such that these endvertices are on different v0-v1-paths included in the cycle 
o.

The graph o ∪Q is a theta-graph. As the cycle o is geodesic, it includes a shortest path 
between the branching vertices. The cycle obtained by concatenating this path with the 
path Q cannot be longer than the cycle oi. Thus the theta-graph o ∪Q has parameter r.

As the cycle o is geodesic, it contains a shortest path between the two branching 
vertices. Each of the two paths between the branching vertices included in the cycle o
contains one of the vertices v0 or v1. Hence the theta-graph o ∪ Q includes a shortest 
path with at least two edges. �

Let θ be a theta-graph as in Sublemma 4.32. Denote its two branching vertices by 
v̄ and w̄ and a shortest path between them by P̄ . Let ō be a cycle of θ including P̄
that does not include an edge between the branching vertices v̄ and w̄ (such a choice is 
possible as θ contains two paths between the vertices v̄ and w̄ aside from P̄ ). Now we 
apply Lemma 4.10 to the cycle ō, the path P̄ and the vertices v̄ and w̄. This part of 
the proof is similar to the application above but now with the theta-graph θ, we have 
slightly stronger assumptions and will hence be able to complete the proof.

We get a pre-fan F̄ of parameter r centered at one of the vertices v̄ or w̄, say v̄, 
none of whose pieces contains the vertex w̄. And there is a cycle ū of length at most r
including P̄ such that the start and end of the pre-fan are the neighbours of v̄ on ū. By 
Lemma 4.8, we may assume, and we do assume, that the pre-fan F̄ is a fan.

As we would be done otherwise, by Lemma 4.30 there is a piece ōi of the fan F̄
that contains interior vertices of the two v̄-w̄-paths included in the cycle ū. By replac-
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ing the theta-graph θ by the theta-graph guaranteed by Lemma 4.29 if necessary, we 
may assume, and we do assume, that the cycle ū is included in the theta-graph θ. By 
Lemma 4.16 applied to θ and a suitable subpath of the piece ōi, the graph G includes 
an r-local subdivision of a wheel. �
5. Concluding remarks

Splitter theorems have turned out to be a key tool when it comes to characterising 
certain minor closed classes of graphs or matroids. And in fact they can be proven in 
fairly general settings. For example Chun, Mayhew and Oxley proved a splitter theorem 
for internally 4-connected binary matroids [4]. We expect that there is the following 
splitter theorem for r-locally 3-connected graphs.

Conjecture 5.1. Every r-locally 3-connected graphs contains an edge to delete or contract 
such that r-local 3-connectivity is preserved — unless G is K4.

A cycle-decomposition is a graph-decomposition whose decomposition graph is a cy-
cle. For example, every path-decomposition is a cycle decomposition. A natural future 
application of Theorem 1.1 might be to characterise (r-locally 2-connected) graphs that 
have a cycle decomposition of width at most two and locality at least r. It is expected 
that the characterisation of graphs of path-width at most two [9], see also [2], extends 
to this setting in the natural way.

More generally, it is expected that Theorem 1.1 can be used to extend excluded minors 
characterisations for any minor-closed subclass of the class of series-parallel graphs to 
our new setting of local separators.

Another direction in which one could try to extend Theorem 1.1 is to characterise 
graphs with graph-decompositions of width at most three and locality at least r. The 
starting point would be the characterisation of graphs of tree-width at most three by 
Arnborg, Proskurowski & Corneil (1990) and Satyanarayana & Tung (1990) [1,15].

Appendix A. Basic definitions

In this appendix, we recall some notions from [3].
There are various equivalent definitions of tree-decompositions:

1. the one in terms of a tree displaying the global structure of the graph by encoding 
how certain bags are glued onto one another;

2. a recursive definition in terms of nested gluing; and
3. a decomposition perspective, where in one decomposition step one separates the 

graph along a separator and replaces it by a complete graph.
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All these notions of tree-decompositions naturally generalise to r-local graph-
decompositions. In this paper it is easiest to work with the decomposition perspective. 
So we now start setting up the terminology to do that.

Given a graph G with a vertex v and an integer s, the ball of radius s around the 
vertex v is the induced subgraph of G, whose vertices are those of distance at most s
from v and without all edges joining two vertices of distance precisely s. Similarly, given 
a half-integer s + 1

2 , the ball of radius s + 1
2 around the vertex v is the induced subgraph 

of G, whose vertices are those of distance at most s from v. We denote the ball of radius 
s around v by Bs(v). Below we will often consider the graph Bs(v) −v, to which we refer 
as a punctured ball. Given a parameter r ∈ N ∪ {∞}, a vertex v is an r-local cutvertex if 
it separates the ball of radius r/2 around v; formally: Br/2(v) − v is disconnected.

Given a parameter r ≥ 1 and a graph G with a vertex v, the graph obtained from 
G by r-locally cutting the vertex v is defined as follows. Let X be the set of connected 
components of the ball of radius r around v with v removed; formally X is the set of 
components of the graph Br/2(v) −v. Define a new graph from G by replacing the vertex 
v by one new vertex for each element of the set X, where the vertex labelled with x ∈ X

inherits the incidences with those edges incident with v that are incident with a vertex 
of the connected component X. We refer to the new vertices as the slices of v. This 
completes the construction of the r-local cutting of G.

Given a graph G and a parameter r, we say that G has an r-local graph-decomposition 
of adhesion one with set of bags B if we can iteratively apply r-local cuttings to G such 
that the resulting graph is a disjoint union of the family B. Recall the definitions of local 
2-connectedness from the first paragraphs of Section 2. In [3], we prove the following 
local refinement of the block-cutvertex theorem:

Theorem A.1 ([3, Theorem B.1]). Every r-locally connected graph has an r-local graph-
decomposition of adhesion one such that all its bags are r-locally 2-connected.

Now we give a formal definition of the explorer-neighbourhood of parameter r with 
explorers based at the vertices v and w with distance9 at most r

2 . The core is the set 
of all vertices on shortest paths between the vertices v and w. We take a copy of the 
ball Br/2(v) where we label a vertex u with the set of shortest paths from the core to 
u contained in the ball Br/2(v). Similarly, we take a copy of the ball Br/2(w) where 
we label a vertex u with the set of shortest paths from the core to u contained in the 
ball Br/2(w). Now we take the union of these two labelled balls – with the conven-
tion that two vertices are identified if they have a common label in their sets; that is, 
there is a shortest path from the core to that vertex discovered by both explorers. (Note 
that the same vertex x of G could be in both balls but the label sets could be dis-
joint, see Fig. 4. In this case there would be two copies of that vertex in the union. In 

9 In this paper the explorer-neighbourhood of vertices v and w of distance more than r
2 is undefined; 

and hence throughout the paper in statements where the explorer-neighbourhood is mentioned we have 
implicitly the assumption that the involved vertices have distance at most r

2 .
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such a case the union would not be a subgraph of the original graph.) We denote the 
explorer neighbourhood by Exr(v, w). This completes the definition of explorer neigh-
bourhood.

A set {v, w} is an r-local 2-separator if the punctured explorer-neighbourhood 
Exr(v, w) − v − w is disconnected; and the vertices v and w have distance at most 
r/2. Given a graph G with an r-local 2-separator {v0, v1}, the graph obtained from G by 
r-locally cutting {v0, v1} is defined as follows. Let X be the set of connected components 
of the punctured explorer-neighbourhood Exr(v0, v1) − v0 − v1. We now replace in the 
graph G the vertices v0 and v1 each by one copy for every element of X. Here a copy of 
vi labelled by some x ∈ X inherits an edge from vi if the other endvertex of that edge 
is a vertex of the component x. We refer to the newly added vertices as the slices of 
the vertices v1 or v2, respectively. We additionally add a weighted edge between any two 
slices for the same x ∈ X. Its weight is given by the minimum length of a path between 
v0 and v1 in the explorer-neighbourhood Exr(v0, v1) with the component x removed. It 
follows that all but one of these weights are always the same. We refer to these addi-
tional edges as torso edges. If the vertices v0 and v1 share an edge e in G, we add a new 
connected component consisting of the edge e and one edge in parallel to e. This other 
edge is a torso edge and its length is the minimum length of a path between v0 and v1 in 
the explorer-neighbourhood Exr(v0, v1). Finally, we replace each torso edge by a path of 
the same length; we refer to such paths as torso-paths.10 This completes the definition 
of local cutting.

Given an r-locally 2-connected graph G and a parameter r, we say that G has an r-local 
graph-decomposition of adhesion two with set of bags B if we can iteratively apply r-local 
cuttings at r-local 2-separators to G such that the resulting graph is a disjoint union of 
the family B. Recall the definitions of local connectedness from the first two paragraphs 
of Section 2. In [3], we prove the following local extension of the decomposition theorem 
along 2-separators:

Theorem A.2 ([3, Theorem 1.2]). Every r-locally 2-connected graph has an r-local graph-
decomposition of adhesion two such that all its torsos are r-locally 3-connected or cycles 
of length at most r.

We say that a graph-decomposition with family of bags B has width at most w if all 
members of B have size at most w − 1.

Finally, we summarise some basic notation concerning generation by families of cycles. 
A walk is a sequence alternating between edges and vertices such that adjacent pairs are 
incident and such that they end and start with a vertex; these vertices are called the start 
vertex and end vertex, respectively. Note that in a walk edges and vertices may appear 
multiple times. Two walks such that the endvertex of the first walk is equal to the start 

10 This technical step reduces technicalities elsewhere; indeed, the explorer-neighbourhood is not defined 
for weighted graphs, and doing so would lead to technicalities.
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vertex of the second walk can be concatenated by gluing together their two sequences 
by identifying the end vertex of the first walk with the start vertex of the second one. 
Given vertices v and w, an edge e and a walk W that has the subwalk wevew, the 
reduction of W by wevew is the sequence obtained from W by replacing the walk wevew
by the trivial walk w. Clearly, reductions are walks with the same start vertices and end 
vertices.

A walk is closed if its start vertex and end vertex are the same. Sometimes closed walks 
are also defined through the associated cyclic sequences obtained from the linear sequence 
by merging the first and last vertex; in this paper we implicitly move between these two 
representations. For example, a cycle is a closed walk where each edges appears at most 
once and each vertex appears at most once (here we refer to the second representation of 
closed walks, of course). We say that a family of closed walks W generates a closed walk 
X (homotopically) if there is a concatenation of members of W that can be reduced to 
X.

This topological definition of generating is complemented by the following algebraic 
variant. Given a graph with edge set E and a field k, consider the vector space kE , 
whose vectors have components that are indexed by the edges of the graph. Given a set 
of cycles C and a field k, we say that C generates a cycle X over the field k if the family 
of characteristic vectors of elements of C generates the characteristic vector of X in the 
vector space kE . It is straightforward to check that if a family of cycles generates a cycle 
homotopically, then it generates it over any field, in particular the two-element field F2.
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