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Abstract—Automated machine learning (AutoML) has
achieved great success in offline class imbalance learning
where data are static. However, many real world applications
data nowadays tend to evolve over time in the form of data
streams and involve class imbalance distributions, e.g., intrusion
detection, fault diagnosis systems, and fraud detection. These
learning tasks require AutoML processing the instances instantly
and adapting to the dynamic data changes. Nevertheless, existing
AutoML research either only focuses on class imbalance in
static data sets, or discusses data streams with concept drift.
No existing work studied the joint learning challenges of class
imbalance and online data stream learning in AutoML. To close
the gap, this paper focuses on learning dynamic data streams
with a skewed class distribution in AutoML. In this paper,
we propose two new AutoML approaches, UEvoAutoML and
OEvoAutoML, which integrate adaptive resampling techniques
into an existing online AutoML framework. Their performance is
investigated through a set of synthetic imbalanced data streams
under various stationary and non-stationary scenarios and 5
real-world data streams. As the pioneering work of exploring
how class imbalance techniques benefit online AutoML, this
paper demonstrated that the effectiveness of adaptive resampling
in AutoML frameworks.

Index Terms—Automated machine learning, class imbalance,
data stream, evolutionary learning, ensemble learning,

I. INTRODUCTION

AutoML is designed to automatically build machine learn-
ing systems given independent and identically distributed
(i.i.d) data that are accessible at once. It has achieved great
success and has been applied in various fields, such as com-
puter vision, data mining and natural language processing.

However, the well-studied offline setting does not apply to
data collected over time as a stream [1] [2]. Firstly, the data are
usually infinite. The unbounded data stream should be fed into
the learning process constantly whenever new data become
available. Secondly, many high-speed data streams require
timely processing in a “one-by-one” fashion without storing
and reprocessing learned instances (i.e. online learning), and
provide real-time predictions. Thirdly, a data stream tends to
be dynamic, which leads to concept drift where the underlying
distribution of data changes over time. Unfortunately, very
little AutoML research has studied these challenges in data
streams [3].

* the corresponding author.

The issue becomes more difficult when class imbalance
exists in data streams. This problem is called online class
imbalance in the literature [2]. Class imbalance refers to a
data distribution where some classes are significantly under-
represented in comparison to other classes. It causes poor
generalization capability and learning bias on majority classes
in learners [4]. When class imbalanced data arrive sequentially,
new challenges arise in the following three aspects. Firstly,
the imbalance degree can not be measured directly because of
incomplete data information at certain time. It is vital to reflect
the recent imbalance status correctly for using the correct class
imbalance techniques. Secondly, the imbalance condition may
dynamically alter over time. Additionally, the imbalanced data
streams may also involve the real concept drift [5]. A real
concept is referred to as a change in posterior probabilities
p(y|x), which leads to an out-of-date learner. Because class
imbalance and real concept drift degrade a learner differently,
they requires different treatments [6]. An AutoML framework
should be adaptive to the changing imbalance status as well
as new concept distributions.

Although there are several papers studying AutoML for
offline class imbalance and online data stream learning, re-
spectively, the joint issue has not been studied yet. Solving
this joint problem can benefit many real world applications,
such as social media mining [7], fault diagnosis monitoring
systems [8], and risk assessment in bank [9]. The most recent
online AutoML framework is called EvoAutoML(evolution-
based online automated machine learning) [10]. It processes
instances strictly online (one-by-one learning) and handles real
concept drift, but it cannot deal with class imbalance and any
class status changes.

To fill in these research gaps, we propose two online
AutoML frameworks based on EvoAutoML by integrat-
ing with resampling techniques [2], called Undersampling-
based EvoAutoML (UEvoAutoML) and Oversampling-based
EvoAutoML(OEvoAutoML). They can deal with the dynamic
class imbalance issue and passively adapt to real concept
drift through the AutoML process. The two approaches are
evaluated by focusing on the following research questions in
comparison with EvoAutoML: (1) How do they perform on
data streams with a static class imbalance ratio? (2) How do
they perform when the data stream has a dynamically changing



imbalance ratio? (3) How do they perform when both real
concept drift and class imbalance exist? (4) How do they
perform on real-world imbalanced data streams?

Our experiments show that our approaches can effectively
alleviate the class imbalance issue compared with EvoAu-
toML. Firstly, UEvoAutoML performs better when the data
streams has a static class imbalance ratio and a dynamically
changing imbalance ratio. Secondly, for the real concept drift
and class imbalance, UEvoAutoML has good performance on
mild changes and OEvoAutoML performs better on severe
changes. Thirdly, UEvoAutoML achieves the best performance
in real-world data streams.These findings confirm that adaptive
resampling is necessary and effective for dealing with the class
imbalance in data streams in terms of online AutoML.

II. PROBLEM STATEMENT

A. Online Automated machine learning

Online AutoML is to address the online Combine Algorithm
Selection and Hyperparameter(CASH) optimization problems.
The online CASH follows the definition in [10]. A machine
learning(ML) pipeline structure g ∈ G can be modelled
as an arbitrary directed acyclic graph (DAG). We define a
possible infinite sequence of instances S = {e0, e1, ..., et, ...}
ei = (xi, yi) denotes each learning instance that xi is a
d−dimensional input vector belonging to input space X and
yt is the corresponding class label belonging to clas space
Y ) and a set of online algorithms A = {A1, ..., AR} (each
algorithm Aj having the hyperparameters space {Λ1, ...,Λj}).
The set of past observed instances is represented as S−. Let
L(Pg,A,λ(S

T ), SV ) indicates the loss that algorithm combina-
tion P j obtains on a subset of validation instances SV ⊂ S−

when trained on ST , and ST ∩ SV = ∅
The online CASH problem is defined as finding the joint

algorithm and hyperparameter setting that minimizes the loss
function in (1).

g∗, A∗, λ∗ ∈ argmin
P (j)∈P,A(j)∈A,λ∈Λ(j),g∈G

L(Pg,A,λ(S
T ), SV )

(1)

III. RELATED WORK

A. AutoML for data streams

AutoML techniques in learning data streams have drawn
a growing attention in ML communities in recent years.
Madrid et al. [11] first attempted to modify the current
Autosklearn framework in order to adapt to the dynamic data
streams context. Retraining strategies are exploited when the
concept drift occurs, which makes the Autosklearn adaptive
with the distribution of recent data. Similarly, three AutoML
frameworks (GAMA, Autosklearn, and H2O) are integrated
with different adaptation strategies [12]. Nevertheless, the
computational cost of these frameworks is high. They still use
the offline AutoML frameworks that include offline learners
in pipelines, which are inappropriate for data streams.

Two frameworks were then proposed to overcome these
limitations. EvoAutoML is the first framework for dealing
with online data streams one-by-one [10]. Its search space

involves online classifiers which are optimised after every
certain time steps. Automated Machine Learning (OAML)
[13] processes data stream in both batch and one-by-one
modes with adaptation capabilities. When the concept drift is
not triggered, OAML learns the instance one-by-one. Once
a real concept drift is detected, the asynchronous genetic
programming in OAML is exploited to search the optimal
model and hyperparameter through the recent batch data.

In addition to adaptive AutoML frameworks, some
studies focus on continuous hyperparameter optimization
for data streams without optimizing the entire pipeline.
ChaCha(Champion-Challengers) automatically selects promis-
ing hyperparameters in online settings [15]. Veloso et al. [14]
extended the Self Parameter Tuning (SPT). It restarts the
optimization process to obtain a new optimal hyperparameter
configuration using the Nelder-Mead algorithm when a drift
is identified. A classifier with a small amount of hyperpa-
rameter settings can benefit from this method. All of the
aforementioned techniques ignore the class imbalance issue in
data streams. It can potentially cause the optimization process
having a learning bias toward the majority class and poor
generalization in the minority class. The learning difficulty is
further exacerbated when the imbalance status changes over
time.

B. AutoML for class imbalanced data

Some AutoML studies have discussed static imbalanced
datasets, where a whole dataset is available before training
starts. Truong et al. [17] investigated how the current AutoML
frameworks are affected by class imbalance. The results have
showed that the higher degree of imbalance, the greater nega-
tive impact on the AutoML frameworks, including Autokeras,
Autosklearn, H2O, and TPOT. Wang et al. [18] proposed
an AutoML framework to handle the imbalance issue. In
this framework, the Bayesian optimization is employed to
choose the optimal pipeline in the search space that consists
of 12 resampling techniques(undersampling, oversampling and
hybrid sampling), along with two cost-sensitive loss functions.
Similarly, the recent AutoBalance framework alleviated class
imbalance by tweaking the GAMA framework [16]. Resam-
pling approaches were embedded into the mAML framework
that improved the disease prediction [19]. They show the
necessity of handling class imbalance, but are not applicable
to data streams.

IV. METHODOLOGY

In this section, we propose OEvoAutoML and UEvoAu-
toML approaches that integrate adaptive resampling into
EvoAutoML. We focus on binary classification.

A. Adaptive imbalance status in online data streams

In binary classification, the imbalance ratio (IR) of a data
stream is defined as the prior probability of the minority class
in recent time steps. To reflect a real-time class imbalance
status in data streams, the time decay class probability is



calculated to determine which class is minority/majority and
measure the current class size ratio between classes [2].

At each time t, the size of each class is incrementally
updated by (2).

stk = θst−1
k + Iyt=ck(1− θ) (2)

where stk represents the decay size of class ck at time step t,
and Iyt=ck = 1 if the true class label of xt is ck, otherwise,
0. θ(0 < θ < 1) is the predetermined time decay factor that
gives more emphasis on the current class status of data stream
and reduce the impact of older instances. In this work, the
label of c0 and c1 is set to ”0” and ”1”, respectively. The time
decay class size c0 and c1 denote the st0, st1, respectively.

At any given time t, the time decay class size is able to
identify which class is smaller or bigger and help calculate
the size ratio between classes. This information is used to
adaptively decide the resampling rate in our approaches.

B. UEvoAutoML and OEvoAutoML

UEvoAutoML and OEvoAutoML are proposed to learn
the online class imbalanced data streams in an AutoML
framework. They are explained in Algorithm 1.

The original training of EvoAutoML ensembles a fixed
number of P pipelines in a dynamic manner. Mutation of the
best pipeline Pbest and deletion of the worst pipeline Pweak

are performed at a fixed interval according to the accuracy
scores. The interval is controlled by the sampling rate f .
After each evolution step, each classifier in pipeline is updated
K times using the current instance et = (xt, yt), where K
follows the Poisson(λ = 6) distribution inspired by [21].
Although the larger λ can increase the diversity of weights,
it also increases the updating times of each pipeline for each
instance, leading to higher computation cost. In the prediction
stage, a hard majority voting methods of the heterogeneous
algorithm configurations in p is employed to decide the label
ŷt = model(P.predict(et) ∈ p) in ensemble fashion.

To better learn dynamic imbalanced data streams, λ in
UEvoAutoML and OEvoAutoML is automatically adjusted in
accordance with the current class size ratio at any given time
t in the data streams for adaptive resampling. To achieve this,
the time decayed class size in Equation2 is integrated. In lines
12-15, the time decay class size of each class (st0 and st1)
is calculated at each time step t, and its ratio is used to set
λ. For instance, if the time decay size of c1 is smaller than
c0(st0 > st1) at the current time step t, the λ = st0/s

t
1 will be

assigned to c1 in OEvoAutoML(i.e. increasing the chance of
training with minority class instances) ; the λ = st1/s

t
0 will be

assigned to c0 in UEvoAutoML(i.e. decreasing the chance of
training with majority class instances). When time decay class
size is equal, it implies a balanced status, and the λ is set to
1, following the Online Bagging [24]. This core resampling
is inspired by [6]. The prediction stage of UEvoAutoML and
OEvoAutoML is the same as the EvoAutoML.

In addition, the evolution process for EvoAutoML uses
the accuracy scores, which leads to the evolution’s pipelines
having biases on majority class in class imbalance learning(see

Algorithm 1 UEvoAutoML and OEvoAutoML Training
Input: Data stream S, population size P , sampling rate f ,

loss function L, search space A,Λ, G, time decay factor
θ.

Output: Set of suited algorithm configurations: p∗ =
{P(1), ..,P(P )}

1: Initialize p: P ← Random(A,Λ, G)
2: if et = (xt, yt) then
3: if t mod f==0 then
4: Pbest ← minP∈p L(P(ST ), SV )
5: Pweak ← maxP∈p L(P(ST ), SV )
6: Pmut ← Mutate(Pbest)
7: p← p ∪ Pbest

8: p← p \ Pbest

9: end if
10: st0 = θst−1

0 + Iyt=c0(1− θ)
11: st1 = θst−1

1 + Iyt=c1(1− θ)

12: if yt = 1 and

{
st0 < st1 for UEvoAutoML
st0 > st1 for OEvoAutoML

then

13: set λ = st0/s
t
1

14: else if yt = 0 and

{
st0 > st1 for UEvoAutoML
st0 < st1 for OEvoAutoML

then

15: set λ = st1/s
t
0

16: else
17: set λ = 1
18: end if
19: K ∼ Poisson(λ)
20: for P ∈ p do
21: update K times: P .fit(et)
22: end for
23: t = t+ 1
24: end if

Section V-C). Thus, UEvoAutoML and OEvoAutoML will
exploit the G-mean as the evolution metric scores. For fair
comparison, the EvoAutoML will also set the G-mean as
evolution metric, instead of accuracy metric.

There are three main advantages of UEvoAutoML and
OEvoAutoML. First, any online classifiers are applicable in
the search space of online AutoML. This is because the
oversampling and undersampling are data level approaches
to handle class imbalance, without relying on the algorithms.
Second, they are able to dynamically adjust the resamlping
rate and adapt to the changing imbalance data streams. Third,
to a certain degree, they allow to handle real concept drift with
class imbalance due to the search process of passive evolution.

V. EXPERIMENTAL SETUP

A. Data sets

1) Synthetic Data sets: In our experiments, we adopt two
commonly used data stream generators, i.e., SEA [22] and
SINE [23]. They allow us to control the key factors, e.g, the
class imbalance degree, when and what types of drifts being
considered. Various class imbalanced scenarios without and



with real concept drifts are designed to verify the performance
of proposed methods. The detailed settings are given in Section
VI.

2) Real-world Data sets: Five public real-world data sets
commonly used in class imbalance data stream learning are
chosen in our experiments. They cover the topics of finance
banking, weather, environment, etc.

(1) The Credit Card Frauds(Frauds) [25] data set consists
of transactions made by credit cards in September 2013 by
European cardholders. It includes 492 frauds out of 284807
transactions (IR 0.172%).

(2) The task of Forest cover type(Covtype) [26] data set is to
predict forest cover type(7 classes) given 30× 30 meter cells
from the Roosevelt National Forest in Colorado. It includes
cartographic information that was determined from US Forest
Service (USFS). This multi-class data streams are converted
to binary streams using the same methodology as in [5],
which chooses one category as the majority and another as the
minority. The cover type ”4” is selected as the minority class
with 2747 instances and the cover type ”3” is chosen as the
majority class with 35754 instances. Thus, IR is approximately
7%.

(3) The Weather [27] data set includes the weather infor-
mation with eight features from the Nebraska by the National
Oceanic and Atmospheric Administration (NOAA).The task is
to predict whether it will rain or not. There are total 18159
instances, and the rain instances(i.e. minority class) are 5698.
Therefore, IR is approximately 30%.

(4) Given Me Some Credit(GMSC) [28] is a credit scoring
data set. The task is to decide whether a loan should be
granted. Incorrect loans result in the risk of default and would
add extra costs on future lawsuits. This data set consists of
120269 instances after instances of missing values are deleted.
The minority class account accounts for around 7% of all
borrowers.

(5) The Poker [29] data set has ten classes and ten predictive
attributions. Each record of Poker is an example of a hand
containing five playing cards drawn from a standard deck. We
convert it into a binary dataset by selecting class 3 as the
majority with 17541 instances and class 7 as the minority
with 195 instances. IR is approximately 1%.

B. AutoML setting and configurations

To verify whether the adaptive resampling is effective,
the search spaces of UEvoAutoML and OEvoAutOML are
identical to the EvoAutoML [10]. Similarly, the population
size is 10 and sampling rate is 1000. The search space includes
three preprocessing algorithms (i.e. a missing value cleaner,
min-max scaler and a standard scaler) and four online classi-
fiers with their hyperparameters(i.e. Gaussian Naive Bayes,
HoeffdingTreeClassifier, k-Nearest Neighbors, and Logistic
Regression classifiers). The detailed algorithm settings of
searching space can be found in [10].

The time decay factor θ in Equation 2 is set to 0.9
for UEvoAutoML and OEvoAutoML. This value can best

balance their reacting speed and prediction variance based on
preliminary experiments.

C. Performance Metrics and Evaluation

The overall accuracy metric biases toward the majority
class when the dataset is class imbalanced. Thus, the ge-
ometric mean(G-mean) that is not sensitive to class im-
balance is commonly used for performance evaluation [6].
In binary classification, it is defined as the G-mean =√
(Recall 0)× (Recall 1). Recall represents the classifica-

tion accuracy on a single class. Specifically, recall on class
0 denotes the “Recall 0” and recall on class 1 refers to
“Recall 1”. G-mean measures the overall performance and a
high G-mean implies a classifier that has high accuracy on
both classes.

The prequential evaluation (aka. test-then-train) is used to
evaluate and compare the three online AutoML frameworks.
Data collected at each time step are first used to test the
AutoML pipeline before being used for updating it. The perfor-
mance is updated incrementally. and is commonly employed
in the online learning literature.

Additionally, in all experiments, Wilcoxon Sign Rank [6] is
used to test the statistical significance and determines which
of the approach is significantly different, based on 30 runs
of the AutoML training. The significance level is set to 0.05.
For space reason, the p-value of this test will be presented in
close performance between AutoML approaches in the next
experiments.

VI. EXPERIMENTAL RESULTS

In this section, we discuss our experimental results on the
synthetic and real-world data streams.

A. Stationary Data Streams

The aim of this experiment is designed to answer Research
Question 1, i.e., how do UEvoAutoML and OEvoAutoML
perform on data streams with a static class imbalance ratio?
We focus on analysing that to what extent do the UEvoAu-
toML and OEvoAutoML help cope with the stationary class
imbalance without concept drift. To assess this, the SINE
and SEA are leveraged to generate four data streams with a
different IR, i.e. 0.1%, 0.5%, 1%, and 10%, respectively. Each
data stream has 100000 instances, and the class 1 is fixed as
the minority class in this experiment.

The three AutoML algorithms(i.e. UEvoAutoML, OEvoAu-
toML, and EvoAutoML) are compared through the prequential
G-mean and Recall of class 1 (minority) at the final step aver-
aged over 30 repetitions. Their means and standard deviations
are shown in Table I and Table II.

In Table I and Table II, we can see that the UEvoAutoML
has the best performance in all of the cases in terms of G-
mean and Recall 1. The OEvoAutoML is the second best
and usually outperforms the EvoAutoML in most situations.
Particularly, UEvoAutoML is robust to highly skewed class
distribution(i.e. 0.1%). The performance of other AutoML de-
clines in this case and the minority class is difficulty identified.



TABLE I
THE FINAL STEP G-MEAN ON FOUR DATA STREAMS WITH VARYING IR

FOR SINE AND SEA

Data sets IR UEvoAutoML OEvoAutoML EvoAutoML
SINE 0.1% 0.8280±0.0275 0.3160±0.0117 0.5457±0.0438

0.5% 0.9434±0.0192 0.6700±0.0042 0.3785±0.0832
1% 0.9616±0.0030 0.7864±0.0026 0.5052±0.0019
10% 0.9713±0.0007 0.9381±0.0007 0.8540±0.0003

SEA 0.1% 0.9024±0.0214 0.6524±0.0363 0.6210±0.0258
0.5% 0.9458±0.0067 0.6588±0.0382 0.7701±0.0006
1% 0.9597±0.0027 0.7522±0.0038 0.4611±0.0021
10% 0.9662±0.0007 0.9400±0.0009 0.8527±0.0004

TABLE II
THE FINAL STEP RECALL 1 ON FOUR DATA STREAMS WITH VARYING IR

FOR SINE AND SEA

Data sets IR UEvoAutoML OEvoAutoML EvoAutoML
SINE 0.1% 0.7907±0.0587 0.1000±0.0074 0.2997±0.0473

0.5% 0.9355±0.0247 0.4492±0.0057 0.1500±0.0982
1% 0.9559±0.0058 0.6193±0.0042 0.2554±0.0019
10% 0.9690±0.0020 0.8914±0.0013 0.7350±0.0005

SEA 0.1% 0.8990±0.0437 0.4270±0.0491 0.3863±0.0322
0.5% 0.9683±0.0148 0.4359±0.0575 0.5971±0.0009
1% 0.9757±0.0066 0.5678±0.0057 0.2130±0.0020
10% 0.9842±0.0014 0.9067±0.0016 0.7370±0.0006

The reason for UEvoAutoML’s advantage of identifying the
minority class is that with higher IR, UEvoAutoML reduces
the number of majority class by adaptive undersampling. As
a result, it gives more emphasis on the minority class after
the entire data streams have been learned. In contrast, a
smaller number of minority class under higher IR can not
be sufficiently learned for the OEvoAutoMl and EvoAutoML,
which may even cause overfitting.

The three AutoML approaches differ significantly in terms
of G-mean and Recall 1 according to Wilcoxon Sign Rank
test. For example, in SEA data streams with IR 0.1% for
G-mean, OEvoAutoML significantly outperforms the EvoAu-
toML with p-value 0.0018, and the significant superiority of
UEvoAutoML against EvoAutoML with p-value 1.7344e-06.
The similar statistic test results confirm that adaptive under-
sampling in UEvoAutoML is more effective and significantly
improve the prediction performance with regard to balancing
accuracy between the two classes.

The findings from the stationary data streams tell us,
adaptive resampling techniques are necessary to alleviate the
class imbalance problem in online AutoML. UEvoAutoML
is more resistant to extremely skewed class distributions and
can significantly improve the performance of EvoAutoML in
stationary imbalanced data streams.

B. Nonstationary data streams

1) Data with a changing IR and fixed concepts: The goal
of the experiment is to answer the research question 2, i.e.,
how do they perform when the data stream has a dynamically
changing imbalance ratio? The effectiveness of UEvoAutoML
and OEvoAutoML are studied in data streams with a dynamic
IR and fixed posterior probabilities.

(a) SINE (b) SINEg

(c) SEA (d) SEAg

Fig. 1. Prequential G-mean of the three AutoML approaches on data streams
with a dynamic IR.

Each data stream is fixed to have 100000 instances like
the previous section. We vary the IR at the time step 50000.
From time step 50001, we change the IR at a different speed
(an abrupt or gradual change) and severity (a severe or mild
change). An abrupt change means that the new distribution
entirely replace the old one from time step 500001, and a
gradual change indicates that the change lasts for 30000 time
steps. The SINE data stream involves a severe IR change, and
the SEA data stream involves a mild IR change, as shown
below:

For SINE:
P (y = 1) = 0.01→ 0.99

P (y = 0) = 0.99→ 0.01
(3)

For SEA:
P (y = 1) = 0.50→ 0.01

P (y = 0) = 0.50→ 0.99
(4)

Thus, four data streams are generated in total, i.e. SINE–
severe abrupt change, SINEg–severe gradual change, SEA–
mild abrupt change, and SEAg–mild gradual change. These
settings allow us to analyse if the proposed methods can deal
with dynamic IR changing and quickly adjust the adaptive
resampling when they occur. To understand the dynamic
change, the learning curve of prequential G-mean is produced
and compared in Fig. 1. Each point on the curve represents
the mean value across 30 runs. G-mean in the curve is reset
to 0 when the change begins and ends in order to observe the
impact of the change.

To quantitatively analyze how these changes affect the over-
all performance of three frameworks, the means and standard



TABLE III
MEANS AND STANDARD DEVIATIONS OF G-MEAN AND RECALL OF THE
THREE AUTOML APPROACHES AFTER THE CHANGE ON DATA STREAMS

WITH A DYNAMIC IR.

Data sets Frameworks G-mean Recall 1 Recall 0
SINE UEvoAutoML 0.9194±0.0301 0.8832±0.0501 0.9576±0.0099

OEvoAutoML 0.7898±0.0025 0.9975±0.0001 0.6253±0.0040
EvoAutoML 0.5089±0.0013 0.9990±0.0000 0.2592±0.0013

SINEg UEvoAutoML 0.9356±0.0076 0.9102±0.0092 0.9617±0.0104
OEvoAutoML 0.8079±0.0056 0.9986±0.0002 0.6537±0.0090
EvoAutoML 0.5531±0.0019 0.9995±0.0000 0.3062±0.0022

SEA UEvoAutoML 0.9632±0.0040 0.9891±0.0065 0.9381±0.0065
OEvoAutoML 0.7642±0.0048 0.5864±0.0074 0.9959±0.0002
EvoAutoML 0.9598±0.0001 0.9460±0.0002 0.9739±0.0000

SEAg UEvoAutoML 0.9681±0.0043 0.9850±0.0072 0.9515±0.0048
OEvoAutoML 0.7873±0.0073 0.6222±0.0116 0.9963±0.0000
EvoAutoML 0.5276±0.0027 0.2788±0.0028 0.9983±0.0000

deviations of metrics on the new class status in data streams
are further presented over all the time steps after the change
completely ends, i.e., time step 50000-100000 for an abrupt
change and time step 80000-100000 for a gradual change. The
detail G-mean and Recall of the new status are shown in Table
III.

In Fig. 1(a), UEvoAutoML has achieved the best perfor-
mance for balancing the accuracy on the two classes before
the change happens. After the abrupt change occurs(i.e. the
class 1 from the minority class becoming the majority class),
the G-mean rises in all of the AutoML frameworks due to the
appearance of class 1 more frequent in the data stream. The
G-mean then decreases over time steps as class 0 becomes the
minority class, the UEvoAutoML slightly declines as a result
of its ability to quickly adjust the adaptive undersampling
method on the right class(i.e. current majority class 1) and
precisely identify the current minority class 0. For space
limitations, Recall learning curve is not included in here.
In Fig. 1(b), due to gradual change, the growth trend is
obvious in the change process and in the new class status.
The UEvoAutoML and OEvoAutoML are more rapid since
the current class imbalance status is immediately evaluated
via calculating the time decay class size ratio. They are able
to faster tune the resampling’s attention for the right class
after the change. Besides, UEvoAutoML is more effective for
coping with dynamic IR.

In Fig. 1(c), after the balance stream becomes imbalanced
(the class 1 is minority class in the new status), the G-mean
of UEvoAutoML still performs the best after this type of
change due to its superior performance on identifying the
minority class. However, OEvoAutoML declines more than
EvoAutoML. This is because the pipelines in EvoAutoML are
updated more times(see Section IV-B). It results in retaining
more knowledge about class 1. Even if the class 1 becomes
the minority class after this change, it still performs better
than OEvoAutoML at the expense of sacrificing computation
time. This worse performance of OEvoAutoML is alleviated
for identifying the current minority class in the new status in
the scenario with a mild gradual change in Fig. 1(d).

After the changes, the class 0 becomes the minority class in
SINE and SINEg , and the class 1 becomes the minority class

in SEA and SEAg . In Table III, for G-mean and the minority
class recall, the UEvoAutoML has achieved the best perfor-
mance in all of cases since it quickly adapts to the changes
and improves the performance on the minority class by using
undersampling for the right class based on the accurate real-
time class size ratio estimate. In the close performance in
mild abrupt change in SEA, the UEvoAutoML outperforms
the EvoAutoML significantly with p-value 0.0003 according
to Wilcoxon Sign Rank test. The adaptive Undersamlping
in UEvoAutoML is more effective than Oversampling in
OEvoAutoML in terms of changing IR.

2) Data with real concept drift and a fixed IR: The aim
of the experiment is designed to answer research question 3,
i.e., how do they perform when both real concept drift and
class imbalance occur simultaneously? We study the scenarios
where both a real drift and class imbalance exist in data
streams. Even though the UEvoAutoML and OEvoAutoML do
not explicitly cope with real concept drift, the dynamic search-
ing process(i.e, mutation of the best pipeline and removal of
the worst pipeline) can passively respond to it through periodic
pipeline optimisation.

The change follows the settings in experiment VI-B1. The
class imbalance is fixed to 1% and the class 1 is the minority
class. For a severe change, the SINE synthetic data are
involved with concept swap, i.e. the concept that is reversed. A
gradual change in SINEg occurs through probability choosing
of examples from the old and the new concept. For a mild
change, the threshold of old concept in SEA is set to θ = 7,
and the threshold of new concept status is θ = 9.5. A gradual
change in SEAg data distribution is generated by means of
linearly moving the threshold. The SEA data stream has a
smaller change severity degree than SINE since examples of
the new concept in the SEA data set still include some previous
concept examples after the threshold changes. Fig. 2 depicts
the prequential G-mean throughout the time steps to compare
the three AutoML approaches in these four scenarios.

In Fig. 2(a), before the change, UEvoAutoML and OEvoAu-
toML outperform EvoAutoML in terms of G-mean. After the
concept abrupt drifts, all of the online AutoML suffer from
the performance reduction since this severe drift is involved
with the concept swap, which causes the rules learnt from
old concept being not suitable to the current new concept. All
of the online AutoML are able to recover thanks to the pas-
sive adaptation to the concept change. OEvoAutoML quickly
adapts to this severe change and has the best performance in
terms of trade-off between the two classes in the new data
concept. The similar results can be seen in Fig. 2(b).

In Fig. 2(c) and Fig. 2(d), a similar decreasing trend can
be observed. At the new concept status, we can see that
UEvoAutoML has the best performance on G-mean. This is
attributed to the fact that adaptive undersampling is more
effective when the UEvoAutoML retains some knowledge
about the minority class in the new concept in terms of the
process of mild real concept change in the SEA and SEAg .

Table IV shows the performance of three online AutoML
approaches on new data concept with different types of real
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Fig. 2. Prequential G-mean of the three AutoML approaches on data streams
with real concept drift and a fixed IR.

TABLE IV
MEANS AND STANDARD DEVIATIONS OF G-MEAN AND RECALL OF THE
THREE AUTOML APPROACHES AFTER THE CHANGE ON DATA STREAMS

WITH REAL CONCEPT DRIFT AND A FIXED IR.

Data sets Frameworks G-mean Recall 1 Recall 0
SINE UEvoAutoML 0.6187±0.0283 0.5683±0.0305 0.6741±0.0375

OEvoAutoML 0.7677±0.0039 0.5913±0.0061 0.9968±0.0002
EvoAutoML 0.4906±0.0012 0.2409±0.0011 0.9990±0.0000

SINEg UEvoAutoML 0.7018±0.0192 0.6758±0.0278 0.7294±0.0304
OEvoAutoML 0.7764±0.0068 0.6040±0.0106 0.9981±0.0002
EvoAutoML 0.4975±0.0047 0.2477±0.0047 0.9993±0.0000

SEA UEvoAutoML 0.9077±0.0103 0.8502±0.0214 0.9693±0.0049
OEvoAutoML 0.7325±0.0056 0.5378±0.0083 0.9979±0.0000
EvoAutoML 0.4663±0.0029 0.2177±0.0027 0.9990±0.0000

SEAg UEvoAutoML 0.9317±0.0071 0.8818±0.0151 0.9844±0.0031
OEvoAutoML 0.7788±0.0044 0.6082±0.0069 0.9974±0.0002
EvoAutoML 0.4948±0.0071 0.2452±0.0070 0.9988±0.0000

concept drifts. In terms of G-mean, the UEvoAutoML has a
better performance in mild changes, and the OEvoAutoML
has a better performance for dealing with severe changes.
Additionally, UEvoAutoML and OEvoAutoML both perform
better than EvoAutoML in the new concept. This demonstrates
that adaptive resampling can assist EvoAutoML framework
in addressing class imbalance issue in real concept drift.
Comparing the results in Table III, it can be seen that the
real concept drift with class imbalance affects the online
AutoML more severely and results in a greater performance
degradation.

C. Real-world data streams

This experiment aims to answer research question 4. i.e.,
how do they perform on real-world imbalanced data streams?
The previous experiments allow us to look into how the
UEvoAutoML and OEvoAutoML to handle and adapt to

TABLE V
MEANS AND STANDARD DEVIATIONS OF G-MEAN OF THE THREE

AUTOML APPROACHES ON THE REAL-WORLD DATA.

Data sets UEvoAutoML OEvoAutoML EvoAutoML
Frauds 0.8269±0.1313 0.7403±0.0234 0.5942±0.0200

Covtype34 0.8986±0.0019 0.8358±0.0028 0.6490±0.0017
GMSC 0.6150±0.0046 0.4300±0.0036 0.2700±0.0022
Weather 0.7262±0.0026 0.7195±0.0030 0.6759±0.0011
Poker27 0.9201±0.0092 0.6187±0.0094 0.1662±0.0247

imbalanced data streams in various manipulated scenarios.
Real-world data streams can be more complex. Thus, studying
how robust and adaptive in real world data streams is essential
to verify their effectiveness. The prequential G-mean of real-
world data streams is shown in Fig. 3. The means and standard
deviations of the final step G-mean averaged over 30 runs are
presented in Table V.

Some similar results are obtained compared with the syn-
thetic data cases. UEvoAutomL performs the best in all of the
real-world data streams, which implies the adaptive undersam-
pling having a positive impact on practical applications. It also
indicates that UEvoAutoML is more effective and necessary in
terms of handling class imbalance data streams in real-world
applications.

In Fig. 3(a), the Fraud plot of the G-mean performance of
UEvoAutoML is relatively stable over time, but OEvoAutoML
and EvoAutoML show the fluctuation. The reason is that the
UEvoAutoML has the superior performance on the minority
class, and the other two suffer from class imbalance issue,
resulting in G-mean degradation.The similar trend is also
shown in Fig. 3(e). The stable upward trend can be observed
in Fig. 3(b)-(d).

In Table V, UEvoAutoML and OEvoAutoML outperform
EvoAutoML by more than 20%, and 10%, respectively, on
the Frauts data stream. In Covetype34, UEvoAutoML and
OEvoAutoML outperform EvoAutoML by more than 18%.
In GMSC, UEvoAutoML and OEvoAutoML both achieve a
superior performance, outperforming EvoAutoML by more
than 30%, and 15%, respectively. The similar advantage is
also observed in Poker27. UEvoAutoML and OEvoAutoML
slightly outperform EvoAutoML in the Weather dataset.

VII. CONCLUSIONS

In this paper, we propose two adaptive resampling-based
online AutoML frameworks(i.e. UEvoAutoML and OEvoAu-
toML)to tackle the online class imbalanced data streams. The
class size ratio between the time decay size of each class
is used to guide resampling methods in UEvoAutoML and
OEvoAutoML at any given time step. They are evaluated
in comparison with EvoAutoML by answering four research
questions as listed in Section I.

In terms of the first research question, a data stream
with static class imbalance ratio can be easily handled by
UEvoAutoML. UEvoAutoML is more robust to extremely
skewed class distributions. For the second research question,
the adaptive undersampling technique in UEvoAutoML is
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Fig. 3. Prequential G-mean of the three AutoML approaches on the real-world data streams.

more effective to cope with a dynamically changing imbalance
ratio. With respect to the third research question, the prediction
performance on the real concept drift with class imbalance is
able to be effectively enhanced by the adaptive undersampling
in UEvoAutoML and adaptive oversampling in OEvoAutoML.
By contrast, EvoAutoML can not perform well in the new
concept and exhibits biases towards the majority class. For
the final research question, UEvoAutoML achieves the best
performance in all of the real-world data streams, and the
OEvoAutoML’s performance is the second best based on the
observation on the G-mean. These indicate that our approaches
are effective on practical applications.

Future work includes: (1)adding resampling techniques into
the searching space of the AutoML framework, so that the
framework can find the best resampling technique for any
data stream automatically; (2) considering active detection of
real concept drift and continuously evolving process when
searching the online algorithms space.
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