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Abstract— In this paper, a new collaborative tracking 

algorithm is put forward to track multiple objects in video 

streams. First, we suggest a robust color-based tracker 

whose model is updated by online learned contextual 

information. A recursive method is performed to improve 

the estimation accuracy and the robustness to cluttered 

environment. Then, we extend this tracker to multiple 

targets. In order to avoid the problem of ID switch in long 

term occlusion, we design a hierarchical tracking system 

with different tracking priorities. First, the algorithm 

employs an adaptive collision prevention model to separate 

the nearby trajectories. When the inter-occlusion happens, 

the holistic model of tracker splits into several parts, and we 

use the visible parts to perform tracking as well as occlusion 

reasoning. In case where the targets have close appearance 

models, a trajectory monitoring approach is employed to 

handle the occlusion. Once the tracker is fully occluded, the 

algorithm will re-initialize particles around the occluder to 

capture the re-appeared target. Experimental results using 

open dataset demonstrate the feasibility of our proposal. 

Besides, comparison with several state of arts trackers has 

also been performed.  

 

Index Terms—particle filter, multiple targets, 

collaborative tracking. 

I. INTRODUCTION 

UTOMATIC tracking becomes increasingly 

important as thousands of low-cost and small-scale 

image sensors have been used to deploy surveillance 

systems across large cities, which renders any manual 

check of videos a very expensive task [1]. This motivates 

the extensive work carried out in this area in the last two 

decades as suggested by recent overview paper [2]. 

Usually, these tracking algorithms mainly include three 

primary components: target representation, 

spatiotemporal prediction and model update [3].  

Many different cues can be used for representing the 

targets [2], i.e., color histogram [4], histogram of oriented 

gradients (HoG) [5], covariance region descriptor [6], and 

Haar-like features [7]. These features can be utilized in 

two distinct schemes: holistic approach [8-9] where a 

single appearance model for the whole target is 

employed, and a subspace-based approach [10-11], where 

different parts of the target are associated distinct 

appearance models.  

Search mechanisms to locate the target can be 

classified into gradient descent-based methods like mean-

shift [12] and spatiotemporal prediction where some pre-
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specified motion model was employed as in Kalman 

Filter [13]. The key in the estimation process in both 

cases is to match the appearance model of the region 

predicted by the spatiotemporal model with that of the 

target. Both gradient descent and spatiotemporal 

prediction methods were successfully implemented in 

many applications [3]. Nevertheless such methods are 

also vulnerable to local minima that can cause 

divergence. To alleviate this problem, stochastic search 

methods such as particle filters [14] have been widely 

employed due to their proven efficiency and 

computational cost. Besides, the appearance model of the 

target might also change over time due to changes in 

lighting conditions for instance, which requires a regular 

update. However, improper updating might result in some 

drifting problems. Despite a lot of effort and increased 

computational resources, effective and robust solution to 

the problem is still far from satisfactory in real scenarios 

[15]. The causes of tracking failures include inappropriate 

handling of background clutter, occlusion, illumination 

changes and target deformation, among others [16]. For 

this purpose, several approaches have been proposed. 

Some of these proposals are based on the concept of 

mining local visual information surrounding the target. 

For instance, Wang et al. [27] on-line updated the 

appearance model by selecting the discriminative features 

with the aid of existing background particles. Work in 

[18] advocates the use of contextual information like 

approach, especially in case of occluded targets. This 

yields robust individual trackers. 

In order to deal with the problem of tracking multiple 

objects, the simplest way is likely to use multiple 

independent trackers (M.I.T.) where each target is 

associated to an independent tracker regardless of the 

state of other targets. Such trackers, e.g. [19], do not need 

a pre-training (beyond an initial bounding box) and often 

yield locally optimal solutions that best-match the target 

models in clear scenarios of absence of strong 

overlapping, lighting conditions and shape deformations. 

Such approach has been employed with some success to 

follow multiple hockey players [20] and track multiple 

people on the ground [21] in real time. Alternative 

approach is to use a pre-trained detector to scan all frames 

of a video, and then link successive detection instances by 

“tracklets” [22, 23], which is often formulated as a linear 

assignment problem where the cost of linking one tracklet 

to another is expressed as a function of appearance and 

motion features. Nevertheless as soon as an occlusion 

occurs or targets have (almost) the same appearance, 

M.I.T approach is acknowledged for its limitations and 

may result in an identity switch [24]. Qu.et al. [37] 

explicitly considered the interaction between multiple 
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targets with a designed magnetic-inertia potential model. 

However, such model may degrade the overall 

performance when the targets already have distinguished 

appearance. Moreover, the proposed method can hardly 

handle the long-term full occlusion problem, i.e. the 

target moves together with occluder. 

In this paper, to cope with the problems mentioned 

above, our proposed algorithm first builds a robust 

individual tracker that can accommodate a clutter and 

appearance change environments. For this purpose, first a 

general framework of color based particle filtering 

tracking is adopted [14]. Second, one utilizes the 

contextual information to allocate the confidence of the 

target’s appearance changes. Third, in the resampling 

stage, the particles are selected according to the weights 

computed from their appearance similarity scores. Next, 

inspired by work of [16], this robust individual tracker is 

extended to multiple trackers through integrating a 

collision prevention model, which prevents tracker jump-

over scenario. Besides the appearance similarity scores 

are employed to adaptively control the strength of this 

collision prevention power. If the targets share (almost) 

the same appearance model, a trajectory based monitoring 

strategy is employed in order to discriminate the trackers. 

Unlike [16], which rather employs a holistic like 

approach, a subspace-based method is advocated in this 

paper as soon as a possible overlapping scenario is 

detected. This allows us to handle more efficiently 

collision scenarios in which only part of object (target) is 

visible so that a contextual occlusion reasoning followed 

by a hierarchical tracking priority based approach are 

employed to distinguish the trackers. If a full occlusion 

occurs, an approach similar to that in [15] is adopted. 

Namely, based on the concept of “object permanency” 

which suggests that a fully occluded target will re-emerge 

from its occluder, the algorithm will re-initialize the 

particles around the occluder so that the tracker can 

capture the target, once reappeared, immediately. 

In overall, this paper expands the original color based 

particle filter with original extensions that can be 

summarized in the following:  

 In order to deal with possible occurrence of outlier 

particles that can shift the overall estimation, a 

recursive estimation, which reweights and reinitializes 

outlier particles, is introduced.  

 The contextual information is employed to update the 

reference model, which overcomes the luminosity 

change and background influence.  

  In order to tackle possible occlusion in case of 

multiple object tracking, a collision prevention model 

is introduced by reweighting particles when the target 

becomes close enough to each other.  

 A mechanism for identifying and tackling partial and 

full occlusion are put forward.  

 An extensive comparison of the proposal with state of 

art trackers using some publicly available dataset is 

carried out in order to demonstrate the feasibility and 

effectiveness of the proposal.  

The rest of the paper is organized as follows. Section II 

details our individual tracker. The cooperation tracking 

scheme is described in Section III. Section IV gives 

details about the experiment while highlighting some of 

the results. A further analysis and conclusion are drawn in 

the Section V. 

II. SINGLE ADAPTIVE COLOR-BASED TRACKER 

A. Background  

First, one shall mention that in our model, the target is 

modelled by a rectangular region, corresponding to the 

bounding box of the target; namely,  

       𝐿 = {𝑃𝑥 , 𝑃𝑦 , 𝐻𝑥 , 𝐻𝑦}                    (1) 

Where 𝑃𝑥 , 𝑃𝑦  represent the x-y coordinates of the 

center position of the bounding box, 𝐻𝑥 , 𝐻𝑦 stand for the 

region width and height, respectively as described in 

Fig.1. 

 
Fig. 1.  Tracker’s bounding box 

 

At frame k, the tracker is represented by the state 

vector 𝑋𝑘 = {𝐿𝑘 , 𝐴𝑘} where 𝐿𝑘 describes the attributes of 

the target as in (1) and 𝐴𝑘  is a vector describing the 

appearance model (RGB color histogram) in the region 

specified by 𝐿𝑘 . The basic tracking scheme shares the 

same spirit with the state-of-the-art Particle Filter tracker 

[14] which utilizes a set of weighted particles to represent 

the posterior density function associated to state vector 

variable 𝐿𝑘 . More specifically, for the i
th

 particle 

characterized by a state variable 
i

kL and a weight 
( i )

k , a 

(fixed) motion model is used to propagate the state 

variable as:  

𝐿𝑘
𝑖 = 𝑀𝐿𝑘−1

𝑖 + 𝜈𝑘−1                           (2) 

Where 𝑀  stands for a constant motion matrix (unit 

matrix), and 𝑣𝑘~𝒩(0, 𝑅) is a zero-mean Gaussian noise 

with a constant variance-covariance matrix R.  

The weight 𝜔𝑘
(𝑖)

 of the i
th

 particle is measured by the 

similarity between the observed appearance model and 

the reference target:   

𝜔𝑘
(𝑖)

= 𝑒𝜆𝑎 𝐵(𝐴𝑘
(𝑖)

,𝐴𝑘
𝑟𝑒𝑓

)                          (3) 

Where 𝜆𝑎 is a constant parameter, 𝐴𝑘
(𝑖)

is the observed 

appearance of particle 𝑖 while 𝐴𝑘
𝑟𝑒𝑓

 is the appearance of 

the reference target. 𝐵(. , . ) measures the similarity score 

through Bhattacharyya distance [25]. These weights are 

then normalized (by division by the sum  ∑ 𝜔𝑘
(𝑖)𝑁

𝑖=1 ). 

The parameter 𝜆𝑎 controls the order of magnitude of the 

weights 𝜔𝑘
(𝑖)

. A high value of 𝜆𝑎would ultimately yield 

high values of weights even for distances which are 

relatively high, increasing the danger of particle 

degeneracy. While a too small value of the parameter 

yields a compact set of particles. Consequently, 𝜆𝑎 should 

compromise between the risk of losing the target because 

of either particle degeneracy or compactness. In our 

study, setting value 𝜆𝑎=5 seems to work well.  

(𝑝𝑥 , 𝑝𝑦) 𝐻𝑦 

𝐻𝑥 



The estimation of the target from all particles is computed 

by averaging over the set of all particles: 

�̂�𝑘 = ∑ 𝜔𝑘
(𝑖)

𝐿𝑘
(𝑖)𝑁

𝑖=1                           (4) 

The update of the reference model is implemented by 

the equation: 

𝐴𝑘+1
𝑟𝑒𝑓

= (1 − 𝜆𝑟)𝐴𝑘
𝑟𝑒𝑓

+ 𝜆𝑟𝐴𝑘+1              (5) 

Where 𝜆𝑟 is some constant parameter that tradeoffs the 

current appearance with previous reference appearance 

estimate. In other words, the updated reference 

appearance model is constructed as a convex combination 

of the previous estimate of the reference appearance and 

the current observation of the target appearance. In the 

absence of prior knowledge about the change of reference 

appearance model, setting 𝜆𝑟=0.5 seems appropriate. 

However, estimation (2-4) might not be fully accurate, 

especially in a cluttered environment. Indeed, for 

instance, when the target encounters a similar 

background, the estimation induced by some particles 

might be fully erroneous, so that the distribution of 

particles yields distinct clusters, which, in turn, leads to 

an overall target estimate according to (4) located 

somewhere between the clusters but far away from the 

target, as it can be seen in Fig. 2. Similarly, a slight 

inaccuracy in updating stage (5) can be accumulated over 

time, and may yield a serious drifting, which causes target 

divergence. In Fig. 2, the purpose is to track one specific 

individual (target object) in a video containing two 

individuals who look almost alike, yielding a close 

appearance model too, and walking in opposite directions. 

Initially, before the crossing, the estimation looks pretty 

consistent as demonstrated by a consistent set of 

bounding boxes related to various particles. However 

after crossing, on the right hand side of Fig. 2, the 

estimation as depicted by the thick-lined square is very 

much biased by the second person in the image.  

   
a) Frame 1                             b) Frame 55. After cross-over 

Fig. 2. Failure modes in environmental clutter 

This motivates our proposal of a recursive estimation 

method to solve the problems in clutter environment 

where contextual information is extracted to form a 

robust model updating. This is detailed in the next 

section. 

B. Recursive estimation 

As pointed out in previous section, the main cause of 

drift observed in the presence of clutter relies on the fact 

that particle estimates are mainly distributed across 

several clusters, while some particles act as outliers, 

which yields an erroneous global target estimate. The key 

idea pursued in this paper to handle this issue is to 

introduce a new weighting of the particles, which takes 

into account the actual (global) target estimate and 

iterates until no outliers is detected. Intuitively this 

assumes a smooth transition of target estimate from one 

frame to the next one. More specifically, let 𝑑𝑘
(𝑖)

 be the 

distance from the i
th

 particle bounding box center of the 

k
th

 frame to the target estimate (computed as average over 

all associated particles) at previous frame:  

𝑑𝑘
(𝑖)

= √(𝑃𝑘−1
𝑥 − (𝑃𝑘

𝑥)𝑖)2 + (𝑃𝑘−1
𝑦

− (𝑃𝑘
𝑦

)
𝑖
)

2

      (6) 

The average distance across all particles is therefore: 

�̅�𝑘 =
1

𝑁
∑ 𝑑𝑘

(𝑖)𝑁
𝑖=1                            (7) 

A particle i is considered drifting away from the 

normative estimation if and only if: 

𝑑𝑘
(𝑖)

> λ𝑑�̅�𝑘                              (8) 

λ𝑑 is a constant parameter related to the variability of 

frames in the underlying video. Especially, high value of 

λ𝑑 reduces the number of outliers while setting its value 

less than one would substantially increase the number of 

outliers. Therefore a compromise situation, which avoids 

high values that would prevent detection and very small 

values that would yield false positives, is required. 

Setting λ𝑑 = 2  is found to work well in our case.  

The particles will then be resampled in the light of 

constraint (8), which would avoid large discrepancy of 

particle distribution. Figure 3 illustrates the above 

resampling scheme. The plot displays a configuration in 

which two particles, say, p
th

 and q
th

 particle, act as 

outliers with respect to the rest of the particles, which 

rather forms an homogeneous group, yielding a global 

target estimate L̂ shifted away from the homogeneous 

group of particles ( L̂ _ stands for estimate at previous 

frame). The two outlier particles are assumed to fulfil the 

constraint (8). 
 

 
Fig.3. Resampling scheme 

 

The new resampling strategy works as follows:  

(i) Initialize each outlier target estimate to the global 

estimate L̂ ,  

(ii) Calculate the appearance model in the region 

delimited by L̂    

(iii) Compute the new weights attached to the p
th

 and 

q
th

 particles according to (3); namely, using the 

notations of Fig. 3, 

       𝐿𝑝
′ = �̂�  and 𝐿𝑞

′ = �̂�                                 (9) 

    𝜔(𝑝) = 𝜔(𝑞) = 𝑒𝜆𝑎 𝐵(𝐴(�̂�),   𝐴𝑟𝑒𝑓)                 (10)  

where 𝐴(�̂�) corresponds to the appearance associated    

to the global estimate L̂;  

𝐿−̂ 

𝐿1 
𝐿2 

𝐿𝑚 

𝐿𝑝 
𝐿𝑞 

𝑑𝑝 

𝜔𝑝 

𝜔𝑞 



(iv) Renormalize the weights accordingly, yielding 

𝜔′(𝑖) = 𝜔(𝑖)/ ∑ 𝜔(𝑘).𝑘    

(v) Compute a new global estimation according to (4).  

(vi) Repeat steps (6-8) to find out whether there are 

any outlier particles.  

The resampling steps (i)-(v) are iterated until no outlier is 

generated. Besides, in practice the number of the above 

iterations is substantially reduced as the number of 

outliers tends to stabilize after the first resampling stage. 

A pseudo-code summarizing such resampling is described 

in TAB.I. 
 

TABLE I. PSEUDO-CODE OF RECURSIVE ESTIMATION 

Recursive Estimation- Resampling. Input: {𝐿𝑘
(𝑖)

, 𝜔𝑘
(𝑖)

} 

a. Estimate the global state 
kL̂ using Eq.4. 

b. FOR Each particle i 

            Compute the distance 𝑑𝑘
(𝑖)

 using Eq. (6) 

    END 

c. Compute average distance 𝑑𝑘
̅̅ ̅ using Eq. (7) 

d. While particle j fulfils Eq. (8), DO 

- Set 
j

k k
ˆL L  

- Compute appearance model 𝐴𝑘
(�̂�)

 

- Compute new weight as 𝜔(𝑗) = 𝑒𝜆𝑎 𝐵(𝐴𝑘
(�̂�)

,𝐴𝑘
𝑟𝑒𝑓

) 

      END 

e. FOR Each particle i      

  Normalize weights using 𝜔(𝑖) = 𝜔(𝑖)/ ∑ 𝜔(𝑘).𝑘  

    END 

f. GO to a) 

g. Repeat a)-f)  until no particle j fulfils (8) 

h.  Output global estimation  �̂�𝑘, and particles {𝐿𝑘
(𝑖)

, 𝜔𝑘
(𝑖)

} 

 

C.  Contextual information updating 

Updating the reference model is often problematic 

because of difficult predictability of future lighting 

conditions or so in video sequences. The convex 

combination between previous model and current 

appearance of target in view of expression (5) might be 

misleading because of the possible influence of the 

background, which is ignored in the target appearance 

model. Inspired by work of Talha and Stolkin [26] and 

Wang et al. [27], we first suggest to account for the 

background through enlarging the estimated target’s 

bounding box by a fixed proportion. Second, the 

multiplicative factor 𝜆𝑟 in (5) is chosen to account for the 

proportion of background pixels with respect to 

foreground pixels at each bin interval of the (intensity) 

histogram. The rational for doing so is that by comparing 

the appearance change between the model estimation 

(foreground) and the background of the (learned) 

reference, if the changes are quite similar to the 

background, a low factor will be assigned, indicating the 

prevalence of the previous reference model estimate in 

(5). Otherwise, the contribution of the current foreground 

should be made more important. More formally, the 

bounding box associated to target estimate of the 

reference is enlarged uniformly as in Fig. 4 so that a local 

background region defined as the complement of the 

foreground region with respect to the aforementioned 

enlarged region is estimated. 

Specifically, we enlarge the bounding box of target 

estimate by a constant scaling factor 𝜎 > 1 for each edge 

as shown in Fig. 4 so that the size or resolution of the 

enlarged area becomes: 

 𝑆𝑘
𝑓+𝑏

= 𝜎2𝐻𝑘
∗𝑥𝐻𝑘

∗𝑦
= 𝜎2𝑆𝑘

𝑓
                (11) 

The appearance model (histogram) 𝐴𝑘
𝑓+𝑏

 of the 

enlarged bounding box 𝑆𝑘
𝑓+𝑏

, which contains both 

foreground and background information, can be derived 

straightforwardly. Next, the histogram of the background 

region only 𝐴𝑘
𝑏   is computed using: 

𝐴𝑘
𝑏 =

𝐴𝑘
𝑓+𝑏

𝑆𝑘
𝑓+𝑏

−𝑆𝑘
𝑓

𝐴𝑘
𝑓

𝑆𝑘
𝑓+𝑏

−𝑆𝑘
𝑓                       (12) 

 
Note that at each histogram bin u, the quantity 

𝐴𝑘
𝑓+𝑏

(𝑢)𝑆𝑘
𝑓+𝑏

 represents the total number of pixels of the 

𝑆𝑘
𝑓+𝑏

 region whose grey values fall within the interval 

delimited by bin u. Consequently, the quantity 

𝐴𝑘
𝑓+𝑏

(𝑢)𝑆𝑘
𝑓+𝑏

− 𝑆𝑘
𝑓

𝐴𝑘
𝑓

(𝑢) corresponds to the total number 

of pixels in the background region 𝑆𝑘
𝑏  whose grey level 

values fall in the interval delimited by bin u. The 

denominator in expression (12) allows us to normalize 𝐴𝑘
𝑏  

within unit interval. 

Following [26-27], we set the multiplicative factor 

=1.2. Notice that this choice can also be influenced by 

the intensity of the clutter and level of interactions among 

targets, if any, as we may end up with a background 

which also contain possible other targets. Consequently 

cautious is needed when sequence of multiple targets is 

used by reducing . Nevertheless it should always be held 

 > 1. 
Next, the counterpart of 𝜆𝑟  in Eq.5 is determined for 

each bin as: 

𝐶𝑘(𝑢) = {1 − 𝑒
−𝜆𝑐(

𝐴
𝑘
𝑓

(𝑢)

𝐴𝑘
𝑏(𝑢)

)

 ,   𝐴𝑘
𝑏(𝑢) ≠ 0

            1         , 𝐴𝑘
𝑏(𝑢) = 0

         (13)    

Where 𝜆𝑐  is a control parameter that quantifies any 

preference of foreground model over background model. 

Motivated by a cautious attitude when background model 

is attributed higher weight as in alternative studies, we set 

𝜆𝑐 =0.1, which is proven to work well in practice. 

Typically, it is easy to see from (13), that the more 

dominant the foreground model with respect to 

background model, the higher the weighting factor 𝐶𝑘(𝑢), 
which, in turn, makes the contribution of the previous 

reference model in (5) more important. In other words, if 

the pixels, whose grey level intensities belong to the 

given bin u, are dominantly located in the foreground or 

the estimated bounding window, the influence of the 

background is negligible, and, therefore, there is no need 

to influence much the reference model, yielding a 

Fig.4 Foreground and Background region 

region 

Background 

Foreground 
𝐻𝑘

𝑦
 
𝐻𝑘

𝑦
 

𝐻𝑘
𝑥 

𝐻𝑘
𝑥 



reference model close to its predecessor (in previous 

frame). Otherwise, the background is deemed to be 

important and, therefore, the reference model should be 

changed accordingly, yielding a smaller coefficient factor 

for 𝐴𝑘
𝑟𝑒𝑓

, but higher for current appearance model 𝐴𝑘+1. 

Also, notice that distinguishing the case 𝐴𝑘
𝑏(𝑢) = 0  in 

(13) ensures the continuity of 𝐶𝑘 with respect to u, while 

its values range in the unit interval. A counterpart of (5) 

can be written as: 

�̂�𝑘
𝑟𝑒𝑓′(𝑢) = 𝐶𝑘(𝑢)𝐴𝑘−1

𝑟𝑒𝑓 (𝑢) + (1 − 𝐶𝑘(𝑢))𝐴𝑘
𝑓(𝑢)    (14)    

The newly calculated appearance model (14) should 

also be normalized if any (by dividing by the sum over all 

bins). A generic pseudo code of individual tracker is 

summarized in TAB.II. 

TABLE II. INDIVIDUAL TRACKER 

Individual tracker:  Adaptive color-based tracker 

Given the sample set {𝐿0
(𝑖)

} and the target model. Perform 

the following steps: 

1. Predict each sample from the set  {𝐿𝑘−1
(𝑖)

}  by a linear 

stochastic differential equation. Eq.2. 

2. Observe the colour distribution in the region  {𝐿𝑘
(𝑖)

}, and 

calculate the weights of the particles {𝜔𝑘
(𝑖)

}. Eq.3 

3. Recursive estimation.  

    Output global estimation  �̂�𝑘 , and particles {𝐿𝑘
(𝑖)

, 𝜔𝑘
(𝑖)

} as 

in TAB. I. 

4. Update the reference model according to the contextual 

information. Eqs.13-14.     

III. COLLABORATIVE TRACKING 

A.  Introduction 

Extension of individual tracker to track multiple 

objects is not straightforward as frequent interactions 

between such objects not only bring heavy occlusion 

problem but also the risk of identity-switch. As pointed 

out in the introduction of this paper, the use of 

independent individual trackers as a way to deal with 

multiple object tracking is not very effective. Instead, 

mechanisms for monitoring all pairs of (particle) target 

estimation in order to avoid possible occurrences of 

occlusion are required. This enables what we refer here 

by collaborative tracking. In the latter, the distance 

between any pairwise target estimates is constantly 

monitored. In this respect, four distinguished cases can be 

reported:  

 If the distance is sufficiently large, then the rationale is 

to use multiple independent trackers (M.I.T), indicating 

the absence of any occlusion or target identity switch. 

 If such distance is smaller than some predefined 

threshold but without causing an overlap of the two 

bounding box estimates, then an adaptive prevention 

model will be applied, where the distance is explicitly 

taken into account in refining the likelihood (weight). 

 If there exists an overlapping between the two target 

estimations, then a (partial) occlusion-based reasoning 

will be enabled in order to distinguish the occluded 

target from the non-occluded one, and then refine the 

estimation accordingly.  

 If the distance indicates a full occlusion, e.g., one 

bounding box region is fully included into the other one, 

then the full occlusion reasoning is activated, where 

basically, one waits for the re-appearance of the target. 

The above constitutes our collaborative tracking for 

dealing with multiple targets, where the various subcases 

are detailed in the subsequent subsections. 

B. Adaptive collision prevention model 

The main idea in collision preventive model is that as 

soon as the distance between the (global) estimates of the 

two targets is less than some predefined threshold and the 

regions are non-overlapping, then the weights of the 

particles in the next frame will be refined to take into 

account both the distance to the other target as well as the 

dissimilarity of the appearance models of the two targets.  

 More formally, given two targets X1 and X2 (objects in 

the video that one wants to track), with particles 

{𝐿𝑋1(𝑘)
(𝑖)

, 𝜔𝑋1(𝑘)
(𝑖)

}  and {𝐿𝑋2(𝑘)
(𝑖)

, 𝜔𝑋2(𝑘)
(𝑖)

} i=1,N, respectively. The 

current weight 𝜔𝑋1

(𝑗)
 of the j

th
 particle of target X1 will be 

refined as (omitting the subscript k for simplicity of 

notations)  

�̂�𝑋1

(𝑗)
= 𝜔𝑋1

(𝑗)
𝑒𝑥𝑝 (𝜆𝑋1𝑋2

∙ 𝑑(𝑅𝑗
𝑋1 , 𝑅𝑋2))           (15) 

Where 𝑅𝑗
𝑋1  and 𝑅𝑋2  are bounding box regions 

associated to j
th

 particle of target X1 and global estimate 

of target X2, respectively. 𝑑(. , . ) is the distance between 

the two bounding boxes in the sense of minimum distance 

between corners of the two regions.  

Similar reasoning applies to particle j of target X2 

where the counterpart of (15) is: 

�̂�𝑋2

(𝑗)
= 𝜔𝑋2

(𝑗)
𝑒𝑥𝑝 (𝜆𝑋1𝑋2

∙ 𝑑(𝑅𝑗
𝑋2 , 𝑅𝑋1))          (16) 

The coefficient factor 𝜆𝑋1𝑋2
 determines the similarity 

of the appearance models associated to the two targets, 

and is given by  

𝜆𝑋1𝑋2
= 𝜆𝑑𝐵(𝐴𝑋1 , 𝐴𝑋2)                      (17) 

Where 𝜆𝑑 and 𝐵(. , . ) are defined as in expression (3).  

Weights in (15-16) are also normalized in similar way. 

Trivially from (15-17), the weight of particle is increasing 

with respect to both the distance between the two target 

estimates and the dissimilarity of their appearance models 

at the target estimates. This translates the fact that 

particles should contribute less to the global estimate of 

the target when they are sufficiently close to the other 

target. On the other hand, if the two targets in terms of 

their global estimates have the same appearance models, 

the quantity 𝐵(𝐴𝑋1 , 𝐴𝑋2) coincides with unity, making the 

𝜆𝑋1𝑋2
 constant. Otherwise, the more distinct the 

appearance models of the two targets, the higher the 

associated weight of the particle. This is also in 

agreement with the intuition that distinguished particles in 

terms of appearance models should contribute more to the 

global estimate, since close appearance models increase 

the chance of identity-switch phenomenon. 

C. Hierarchical tracking priority (in case of partial 

occlusion) 

Throughout this section one considers situation of a 

partial overlapping of the bounding box regions 

associated to the two targets X1 and X2. In such case, the 

main research questions that are handled here are: 

 Does the overlapping of the bounding box regions 

entail a partial or a full occlusion of targets? 

 Which target is occluded in another one? 



 How to refine the estimation of the targets in case 

where occlusion is confirmed? 

Strictly speaking, the occurrence of such overlapping 

does not necessarily entail the occurrence of occlusion. 

For instance, in the case of a minor overlapping, it cannot 

be excluded that the actual shapes of the two targets are 

completely identified without any ambiguity. On the 

hand, it also holds that the overlapping may rather be due 

to a wrong estimation instead of a genuine occlusion, so 

that one of the bounding box regions may not include any 

genuine target. In such cases, the occurrence of 

overlapping does not imply any occlusion. Similarly, 

even if the occlusion is confirmed, still one requires to 

determine whether target X1 is occluded by target X2 or 

vice versa. At each case, an appropriate reasoning for 

estimating the target will be enabled. 

For this purpose, the use of appearance model of the 

two targets sounds rational. However, if the two targets 

have similar appearance models, then alternative 

reasoning will be required where monitoring each target 

itinerary will be employed as detailed later on. Especially, 

the itinerary-based monitoring will be triggered as soon 

as it holds that 

𝐵(𝐴𝑋1 , 𝐴𝑋2) ≥ 𝑇𝑎                          (18) 

Expression (18) indicates that the appearance models 

between the two targets is deemed to be similar as soon as 

their similarity values in the sense of Bhattacharya 

coefficient is larger than some predefined threshold 𝑇𝑎 . 

Here 𝑇𝑎=0.95 was used. Ideally, Ta close to one indicates 

a strict equal similarity in the sense of Bhattacharyaa 

distance, a situation which may rarely occur in practice, 

while relaxing the value of Ta allows us to account for 

targets of close appearance models. 

a) Targets with different  appearance models 
 

i) Occlusion confirmation 

Once there is an overlap between the target estimates 

(bounding box regions), and a clear distinct appearance 

models, we propose a two-step competition mechanism in 

order to confirm or refute the existence of occlusion. 

First, the likelihoods 𝜔𝑋1
 and 𝜔𝑋2

of both targets in the 

sense of expression (3) are computed using the 

appearance model 𝐴𝑋1  and 𝐴𝑋2  around the (global) 

estimated bounding box of each target and using the 

information on the reference model 𝐴𝑟𝑒𝑓(for both targets). 

The conjecture is that if there is an occlusion then it holds 

that one of the likelihoods will be dominant. 

Nevertheless, the discrepancy between the values 

attached to the two likelihoods can also be due to a wrong 

target estimation. Second, in order to differentiate 

between the cases where the discrepancy of the two 

likelihoods is due to a wrong estimation and that due to 

an occlusion, the contextual information will be 

employed as in Section II.C. More formally, let us 

assume without loss of generality that  

                     𝜔𝑋1
< 𝜔𝑋2

                          (19) 

(Likelihood associated to target X1 is weak compared to 

that of X2). We first calculate the positive contribution of 

the appearance model of another target 𝑋2  (potential 

occluder) over the 𝑋1 reference model, which can be 

quantified by:  

ℎ1
𝑋1 = ∑ (𝐴𝑋2(𝑖) − 𝐴𝑟𝑒𝑓𝑋1 (𝑖))

𝑖,[𝐴𝑋2(𝑖)−𝐴
𝑟𝑒𝑓𝑋1 (𝑖)]≥0

  (20) 

Next, we repeat the same reasoning with the enlarged 

region of target X1, and focusing on background region, 

yielding: 

   ℎ2
𝑋1 = ∑ (𝐴𝑋1

𝑏
(𝑖) − 𝐴𝑟𝑒𝑓𝑋1 (𝑖))

𝑖,[𝐴𝑋1
𝑏

(𝑖)−𝐴𝐴
𝑟𝑒𝑓𝑋1 (𝑖)]≥0

 (21) 

Where 𝐴𝑋1
𝑏

 stands for the histogram associated to 

background region of the enlarged bounding box 

pertaining to target X1. Comparing (20) and (21), if ℎ1
𝑋1 is 

dominant over ℎ2
𝑋1 , say,  

     ℎ1
𝑋1 > ℎ2

𝑋1                          (22) 

then X1 is assumed to be occluded by X2. Otherwise, the 

occlusion cannot be confirmed in the current frame, as the 

target with lower weight in Eq.19 might come from poor 

estimation. So, the same reasoning will be repeated in 

subsequent frames to check whether the occlusion can be 

confirmed. The same reasoning applies in the case of  

𝜔𝑋2
< 𝜔𝑋1

by substituting X2 to X1 in (20-21). 

ii) Estimation in case of (partial) occlusion 

If the occlusion is confirmed (using conditions like 

(19) and (22)), the reasoning is first to stop enabling the 

(adaptive) prevention collision model and, second, to 

discriminate the visible parts and non-visible parts in 

bounding box regions of targets, and, third, to re-

computes the weights accordingly. One notices that the 

current case of partial occlusion excludes the case of full 

occlusion where one bounding box has no associated 

visible parts. This situation will be investigated later on. 

To illustrate our reasoning, let us exemplify in Fig. 5 a 

simple case of target overlapping, which confirms a 

partial occlusion. 
 

 
Fig.5. Overlapping of the two targets’ estimates. 

 

The approach adopted here is to create a subdivision of 

each bounding box region in order to account for visible / 

non-visible parts. Strictly speaking, the initial outcome of 

such occlusion reasoning is twofold: 

1) A visual partition model of each target is elicited. 

For instance, in the case of Fig. 5, ignoring any occlusion 

scenario, the visible part of target X2 corresponds to 

partitions 1, 3 and 4, while that of target X1 corresponds 

to partition 2 and 4. This is referred to as visual partition 

model. However, if the occlusion reasoning concluded 

that only target X2 is partially occluded, then target X1 
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becomes fully visible, while partitions 1, 3, 4 are the 

visible parts for target X2, which constitutes the 

associated visual partition model.  

2) A new weight (likelihood) is computed for each 

target to account for visible parts only. More formally, for 

each subdivision j of the bounding box associated to 

target Xi, one computes the corresponding appearance 

model 𝐴𝑠𝑗

𝑋𝑖 , and using Eq. (3), the associated weight 𝜔𝑋𝑖

(𝑠𝑗)
, 

where symbol s stands for subdivision. Next, considering 

a set V of subdivision that belongs to visible part, the new 

weight of the target Xi is computed as: 

                          𝜔𝑣𝑋𝑖
=

1

|𝑉|
∑ 𝜔𝑋𝑖

(𝑠𝑗)

𝑗∈𝑉                       (23) 

With 

               𝜔𝑋𝑖

(𝑠𝑗)
= 𝑒

𝜆𝑎 𝐵(𝐴𝑠𝑗

𝑋𝑖, 𝐴
𝑟𝑒𝑓𝑋𝑖)

                        (24) 

The subscript v stands for visible in (23). For instance, in 

Fig. 5, assuming only X2 is occluded, target X2 induces 

|V|=3, while there is no need to apply neither subdivision 

nor weight adjustment for X1 as it is fully visible. 

In the subsequent frame, the visual partition model is 

extrapolated to all particles of target X1 and X2. In other 

words, the estimation process is such that the weights 

attached to particles of both targets are adjusted according 

to (23-24) using the visual partition obtained in previous 

frame, while the tracking is performed according to M.I.T 

and the occlusion condition is tested again. The above is 

based on the assumption that the movement between two 

consecutive frames is small enough to justify the 

conjuncture of extrapolating the visual partition model.  

b) Targets with same appearance 

If the targets have similar appearance models, trivially, 

the above reasoning cannot be employed to confirm or 

refute the occurrence of an occlusion. The idea is 

therefore to monitor the trajectory of the targets and 

adjust the weights of the particles according to the 

direction of the target movement and the size of the 

bounding box regions. For this purpose, one requires first 

to determine the direction of movement of targets. 

Intuitively, monitoring the velocity of the center of the 

bounding box region within a predefined time window 

provides an answer to such request. More specifically, let 

(𝑉𝑥 , 𝑉𝑦)  be the average velocity of a given tracker, 

computed from previous m frames (m is chosen 5 in our 

case), then one can use the sign of the largest absolute 

values between 𝑉𝑥 and 𝑉𝑦 to decide on the direction as it 

can be seen from TAB. III below.  

 
                             TABLE.III. DIRECTION MAP 

      

max(|𝑉𝑥|, |𝑉𝑦|) 
Sign of  
𝑉𝑥, 𝑉𝑦  

  Output      

 (Direction) 

𝑉𝑥 + Right 

𝑉𝑥  - Left 

𝑉𝑦 + Down 

𝑉𝑦 - Up  

 

Given the geometrical constraint (rectangular) of the 

target estimate, the direction is identified by one of the 

four possibilities: up, down, left and right. 

Next, the idea is somehow similar to that of adaptive 

prevention collision model where some particles will 

have their weights discounted while taking into account 

the direction of movement as well as the position of the 

particles with respect to boundary case. More specifically, 

let us consider, without loss of generality, a situation in 

which target X1 has a direction Left and overlaps with 

target X2 as in Fig. 6. 

In the plot l1 and l2 denote the left and the right edges 

of the tracker X1, respectively, while  corresponds to the 

length of the horizontal edge of Tracker X2 whose 

bounding box region is smallest. 
 

 
First let us define the full occlusion using locl (a vertical 

line in Fig. 6 delimiting the full occlusion scenario). 

Namely, as soon as l2 coincides with locl in Fig. 6, the 

bounding box of tracker X2 is fully included in that of 

tracker X1. locl is therefore defined such that the length 

from l1 to locl is L. Second, in order to reinforce the 

movement of target X1 in the left direction, all particles of 

X1 located prior to 𝑙𝑜𝑐𝑙  in the opposite direction of 

movement will be discounted, otherwise the weight is left 

unchanged. This is motivated by the conjecture that 

particles located far away from that separated by 𝑙𝑜𝑐𝑙  will 

likely obscure the movement of the target towards the 

predefined direction if it was allocated higher weight. 

Namely, using previously employed notations and 

configuration of Fig. 6, 

𝜔′𝑋1

(𝑗)
= {

𝛾𝜔𝑋1

(𝑗)
      𝑖𝑓  𝑃𝑋1

𝑥 ≤ 𝑙𝑜𝑐𝑙 ,   

𝜔𝑋1

(𝑗)
,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (25) 

Where 𝜔𝑋1

(𝑗)
 is the original weight of the j

th
 particle of 

target X1.  𝛾 is the discounting factor between 0 and 1, 

which is 0.5 in our experiment. Third, the same reasoning 

is repeated with target X2, when looking at its direction 

and updating its particles in the subsequent frame using 

the counterpart of Eq. (25) for target X2.  

c) Targets re-tracking after full occlusion 

Provided that the targets have different appearance 

models, our reasoning in case of full occlusion relies on 

the concept of object permanence which suggests that a 

fully occluded target will re-emerge from its occluder 

[15]. Besides, it is typically known that the weights 

associated to particles of occluding target are usually low. 

Therefore, in the same spirit as in [15], the idea is to 

randomly reinitialize the particles of the occluded target 

around the occluder so that the tracker can capture the 

reappeared target immediately after its reappearance as in 

Fig. 7. To confirm a re-emerge target, the tracker will 

compare the appearance of the newly estimated tracker to 

Fig.6 regions with different weights  
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the reference model. If the likelihood is beyond the pre-

set threshold Tr,, the target can confirm the re-appeared 

target. Setting Tr = 0.8 is found to work well in practice.  

Otherwise, the tracker will keep re-initializing the 

particles according to the position of the occluded target. 

The pseudo code of the algorithm is shown in the TAB. 

IV. 

 
TABLE.IV. COLLABORATIVE TRACKERS    

Multiple tracker: Collaborative tracking in the presence of 

inter-occlusion 

Given the state of multiple trackers {𝑋𝑘
𝑖 }

𝑖=1…𝑁
 . Perform the 

following steps for each pair of tracker: 

1. Form the pairwise trackers {𝑋𝑘
1, 𝑋𝑘

2} . Monitor the 

distance between trackers. Perform collision 

prevention model if distance is below threshold, 

otherwise, carry over using M.I.T. 

2. Predict the overlap (occluded) area for both trackers, 

match the target with visible parts (using collision 

prevention model). 

3. Compute the trackers’ likelihood and do the occlusion 

reasoning; Set tracking priority to different trackers. 

4. Re-initialize particles for fully occluded target.    

The overall flow chart diagram of our proposed 

collaborative tracker is presented in Fig.8.   

 

IV. EXPERIMENTAL RESULTS 

In this section, we first test our individual tracker on 

publicly available benchmark dataset [28]. We also 

employed three home-made videos, to better demonstrate 

the efficiency of our collaborative tracking algorithm.  

A. Evaluation metrics 

Individual tracker: In order to ease the comparison 

with benchmark dataset [28], the performance of 

individual tracker is primarily measured by two metrics: 

overlap and root mean square error (RMSE). The former 

is quantified as: 

𝐴𝑘 =
𝑇𝑇𝑘∩𝐺𝑇𝑘

𝑇𝑇𝑘∪𝐺𝑇𝑘
                        (26) 

Where 𝑇𝑇𝑘  is the tracker’s bounding box and 𝐺𝑇𝑘  is 

the ground truth bounding box. Note that if the ground 

truth coincides with tracker Ak=1. On the other hand, the 

RMSE quantifies the overall bounding box center errors 

between the target’s predicted center 𝑇𝑇𝑘
𝑐  of the tracker 

and the ground-truth center 𝐺𝑇𝑘
𝑐 over all the frames:  

RMSE = √
1

𝑁
∑ ‖𝑇𝑇𝑘

𝑐 − 𝐺𝑇𝑘
𝑐‖𝑁

𝑘=1                 (27) 

Where 𝑁 is the total number of frames. 

Multiple trackers: By counting the number of detected 

objects at each frame with respect to the ground truth 

knowledge, the overall performance of multi-targets 

tracking is measured according to the following four 

metrics [29]: 

 False Negative Ratio(FNR):   𝐹𝑁𝑅 =
∑ 𝑓𝑛𝑘𝑘

∑ 𝑔𝑡𝑘𝑘
            

 False Positive Ratio(FPR):    𝐹𝑃𝑅 =
∑ 𝑓𝑝𝑘𝑘

∑ 𝑔𝑡𝑘𝑘
              

 Miss Match Ratio (MMR):   𝑀𝑀𝑅 =
∑ 𝑚𝑚𝑘𝑘

∑ 𝑔𝑡𝑘𝑘
           

 Multiple Object Tracking Accuracy (MOTA): 

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝑓𝑛𝑘+𝑓𝑝𝑘+𝑚𝑚𝑘)𝑘

∑ 𝑔𝑡𝑘𝑘
              (28) 

𝑓𝑛𝑘 , 𝑓𝑝𝑘 , 𝑚𝑚𝑘  and 𝑔𝑡𝑘  denote false negatives 

(misses), false positives, mismatches and ground truth at 

frame 𝑘, respectively. 

B. Individual tracker performance 

In the experiment, the values of some key parameters 

for individual tracker are provided below, which are used 

in all experiment: 

In order to demonstrate the effect of the proposed 

recursive estimation, we first applied our tracker to the 

video shown in Fig.2. The results highlighted in Fig. 9 

clearly indicate the ability of the recursive estimation 

(second raw in Fig. 9) to overcome the degrading 

influence caused by the outlier particles. 

 

     Frame 1             Frame 48             Frame 63             Frame 72 
Fig. 9.  Tracking experiment of recursive estimation: first raw: no 

recursive estimation; second raw: with recursive estimation. 
Green colour: estimation; Pink colour: particles.      
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Besides, in order to prove the existence of outliers in 

the sense of (7-8), which motivates the use of our 

recursive approach, Fig. 10 describes the number of 

outliers at each frame in case of Video shown in Fig. 2. 

Next, in order to demonstrate the usefulness of our 

tracker-update based methodology, we have chosen two 

challenging sequences from [28]. One corresponds to a 

gymnast video with important self-deformation in noisy 

background. The other one corresponds to a heavy 

illumination change. 

 
Fig. 10. The number of outlier particles detected at each frame 

 

The study compares our approach with the standard 

color-based particle filter approach without update, and 

the one with update in [14] where the speed controlling 

parameter is 0.5.  

 
In gymnast sequences (Fig.11), the athlete endures a 

dramatic shape deformation. The results show a loss of 

target at some frames in case of color-based particle filter 

approach without update or when the update is purely 

based on observation. Our collaborative tracker 

successfully tracks those complex cases. Strictly 

speaking, the absence of update in the first case induces a 

serious handicap to deal with abrupt variation of shape 

and illumination of video frames because of the lack of 

possibility to obtain good matching between target 

appearance and that of original reference, which, in turn, 

mostly explains the loss of targets observed in such cases. 

Similarly, the absence of robust mechanism to account for 

background clutter in [14] induces a failure. On the other 

hand, the use of background information in our model 

partially allows us to overcome such difficulty.  

Fig. 12 illustrates the results of the various trackers 

when submitted to sharp illumination changes. In this 

case, again, the importance of (robust) appearance model 

update is noticeably stressed as tracking improvements 

when using such updating mechanism are clearly 

highlighted. While the accumulation of errors from 

imperfect estimation updates in [14] leads to target loss.  

 

 
  In order to provide an overall evaluation across all 

frames, Fig.13 summarizes the performance of the 

trackers with respect to trade-off-curve. This quantifies 

the number of frames where the target is tracked 

successfully, referred as success rate, under a given 

overlap threshold level. Especially, with a same success 

rate, a higher overlap translates a better detection 

capability of the object by the tracker. Similarly, with the 

same level of overlap, a higher success rate indicates a 

better robustness of the algorithm. Both in case of self-

deformation video and illumination change sequence, it is 

obvious that our algorithm clearly outperforms the other 

two alternative state-of-the-art methods, yielding a 

significantly better accuracy.  

      

 
 

For a further comparison, we also tested our algorithm 

using some state of art sequences involving human shapes: 

Basketball, Crossing, Couple, David3, Subway, Walking 

and Woman [28]. These sequences contain challenging 
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(a) Self-deformation                                                                            (b) Illumination change 

Fig. 13. Trade-off curve of Gym and David sequences 

Fig.12. Tracking experiment of appearance adaption (Illumination 

change): first raw: no updating; second raw: updating in [14]; 

third raw: our method (frame: 1, 100, 200, 300) 

 

Fig.11. Tracking experiment of appearance adaption (Self-

deformation): first raw: no updating; second raw: Updating in 

[14]; third raw: our method (frame: 1, 90, 150, 180) 



occlusion scenes, low resolution, illumination change, 

and background clutter. Besides, five state-of-art methods, 

which are acknowledged for their good tracking 

performances in challenging scenes, have been employed 

for comparison purpose. The first one is the standard 

color based particle filter [14] which inspired our current 

work. The second one is the Struck method [32], which is 

based on Haar features and support vector machine 

(SVM) classification. The third one employs sparse 

representation and L1 minimization approach [33] where 

L1 regularized least square solution is employed. The 

fourth one uses circulant structure kernel (CSK) [34], 

which is based on application of circulant matrice theory 

and Fourier analysis to enhance the learning detection 

task. The last one is the discriminative model based 

tracker (VR) [17] which employs the background 

information. All these trackers share the common feature 

of use of appearance model to characterize each instance 

as opposite to motion or texture features. Besides, [32-34] 

share a sparse sampling strategy, requiring an offline 

training phase, although Struck method has proven to be 

efficient to online training as well. The results of different 

trackers in terms of average overlap metric and RSME 

value are shown in TAB. V and TAB. VI, respectively. 

The best and second-best trackers are highlighted using 

italic and underline representation, respectively.  

TABLE.V. AVERAGE OVERLAP FOR EACH SEQUENCE 

Name Ours PF [14] Struck [32] L1 [33] CSK [34] VR[17] 

Basketball  0.4797 0.2555 0.0914 0.0320 0.0196 0.3309 

Crossing 0.4256 0.3097 0.2021 0.1848 0.4790 0.6425 

Couple 0.6022 0.5673 0.5362 0.4594 0.0751 0.0642 

David3 0.6084 0.5796 0.2917 0.3770 0.4976 0.4463 

Subway 0.3845 0.0873 0.6684 0.1597 0.1925 0.5613 

Walking 0.5442 0.2956 0.4521 0.6555 0.5365 0.2409 

Woman 0.1215 0.0716 0.6089 0.0539 0.1668 0.0801 

Mean overlap 

over all sequences 
0.4523 0.3095 0.4073    0.2746 0.2810   0.3380 

      

TABLE.VI. AVERAGE CENTER ERRORS (RMSE) FOR EACH SEQUENCE 

Name Ours PF[14] Struck [32] L1 [33] CSK [34]  VR[17] 

Basketball 12 107 126 148 312 68 

Crossing 9 41 121 58 9 7 

Couple 9 11 11 29 145 111 

David1 17 18 106 90 56 78 

Subway 7 145 8 150 164 16 

Walking 7 79 8 2 7 121 

Woman 106 130 6 192 208 136 

Mean RMSEs over 

all sequences 
24 76 55 96 129 77 

 

C. Multiple trackers performance 

a. Our own dataset 

As current publicly available dataset is not perfectly 

good to show the significant improvement of our tracker 

under specific change of appearance models and 

occlusion, we tested our proposed collaborative algorithm 

on recorded videos in order to enable coherent 

comparative experiment
2

. Different challenges of the 

videos are shown in TAB.VII.  

TABLE.VII ATTRIBUTES OF HOME BUILT VIDEOS 

Name Main challenges 

Video 1 
Two targets with both similar size and 

appearance, crossing trajectories.  

Video 2 

Two targets with similar size but 

different appearance, and frequent inter-

occlusions.   

Video 3 
Two targets with both different size and 

appearance, long time inter-occlusion. 

 

The values of these parameters are suggested to 

achieve relatively good performance. 

Some of the visual results are shown in Fig.14. 

Bounding boxes pertaining to distinct targets are labelled 

                                                           
2
 Dataset is available at:  

http://postgrad.eee.bham.ac.uk/xiaoj/Publications.htm 

by different line widths. In Video 1 (first raw), since the 

two targets have quite similar appearance, the occlusion 

reasoning is not trustable. Therefore, our collaborative 

tracker makes use of trajectory monitoring to track the 

two targets. Besides, our recursive method also 

significantly contributes to overcome the effect of outlier 

particles that arise in such scenarios.  

Next, we tested our algorithm with object of distinct 

appearance models of Video 2 (second raw in Fig. 14).  

 

 
The video highlights scenarios where our tracker 

performs both partial and full occlusion reasoning, 

V1: Frame 1          Frame 38               Frame 39              Frame 43 

V 2:  Frame 1        Frame 50               Frame 90            Frame 120 

V 3:  Frame 1         Frame 80             Frame 130            Frame 140 

Fig. 14. Multiple target tracking performance.  Green (bounding 

box): normal tracker and M.I.T; Cyan: similar targets with overlap; 

Purple: partial occluded target; Pink: full occluded target 



including detection of full occlusion case followed by 

target identification after its re-appearance. Similar 

reasoning is shown in Video 3 where the distinct size of 

the objects to be tracked did not influence the quality of 

the tracking results. This video is used later on for 

comparison purposes. 

To better understand the scenario of the target re-

appearance, Fig. 15 highlights specific frames of Video 2 

showing the target estimation in terms of the their 

bounding boxes as well as the distribution of the particles 

with higher weight, beyond a threshold 0.7. Similarly 

TAB. VIII summarizes the likelihood value associated to 

each target and number of particles whose weights are 

beyond the threshold. Especially, out of total 100 

particles, there are 16, 40 and 13 particles of occluded 

target in frame 89, 104 and 108, respectively. 
 

 
TABLE VIII. LIKELIHOOD OF TARGET ESTIMATION 

Frame # Non-occluded target Occluded target 

89 0.9028 0.7596 

104 0.9048 0.7889 

108 0.9096 0.8581 

 

Notice that the occluded target in frame 108 has a 

likelihood value greater than threshold Tr (0.8), which 

confirmed the target re-appearance and ended the fully 

occlusion situation. 

Next, we compared our collaborative tracking 

methodology to three other state-of-art trackers. The first 

one uses our proposed multiple individual tracker (M.I.T) 

without occlusion reasoning. The second employs the 

Linear Trajectory Avoidance (LTA) method proposed in 

[31], which has been proven to provide good accuracy 

results in case of multiple object tracking. A third 

approach consists of Struck method [32] due to its 

superior performances in case of single target tracking 

(see TAB. IV where it ranked second in overall). In order 

to monitor the performance of the trackers at various 

frames, we quantify the overlap at each frame for each 

target and video sequence. The results are reported in Fig. 

16, 18 and 20 where target A corresponds to the left 

target in the video sequence and target B to the right one. 

In Video 1 (results shown in Fig.16), one notices, for 

instance, that M.I.T tracker looses both targets A and B 

for some frames (when overlap value is close or equal to 

zero). This is because, for those frames, the tracker does 

track the same target due to inappropriate occlusion 

handing mechanism. For LTA tracker, even if it appears 

to be much better than M.I.T tracker, but still it has also 

shown slight and brief loose of target A in frame 260. 

Struck approach also losses target B at several frames. 

While our robust approach successfully tracks both 

targets across all frames. Overall results across all frames 

in terms of MOTA, FNR, FPR and MMR are provided in 

TAB.IX. Strictly speaking, given that two targets have 

similar appearance models, so we may likely expect 

M.I.T to fail when the targets get sufficiently close to 

each other, while a sort of collision prevention model is 

applied in LTA to separate them. Our approach not only 

includes a mechanism for such collision prevention model 

but also provides a trajectory monitoring procedure which 

proved to enhance the outcome.  

In order to analyze the origin of failure, we represented in 

Fig. 17 selected scenarios of failure of other trackers. We 

show some failure cases of other trackers in Fig.17 where 

the number under the parenthesis is the frame number in 

Video 1. 

 
Fig. 16. Video 1: Overlap performance 

 TABLE IX. OVERALL PERFORMANCE FOR VIDEO 1 

 MOTA FNR FPR MMR 

Ours 1.0000 0.000 0.0000 0.0000 

MIT 0.5183 0.0781 0.0000 0.4037 

LTA [31] 0.5781 0.0000 0.0000 0.4219 

Struck[32] 0.7674 0.0000 0.0000 0.2326 
 

Fig. 17 reveals that both M.I.T and Struck trackers 

detected only one single target, while LTA tracker 

encountered an id-switch.  

 

 
Results pertaining to Video 2, where the objects to be 

tracked have distinct appearance but frequent interactions, 

are highlighted in Fig. 18.  
 

 
Fig. 18 Video 2: Overlap performance 
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Fig.17 Example of failures of MIT, LTA and Struck trackers 

in video 1 

Frame 89                      Frame 104                            Frame 108 

 

Fig. 15. Bounding box. Red: fully occluded target; Green: non-occluded 

target; White: particles of occluded target whose likelihood exceed the 

threshold. 



In this case, M.I.T tracker performs quite well keeping 

a good separation between target estimates that prevented 

full occlusion occurrence, and provides performance 

close to our algorithm. While LTA fails to handle long 

term target interaction, which yields full occlusions, and 

thereby, target loss. TAB.X provides global performance 

results in terms of MOTA, FNR, FPR and MMR metrics. 

Again the results show that our tracker substantially 

outperforms the other two trackers. 
 

TABLE X. OVERALL PERFORMANCE FOR VIDEO 2  

 MOTA FNR FPR MMR 

Ours 0.9956 0.0030 0.0000 0.0015 

MIT 0.9571 0.0030 0.0000 0.0399 

LTA [31] 0.5281 0.0030 0.0000 0.4689 

Struck [32] 0.8240 0.1746 0.0000 0.0015 

 

The failure cases of three alternative trackers in Fig.19 

show that the M.I.T performs fairly well when the targets 

are distinguished from each other, LTA tracker suffers 

from id-switch. The struck tracker is on the other hand 

strongly affected by inaccurate estimation, which causes 

target loss.  

 

 
Results pertaining to Video 3 are plotted in Fig. 20. In 

this case, one notices that given the large discrepancy of 

size of the two objects, both M.I.T and LTA lose target B 

during the long time occlusion. This is because the size of 

the occluder is much bigger than the occluded target, 

making the handling of the long term occlusions 

inappropriate. Improvements observed when using our 

tracker in this respect are mainly due to the efficiency of 

our collaborative tracking to tackle target occlusion. 

Besides, dark illumination of the sequences together with 

the use of Haar like feature render the estimation using 

Struck tracker biased and caused target loss as well. It is 

also expected that the quality of the training phase in both 

LTA and Struck negatively contributed to failure of the 

trackers. Global results related to Video 3 are highlighted 

in TAB.XI.  

 
Fig. 20 Video 3: Overlap performance 

 

 

TABLE XI. OVERALL PERFORMANCE FOR VIDEO 3 

 MOTA FNR FPR MMR 

Ours 0.9976 0.0024 0.0000 0.0000 

MIT 0.6768 0.2215 0.0000 0.1017 

LTA [31] 0.6671 0.2470 0.0000 0.0860 

Struck [32] 0.5969 0.2954 0.0000 0.1077 

 

B.  Benchmark dataset 

To better demonstrate the performance of our 

algorithm, we select two representative sequences, 

subway [35] and basketball [36], for our experiment. Fig. 

21 illustrates the performance of our tracker on selected 

frames yielding possible occlusion on both subway and 

basketball sequences.  

 
The graph illustrates in case of subway sequence how 

our algorithm successfully tracked three distinct persons, 

two of which have close appearance models and with 

possibility of occurrence of occlusion. While in 

basketball sequence, two players have been successfully 

tracked. Notice, that the performance of the tracker may 

get slightly degraded because of non-homogenous 

movement of the frames as opposite to the first video 

sequence because of the (possible) abrupt acceleration of 
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Fig. 21. Experiment in benchmark dataset (1st row: Subway; 2nd row: Basketball) 

M.I.T.(75)                      LTA (108)                   Struck (228) 

Fig.19 Failures of other trackers in Video 2 



the players, which makes the basketball sequence more 

challenging. 

In order to compare the overall performance of the 

trackers across all the frames, the trade-off curves 

between the MOTA and overlap threshold for subway 

and basketball sequences are shown in Fig.22 and 23, 

respectively.  

The results confirm the superiority of our tracker as 

compared to standard M.I.T and LTA trackers for both 

video sequences. It also shows that LTA approach quite 

underperforms both other trackers in case of subway 

video sequence because of long term interactions among 

the objects, which reinforces the results obtained with our 

home-build video sequences. On the other hand, M.I.T 

and LTA provide close performance results in case of fast 

moving targets of basketball sequence. Especially, both 

trackers induce situations where the target is lost because 

of inefficiency of collision adaption in case of LTA and 

gradual drift towards background of M.I.T tracker 

because of frequent similar target interaction. 

 
Fig. 22 Trade-off curve of subway 

 
Fig. 23 Trade-off curve of basketball 

 

V. CONCLUSION 

In this work, a new multiple target tracking algorithm 

for visual objects is investigated. The proposal builds on 

the colour-based particle filter algorithm that was 

extended in several directions. First, in order to deal with 

uncertainty arising from background clutter and 

illumination change, the contextual information is taken 

into account by enlarging the boundary of the estimated 

target region, and comparing this with the current 

observation. Second the distribution of the particles is 

taken into account through the introduced recursive 

estimation that restricts the effect of outliers on global 

estimate of the target. Third, in order to extent the 

proposal to track multiple objects, although the intuitive 

use of multiple independent trackers (M.I.T), where each 

(robust) tracker is associated to an individual target, 

seems rationale, cautious is required to avoid the problem 

of occlusion or identity switch. In order to deal with this 

problem, the distance between the trackers is monitored. 

For this purpose, a collision prevention model, which 

prevents tracker jump-over scenarios, is introduced, 

where the appearance similarity scores are employed. In 

case of (partial) occlusion, a subspace-based method is 

employed where each particle is partitioned into equal 

partition, and only the visible parts of the partition are 

used for tracking. In case of full occlusion, the essence is 

to reinitialize the particles around the occluder to capture 

the reappearance of the target. Besides, the tracking 

algorithm also distinguishes the case where the 

appearance models do not discriminate between the 

various targets. In such case, we rather rely on monitoring 

targets’ trajectories. Comparisons with state of art 

trackers using both home built and open dataset 

demonstrated the feasibility and the superiority of our 

proposed tracker to deal with occlusions, clutter and 

abrupt illumination change. As perspective work, we 

intend to investigate in more detail the convergence 

properties of the newly elaborated tracker where more 

theoretical results are expected.  
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