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Abstract
Motivation: Wastewater treatment plants (WWTPs) harbor a dense and diverse microbial community. They constantly receive antimicrobial
residues and resistant strains, and therefore provide conditions for horizontal gene transfer (HGT) of antimicrobial resistance (AMR)
determinants. This facilitates the transmission of clinically important genes between, e.g. enteric and environmental bacteria, and vice versa.
Despite the clinical importance, tools for predicting HGT remain underdeveloped.

Results: In this study, we examined to which extent water cycle microbial community composition, as inferred by partial 16S rRNA gene
sequences, can predict plasmid permissiveness, i.e. the ability of cells to receive a plasmid through conjugation, based on data from standardized
filter mating assays using fluorescent bio-reporter plasmids. We leveraged a range of machine learning models for predicting the permissiveness
for each taxon in the community, representing the range of hosts a plasmid is able to transfer to, for three broad host-range resistance
IncP plasmids (pKJK5, pB10, and RP4). Our results indicate that the predicted permissiveness from the best performing model
(random forest) showed a moderate-to-strong average correlation of 0.49 for pB10 [95% confidence interval (CI): 0.44–0.55], 0.43 for pKJK5
(0.95% CI: 0.41–0.49), and 0.53 for RP4 (0.95% CI: 0.48–0.57) with the experimental permissiveness in the unseen test dataset. Predictive
phylogenetic signals occurred despite the broad host-range nature of these plasmids. Our results provide a framework that contributes to the
assessment of the risk of AMR pollution in wastewater systems.

Availability and implementation: The predictive tool is available as an application at https://github.com/DaneshMoradigaravand/PlasmidPerm.

1 Introduction

Antimicrobial resistance (AMR) poses a global threat, causing
an escalating burden across healthcare settings worldwide
(Cosgrove 2006, Antimicrobial Resistance Collaborators
2022). Wastewater treatment plants (WWTPs) serve as key
monitoring and control points, connecting various commu-
nity and hospital sewers with receiving aquatic environments
(Cosgrove 2006, Quintela-Baluja et al. 2019). WWTPs there-
fore receive antibiotics originating from human consumption
in the community and hospitals (Hocquet et al. 2016),
which may not diminish even after the treatment process
(Kalaiselvi et al. 2016) and thus contribute to the residual

antimicrobials in the environment (Chang et al. 2015).
Besides antimicrobials, and probably more importantly, the
mixed sewage harbors a diverse array of antimicrobial-
resistant strains, which often carry their resistance genes on
plasmids. These sites, therefore, serve as hubs in the dissemi-
nation network of AMR determinants (Zhang et al. 2009,
Gatica and Cytryn 2013, Marti et al. 2014).

The evolution of AMR is driven by a combination of ge-
netic mechanisms, i.e. mutations and horizontal gene transfer
(HGT). Conjugation of plasmids or integrative conjugative
elements is a major mechanisms of HGT, which is thought to
transfer antimicrobial resistance genes (ARGs) among both
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closely and distantly related lineages within microbial com-
munities, such as those found in WWTPs (Zhang et al. 2009,
Halary et al. 2010). In WWTPs, commensal and pathogenic
strains of human origin are mixed with environmental bacte-
ria, and the high cell density and ability to grow can facilitate
genetic exchange of mobile genetic elements carrying ARGs,
facilitated by subinhibitory concentrations of residual antimi-
crobials (Uluseker et al. 2021).

The 16S rRNA gene is an essential gene that is conserved
across all bacterial and archaeal lineages. However, variation
in the hypervariable regions (V1–V9) of the gene allows dif-
ferential identification of taxa, though only at the genus level
when short-read sequencing is used (Sanschagrin and Yergeau
2014, Johnson et al. 2019). Despite these limitations, the fea-
sibility and cost-effectiveness of 16S rRNA gene amplicon se-
quencing has promoted its popularity in microbiome studies.
It has allowed detection of associations between taxonomic
community composition and various ecological dynamics and
habitat characteristics, e.g. disease associations (Gevers et al.
2014, Pasolli et al. 2016) or ecological status (Cordier et al.
2017).

Recent efforts have characterized the potential extent of ge-
netic exchange within WWTPs by leveraging the strengths of
16S rRNA amplicon sequencing and in vitro filter mating
assays where fluorescent tagging enables the separate collec-
tion of transconjugants by fluorescence-activated cell sorting
(FACS) followed by sequencing (Actis et al. 1999, Musovic
et al. 2010, Klümper et al. 2014, 2015). Using this approach,
a recent in-depth analysis of activated sludge microbial com-
munities to serve as recipients of HGT of three broad-host-
range multidrug resistance plasmids was carried out (Li et al.
2018). The ability of a recipient cell to receive and maintain a
given plasmid (at least for a short duration) is referred to as
its permissiveness (Li et al. 2018). Using the reporter system
enables direct quantification of plasmid permissiveness for all
recipients in a community, thereby defining the host range of
the plasmid within that community. This study did not detect
a phylogenetic signal in permissiveness, leading to the conclu-
sion that translating permissiveness from one bacterial group
to other phylogenetically similar groups within the WWTP
community would not be valid (Li et al. 2018). Another study
found permissiveness to vary strongly across the taxa of the
recipients (Jacquiod et al. 2017). However, these studies did
not examine the predictive power of sequence markers for
plasmid permissiveness.

In the context of microbial molecular ecology studies, ma-
chine learning approaches have proven to be effective tools
for predicting various phenotypic features, such as AMR,
host of isolation, bacterial growth, and virulence, based on
genomic biomarkers (Benkwitz-Bedford et al. 2021, Aytan-
Aktug et al. 2022). These models can predict the features,
without any prior knowledge about the mechanisms, by
learning complex, nonlinear, and high-order phylogenetic sig-
nals from labeled sequences in a training dataset. This enables
rapid detection of the trait in unseen data (Lupolova et al.
2019, Kim et al. 2022). Among the various models employed
in these studies, ensemble models like random forests and
gradient-boosted trees consistently outperformed other mod-
els, including linear models. This is because ensemble models
combine multiple weak learners to address overfitting while
leveraging higher-order interactions between predictive fea-
tures for more accurate prediction. While several phenotypic
features have been used as labels in these models, machine-

learning algorithms have not been employed to predict HGT
features.

In this study, we leveraged machine learning approaches to
assess the degree to which taxonomy (here limited to the V3-4
hypervariable regions of the 16S rDNA) can predict the per-
missiveness of recipient communities for broad host-range
plasmids from in vitro permissiveness assays. Such assays re-
quire a lot of effort and are thus rarely performed. Predictive
power for narrow host-range plasmids should be higher but
was not tested as data were not available. We employed vari-
ous machine learning regression methods for an alignment-
free input (i.e. kmer representation) of sequence data. Our
results indicate that the sequence data predicted the permis-
siveness for three broad host-range AMR plasmids with an
average accuracy of 0.63 in terms of the correlation between
predicted and actual values for unseen data. We identified a
set of predictive kmer sequences and how these are distributed
across diverse host taxa. These results suggest that permissive-
ness can be partially predicted based on coarsely resolved
taxonomy, without full genome sequencing. This proof-of-
concept study demonstrates the applicability of machine
learning and lays the groundwork for future studies to predict
phenotypic features of HGT from richer metagenomic data.

2 Methods
2.1 Study design and sampling

To obtain a comprehensive microbiome collection from vari-
ous time points and locations within the water cycle, we re-
trieved samples from a WWTP in the UK and another in
Denmark during 2017 and 2018. These samples were taken
from different locations along the sewage treatment process
(Fig. 2A). These sites included residential and hospital sewers,
the point where they mix, the WWTP influent, after the pri-
mary settlers, in the biological treatment stage, after the sec-
ondary settlers and tertiary filters as well as upstream and
downstream of the effluent entering the receiving river.
Specific sampling dates and locations are provided in
Supplementary Table S1.

2.2 Experimental filter mating assay

We employed the solid surface filter mating assay (Musovic
et al. 2010, Klümper et al. 2014) to measure the permissive-
ness of water cycle microbial communities toward three typi-
cal conjugative plasmids (Fig. 1). In brief, the biomass from
wastewater was first sonicated to disaggregate sludge flocs
but not disintegrate the cells and then left to settle for 5 min,
ensuring individual cells remained in suspension. The density
of the cells was then adjusted through microscopic cell count-
ing using a Thoma chamber, as described in Klümper et al.
(2014). These diluted cell suspensions of the WWTP recipient
community were then mixed with the donor strain at a 1:1
cell ratio and immediately filtered. The filter was then placed
on an agar-solidified synthetic wastewater medium. After in-
cubation (48 h at 25�C) and GFP maturation (48 h at 4�C),
transfer events were detected by epifluorescence microscopy.
The transfer frequency was quantified as the ratio of conjuga-
tion events (CEs), detected as GFP microcolonies, to the origi-
nal number of recipients (R) in the sample (CE/R). Note
recipient cells were untagged bacteria from the environmental
sample. We used Escherichia coli MG1655 as a donor, which
was chromosomally tagged with mCherry expressed from the
constitutive promoter pLpp, and carried one of the three
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plasmids: pKJK5 (IncP-1e), pB10 (IncP-1b), and RP4 (IncP-
1a) (Norberg et al. 2011). The plasmids were tagged with
pLac-gfp repressed by a chromosomal lacIq. Thus, donors
exhibited red fluorescence, recipients none, and transconju-
gants green fluorescence. Supply of the single plasmid in the
assays was not limiting as donors were provided in a 1:1 ratio
to recipients. Also, donors could grow and donate plasmids
repeatedly. According to calculations based on a model of
plasmid transfer between bacterial colonies (Lagido et al.
2003), nearly all recipient colonies will have grown into con-
tact with growing donor colonies by 14 h of the 48-h permis-
siveness assay (see Supplementary Text on the modeling of
plasmid transfer in filter mating assays). We verified

microscopically that at least two-third of the filter area was
covered by red-fluorescent donor cells after incubation.
Donors on the filter below the biofilm surface would not have
been observable. If a recipient carries another plasmid that
interferes with the test plasmid, this would render it non-
permissive. Plasmids that are long-term residents within a
host effectively become part of the host identified by its 16S
rRNA sequence.

2.3 Sorting and sequencing

For each filter mating, cells were recovered from the filters,
and then transconjugants and recipients were gated and
sorted by FACS if they were of bacterial size (as detected by
the forward scatter) in two stages: In the first longer stage,
cells with green fluorescence (transconjugant pool) were col-
lected. In the second shorter stage, cells lacking red fluores-
cence (“recipient” pool) were collected, as described
previously (Klümper et al. 2015, 2017). Note this “recipient”
pool includes transconjugants, which were originally recipi-
ents, and recipients themselves, but not donors. This pool best
represents the cells that had the potential to receive the plas-
mid, compared with the initial wastewater community before
mating, i.e. before the few rounds of division that occur on
the filter during incubation. Sorted cells were subjected to
DNA extraction and PCR amplification of the hypervariable
V3–V4 region of the 16S rRNA gene using primer set 341F/
806R prior to paired-end sequencing on an Illumina MiSeq
platform. We analyzed the paired-end reads of 16S rRNA
gene amplicon sequencing using the DADA2 pipeline to ob-
tain amplicon sequence variants (ASVs) (Callahan et al. 2016,
2017). We excluded sequences that were longer than 430 bp,
resulting in a total of 2272 unique ASVs.

2.4 Calculating permissiveness

We define permissiveness as the ability of a host cell (identi-
fied as an ASV) to receive a given plasmid and maintain it, at
least for a short duration. Permissiveness conflates several
successive cellular and molecular subprocesses that collec-
tively result in successful plasmid transfer [e.g. successful in-
teraction between the pilus and recipient cell surface, absence
of surface exclusion, absence of restriction or other host im-
munity functions, etc. (Thomas and Nielsen 2005)]. Yet, un-
like these subprocesses, it is measurable for an entire
microbial community and it is this overall outcome that is rel-
evant for predicting community-level plasmid dynamics.
Permissiveness for broad host-range plasmids is primarily de-
termined by the recipient, but it also depends on the plasmid
and donor (Klümper et al. 2015, Li et al. 2018). Thus, the re-
cipient and the plasmid–donor combination were included in
the machine learning, with the recipient represented by its 16S
rDNA sequence to quantify the extent to which the 16S signal
is predictive. However, the physiological state of the cells,
influenced by their current and previous environmental condi-
tions can confound permissiveness results (Klümper et al.
2017), which is partially mitigated by standardized assay
conditions.

Note that permissiveness is not about plasmid incompati-
bility, which refers to the inability of two plasmids to stably
coexist in the same host and is thus an attribute of the plas-
mids rather than the host cell. As estimating ASV-specific per-
missiveness is complicated by the potential growth of both
transconjugants and recipients during mating incubation, we
calculated apparent permissiveness (AP). It is defined as the

Figure 1. The workflow of the filter mating permissiveness assay and

predictive machine learning pipeline. After two-stage FACS separation,

first a long sort to collect transconjugants and then a shorter sort to collect

all cells but donors (recipient pool), 16S amplicon sequencing was

performed separately. For the input of the predictive model, the kmer

matrix was converted to a binary matrix, with ones for presence and zeros

for absence of the kmer, whereas the group designations for the

taxonomic clustering matrix were One Hot encoded.

Figure 2. (A) The sampling points across the urban water cycles. Note

differences between the WWTPs in the UK using a trickling filter and

Denmark (DK) using activated sludge as the biological treatment stage

and a tertiary filter. (B) Correlations between plasmid permissiveness

values at different sites, dates, and plasmids were all positive. The cross

signs label insignificant correlations (p-value < .01 from Spearman’s

correlation test). The labels on the diagonal axis correspond to the

sampling sites in panel (A).
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ratio of the relative abundance of an ASV in the transconju-
gant pool to the corresponding recipient pool (Klümper et al.
2017). AP thus accounts for the fact that the abundance of an
ASV in the transconjugant pool partly depends on its abun-
dance in the recipient pool. When calculating permissiveness,
we assigned a count of one to an ASV in the recipient pool if
it was absent there while it was present in the transconjugant
pool because at least one recipient must have been present if a
transconjugant was detected, so the ASV must have been
missed, e.g. because the sampling was not sufficiently exhaus-
tive. Permissiveness values reported throughout the article are
AP values. The sequences and permissiveness values can be
found in Supplementary Table S1. We had two replicates for
the pKJK5 plasmid permissiveness measurements taken at the
same site. These replicates showed a correlation of 0.74
(Spearman’s rank correlation coefficient) between the values
for the same taxa, indicating the repeatability of the
measurements.

2.5 Machine learning platform

We developed a machine learning platform for predicting per-
missiveness and identifying predictive sequence signals, see
Fig. 1 for an overview. We opted for two approaches: point
prediction and interval prediction to account for uncertainty.
The point prediction platform invoked a baseline model of
regularized lasso linear regression (referred to as lasso) and
two ensemble models: gradient boosted regressors and ran-
dom forest regressors. We used the built-in functions in the
sklearn 1.0.2 library for this purpose (Pedregosa et al. 2011).
We scaled the response variable, permissiveness, prior to feed-
ing it into the machine learning algorithm. We opted for
3-fold cross-validation and split the data into 80% training/
validation and 20% test datasets. We tuned the machine
learning models using a grid search approach. For the lasso
models, we tuned the L2 regularization penalty term by
assessing the values 0.0001, 0.001, 0.01, and 0.1. For gradi-
ent boosted regressors, we tuned the key parameters: tree
depth (1, 3, and 5) and the number of iterations (5, 10, and
30). For random forests, we tuned the key tree-related param-
eters: number of trees (5, 10, and 30) and tree depth (1, 3,
and 5). Manual inspection of some predictions indicated that
prediction performance consistently deteriorated with higher
numbers of trees and tree depths. We treated kmer length as a
parameter and trained three models with different hyperpara-
meter values on them. The selection of the best model for the
grid search for each kmer length was based on the highest co-
efficient of determination regression score function. As shown
in Supplementary Fig. S1A, the best-performing models across
kmers were attained with certain hyperparameter values for
kmer size 5 and a lasso model for pKJK5, and certain hyper-
parameter values for random forests for RP4 and pB10
(Supplementary Fig. S1A).

To obtain error intervals for the predictions, we repeated
training and testing of the models with 10 random train/test
data splits. To assess the performance of the tuned models, we
computed Spearman’s rank correlation coefficient
(Spearman’s q) between the predicted and actual data instead
of Pearson correlation coefficient because of it is suitable for
non-normally distributed continuous data and robustness to
outliers (Schober et al. 2018). The distributions of predicted
and actual data (Supplementary Fig. S1B) clearly deviate from
normal distributions (p-value <.01 from Kolmogorov–
Smirnov test for normality) and contain extremely high

“outliers” that were not removed from the data as they corre-
sponded to taxa with high permissiveness (they are not
“errors”). Note that using Pearson’s r as a measure for the ac-
curacy of prediction would not qualitatively affect the find-
ings of the study due to a strong correlation of 0.80 between
Spearman’s q and Pearson’s r for the model predictions
(Supplementary Fig. S1C).

Besides point predictions of permissiveness, we used ran-
dom forest models to obtain prediction intervals. These inter-
vals were computed based on the predictions from all the
learners (trees) in the final tuned ensemble models (random
forests). The intervals account for the uncertainty both in
model fitting and in sampling and sequencing. In assessing the
model performance, we considered the true detection rate/
coverage, which corresponds to the proportion of test obser-
vations that were covered by the prediction intervals at differ-
ent confidence levels. We used the rand_forest() function in R
and compared the intervals with the dispersion around the
mean (mean absolute difference) and the measurement error
range.

We employed an alignment-free approach to generate pre-
dictor features (Zielezinski et al. 2017). This approach better
accommodates highly divergent sequences and allows the
trained model to be applied to unseen data without the need
for time-consuming multiple alignment and training steps. To
this end, we enumerated the kmers of increasing sizes (5, 7,
and 9, larger kmer sizes did not improve the prediction per-
formance). This resulted in a matrix indicating the frequency
of kmers in each sequence (Fig. 1). We scaled the values using
a min–max scaler prior to feeding them to the machine learn-
ing models. If a transconjugant’s sequence was found in multi-
ple sites, we averaged the measured AP values for that
sequence across the sites. For random forest models, we mea-
sured the importance or relevance of features as the decrease
in node impurity (the sum of squared residuals) weighted by
the probability of reaching that node. The node probability
was calculated as the number of samples reaching the node,
divided by the total number of samples. The higher the value
the more important the feature. To robustly identify impor-
tant predictive features, we repeated the prediction process us-
ing 10 random splits of training and testing data and
extracted the important features. We aggregated the results
across replicates and retained features that were found to be
important across 90% of the replicates in the training dataset.
We excluded kmers if they were present in longer predictive
kmers and if their presence was not significantly linked with
permissiveness (p-value from Wilcoxon test< .01). We
deployed the trained and tuned models as web and command-
line applications, allowing users to estimate the permissive-
ness for these plasmids for any 16S rRNA sequence they up-
load. The tool is available at https://github.com/
DaneshMoradigaravand/PlasmidPerm.

2.6 Taxonomic classification analysis and

association analysis

We examined the predictive information contained within the
taxonomic clusters inferred from 16S rDNA ASVs of trans-
conjugants for permissiveness, to understand whether ele-
vated/lower permissiveness is linked with particular clades
(lineages) or whether it is a trait emerging across multiple tax-
onomic groups in the transconjugants. Therefore, we
employed BAPS, Bayesian Analysis of Population Structure
(Cheng et al. 2013), as implemented in the R package

4 Moradigaravand et al.
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rhierbaps (Tonkin-Hill et al. 2018), to analyze transconjugant
communities. Although BAPS was developed to identify pop-
ulation substructures within a single species, we adopted it as
a method for identifying clusters at different taxonomic reso-
lutions within 16S rRNA data. We therefore did not need to
specify any sequence identity threshold as required for defin-
ing OTUs. BAPS robustly identifies partitions of the taxa at
various hierarchical levels. This resulted in a membership ma-
trix, which was encoded as a numeric matrix for predictions
(Fig. 1). Here, the clusters of ASV features corresponded to
panmictic BAPS clusters. We screened increasing numbers of
iterations to capture taxonomic classifications at different lev-
els. After identifying the BAPS clusters, the associations with
taxonomic groups were then converted into vectors using
One Hot encoding before feeding into the machine learning
framework. We trained and tuned the models using the same
platform as above and assessed the performance of the models
on the held-out test dataset. To identify important features
(significant predictive lineages/clusters), we repeated the pre-
diction process on 10 random splits of training and test data-
sets and kept the features that appeared in all replicates. Note
that the clusters identified by BAPS as predictive of increased/
deceased permissiveness may not always correspond to a sin-
gle OTU.

To identify the kmers that were not associated with a par-
ticular clade, we enumerated all possible kmers with increas-
ing sizes of 5–12 and created a binary input matrix with zeros
and ones, indicative of the absence and presence of the kmers,
respectively. We then binarized the response variable (plasmid
permissiveness) based on its median value. We used the soft-
ware Scoary (Brynildsrud et al. 2016) to examine the associa-
tion between the kmers and their respective plasmid
permissiveness values. Only kmers with Bonferroni-corrected
p-values smaller than .05, as well as p-values corrected for
population structure (i.e. the best and worst possible p-values
reported by the Scoary software) smaller than .05 were kept.

To construct the taxonomic trees, a pairwise distance ma-
trix was created based on the number of kmers shared be-
tween pairs of ASVs to generate a neighbour-joining tree
using the “ape” package in R (Paradis and Schliep 2019).
FigTree (http://tree.bio.ed.ac.uk/software/figtree/) was used to
scale the branch length and iTOL (Letunic and Bork 2021)
for visualizing the tree and associated annotations.

2.7 Evaluation of prediction models with simulated

data

We simulated sequences to understand the impact of mutation
rate, sample size, and the strength of correlation between pre-
dictive kmer and permissiveness on a model’s prediction accu-
racy and extent of overfitting. We employed Simbac (Brown
et al. 2016) to simulate collections of 150 bp kmers from 100,
200, 500, and 1000 isolates and under mutation rates of
0.01, 0.5, 1, and 10 mutations per time unit. We introduced a
predictive kmer by randomly selecting a kmer with frequency
>0.1 20 times. We attributed permissiveness to isolates with
and without the kmer by introducing a variable coefficient
value (k), which determined the sampling from the baseline
pKJK5 plasmid permissiveness. For isolates with the kmer, we
drew a random value from the distribution of permissiveness
values for the pKJK5 plasmid, truncated between the selection
coefficient l/k and the maximum permissiveness, where l is
the mean of the permissiveness distribution for pKJK5. For
isolates lacking the kmer (and thus the given plasmid), we

drew permissiveness values from the distribution of permis-
siveness values for the pKJK5 plasmid truncated between the
selection coefficient l/k and the minimum permissiveness
value. Thus, by increasing the absolute values for 1

�
k, we in-

creased the correlation between the predictive kmer and the
permissiveness associated with the kmer. We then fed the sim-
ulated data into the predictive random forest pipeline, as de-
tailed above, and computed Spearman’s correlation between
the actual and predicted values for the held-out dataset.

3 Results

We aimed to understand whether the information in the 16S
ASVs can predict plasmid permissiveness, i.e. the ability of
cells to receive a plasmid through conjugation (Fig. 1). The
permissiveness values were obtained from filter mating assays
for samples retrieved in 2017 and 2018 from one WWTP
with an activated sludge process in Odense, Denmark, and
one WWTP with trickling filters in Durham, UK [detailed in
Li et al. (2021); Fig. 2A]. Both were receiving residential and
hospital sewage. Sampling locations and a schema of the ma-
chine learning pipelines are given in Fig. 1.

Overall, plasmid permissiveness showed moderate positive
correlations among transconjugant ASVs across various
WWTPs, sampling sites, and dates with a mean Spearman’s
correlation of 0.49 (range: 0.11–0.73) (Fig. 2B). Except for 13
out of 180 pairwise comparisons of conditions, the correla-
tions were significant (p-value< .01, Spearman’s correlation
test) (Fig. 2B). These results suggest that the imperfect repro-
ducibility of sampling the same community, fluctuations in
community composition over time, the stochastic nature of
the mating experiments, as well as experimental errors, lim-
ited the achievable correlations: For samples taken from the
same site at the same time (replicates for sites 1A and 1B in
Fig. 2A) and for samples taken from the same site at different
time points in Denmark, average correlations of 0.68 and
0.75, respectively, were found for pKJK5 permissiveness val-
ues (Fig. 2B).

Permissiveness values from the UK and Denmark formed
distinct clusters (Supplementary Fig. S2A), this may reflect dif-
ferent sewage compositions, environmental conditions, or
treatment processes. Despite these country-specific differen-
ces, the correlation between permissiveness across different
plasmids was high and no clustering of measurements accord-
ing to the plasmid type was apparent (average Spearman’s
correlation of 0.68 across measurements for different plas-
mids) (Supplementary Fig. S2B and C), suggesting common
mechanisms underlie permissiveness in recipient cells. To min-
imize the impact of time and location of sampling on the per-
formance of the predictive models, we aggregated all
permissiveness values for each plasmid.

We fed the permissiveness values for the three plasmids as
dependent training data into the predictive models to make
point predictions of permissiveness (Fig. 1). The models com-
prised a baseline regularized lasso regression model, a random
forest, and a gradient boosted regressor. They were trained
on predictor features, i.e. the counts of particular kmers pre-
sent (testing one size at a time for different sizes, Fig. 3). The
results indicate that the ensemble models, i.e. random forest
and gradient boosted regressor models, outperformed the
lasso model in 10 out of 12 prediction settings on the held-out
dataset, suggesting that accounting for nonlinear interactions
improved prediction. Between the ensemble models, the
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random forest model was superior with the best average accu-
racy (Spearman’s q values) of 0.49 for pB10 (95% CI: 0.44–
0.55), 0.43 for pKJK5 (95% CI: 0.41–0.49), and 0.53 for
RP4 (95% CI: 0.48–0.57) across kmer values (Fig. 3). The ex-
tent of overfitting, i.e. the difference between the accuracy for
the training and test datasets, did not vary across different
models and kmers (Fig. 3). To understand the impact of input
transconjugant numbers on mitigating overfitting, we re-
peated the prediction on down-sampled training datasets
(Supplementary Fig. S3). We found that increasing the num-
ber of transconjugants steadily improved the accuracy in the
test dataset and reduced overfitting, up to a training size of
50% of the full size. Beyond this, the improvement in accu-
racy leveled off (Supplementary Fig. S3). These findings sug-
gest that a significantly larger training dataset would be
required to further improve the prediction accuracy.

As pointed out above, the differences in permissiveness be-
tween two replicates indicated uncertainty from sampling and
measurement, which led us to examine the random forest
models since they can yield prediction intervals (Fig. 1). We
therefore computed the uncertainty associated with random
forest model in the form of prediction intervals and then com-
pared them with the measurement error and dispersion.
Figure 4A shows the intervals containing 99% of the predic-
tions around the point predictions. For the pKJK5 plasmid
and a 99% interval, this is 0.57� and 6� the dispersion
around the mean absolute difference and measurement error
range, respectively. The trained model achieved a correct de-
tection rate, i.e. the number of times a point prediction is
within the prediction interval, of 0.96 for the training and
0.94 for the test dataset (Fig. 4A and B). For the pB10 (RP4)
plasmids, the detection rate of the prediction interval was
lower and stayed at 0.64 (0.78) for the test dataset at intervals
that equaled 2.07� the mean absolute difference and 3.5�
the measurement error range. As expected, with narrower
prediction intervals, the coverage (detection rate) of the inter-
val steadily decreased; however, the extent of overfitting
remained low (Fig. 4B). For pKJK5, with a prediction interval
equal to the average measurement error, a detection rate of

0.67 on the test dataset was observed. For prediction intervals
that equaled the dispersion of the data around the mean, the
intervals included 57% of the permissiveness values for
pKJK5 (Fig. 4B). These percentages were 68% and 55% for
predicting pB10 and RP4 permissiveness, respectively.
Altogether, these results demonstrate the strength of the ran-
dom forest model in capturing the uncertainty in measure-
ments, which extends its applicability. However, resolving the
uncertainty introduced by the model relative to the uncer-
tainty in the experimental results remains an open challenge.

Although conjugation and maintenance of different IncP-1
plasmids is governed by shared mechanisms, genetic diver-
gence in their transfer and regulatory regions has evolved
(Norberg et al. 2011), which may affect their transfer to, and
interaction with, recipient cells, leading to differences in per-
missiveness. We therefore investigated the generalizability of
models trained on one plasmid for predicting the permissive-
ness for a different plasmid. Prediction accuracy deteriorated
for the test data for a different plasmid, when compared with
prediction for the same plasmid, with an average drop in cor-
relation (Spearman’s q for training and test data for the same
plasmid�Spearman’s q for training and test data for a differ-
ent plasmid) of 0.32 for pB10, 0.14 for pKJK5, and 0.32 for
RP4 plasmids (Supplementary Fig. S4A). The partial drop in
correlation when predicting permissiveness for other plasmids
suggests differences in plasmid interactions with recipient
cells.

Like plasmid type, our results indicated that the “country”
used for training data affects the accuracy of the prediction
but it has to be emphasized that the WWTPs in the UK and
Denmark use different biological treatment processes so the
“country” effect could be partially an effect of treatment pro-
cess. Models trained on UK data showed an average decrease
in accuracy (Spearman’s q for training data for both the UK
and Denmark and test data for Denmark�Spearman’s q for
training data for the UK and test data for Denmark) of 0.18,
0.15, and 0.19 for plasmids pB10, pKJK5, and RP4, respec-
tively, compared with models trained on mixed data
(Supplementary Fig. S4B).

Figure 3. The accuracy of the trained models for predicting plasmid

permissiveness for three plasmids (pB10, pKJK5, and RP4) and for

gradient boosted, lasso, and random forest regressors, in the training and

test dataset, for different kmer lengths. Accuracy was measured as

Spearman’s rank correlation coefficient. The error bars show 95%

confidence intervals for models trained on 10 random training/test splits.

Figure 4. (A) Interval prediction of plasmid permissiveness with the

random forest algorithm. Intervals contain 99% of predictions for

permissiveness for the pKJK5 plasmid. (B) The true detection rate for

shrinking intervals for the pKJK5, RP4, and pB10 plasmids in the training

and test datasets. The intervals on the X-axis contain the portions of data

that fall between the upper and lower limits, e.g. the 0.01–0.99 range

includes predictions greater than 1% and smaller than 99% of the values

predicted by the model. True detection rate was defined as the relative

frequency of data points that fell in the interval. The interval value of 99%

corresponds to 0.57�, 2.07�, and 3.5� the dispersion around the mean

absolute difference for the permissiveness distributions for pKJK5, pB10,

and RP4 plasmids, respectively.
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Similarly, when we trained the model on all but one site
and assessed the performance on the excluded site, the accu-
racy decreased by 0.13 on average compared with the accu-
racy when mixed data were used (Spearman’s q for training
and test data for all sites mixed�Spearman’s q for training
data for all sites except the excluded site and test data for the
excluded site) (Supplementary Fig. S4C). Overall, these find-
ings demonstrate the need for representative training datasets
to eliminate confounding factors that degrade model
performance.

We then investigated whether the use of taxonomic clusters
can improve predictions of permissiveness. The accuracy of pre-
dictions based on clustering ASV features (panmictic BAPS clus-
ters) turned out to be consistently lower than predictions based
on kmers (Fig. 5A). For different types of models, those trained
on BAPS cluster information had an average drop in accuracy of
0.06 for pB10, 0.23 for RP4, and 0.21 for pKJK5, when com-
pared with the best performing kmer-based prediction (Fig. 4A).
Nevertheless, we identified eight predictive BAPS clusters for
pKJK5, which were positively linked with high permissiveness
values (p-value from Wilcoxon test < .01) (Fig. 5B). The phylo-
genetic distribution of these BAPS clusters showed that they oc-
cur across a wide range of taxa (Fig. 6A). We compared the
frequencies of taxa contained in predictive BAPS clusters with the
baseline frequency of the same taxa to identify the enriched taxa
(Fig. 6B). Previous studies reported a broad host range for the
pKJK5 plasmid (Musovic et al. 2006, Shintani et al. 2014,
Klümper et al. 2015). In line with these reports, the predictive
BAPS clusters encompassed both Gram-negative and Gram-
positive orders, with notable overrepresentation of
Sphingomonadales and Bacillales. This finding highlights the im-
portance of HGT in the evolution of these strains, as shown for
phage-mediated gene transfer (Soffer et al. 2015). The Gram-
positive significant orders included a wide range of orders, e.g.
Clostridiales, Bacillales, Micrococcales, and Corynebacteriales
(Fig. 6B). The enriched orders for pB10 and RP4 were like those
for pKJK5 but with some unique orders. While we observed a
sharing of predominant orders for pKJK5 with pB10 and RP4
plasmids, e.g. Micrococcales and Sphingomonadales, some recip-
ients’ orders, e.g. the Proteobacterial orders Xanthomonadales,
Alteromonadales, and Pseudomonadales (Fig. 6B), appeared ex-
clusive to pB10 and RP4 plasmids. These orders contain many
pathogens, in which HGT plays a major role in driving the evolu-
tion of adaptation, AMR, and pathogenicity in humans and
plants (Caro-Quintero and Konstantinidis 2015, Chen et al.

2018). Altogether, these findings suggest the existence of
plasmid-specific interactions and shared recipient features within
certain taxonomic clusters.

To examine the predictive information contained in kmers,
we next identified the kmers most predictive for permissiveness.
The feature importance analysis for significant kmers pin-
pointed 661, 146, and 71 kmers, of which 371, 89, and 65
were positively linked with permissiveness for pKJK5, pB10,
and RP4, respectively (Fig. 7 and Supplementary Figs S5 and
S6). Like the BAPS clusters, we observed a distinctive distribu-
tion of significant kmers for each plasmid. However, we ob-
served a higher discriminatory power between ASVs with and
without the predictive kmers, compared with ASVs from the
predictive and non-predictive BAPS clusters (Supplementary
Fig. S7). This implies that information in the predictive kmers
captured a greater variance in the data, when compared with
information in predictive BAPS clusters, pointing to multiple
taxonomic signals within the ASVs that only kmer-based pre-
dictions used. This result is congruent with the better perfor-
mance of kmer-based predictions. The predictive kmers for the
plasmids were weakly correlated and covered a wide range of
orders, some of which were identified by BAPS-based analysis
(Fig. 7 for pKJK5 and Supplementary Fig. S4 for pB10 and
RP4 plasmids). For pKJK5, the kmers linked with the Gram-
negative orders of Enterobacterales, Betaproteobacteriales,
Pseudomonadales, and Xanthomonadales most strongly pre-
dicted permissiveness (Fig. 7). For RP4 and pB10, besides
Pseudomonadales and Cellvibrionales, which were identified
by BAPS analysis, Aeromonadales ASVs appeared to contain
predictive kmers (Supplementary Figs S5 and S6), which aligns
with recent evidence of HGT in the Aeromonas genus in
aquatic environments (Bello-López et al. 2019). Predictive
kmers, whose absence was linked with increased permissive-
ness, showed somewhat similar distributions for plasmids: For
RP4 and PB10, these kmers occurred in Flavobacteria, which
consistently showed a lower permissiveness for these plasmids
(Supplementary Fig. S6). For pKJK5, the signals also occurred
throughout various clades, besides Flavobacteria (Fig. 7).
Altogether, the kmer analysis appeared to identify further pre-
dictive signals for permissiveness.

The lower performance of the models based on taxonomic
clusters, when compared with kmer predictions, also sug-
gested that elevated permissiveness may have lineage indepen-
dent signals. To identify these signals, we screened the kmers

Figure 5. BAPS taxonomic cluster-based prediction. (A) The bars show

how much better the kmer-based models were relative to BAPS-based

models (bars are the differences between the accuracies of the best

performing models for the kmer- minus the BAPS-based models) for

different model classes. The terms “RF,” “GB,” and “LR” stand for

random forest, gradient boosted, and lasso regressors, respectively. The

error bars show 95% confidence intervals across 10 prediction runs with

random test/training split. (B) The permissiveness values for ASVs

belonging (red) or not-belonging (blue) to predictive BAPS clusters for

plasmid pKJK5.

Figure 6. (A) The taxa distribution of predictive BAPS clusters for pKJK5.

The clade of unclassified outliers was removed. (B) The frequency of

enriched orders in the predictive BAPS clusters for pKJK5, RP4, and pB10

plasmids. The green bars show the baseline frequencies in the recipient

pool. We removed 91 taxa that were not annotated from the tree to

improve presentation.
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for association with permissiveness after accounting for line-
age associations. In total, we filtered 8, 6, and 5 significant
kmers with unique distributions for pKJK5, RP4, and pB10
plasmids linked with elevated permissiveness, respectively
(Supplementary Fig. S8). Like the BAPS and kmer results, the
distribution of significant kmers differed between the plas-
mids (Supplementary Fig. S8). For pB10 and RP4, the kmers
were predominantly found within Gram-negative clades of
Pseudomonadales, Aeromonadales, and Cellvibrionales and
to a lesser extent in Gram-positive Corynebacteriales strains.
For Corynebacteriales strains, HGT is recognized to contrib-
ute to their pathogenicity and AMR (Zhi et al. 2017). The sig-
nificant kmers for pKJK5 were found across a wider range of
Gram-negative and Gram-positive species (Supplementary
Fig. S8). The presence of these host sequence signals in only
very distantly related taxa suggests a convergent evolution of
molecular mechanisms for transfer and maintenance of IncP-1
plasmids in Gram-positive and Gram-negative strains
(Goessweiner-Mohr et al. 2013), which may be discovered by
whole genome data analysis.

We then examined the extent to which the number of 16S
rRNA sequences used for training and a given mutation rate
would affect the performance of the predictive models.
Henceforth, we carried out predictions with simulated 16S
rRNA data with various values for the strength of correlation
between the predictive kmer and permissiveness, mutation
rate, and population size (Supplementary Fig. S9). The results
indicate that for a wide range of parameter values for popula-
tion size and correlation of the predictive kmer with permis-
siveness, the prediction accuracy for the test dataset remained
between 0.65 and 0.75 (Supplementary Fig. S9B). With in-
creasing population size, the accuracy of the trained model
for the test data did not seem to improve, implying the exis-
tence of limits for correct predictions. The extent of overfit-
ting, i.e. the difference in accuracy between test and training
data, increased with higher mutation rates (Supplementary
Fig. S9A). This observation may be explained by the high
clonality of populations at low mutation rates, which makes
it likely that a taxon from the test dataset falls within the

same clade as the training dataset, thus making the training
data highly predictive of the test data. With increasing muta-
tion rate, although a larger number of predictive signals are
available, which improves the accuracy of prediction in the
training dataset, the generalizability of the model to the test
data declines because of a higher divergence between input
sequences in training and test datasets. Despite these limita-
tions, the results indicate that the models achieve a high accu-
racy across a wide range of parameter values.

4 Discussion

While it is expected that permissiveness for narrow host-
range plasmids should have a clear taxonomic signal that
facilitates prediction, this was not clear for broad host-range
plasmids. Moreover, there is significant microdiversity
(Jaspers and Overmann 2004) between strains with the same
full-length 16S rRNA sequence and even more so with partial
sequences used here, which could make predicting permissive-
ness rather hopeless. Nevertheless, we demonstrated that pre-
diction is possible yet limited. We present a machine learning
framework for predicting plasmid permissiveness from 16S
rDNA amplicon sequencing (V3–V4 hypervariable regions) of
recipient and transconjugant pools from filter mating assays,
inoculated with samples from various compartments of the
urban water cycle. Despite the short length of the predictor se-
quence, our results show that the genetic information of the
host captured in 16S rRNA sequences may account for
around 50% of the total variance in permissiveness for differ-
ent resistance plasmids. Furthermore, our analysis identified
predictive biomarkers for permissiveness of recipient cells and
provided evidence for host preferences and plasmid specificity
across multiple lineages.

Although our results with IncP-1 plasmids provide evidence
for lineage specificity of successful HGT even for broad host-
range plasmids, this specificity depended on the plasmid type.
However, we also found a broad phylogenetic distribution of
elevated permissiveness, with molecular signals spanning mul-
tiple divergent clades. Permissiveness presumably requires
suitability of the host for establishing transfer, avoiding entry
exclusion and host immunity systems, e.g. restriction–modifi-
cation and CRISPR-Cas systems (Price et al. 2016, Benz et al.
2021), and compatibility with the host and any resident plas-
mids (San Millan and MacLean 2017). Permissiveness also
requires the expression of plasmid genes to replicate and par-
tition the plasmid, at least for a few divisions.

Several studies reported specific genetic conflicts between
chromosomal and plasmid genes that lead to high fitness costs
for the host that could be mitigated by compensatory muta-
tions in either the host chromosome, the plasmid, or both
(Dahlberg and Chao 2003, Dionisio et al. 2005, De Gelder
et al. 2007, Harrison et al. 2015, San Millan et al. 2015,
Loftie-Eaton et al. 2017, Hall et al. 2021). This study identi-
fied hubs for conjugation that may consist of certain lineages
already harboring suitable compensatory mutations, thus pro-
viding predictive genomic signals for permissiveness. While
the taxonomic distribution of these mutations in full genomes
is yet to be elucidated, the elevated permissiveness across dis-
tantly related taxa points to possible convergent evolution for
plasmid uptake and carriage within hosts.

The unexplained variance in the output of the models likely
has various causes. The physiology of the host cell at the time
of the experiment will depend not only on its genome (its

Figure 7. Feature importance analysis for kmer-based predictions. For the

top hundred predictive kmers (based on their predictive power ranking) for

pKJK5, the relative frequency of taxa with the respective kmer as well as

the correlation of the presence of the different counts of the concerned

kmers with plasmid permissiveness is shown. The box plots show the

distribution of permissiveness values for ASVs (taxa) bearing the kmer.

The groups of box plots are sorted by increasing difference between the

mean permissiveness for ASVs with versus without the kmer. The

“negative” group of boxplots shows kmers whose absence is linked with

increased permissiveness, while the “positive” group of boxplots shows

kmers whose presence is linked with increased permissiveness. The bar

plots show orders that were enriched in the group of ASVs harboring the

kmers compared with the baseline distribution.
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potential physiology), which is not fully represented by its
16S rRNA phylotype, but also on its transcriptome, prote-
ome, and metabolome (its current physiology). The latter will
depend on the environmental conditions experienced over the
past few generations while the host cell was being transported
through several water cycle compartments or resided in one
particular compartment with longer solid residence times.
The filter mating conditions can also affect cellular activities
and shift the community composition, e.g. the synthetic
wastewater medium differs from the actual water sampled.
Therefore, the experimental results may not directly apply to
in situ plasmid permissiveness. However, standardized test
conditions are essential to eliminate environmental confound-
ers. Certainly, seasonal, diurnal, and higher frequency tempo-
ral fluctuations combined with considerable spatial
heterogeneity will affect the microbial community in the vari-
ous compartments of the water cycle sampled (McLellan et al.
2010). To minimize the effect of the environmental heteroge-
neity and host cell diversity on the performance of the predic-
tive models, a more complete, representative, and balanced
training collection is essential. An ideal sampling framework
would include sufficient samples to represent temporal and
spatial variation across all compartments, including the differ-
ent types of wastewater treatment processes, as has been
done for the microorganisms found in WWTPs by the
MIDAS consortium (Dueholm et al. 2022). Such a collection
would maximize the viability and generality of the trained
models.

While we identified elevated permissiveness in taxa previ-
ously reported to have high permissiveness, some taxa, e.g.
E.coli, did not appear as permissive in our study as commonly
reported. The low permissiveness we observed for E.coli
might be caused by the conditions during the mating (syn-
thetic wastewater medium, 25�C) that are suboptimal for
E.coli. In addition, the gfp expression from our plasmids is re-
pressed by the product of lacI. This gene is typically present in
E.coli, so it is possible that permissiveness was underesti-
mated for taxa with high lacI expression.

Several previous studies have attempted to predict complex
bacterial traits from full genomic data of naturally occurring
strains. The traits included environmental niches, host pheno-
types, host specialism, AMR, and bacterial growth features
(Wheeler et al. 2018, Asgari et al. 2019, Benkwitz-Bedford
et al. 2021). However, no machine learning model has been
developed for HGT. The predictive power of partial 16S
rRNA gene sequences with signatures of lineage dependence
that we report here sets the stage for future research, where
full genome sequences or metagenomic features are used as
further predictor signals for the models and feature impor-
tance analysis. The models developed here and future models
can serve as useful tools for assessing the potential risk of
mixing different wastewaters containing both resistant and
sensitive bacterial strains or releasing these waters into receiv-
ing aquatic habitats, enabling subsequent resistance transmis-
sion across the environmental systems. Tools with such
predictive capabilities can play a major role in supporting
One Health efforts. Such models, trained on data from studies
aiming to reduce plasmid transfer in laboratory settings
(Buckner et al. 2020), can enable prediction of the effect of
these interventions on a wide range of microbial communities
in different environments to assess the utility of these interven-
tions in relevant clinical and non-clinical settings.

Supplementary data

Supplementary data are available at Bioinformatics online.
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Klümper U et al. Novel assay to measure the plasmid mobilizing poten-

tial of mixed microbial communities. Front Microbiol 2014;5:730.
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