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Abstract

Extending the well‐known star–comb lemma for in-

finite graphs, we characterise the graphs that do not

contain an infinite comb or an infinite star, respec-

tively, attached to a given set of vertices. We offer

several characterisations: in terms of normal trees,

tree‐decompositions, ranks of rayless graphs and

tangle‐distinguishing separators.

KEYWORD S

critical vertex set, duality, normal tree, rank, stars and combs,
star–comb lemma, tree‐decomposition

MATHEMATICAL SUBJECT CLASSIFICATION

05C05, 05C40, 05C63, 05C69, 05C75

1 | INTRODUCTION

It is well known, and easy to see, that every finite connected graph contains either a long path
or a vertex of high degree. Similarly,

Every infinite connected graph contains either a ray or a vertex of infinite

degree ( )∗

[8, Proposition 8.2.1]. Here, a ray is a one‐way infinite path. Call two properties of infinite graphs
dual, or complementary, in a class of infinite graphs if they partition that class. Despite (∗), the two
properties of ‘containing a ray’ and ‘containing a vertex of infinite degree’ are not complementary
in the class of all infinite graphs: an infinite complete graph, for example, contains both. Hence it
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is natural to ask for structures, more specific than vertices of infinite degree and rays, whose
existence is complementary to that of rays and vertices of infinite degree, respectively. Such
structures do indeed exist.

For example, the property of having a vertex of infinite degree is trivially com-
plementary, for connected infinite graphs, to the property that all distance classes from any
fixed vertex are finite. This duality is employed to prove (∗): if all the distance classes from
some vertex are finite, then applying Kőnig's infinity lemma [8, Lemma 8.1.2] to these
classes yields a ray.

Similarly, it is easy to see that having a Schmidt rank is complementary for infinite graphs
to containing a ray [31]; see Section 3.4 for the definition of the Schmidt rank. This duality
allows for an alternative proof of (∗), as follows. If G is rayless, connected and infinite, then it
has some rank α > 0. Hence there is a finite vertex set X V G( )⊆ such that every component of
G X− has rank α< . Then G X− must have infinitely many components, and so by the
pigeonhole principle some vertex in X has infinite degree in G.

A stronger and localised version of (∗) is the star–comb lemma [8, Lemma 8.2.2], a standard
tool in infinite graph theory. Recall that a comb is the union of a ray R (the comb's spine) with
infinitely many disjoint finite paths, possibly trivial, that have precisely their first vertex on R.
The last vertices of those paths are the teeth of this comb. Given a vertex setU , a comb attached
toU is a comb with all its teeth inU , and a star attached toU is a subdivided infinite star with
all its leaves inU . Then the set of teeth is the attachment set of the comb, and the set of leaves is
the attachment set of the star.

Star–comb lemma. Let U be an infinite set of vertices in a connected graph G. Then G
contains either a comb attached to U or a star attached to U .

Although the star–comb lemma trivially implies assertion (∗), with U V G( )≔ , it is not
primarily about the existence of one subgraph or another. Rather, it tells us something about
the nature of connectedness in infinite graphs: that the way in which they link up their infinite
sets of vertices can take two fundamentally different forms, a star and a comb. These two
possibilities apply separately to all their infinite setsU of vertices, and clearly, the smallerU the
stronger the assertion.

Just like the existence of rays or vertices of infinite degree, the existence of stars or
combs attached to a given setU is not complementary (in the class of all infinite connected
graphs containing U ). In this paper, we determine structures that are complementary to
stars, and structures that are complementary to combs (always with respect to a fixed
set U ).

As stars and combs can interact with each other, this is not the end of the story.
For example, a given set U might be connected in G by both a star and a comb, even with
infinitely intersecting sets of leaves and teeth. To formalise this, let us say that a
subdivided star S dominates a comb C if infinitely many of the leaves of S are also teeth of
C. A dominating star in a graph G then is a subdivided star S G⊆ that dominates some
comb C G⊆ ; and a dominated comb in G is a comb C G⊆ that is dominated by some
subdivided star S G⊆ . In the remaining three papers [1–3] of this series we shall find
complementary structures to the existence of these substructures (again, with respect to
some fixed set U ).

Just like the original star–comb lemma, our results can be applied as structural tools in
other contexts. Examples of such applications can be found in parts I–III of our series.
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1.1 | Arbitrary stars and combs

In this paper we prove five duality theorems for combs, and two for stars. The complementary
structures they offer are quite different, and not obviously interderivable.

Our first result is obtained by techniques of Jung [22]. Recall that a rooted tree T G⊆ is
normal inG if the endvertices of everyT ‐path inG are comparable in the tree‐order ofT , cf. [8].

Theorem 1. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) there is a rayless normal tree T G⊆ that contains U .

To see that (ii) implies thatG—in fact, the normal treeT—contains a star attached toU whenU
is infinite, pick from among the nodes ofT that lie below infinitely many vertices ofT inU one that
is maximal in the tree‐order of T . Then its up‐closure in T contains the desired star.

Even though the normal tree from (ii) is in general not spanning, its separation properties
still tell us a lot about the ambient graph G. Our next result captures this overall structure ofG
more explicitly (refer to [8] for the definition of tree‐decompositions and adhesion sets):

Theorem 2. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rayless tree‐decomposition into parts each containing at most finitely many

vertices from U and whose parts at nonleaves of the decomposition tree are all finite.

Moreover, the tree‐decomposition in (ii) can be chosen with connected adhesion sets.

For U V G= ( ), this theorem implies the following characterisation of rayless graphs by
Halin [19]: G is rayless if and only if G has a rayless tree‐decomposition into finite parts.

While Theorems 1 and 2 tell us about the structure of the graph aroundU , they further imply a
more localised duality theorem for combs. Call a finite vertex set X V G( )⊆ critical if the collection
XC̆ of the components of G X− having their neighbourhood precisely equal to X is infinite.

Theorem 3. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) for every infinite U U′ ⊆ there is a critical vertex set X V G( )⊆ such that infinitely

many of the components in XC̆ meet U′.

Critical vertex sets were introduced in [25]. As tangle‐distinguishing separators, they have
a surprising background involving the Stone–Čech compactification of G, Robertson and
Seymour's tangles from their graph‐minor series, and Diestel's tangle compactification,
cf. [26,30,9]. Moreover, it turns out that Theorem 3 implies another characterisation of rayless
graphs by Halin [18].
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The Schmidt rank of rayless graphs was employed by Bruhn, Diestel, Georgakopoulos
and Sprüssel [4] to prove the unfriendly partition conjecture for the class of rayless graphs by
an involved transfinite induction on their rank. We will show how the notion of a rank can
be adapted to take into account a given set U , so as to give a recursive definition of those
graphs that do not contain a comb attached toU . This yields our fourth duality theorem for
combs:

Theorem 4. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a U ‐rank.

With these four complementary structures for combs at hand, the question arises whether
there is another complementary structure combining them all. Our fifth duality theorem for
combs shows that this is indeed possible:

Theorem 5. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a tree‐decomposition that has the list (†) of properties.

For the precise statement of this theorem, see Section 3.5. Essentially, the list (†) consists of
the following four properties:

– its decomposition tree stems from a normal tree as in Theorem 1;
– it has the properties of the tree‐decomposition in Theorem 2;
– the infinite‐degree nodes of its decomposition tree correspond bijectively to the cri-

tical vertex sets of G that are relevant in Theorem 3;
– the rank of its decomposition tree is equal to the U ‐rank of G from Theorem 4.

Now that we have stated all the duality theorems for combs, let us turn to our two duality
theorems for stars. Recall that a vertex v of G dominates a ray R G⊆ if there is an infinite
v– R v( − ) fan inG. Rays not dominated by any vertex are undominated, cf. [8]. Our first duality
theorem for stars reads as follows:

Theorem 6. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a star attached to U ;
(ii) there is a locally finite normal tree T G⊆ that contains U and all whose rays are

undominated in G.

To see that (ii) implies that G—in fact, the normal tree—contains a comb attached to U
whenU is infinite, pick a ray in the locally finite down‐closure ofU in the tree and extend it to
a comb attached to U .
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We have seen normal trees before in our first duality theorem for combs, Theorem 1.
Theorem 6 compares with Theorem 1 as follows. The only additional property required of
the normal trees that are complementary to combs is that they are rayless. Similarly, the
normal trees that are complementary to stars have the additional property that they are
locally finite. However, they have the further property that all their rays are undominated
in G.

This further property is necessary to ensure that the normal trees and stars in Theorem 6
exclude each other. To see this, let G be obtained from a ray R by completely joining its first
vertex r to all the other vertices of R, and suppose thatU V G= ( ). Then R G⊆ with root r is a
locally finite normal tree containingU . But the edges ofG at r form a star attached toU , so the
further property is indeed necessary.

By contrast, we do not need to require in Theorem 1 that all the stars in the normal trees
that are complementary to combs are undominating inG: this is already ensured by the nature
of normal trees (see Lemma 3.4 for details).

Our second duality theorem for stars is phrased in terms of tree‐decompositions, similar to
Theorem 2:

Theorem 7. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a star attached to U ;
(ii) G has a locally finite tree‐decomposition with finite and pairwise disjoint adhesion sets

such that each part contains at most finitely many vertices from U .

Moreover, the tree‐decomposition in (ii) can be chosen with connected adhesion sets.

This paper is organised as follows. Section 2 provides the tools and terminology that we use
throughout this series. Sections 3 and 4 are dedicated to the duality theorems for combs and
stars, respectively.

Throughout this paper, G V E= ( , ) is an arbitrary graph.

2 | TOOLS AND TERMINOLOGY

Any graph‐theoretic notation not explained here can be found in Diestel's textbook [8]. A
nontrivial path P is an A‐path for a set A of vertices if P has its endvertices but no inner vertex
in A. An independent setM of edges in a graphG is called amatching of A and B for vertex sets
A B V G, ( )⊆ if every edge in M has one endvertex in A and the other in B.

2.1 | The star–comb lemma

The predecessors of the star–comb lemma are the following facts:

Lemma 2.1 [8, Proposition 9.4.1]. For every m ∈ there is an n ∈ such that each
connected finite graph with at least n vertices either contains a path of length m or a star
with m leaves as a subgraph.
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Lemma 2.2 [8, Proposition 8.2.1]. A connected infinite graph contains either a ray or a
vertex of infinite degree.

The latter is a direct consequence of the Kőnig's infinity lemma, [8, Lemma 8.1.2]. Lemma 2.1
has been generalised to higher connectivity [15,21,27], and so has Lemma 2.2 in [16,20,23,24,27]. For
an overview we recommend the introduction of [16].

For locally finite trees, Lemma 2.2 already yields a comb:

Lemma 2.3. If U is an infinite set of vertices in a locally finite rooted tree T , then T

contains a comb attached to U whose spine starts at the root.

Proof. The down‐closure of U in the tree‐order of T induces a locally finite subtree
which, by Lemma 2.2, contains a ray starting at the root, say. This ray can be extended
recursively to the desired comb. □

For rayless trees, the situation is simpler:

Lemma 2.4. IfU is an infinite set of vertices in a rayless rooted tree T , then T contains a
star attached toU which is contained in the up‐closure of its central vertex in the tree‐order
of T .

Proof. Among all the nodes of T that lie below some infinitely nodes fromU , pick one
node t , say, that is maximal in the tree‐order of T . Then t has infinite degree and we find
the desired star with centre t in the up‐closure of t . □

The general case can be reduced to trees:

Lemma 2.5 (Star–comb lemma). Let U be an infinite set of vertices in a connected graph
G. Then G contains either a comb attached to U or a star attached to U .

Proof. Using Zorn's lemma we find a maximal tree T G⊆ all whose edges lie on a U ‐
path inT . ThenT containsU . IfT has a vertex v of infinite degree, then its incident edges
extend to v–U paths whose union is the desired star attached toU . Otherwise T is locally
finite, and we find the desired comb attached to U using Lemma 2.3 in T . □

We wish to remark that the star–comb lemma has been generalised to take the cardinality
ofU into account, see the work by Diestel and Kühn [11] for the regular case and the work by
Gollin and Heuer [16, Corollary 8.1] for the singular case.

2.2 | Separations

For a vertex set X V G( )⊆ we denote the collection of the components of G X− by XC . If any
X V G( )⊆ and XC C⊆ are given, then these give rise to a separation of G which we denote by

X V V X V{ , } { \ [ ], [ ]},C C C≔ ∪

530 | BÜRGER AND KURKOFKA
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where V V C C[ ] = { ( ) }C C⋃ ∣ ∈ . Note that every separation A B{ , } ofG can be written in this
way. For the orientations of X{ , }C we write

X V V X V X V X V V( , ) ( \ [ ], [ ]) and ( , ) ( [ ] , \ [ ]).C C C C C C≔ ∪ ≔ ∪

We write X C{ , }, X C( , ) and C X( , ) instead of X C{ , { }}, X C( , { }) and C X({ }, ), respectively.
The set of all finite‐order separations of a graph G is denoted by S S G= ( )ℵ ℵ0 0

.

2.3 | Ends of graphs

We write G= ( )  for the collection of all finite subsets of the vertex set V of G, partially
ordered by inclusion. An end ofG, as defined by Halin [17], is an equivalence class of rays ofG,
where a ray is a one‐way infinite path. Here, two rays are said to be equivalent if for every
X ∈ both have a subray (also called tail) in the same component of G X− . So in particular
every end ω ofG chooses, for every X ∈ , a unique component C X ω C X ω( , ) = ( , )G ofG X−

in which every ray of ω has a tail. In this situation, the end ω is said to live inC X ω( , ). The set of
ends of a graph G is denoted by GΩ( ). We use the convention that Ω always denotes the set of
ends GΩ( ) of the graph named G.

A vertex v of G dominates a ray R G⊆ if there is an infinite v– R v( − ) fan in G. Rays not
dominated by any vertex are undominated. An end of G is dominated and undominated if one
(equivalently: each) of its rays is dominated and undominated, respectively. If v does not
dominate ω, then there is an X ∈ which strictly separates v from ω in that v X C X ω( , )∉ ∪ .
More generally, if no vertex of Y ∈ dominates ω, then there is an X ∈ strictly separating Y
from ω in that Y avoids the union X C X ω( , )∪ . Let us say that an oriented finite‐order
separation A B( , ) strictly separates a set X V G( )⊆ of vertices from a set Ψ Ω⊆ of ends if
X A B⊆ ⧹ and every end in Ψ lives in a component of G B A[ ]⧹ .

Let us say that an endω ofG is contained in the closure ofM , whereM is either a subgraph ofG
or a set of vertices ofG, if for every X ∈ the componentC X ω( , ) meetsM . Equivalently,ω lies in
the closure of M if and only ifG contains a comb attached to M with its spine in ω. We write MΩ∂

for the subset ofΩ that consists of the ends of G lying in the closure of M . Note that HΩ∂ usually
differs from HΩ( ) for subgraphs H G⊆ : For example, ifG is a ladder and H is its outer double ray,
then HΩ∂ consists of the single end ofG while HΩ( ) consists of the two ends of the double ray in
H . Readers familiar with G∣ ∣ as in [8] will note that MΩ∂ is the intersection ofΩ with the closure of
M in G∣ ∣, which in turn coincides with the topological frontier ofM E\ ˚ in the space G E\ ˚∣ ∣ . If an end
ω of G does not lie in the closure of M , and if X ∈ witnesses this (in that C X ω( , ) avoids M),
then X is said to separate ω from M (and M from ω). Carmesin [5] observed that

Lemma 2.6. Let G be any graph. If H G⊆ is a connected subgraph and ω is an
undominated end of G lying in the closure of H , then H contains a ray from ω.

Proof. Since ω lies in the closure of H we find a comb in G attached to H with spine in
ω. And as ω is undominated in G, the star–comb lemma in H must return a comb in H

attached to the attachment set of the first comb. Then the two combs’ spines are
equivalent in G. □

Another way of viewing the ends of a graph goes via its directions: choice maps f assigning
to every X ∈ a component ofG X− such that f X f X( ′) ( )⊆ whenever X X′ ⊇ . Every end ω
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defines a unique direction fω by mapping every X ∈ to C X ω( , ). Conversely, Diestel and
Kühn proved in [11] (Theorem 2.7) that every direction in fact comes from a unique end in this
way, thus giving a one‐to‐one correspondence between the ends and the directions of a graph.

The advantage of this point of view stems from an inverse limit description of the directions,
as follows. (For details on inverse limits, see, e.g., [14] or [29]. Recall that a poset P( , )≤ is said
to be directed if for all p q P, ∈ there is an r P∈ with r p≥ and r q≥ .) Note that  is directed
by inclusion; for every X ∈ let XC consist of the components of G X− ; endow each XC with
the discrete topology; and let :X X X X′, ′C C→c for X X′ ⊇ send each component ofG X− ′ to the
component of G X− containing it; then { , , }X X X′,C c is an inverse system whose inverse
limit, by construction, consists of the directions.

Theorem 2.7 (Diestel and Kühn [11, Theorem 2.2]). Let G be any graph. Then the map
ω fω↦ is a bijection between the ends of G and its directions, that is, Ω = lim XC

←
.

From now on we do not distinguish betweenΩ and the inverse limit space lim XC
←

with the
inverse limit topology, and we call Ω the end space.

If a graph G is locally finite, then the star–comb lemma always yields a comb. This fact has
been generalised in Lemma 2.8, where the proof relies on the combination of Halin's combi-
natorial definition of an end with the topological inverse limit point of view on ends as
directions:

Lemma 2.8. Let G be any graph and let U V G( )⊆ be infinite. If for every X ∈ only
finitely many components ofG X− meetU , then UΩ∂ is a nonempty and compact subspace
of Ω.

Proof. For every X ∈ let X XK C⊆ consist of the finitely many components ofG X−

that meetU . Then the closed subspace UΩ∂ of the inverse limit Ω = lim XC
←

is nonempty
and compact as inverse limit of its nonempty compact Hausdorff projections XK , cf. [14,
Corollary 2.5.7]. □

The combination of topology and infinite graph theory is known as topological infinite graph
theory (an overview on this young field is presented in [7,8]). And in fact, Lemma 2.8 can be
employed to deduce a well‐known result of Diestel from this field, [10, Theorem 4.1], which
states that a graph is compactified by its ends if and only if it is tough in that deleting any finite
set of vertices always leaves only finitely many components. (If G is tough and a covering of
G Ω⊔ with basic open sets is given, first apply Lemma 2.8 to V to obtain a finite subcover of
Ω, then apply Lemma 2.8 to U V= \ ∪ to deduce that U is finite and, therefore, G\ ∪ is
compact.)

Since Lemma 2.8 yields combs even when there are both combs and stars (e.g., if G is an
infinite complete graph), this plus of control makes it a useful addition to the star–comb
lemma.

2.4 | Critical vertex sets

We have indicated above that adding the ends generally does not suffice to compactify a graph
with the usual topologies.
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However, every graph is naturally compactified by its ends plus critical vertex sets, where a
finite set X of vertices of an infinite graph G is critical if the collection

X C N C X˘ { ( ) = }XC C≔ ∈ ∣

is infinite (cf. [9,26,25]). WhenG is connected, all its critical vertex sets are nonempty, and so it
follows that G having a critical vertex set is stronger than G containing an infinite star: On the
one hand, given a critical vertex set X , each x X∈ sends an edge to each of the infinitely many
components C XC̆∈ and therefore is the centre of an infinite star. On the other hand, if G is
obtained from a ray R by completely joining its first vertex r to all the other vertices of R, thenG
contains an infinite star but no critical vertex set.

Let us say that a critical vertex set X of G lies in the closure of M where M is either a
subgraph of G or a set of vertices of G, if infinitely many components in XC̆ meet M . The
collection of all critical vertex sets ofG is denoted by Gcrit( ). The combinatorial remainder of a
graphG is the disjoint union G G GΓ( ) Ω( ) crit( )≔ ⊔ . As usual, GΓ = Γ( ), and MΓ∂ consists of
those γ Γ∈ lying in the closure of M . We obtain a slight strengthening of the star–comb
lemma:

Lemma 2.9. Let G be any graph and let U V G( )⊆ be infinite. Then at least one of the
following assertions holds:

(i) G has an end lying in the closure of U ;
(ii) G has a critical vertex set lying in the closure of U .

Proof. If there is a vertex set X ′ ∈ such that infinitely many components of G X− ′

meetU , then X ′ includes a critical vertex set X such that infinitely many components in
XC̆ meet U , giving (ii). Otherwise Lemma 2.8 gives (i). □

2.5 | Normal trees

A rooted tree T G⊆ , not necessarily spanning, is said to be normal in G if the endvertices of
every T ‐path in G are comparable in the tree‐order of T [8, p. 220]. We say that a vertex set
W V G( )⊆ is normally spanned inG if there is a normal tree inG that containsW . A graphG is
normally spanned if V G( ) is normally spanned, that is, if G has a normal spanning tree.

The generalised up‐closure x⌊⌊ ⌋⌋ of a vertex x T∈ is the union of x⌊ ⌋ with the vertex set of
x( )C⋃ , where the set x( )C consists of those components ofG T− whose neighbourhoods meet

x⌊ ⌋. Every graph G reflects the separation properties of each normal tree T G⊆ (we generalise
[8, Lemma 1.5.5] to possibly nonspanning normal trees):

Lemma 2.10. Let G be any graph and let T G⊆ be any normal tree.

(i) Any two vertices x y T, ∈ are separated in G by the vertex set x y⌈ ⌉ ∩ ⌈ ⌉.
(ii) LetW V T( )⊆ be down‐closed. Then the components of G W− come in two types: the

components that avoid T ; and the components that meet T , which are spanned by the
sets x⌊⌊ ⌋⌋ with x minimal in T W− .
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Proof.

(i) The proof is that of [8, Lemma 1.5.5 (i)].
(ii) In a first step, we prove that if a componentC ofG W− meetsT and x is minimal in

C T∩ , then C G x= [ ]⌊⌊ ⌋⌋ . The backward inclusion holds because x⌊⌊ ⌋⌋ is connected,
avoidsW and contains x . The forward inclusion can be seen as follows. On the one
hand, C T x∩ ⊆ ⌊ ⌋. Indeed, by (i), any x–y path in C with y C T∈ ∩ contains a
vertex below both x and y and every such vertex must be the minimal vertex x itself.
On the other hand, C T x− ( )C⊆ ⋃ . Indeed, every component C′ of C T− is a
component ofG T− sinceW T⊆ , and by C T x∩ ⊆ ⌊ ⌋ each neighbour of C′ inside C
must be contained in x⌊ ⌋.

Now let us deduce (ii). Without loss of generalityW is not empty. To begin, we
prove that each component C of G W− meeting T is spanned by x⌊⌊ ⌋⌋ for some
minimal x in T W− . By the first step, it suffices to show that a minimal vertex x of
C T∩ is also minimal in T W− , a fact that we verify as follows. The vertices below
x form a chain t⌈ ⌉ inT . As t is a neighbour of x, the maximality ofC as a component
of G W− implies that t W∈ , giving t W⌈ ⌉ ⊆ since W is down‐closed. Hence x is
also minimal in T W− .

Conversely, if x is any minimal element of T W− , it is clearly also minimal in
C T∩ for the componentC ofG W− to which it belongs. Together with the first step
we conclude that C is a component of G W− meeting T and spanned by x⌊⌊ ⌋⌋. □

As a consequence, the normal rays of a normal spanning tree T G⊆ , those that start at the
root, reflect the end structure of G in that every end of G contains exactly one normal ray of
T [8, Lemma 8.2.3]. More generally,

Lemma 2.11. IfG is any graph and T G⊆ is any normal tree, then every end ofG in the
closure of T contains exactly one normal ray of T . Moreover, sending these ends to the
normal rays they contain defines a bijection between TΩ∂ and the normal rays of T .

Proof. Let ω be any end ofG in the closure of T . By Lemma 2.10 (i) at most one normal
ray of T is contained in ω, and so it remains to find a normal ray of T that lies in ω. For
this, we pick a comb inG attached to T with its spine in ω. We construct a normal ray of
T in ω, as follows.

Starting with the root v0 of T , recursively choose nodes v v v, , , …0 1 2 of T such that vn+1

is the minimal vertex of T v− n⌈ ⌉ for which vn+1⌊⌊ ⌋⌋ spans the component of G v− n⌈ ⌉ that
contains all but finitely many vertices of the comb. Such a vertex vn+1 exists by
Lemma 2.10 (ii). And it is an upward neighbour of vn, which can be seen by applying
Lemma 2.10 (i) to vn and vn+1. In conclusion v v v …0 1 2 is a normal ray of T that is
equivalent in G to the spine of the comb.

The ‘moreover’ part holds as every normal ray of T has its end in G contained in the
closure of T . □

Consequently, if G contains a comb attached to T , then T contains exactly one normal ray
that is equivalent in G to that comb's spine.
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Lemma 2.12. Let G be any graph and let T G⊆ be any normal tree. Then every critical
vertex set of G in the closure of T is contained in T as a chain.

Proof. Let X be any critical vertex set of G that lies in the closure of T . For every
component C XC̆∈ that meets T , pick a C–X edge from T . By the pigeonhole principle,
some infinitely many of these edges have the same endpoint x X∈ , giving
rise to an infinite star in T . Then, by Lemma 2.10, x⌈ ⌉ pairwise separates all the leaves
of the star above x at once; let us write L for the set of these leaves. Since x⌈ ⌉ is finite, all
but finitely many of the infinitely many components in XC̆ that meet L are also
components of G x− ⌈ ⌉. And every vertex from X defines at least one path of length two
between distinct such components, by the definition of critical vertex sets. Therefore, no
vertex in X can be contained in a component of G x− ⌈ ⌉; in other words, X is contained
in the chain x⌈ ⌉. □

2.6 | Containing vertex sets cofinally

Recall that a subset X of a poset P P= ( , )≤ is cofinal in P, and≤, if for every p P∈ there is an
x X∈ with x p≥ . We say that a rooted tree T G⊆ contains a setW cofinally ifW V T( )⊆ and
W is cofinal in the tree‐order of T . Interestingly, our next lemma does not require T to be
normal.

Lemma 2.13. Let G be any graph. If T G⊆ is a rooted tree that contains a vertex setW
cofinally, then T W=Γ Γ∂ ∂ .

Proof. We first prove that T W=Ω Ω∂ ∂ . The backward inclusion T WΩ Ω∂ ⊇ ∂ holds as T
containsW . For the forward inclusion we prove equivalently that every end of G that is
not contained in the closure ofW also does not lie in the closure of T . So consider any
end ω WΩ Ω∈ ⧹∂ , and pick a finite vertex set X V G( )⊆ separatingW from ω. We claim
that the finite set X ′ consisting of the vertices in X and all vertices in the down‐closure of
X V T( )∩ inT , that is, X X X V T′ ( ) T≔ ∪ ⌈ ∩ ⌉ , separatesT from ω. Indeed, suppose for a
contradiction that the component C C X ω( ′, )≔ of G X− ′ meets T . Consider a vertex
v C T∈ ∩ . As X V T′ ( )∩ is down‐closed in T , the up‐closure v T⌊ ⌋ is included in C.
Hence—as T contains W cofinally—the component C also contains a vertex from W ,
contradicting the assumption that X X ′⊆ separatesW from ω.

It remains to show that TΓ∂ and WΓ∂ coincide on Gcrit( ). From W T⊆ we infer
W TΓ Γ∂ ⊆ ∂ , so it suffices to show that every critical vertex set that lies in the closure ofT

does also lie in the closure ofW . For this, let any critical vertex set X TΓ∈ ∂ be given. We
pick, for every componentC XC̆∈ meetingT , a vertex u C( ) ofT inC. Then applying the
star–comb lemma in T to this infinite vertex set yields either a star or a comb attached to
it. Since the finite vertex set X pairwise separates every two vertices in the attachment set
at once, we in fact get a star. Consider the centre of the star. This is a vertex ofT that has
infinitely many pairwise incomparable vertices u C( ) above it. Using that T containsW
cofinally, we find a vertex w C( ) in T W∩ above every u C( ). As X is finite, we may
assume without loss of generality that every vertex w C( ) is contained inC. Then X lies in
the closure of the vertex set formed by the vertices w C( ), and hence X WΓ∈ ∂

follows. □
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2.7 | Tree‐decompositions and S‐trees

We assume familiarity with [8, Section 12.3] up to but not including Lemma 12.3.2, and with
the concepts of oriented separations and S‐trees for S a set of separations of a given graph as
presented in [8, Section 12.5]. Whenever we introduce a tree‐decomposition as T( , ) we tacitly
assume that V= ( )t t T ∈ . Usually we refer to the adhesion sets of a tree‐decomposition as
separators. We call a tree‐decomposition rayless and locally finite if the decomposition tree T is
rayless and locally finite, respectively. A star‐decomposition is a tree‐decomposition whose
decomposition‐tree is a star K κ1, for some cardinal κ. A rooted tree‐decomposition is a tree‐
decomposition T( , ) where T is rooted. We say that a rooted tree‐decomposition T( , ) of G
covers a vertex setU V G( )⊆ cofinally if the set of nodes of T whose parts meetU is cofinal in
the tree‐order of T .

We will need the following standard facts about tree‐decompositions:

Lemma 2.14 [8, Lemma 12.3.1]. LetG be any graph with a tree‐decomposition T( , ) and
let t t1 2 be any edge of T and let T T,1 2 be the components of T t t− 1 2, with t T1 1∈ and t T2 2∈ .
Then V Vt t1 2

∩ separates A Vt T t1 1
≔ ⋃∈ from A Vt T t2 2

≔ ⋃∈ in G.

Corollary 2.15. Let T( , ) be any tree‐decomposition of any graph G. If a connected
subgraph H G⊆ avoids a part Vt , then there is a unique component T′ of T t− with
H G V[ ]t T t′ ′ ′⊆ ⋃ ∈ and H avoids every part that is not at a node of the component T′.

A tree‐decomposition T( , ) makesT into an S‐tree for the set S of separations it induces, cf.
[8]. The converse is true, for example, if T is rayless, but false in general (it is no longer clear
that every vertex of G lives in some part if T contains a ray). By a simple distance argument,
however, the converse holds in a special case for which we need the following definition.
Suppose that T α( , ) is an S‐tree with T rooted in r T∈ . We say that the separators of T α( , ) are
upwards disjoint if for every two edges e f<→ →

pointing away from the root r the separators of
α e( )→ and α f( )

→
are disjoint. Here, e e s t= ( , , )→ points away from r if r s t<T T≤ , that is, if

s rTt∈ . Then every S‐tree with upwards disjoint separators induces a tree‐decomposition.
We use the following nonstandard notation for S‐trees T α( , ): for an edge xy e= of the

decomposition tree T we abbreviate α e x y α x y( , , ) = ( , ).

2.8 | Tree‐decompositions and S‐trees displaying sets of ends

In this section we give a brief summary of how the ends of G relate to the decomposition trees
of tree‐decompositions and S‐trees. For the sake of readability, we introduce all needed con-
cepts for S‐trees and let the tree‐decompositions inherit these concepts from their corre-
sponding S‐trees.

Let T α( , ) be any Sℵ0‐tree. If ω is an end of G, then ω orients every finite‐order separation
A B S{ , } ℵ0

∈ of G towards the side K A B{ , }∈ for which every ray in ω has a tail in G K[ ]. In this
way, ω induces a consistent orientation of Sℵ0

→
and, via α, also induces a consistent orientationO of

E T( )
→

. Thenω either lives at a unique node t T∈ in that the star F e s t E T e st T= {( , , ) ( ) = }t
→

∈
→

∣ ∈

at t is included inO, or corresponds naturally to a unique end η of T in that for some (equivalently:
every) ray t t …1 2 in η all oriented edges t t t t( , , )n n n n+1 +1 are contained inO. When T α( , ) corresponds
to a tree‐decomposition T( , ) and ω lives at t , then we also say that ω lives in the part Vt at t .
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Moreover, we remark thatω lives inVt if and only if some (equivalently: every) ray inω has infinitely
many vertices inVt . Likewise, ω corresponds to η if and only if some (equivalently: every) ray R ω∈

follows the course of some (equivalently: every) rayW η∈ (in that for every tailW W′ ⊆ the ray R
has infinitely many vertices in Vt W t′⋃∈ ). In both cases ‘having infinitely many vertices in’ cannot be
replaced with ‘having a tail in’, for example, consider decomposition trees that are infinite stars or
combs whose teeth avoid their spines.

Consider the map τ G T V T: Ω( ) Ω( ) ( )→ ⊔ that takes each end ofG to the end or node ofT
which it corresponds to or lives at, respectively. This map essentially captures how the ends of
G relate to the ends of T . We say that T α( , ) displays a set of ends GΨ Ω( )⊆ if τ restricts to a
bijection τ TΨ: Ψ Ω( )↾ → between Ψ and the end space of T and maps every end that is not
contained in Ψ to some node of T .

It is a natural and largely open question for which subsets GΨ Ω( )⊆ a graph G has a tree‐
decomposition T( , ) that displays Ψ. Only recently, Carmesin achieved a major breakthrough
by providing a positive answer for Ψ the set of undominated ends ofG. To state his result in its
full strength, we introduce two more definitions and motivate them in a lemma.

Suppose that T is rooted in r T∈ , that G is connected and that the separators of T α( , ) are
nonempty. If the finite separators of T α( , ) are upwards disjoint, then by the star–comb lemma
and a simple distance argument, every end of T has some ends of G corresponding to it (i.e.,
τ η( )−1 ≠ ∅ for every end η of T ). And if additionally T α( , ) is upwards connected in that for
every edge e→ pointing away from the root r the induced subgraph G B[ ] stemming from
A B α e( , ) = ( )→ is connected, then T already displays the set of those ends of G that correspond
naturally to ends of T (i.e., τ η( ) = 1−1∣ ∣ for every end η of T ):

Lemma 2.16. Let G be any graph. Every upwards connected rooted Sℵ0‐tree T α( , ) with
upwards disjoint nonempty separators displays the ends of G that correspond to the ends of T .

Proof. By our preliminary remarks it remains to show that for every end η of T there is
at most one end ofG corresponding to η. Suppose for a contradiction that η is an end ofT
such that two distinct ends ω ω′≠ ofG correspond to it, and write R for the rooted ray of
T that represents η. Pick X ∈ such that ω and ω′ live in distinct components ofG X− .
As the separators of T α( , ) are upwards disjoint, by a distance argument we find an edge
e R∈ with orientation e→ away from the root such that the separation A B α e( , ) = ( )→

satisfies B X =∩ ∅. Now both of the two ends ω and ω′ have rays in G B[ ] because both
of them correspond to η. And in G B[ ] we find paths connecting these rays, since T α( , )

is upwards connected. But then these rays and paths avoid X , contradicting the choice
of X . □

Now we are ready to state the following result of Carmesin [5] that solved a conjecture of
Diestel [6] from 1992 (in amended form) and, as a corollary, also solved a conjectured of Halin
[17] from 1964 (again in amended form):

Theorem 2.17 (Carmesin [5]). Every connected graph G has a rooted tree‐decomposition
with upwards disjoint finite connected separators that display the undominated ends of G.

The theorem above combines Carmesin's Theorem 1, Remark 6.6, the second paragraph
of his ‘Proof that Theorem 1 implies Corollary 2.6’, and a standard argument to make the
separators connected.
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3 | COMBS

Jung [22] noted that, given any connected graphG and any vertex setU V G( )⊆ , the absence of
a comb attached toU is equivalent toU being dispersed inG, meaning that for every ray R G⊆

there is a finite vertex set X V G( )⊆ separating R fromU . This equivalence then gives another
equivalence asU being dispersed rephrases to ‘no end ofG lies in the closure ofU ’. For readers
familiar with the topological space G G= Ω∣ ∣ ⊔ as in [8], this is to say that U is closed in G∣ ∣.
These assertions—while equivalent to the absence of a comb—are abstract and do not im-
mediately provide concrete structures that are complementary to combs. Providing concrete
complementary structures is the aim of this section.

3.1 | Normal trees

In this section we prove

Theorem 1. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) there is a rayless normal tree T G⊆ that contains U .

Moreover, the normal tree T in (ii) can be chosen such that it contains U cofinally.

For this, we need the following key results of Jung's proof of his 1967 characterisation,
Theorem 3.5, of the connected graphs that have normal spanning trees.

Proposition 3.1 (Jung). LetG be any connected graph and letU V G( )⊆ be any vertex set.
If U is a countable union Un n⋃ ∈ of dispersed sets U V G( )n ⊆ and v is any vertex of G,
then G contains an ascending sequence T T0 1⊆ ⊆⋯ of rayless normal trees T Gn ⊆ such
that each Tn contains U Un0 ∪ ⋯ ∪ cofinally and is rooted in v. In particular, the overall
union T Tn n≔ ⋃ ∈ is a normal tree in G that contains U cofinally and is rooted in v.

Proof. It suffices to show that, given a rayless normal tree Tn containing
U U Un n0≔ ∪ ⋯ ∪≤ cofinally, we find a rayless normal tree Tn+1 extending Tn and
containingU U U=n n n+1 +1∪≤ ≤ cofinally. For this, let anyTn be given. Consider the collection
of all normal trees T Tn⊇ with T U n+1∩ ≤ cofinal in the tree‐order of T , partially ordered by
lettingT T′≤ wheneverT is extended byT′ as a normal tree. SinceUn+1 is dispersed andTn is
rayless, all of these trees must be rayless. Let Tn+1 be a maximal tree that Zorn's lemma
provides for this poset. In the following we show that Tn+1 is as desired.

Assume for a contradiction that some vertex u U n+1∈ ≤ is not contained in Tn+1. Since
Tn+1 is normal, the neighbourhood of the component C ofG T− n+1 that contains u forms
a chain in the tree‐order of Tn+1. As Tn+1 is rayless, this chain has a maximal node
x Tn+1∈ . Let T′ be the union of Tn+1 and an x–u path P with P C˚ ⊆ . Then the
neighbourhood in T′ of any new component C C′ ⊆ of G T− ′ is a chain in T′, so T′ is
again normal. But then T′ contradicts the maximality of Tn+1, completing the proof that
Tn+1 is as desired. □

538 | BÜRGER AND KURKOFKA

 10970118, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22706 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [10/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Corollary 3.2 (Jung). Let G be any graph and let U V G( )⊆ be any vertex set. If U is
dispersed itself and v is any vertex ofG, thenG contains a rayless normal tree that contains
U cofinally and is rooted in v.

Corollary 3.3 (Jung). Let G be any graph and let U V G( )⊆ be any vertex set. If U is
countable and v is any vertex of G, then G contains a normal tree that containsU cofinally
and is rooted in v.

Lemma 3.4. Let G be any graph. The vertex set of any rayless normal tree T G⊆ is
dispersed. In particular, the levels of any normal tree T G⊆ are dispersed.

Proof. Lemma 2.11. □

Jung's abstract characterisation of the normally spanned graphs goes as follows:

Theorem 3.5 (Jung [22, Satz 6]). Let G be any graph. A vertex setW V G( )⊆ is normally
spanned in G if and only if it is a countable union of dispersed sets. In particular, G is
normally spanned if and only if V G( ) is a countable union of dispersed sets.

For an excluded‐minor characterisation of the connected graphs with normal spanning
trees see [12,28].

Proof of Theorem 3.5. The backward implication is provided by Proposition 3.1. The
forward implication holds as the levels of any normal tree are dispersed, Lemma 3.4. □

We are now ready to prove Theorem 1:

Proof of Theorem 1. First, to show that at most one of (i) and (ii) holds, we show
(ii) ¬→ (i). If T G⊆ is a rayless normal tree containing U , then V T( ) is dispersed by
Lemma 3.4, and hence so is U V T( )⊆ .

It remains to show that at least one of (i) and (ii) holds; we show ¬(i)→ (ii). Since the
absence of a comb with all its teeth inU means thatU is dispersed, Corollary 3.2 yields a
rayless normal tree in G that contains U cofinally. □

3.2 | Tree‐decompositions

In this section, we show how the rayless normal tree from Theorem 1 gives rise to a tree‐
decomposition that is complementary to combs.

Theorem 2. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rayless tree‐decomposition into parts each containing at most finitely many

vertices from U and whose parts at nonleaves of the decomposition tree are all finite.
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Moreover, the rayless tree‐decomposition in (ii) displays UΩ∂ and may be chosen with
connected separators.

We start with a lemma which shows that at most one of (i) and (ii) holds.

Lemma 3.6. Let G be any graph and letU V G( )⊆ be any vertex set. Suppose that G has
a rayless tree‐decomposition into parts each containing at most finitely many vertices from
U and whose parts at nonleaves of the decomposition tree are all finite. Then for every
infinite U U′ ⊆ there is a critical vertex set of G that lies in the closure of U′.

Proof. Let such a tree‐decomposition T( , ) of G be given forU , and letU′ be an arbitrary
infinite subset ofU . For every u U′∈ we choose a node t Tu ∈ with u Vtu∈ . Since each part
of the tree‐decomposition contains at most finitely many vertices from U , we may assume
without loss of generality (moving to an infinite subset ofU′) that the nodes tu are pairwise
distinct. Hence applying Lemma 2.4 in the rayless tree T yields a star S attached to
t u U{ ′}u ∣ ∈ . Without loss of generality (as before) we may assume that the nodes tu form
precisely the attachment set of S and that no vertex u fromU′ is contained in the finite part
Vc at the central node c of S T⊆ . For every u U′∈ let Cu be the component of G V− c

containing u. Then distinct vertices fromU′ are contained in distinct components of G V− c

by Lemma 2.14. Since the finite partVc contains the neighbourhood of each componentCu, by
the pigeonhole principle we find a subset X Vc⊆ which is precisely equal to the
neighbourhood of Cu for some infinitely many u U′∈ . □

Proof of Theorem 2. By Lemma 3.6 at most one of (i) and (ii) holds. It remains to show
that at least one of (i) and (ii) holds.

We show ¬(i)→ (ii). LetT GNT ⊆ be a rayless normal tree containingU as provided by
Theorem 1. We construct the desired tree‐decomposition from TNT. As TNT is rayless and
normal, the neighbourhood of any component C of G T− NT is a finite chain in the tree‐
order of TNT, and hence has a maximal element t TC NT∈ . Now, let the tree T be obtained
fromTNT by adding each componentC ofG T− NT as a new vertex and joining it precisely
to tC. The tree T will be our decomposition tree; it remains to name the parts. For nodes
t T TNT∈ ⊆ we letVt consist of the down‐closure t TNT

⌈ ⌉ of t in the normal treeTNT. And for
newly added nodes C T T− NT∈ we let VC be the union of VtC and the vertex set of the
component C, that is, we put V t V C= ( )C C TNT

⌈ ⌉ ∪ . It is straightforward to check that T
with these parts forms a tree‐decomposition of G that meets the requirements of (ii) and
satisfies the theorem's ‘moreover’ part. □

Our next example shows that Theorem 2 (ii) cannot be strengthened so as to get a star as
decomposition tree or to have pairwise disjoint separators:

Example 3.7. Suppose that G consists of the first three levels of Tℵ0
, the tree all whose

vertices have countably infinite degree, and letU V G= ( ). ThenG is rayless so there is no
comb attached to U .

First,G has no star‐decomposition into parts each containing at most finitely many vertices
fromU : Indeed, assume for a contradiction that G has such a star‐decomposition S( , ) , and
let c be the centre of the infinite star S. As the part Vc contains at most finitely many vertices
fromU V G= ( ) it must be finite. Then each component ofG V− c is contained in someG V[ ]ℓ
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with ℓ a leaf of S by Corollary 2.15. As each part of S( , ) contains at most finitely many
vertices fromU , this means that every component of G V− c contains at most finitely many
vertices fromU V G= ( ) and hence is finite. But as Vc is finite, G V− c must have an infinite
component, a contradiction.

Second, G also has no rayless tree‐decomposition with finite and pairwise disjoint
separators such that each part contains at most finitely many vertices from U : Indeed,
suppose for a contradiction that G has such a tree‐decomposition T( , ) . Without loss of
generality we may assume that all its parts are nonempty. The rayless decomposition tree
T has a vertex t of infinite degree, soVt contains infinitely many of the finite and pairwise
disjoint separators. As G is connected, all of these are nonempty by Lemma 2.14, so Vt is
infinite, and hence so is V U V=t t∩ . But this contradicts our assumptions.

3.3 | Critical vertex sets

The absence of a comb attached toU is equivalent toU being dispersed, which is to say that no
end of G lies in the closure of U . With the combinatorial remainder G G GΓ( ) = Ω( ) crit( )⊔

compactifying G in mind, this means that only critical vertex sets of G lie in the closure of U ,
that is, U Gcrit( )Γ∂ ⊆ . Phrasing this combinatorially gives

Theorem 3. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) for every infinite U U′ ⊆ there is a critical vertex set X V G( )⊆ such that infinitely

many of the components in XC̆ meet U′.

Quantifying over all U′ in Theorem 3 is necessary for (ii)→¬(i), for example, if G is an
infinite star of rays withU V G= ( ). We remark that Theorem 3 implies Halin's [18, Satz 1] from
1965 which reads as follows: A graph G is rayless if and only if every infinite M V G( )⊆ has an
infinite subset M′ for which there is a finite H G⊆ such that every component of G H− contains
only finitely many vertices of M′.

Since, by now, the right tools are at hand, we can prove Theorem 3 in two efficient ways:

Combinatorial proof of Theorem 3 using Theorem 1 or 2. Clearly, at most one of (i)
and (ii) can hold. And if G contains no comb attached to U , then (ii) holds by Theorem 1
with Lemma 2.4 or by Theorem 2 with Lemma 3.6. □

Inverse limit proof of Theorem 3. Lemma 2.9 gives ¬(i)→ (ii). □

Note that condition (ii) yields a star attached to U .

3.4 | Rank

In 1983, Schmidt [31] introduced a notion that is now known as the Schmidt rank or just rank
of a graph, cf. Chapter 8.5 of [8]. His rank provides a recursive definition of the class of rayless
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graphs which enables us to prove assertions about rayless graphs by transfinite induction. An
outstanding application of this technique is the proof of the unfriendly partition conjecture for
rayless graphs, cf. [4,8]. Since the absence of a comb attached toU is equivalent to the existence
of a rayless normal tree containingU , Theorem 1, one may wonder whether there somehow is a
link to the Schmidt rank. In this section we show that this is indeed the case.

Schmidt defines the rank of a graph as follows. He assigns rank 0 to all the finite graphs.
And given an ordinal α > 0, he assigns rank α to every (not necessarily connected) graphG that
does not already have a rank β α< and which has a finite set X of vertices such that every
component of G X− has some rank α< .

Lemma 3.8 (Schmidt [31]). Let G be any graph. Then the following assertions are
complementary:

(i) G contains a ray;
(ii) G has a rank.

Now we introduce the notion of a U ‐rank, based on the Schmidt rank, which additionally
takes into account a fixed setU . For this, suppose thatU is any set. Even though, formally,U is
an arbitrary set, we think ofU as a set of vertices. Let us assignU ‐rank 0 to all the graphs that
contain at most finitely many vertices from U . Given an ordinal α > 0, we assign U ‐rank α to
every graph G that does not already have a U ‐rank β α< and which has a finite set X of
vertices such that every component of G X− has some U ‐rank α< .

Note that the rank of G is equal to the V ‐rank of G.
TheU ‐rank behaves quite similarly to the Schmidt rank, [8, p. 243]: When disjoint graphsGi

haveU ‐ranks α α<i , their union clearly has aU ‐rank of at most α; if the union is finite, it has
U ‐rank αmaxi i. Induction on α shows that subgraphs of graphs ofU ‐rank α also have aU ‐rank
of at most α. Conversely, joining finitely many new vertices to a graph, no matter how, will not
change its U ‐rank.

Not every graph has a U ‐rank. Indeed, a comb attached to U cannot have a U ‐rank, since
deleting finitely many of its vertices always leaves a component that is a comb attached toU . As
subgraphs of graphs with a U ‐rank also have a U ‐rank, this means that only graphs without
such combs can have a U ‐rank. But all these do:

Theorem 4. Let G be any graph and let U be any set. Then the following assertions are
complementary:

(i) G contains a comb attached to U ;
(ii) G has a U ‐rank.

Phrased differently, theU ‐rank provides a recursive definition of the class of the graphs in
which U is dispersed.

Proof of Theorem 4. We show the equivalence (i) ¬↔ (ii). The forward implication has
already been pointed out above. For the backward implication suppose that G has no
U ‐rank; we show that G must contain a comb attached toU . As G has noU ‐rank, one of
its components, C0 say, has noU ‐rank as well. Pick u U C0 0∈ ∩ arbitrarily. Since C0 has
no U ‐rank, it follows that C u−0 0 has a component C1 that has no U ‐rank; let
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u U C1 1∈ ∩ and pick a u0–u1 path P1 in C0 with P C˚
1 1⊆ . Next, delete P1 from C1 and let

C C P−2 1 1⊆ be a component that has noU ‐rank. Let u U C2 2∈ ∩ , pick any P1–u2 path P2

inC1 with P C2̊ 2⊆ and note that P2 meets P1 in u P˚1 1. Therefore, if we continue inductively
to find paths P P, , …1 2 in G, then their union Pn n⋃ is a comb with attachment set
u n U{ }n ∣ ∈ ⊆ . □

There is a way to see immediately that for a connected graphG having aU ‐rank is stronger
than G containing a star attached toU whenU is infinite. For this, suppose that G hasU ‐rank
α. Then α > 0 as U V G( )⊆ is infinite. Hence G has a finite set X of vertices such that every
component of G X− has some U ‐rank α< . In particular, G X− must have some infinitely
many components that meet U . Each of these components gives some U–X path avoiding all
other components, so the pigeonhole principle yields a star attached to U as desired.

TheU ‐rank of a graph has many properties. In the remainder of this section, we prove three
such properties that we will put to use in Section 3.5.

Lemma 3.9. LetG be any graph, letU be any set and suppose thatG hasU ‐rank α. Then
the following assertions hold:

(i) for every subset U U′ ⊆ the graph G has U′‐rank α≤ ;
(ii) for every subgraph H G⊆ the graph H has U ‐rank α≤ .

Proof. Induction on α. □

Lemma 3.10. Let U be any set. If T is a rooted rayless tree containing U V T( )∩

cofinally, then the U ‐rank of T is equal to the rank of T .

Here we remark that, in this paper, we consider the Schmidt rank of rayless graphs as discussed
in Section 3.4. In particular, when we consider the rank of a (possibly rooted) tree, we do not mean
the rank for rooted trees that defines recursive prunability (cf. [8, pp. 242 and 243]).

Proof of Lemma 3.10. Let α be the U ‐rank of T and let β be the rank of T . Since the
V T( )‐rank ofT is the same as the rank ofT , Lemma 3.9 (i) gives the inequality α β≤ . An
induction on α shows the converse inequality (in the induction step consider a set
X V T( )⊆ witnessing that T has U ‐rank α and employ the induction hypothesis to see
that every component of T X− has rank α< ; it is convenient to assume X to be down‐
closed, which is possible by Lemma 3.9 (ii)). □

Lemma 3.11. If G is any graph and T G⊆ is a rayless normal tree containing U G∩

cofinally, then the following three ordinals are all equal:

(i) the rank of T ;
(ii) the U ‐rank of T ;
(iii) the U ‐rank of G.

Proof. The equality (i) = (ii) is the subject of Lemma 3.10. Lemma 3.9 gives the
inequality (ii) ≤ (iii). We show the remaining inequality (iii) ≤ (ii) by induction on the
U ‐rank of T , as follows.
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If theU ‐rank of T is 0, thenU T U G=∩ ∩ is finite, and thus theU ‐rank of G is 0 as
well. For the induction step, suppose that T hasU ‐rank α > 0, and let X V T( )⊆ be any
finite vertex set such that every component of T X− hasU ‐rank α< . By Lemma 3.9 (ii)
we may assume that X is down‐closed in T . It suffices to show that every component of
G X− has a U ‐rank α< .

If C is a component of G X− , then either C avoids T U C⊇ ∩ and hasU ‐rank α0 < ,
or C meets T . In the case that C meets T , by Lemma 2.10 we know that C is spanned by
x⌊⌊ ⌋⌋ with x minimal in T X− , so T C C∩ ⊆ is a normal tree containingU C∩ cofinally.
Finally, by the induction hypothesis,

U C U T C α( ‐rank of ) ( ‐rank of ) < .≤ ∩

□

3.5 | Combining the duality theorems

So far we have seen duality theorems for combs in terms of normal trees, tree‐decompositions,
critical vertex sets and rank. With these four complementary structures for combs at hand, the
question arises whether it is possible to combine them all. In this section we will answer the
question in the affirmative. That is, we will present a fifth complementary structure for combs
that combines all of the four above.

This fifth structure will be a ‘tame’ tree‐decomposition that is more specific than the tree‐
decomposition listed above. It will stem from a normal tree in a way that we call ‘squeezed
expansion’. Just like the tree‐decomposition listed above, all its parts will meetU finitely, and
all its parts at nonleaves will be finite. Moreover, it will display not only the ends in the
closure ofU , but also the critical vertex sets in the closure ofU . To realise this, we will extend
the definition of ‘display’ in a reasonable way. Finally, the decomposition tree will have a
rank that is equal to theU ‐rank of the whole graph. The combined duality theorem reads as
follows:

Theorem 5. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a comb attached to U ;
(ii) G has a rooted tame tree‐decomposition T( , ) that coversU cofinally and satisfies the

following four assertions:
– T( , ) is the squeezed expansion of a normal tree inG that contains the vertex setU

cofinally;
– every part of T( , ) meets U finitely and parts at nonleaves are finite;
– T( , ) displays U Gcrit( )Γ∂ ⊆ ;
– the rank of T is equal to the U ‐rank of G.

Corollary 3.12. If a connected graph G is rayless (equivalently: if G has a rank), then G
has a tame tree‐decomposition into finite parts that displays the combinatorial remainder of
G and has a decomposition tree whose rank is equal to the rank of G.

The proof of the theorem above is organised as follows. First, we will state Proposition 3.13,
which lists some useful properties of squeezed expansions. Then, we will employ this propo-
sition in a high‐level proof of Theorem 5. To follow the line of argumentation up to here, it is
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not necessary to know the definitions of ‘tame’, ‘display’ and ‘squeezed’ ‘expansion’, which is
why we will introduce them subsequently to our high‐level proof. Finally, we will prove
Proposition 3.13.

Proposition 3.13. Let G be any graph and suppose that T GNT ⊆ is a normal tree such
that every component of G T− NT has finite neighbourhood, that T( , ) is the expansion of
TNT and that T( ′, ) is a squeezed T( , ) . Then the following assertions hold:

(i) T( , ) is upwards connected;
(ii) both T( , ) and T( ′, ) display TΓ NT∂ (in particular, both are tame);
(iii) all the parts of T( , ) and T( ′, ) meet TNT finitely;
(vi) parts of T( ′, ) at nonleaves of T′ are finite;
(v) T′ is rayless if and only if T is rayless if and only if TNT is rayless;
(vi) if one of T′, T and TNT is rayless, then the ranks of T′, T and TNT all exist and are all

equal.

The proposition has a corollary that is immediate because every normal spanning tree will
have an expansion, and expansions will be rooted:

Corollary 3.14. Every normally spanned graph has a rooted tame tree‐decomposition
displaying its combinatorial remainder.

Now we prove Theorem 5 using Proposition 3.13:

Proof of Theorem 5. (i) and (ii) exclude each other for various reasons we have already
discussed.

For the implication ¬(i) → (ii) suppose that G contains no comb attached to U . By
Theorem 1 there is a rayless normal treeT GNT ⊆ that containsU cofinally. We show that
the squeezed expansion T( ′, ) of TNT is as desired. By Proposition 3.13 every part of
T( ′, ) meets T UNT ⊇ finitely and parts at nonleaves of T′ are finite. As we have
T U=Γ NT Γ∂ ∂ by Lemma 2.13, Proposition 3.13 also ensures that the squeezed expansion

T( ′, ) ofTNT displays UΓ∂ (in particular, T( ′, ) is tame). Finally, theU ‐rank ofG exists
by Theorem 4 and is equal to the rank ofTNT by Lemma 3.11, which in turn is equal to the
rank of T′ by Proposition 3.13. □

Next, we provide all the definitions needed: First, we define ‘tame’ tree‐decompositions
(Definition 3.15). Second, we extend the definition of ‘display’ to include critical vertex sets
(Definition 3.17). Third, we define the ‘expansion’ of a normal tree (Definition 3.18), which is a
certain tree‐decomposition. Finally we define what it means to ‘squeeze’ a tree‐decomposition
(Definition 3.19).

Recall that the definition of ‘display’, as discussed in Section 2, highly relies on the fact that
the ends of a graph orient all its finite‐order separations. Now, critical vertex sets are closely
related to ends, as they together with the ends turn graphs into compact topological spaces.
This is why we may hope that every critical vertex set X orients the finite‐order separations so
as to lead immediately to a notion of ‘displaying a collection of critical vertex sets’. Probably the
most natural way that a critical vertex set X could orient a finite‐order separation A B{ , }
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towards a side K A B{ , }∈ is that X together with all but finitely many of the components in XC̆

are contained in K .
However, this is too much to ask: For example, consider an infinite star. The centre c of the

star forms a critical vertex set X c= { }, and any separation with separator X that has infinitely
many leaves on both sides will not be oriented by X in this way.

But focusing on a suitable class of separations, those that are tame, leads to a natural
extension of ‘display’ to include critical vertex sets:

Definition 3.15. A finite‐order separation X{ , }C of G is tame if for no Y X⊆ both C
and \XC C contain infinitely many components whose neighbourhoods are precisely
equal to Y .

The tame separations of G are precisely those finite‐order separations of G that respect the
critical vertex sets:

Lemma 3.16. A finite‐order separation A B{ , } of a graph G is tame if and only if every
critical vertex set X of G together with all but finitely many components from XC̆ is
contained in one side of A B{ , }.

Proof. For the forward implication, note that every distinct two vertices of a critical
vertex set are linked in G X X[ ˘ ]C∪ ⋃ by infinitely many independent paths, so every
critical vertex set of G meets at most one component of G A B− ( )∩ . □

We say that an Sℵ0‐tree T α( , ) is tame if all the separations in the image of α are tame. And
we say that a tree‐decomposition is tame if it corresponds to a tame Sℵ0‐tree.

If X is a critical vertex set of G and T α( , ) is a tame Sℵ0
‐tree, then X induces a consistent

orientation of the image of α by orienting every tame finite‐order separation A B{ , } towards the
side that contains X and all but finitely many of the components from XC̆ (cf. Lemma 3.16).
This consistent orientation also induces a consistent orientation of E T( )

→
via α. Then, just like

for ends, the critical vertex set X either lives at a unique node t T∈ or corresponds to a unique
end of T . In this way, we obtain an extension σ G T V T: Γ( ) Ω( ) ( )→ ⊔ of the map
τ G T V T: Ω( ) Ω( ) ( )→ ⊔ from Section 2.8.

Since σ extends τ from the end space GΩ( ) ofG to the full combinatorial remainder GΓ( ) of
G, it is reasonable to wonder why the target set of σ is that of τ , namely, T V TΩ( ) ( )⊔ , rather
than analogously taking the target set T V TΓ( ) ( )⊔ . At a closer look, the critical vertex sets ofT
are already contained in the target set T V TΩ( ) ( )⊔ , for they are precisely the infinite degree
nodes of T . This, and the fact that every critical vertex set X of G naturally comes with an
oriented tame separation X X( , ˘ )C of G, motivate the following definition.

Definition 3.17. [Display GΨ Γ( )⊆ ] LetG be any graph. A rooted tame Sℵ0‐tree T α( , )

displays a subset Ψ of the combinatorial remainder G G GΓ( ) = Ω( ) crit( )⊔ of G if σ
satisfies the following three conditions:

• σ restricts to a bijection between GΨ Ω( )∩ and TΩ( );
• σ restricts to a bijection between GΨ crit( )∩ and the infinite‐degree nodes of T so
that: whenever σ sends a critical vertex set X Ψ∈ to t T∈ , then t has a predecessor
s T∈ with α s t X( , ) = ( , )C such that XC̆C ⊆ is cofinite and α restricts to a bijection
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between Ft
→

and the star in Sℵ0

→
that consists of the separation X( , )C and all the

separations C X( , ) with C C∈ ;
• σ sends all the elements of GΓ( ) \Ψ to finite‐degree nodes of T .

Note that this definition of displays is not exactly an extension of the original definition
given in Section 2.8. Indeed, if T α( , ) displays Ψ and ω Ψ∉ is an end, then with the original
definition ω may correspond to an infinite degree vertex of T , but not with the new definition.
However, the new definition is stronger than the original one: if T α( , ) displays GΨ Γ( )⊆ in the
new sense, then T α( , ) displays GΨ Ω( )∩ in the original sense.

We solve this ambiguity as follows. Whenever we say that a tree‐decomposition or Sℵ0
‐tree

displays some set Ψ of ends ofG and it is clearly understood that we view Ψ as a subset of GΩ( ),
for example, when we let Ψ consist of the undominated ends ofG or consider UΨ = Ω∂ , then by
‘displays’ we refer to the original definition from Section 2.8. But whenever we explicitly
introduce Ψ as a subset of the combinatorial remainder GΓ( ) of G, for example, when we let Ψ
consist of critical vertex sets or consider UΨ = Γ∂ , then by ‘displays’ we refer to the new
definition introduced above.

We wish to make a few remarks on our new definition. If T α( , ) is a rooted tame Sℵ0‐tree
displaying some GΨ Γ( )⊆ and the tree‐decomposition T( , ) corresponding to T α( , ) exists,
then V X=σ X( ) whenever X is a critical vertex set in Ψ. We do not require X= C̆C in the
definition of displays because there are simply structured normally spanned graphs for which
otherwise none of their tree‐decompositions would display their combinatorial remainder. See
[13, Examples 3.6 and 3.7] for details.

Now, let us turn to the expansion of a normal tree. Given vertex sets Y X V G( )⊆ ⊆ we
write Y( )XC for the collection of all components C XC∈ with N C Y( ) = .

Definition 3.18 (Expansion of a normal tree). To define the expansion, suppose thatG is
any connected graph and T GNT ⊆ is any normal tree such that every component of
G T− NT has finite neighbourhood. From the normal tree TNT we obtain the tame
expansion T( , ) of TNT in G in two steps, as follows.

For the first step, let us suppose without loss of generality that for all nodes t TNT∈

every up‐neighbour t′ of t in TNT is named as the component t′⌊⌊ ⌋⌋ of G t− ⌈ ⌉ containing t′.
(Formally, we realise this as labelling of the vertex set to avoid a conflict with the axiom
of foundation.) We define a map β E T S: ( )NT ℵ0

→
→
→

by letting β t C N C C( , ) ( ( ), )≔ and
β C t β t C( , ) ( , )*≔ whenever C is an up‐neighbour of a node t in TNT. Then T β( , )NT is a
rooted tame Sℵ0

‐tree that displays T GΩ( )Ω NT∂ ⊆ .
In the second step, we obtain from T β( , )NT a rooted tame Sℵ0

‐tree T α( , ) displaying
T GΓ( )Γ NT∂ ⊆ . Informally speaking we sort the separations of the form β t C( , ) with

t TNT∈ an infinite degree‐node and C an up‐neighbour of t in TNT by the critical vertex
sets X t⊆ ⌈ ⌉ in the closure of TNT with C XC̆∈ . Formally this is done as follows (cf.
Figure 1).

For every infinite‐degree node t TNT∈ and every critical vertex set X TΓ NT∈ ∂

satisfying t X t∈ ⊆ ⌈ ⌉ we do the following:

(i) we add a new vertex named X to TNT and join it to t;
(ii) for every component C X X( ) ˘

t CC∈ ⊆⌈ ⌉ we delete the edge tC (this is redundant
when TNT avoids C) and add the new edge XC (note that in particular the vertex C
gets added as well, even if TNT avoids C);
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(iii) we let α t X X X( , ) ( , ( ))tC≔ ⌈ ⌉ , and for every component C X( )tC∈ ⌈ ⌉ we let
α X C X C( , ) ( , )≔ .

Then we take T to be the resulting tree, and we extend α to all of E T( )
→

by letting
α e β e( ) ( )→ ≔ → whenever the edge e ofT is also an edge of the normal treeTNT. The rooted tame
tree‐decomposition T( , ) corresponding to T α( , ) is the expansion of TNT in G.

And here is the definition of squeezing:

Definition 3.19 (Squeezing a tree‐decomposition). Suppose that T( , ) and T( ′, ) are
tree‐decompositions of G. We say that T( ′, ) is a squeezed T( , ) if T( ′, ) is obtained
from T( , ) as follows. The treeT′ is obtained fromT by adding, for every node t T∈ that
has finite degree>1 and whose partVt is infinite, a new node t′ toT and joining it to t . For
all these nodes t the partWt is the union of the separators of T( , ) associated with the
edges of T at t , and the partWt′ is taken to be the part Vt . For all other nodes t the partWt

is Vt .

Note that if T( ′, ) is the squeezed T( , ) and all separators of T( , ) are finite, then all the
infinite parts Vt with t an internal finite‐degree node ofT become finite partsWt . Thus, all parts
Wt with t an internal finite‐degree node ofT′ are finite. Achieving this property is the purpose of
squeezing.

Squeezing preserves tameness:

Lemma 3.20. Let G be any graph, let T( , ) be any tree‐decomposition of G with finite
separators and let T( ′, ) be the squeezed T( , ) . If T( , ) is tame, then T( ′, ) is tame
as well.

To prove this lemma, we need the following fact about tame separations. (In the language of
separation systems, it states that the tame separations form a subuniverse of the universe of
finite‐order separations of a graph.)

Lemma 3.21. If A B A B( , ), …, ( , )n n0 0 are tame separations of a graph G for some n ∈ ,
then the separation A B( , )i n i i n i⋃ ⋂≤ ≤ is tame as well.

FIGURE 1 The second step in the construction of the expansion of normal trees. The critical vertex sets X

and X ′ are in the closure of TNT, while X″ is not. The three sets X , X ′ and X″ are all the critical vertex sets ofG

that contain t and are contained in t⌈ ⌉
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Proof. The assertion follows by induction on n once we have shown the case n = 1. By
Lemma 3.16 it suffices to find for every critical vertex set X ofG a cofinite subset XC̆C ⊆

such that X V A A[ ] 0 1C∪ ⊆ ∪ or X V B B[ ] 0 1C∪ ⊆ ∩ . Given X , let 0C and 1C be two
cofinite subsets of XC̆ such that X V [ ]0C∪ is included in either A0 or B0, and X V [ ]1C∪

is included in either A1 or B1. We are done with = 0C C or = 1C C except possibly when
X V B[ ]i iC∪ ⊆ for both i = 0, 1. In this case, 0 1C C C≔ ∩ is a cofinite subset of XC̆ with
X V B B[ ] 0 1C∪ ⊆ ∩ . □

Proof of Lemma 3.20. Suppose that T( , ) is a tame tree‐decomposition of G and that
T( ′, ) is the squeezed T( , ) . Separations of G that are induced by T( ′, ) are tame
when they are induced by edges of T′ that are also edges of T T′⊆ . Hence it suffices to
show that for every leaf T T′ −ℓ ∈ with neighbour t T T′∈ ⊆ the separation induced by
t T′ℓ ∈ is tame. For this, let any edge t T′ℓ ∈ be given and write s s, …, n0 for the finitely

many neighbours of t in T . Let T α( ′, ′) be the Sℵ0‐tree corresponding to T( ′, ) , let
A B α t( , ) ′( , )≔ ℓ and define A B α s t( , ) ′( , )i i i≔ for all i n≤ . Then, by the definition of
T( ′, ) , we have A A= i i⋃ and B B= i i⋂ . Since all separations A B( , )i i are tame, it
follows by Lemma 3.21 that A B( , ) is tame as well. □

Now that we have formally introduced all the definitions involved, we are ready to prove
Proposition 3.13:

Proof of Proposition 3.13.

(i) The expansion is upwards connected by definition.
(ii) Using Lemma 2.11 and the fact that every component of G T− NT has finite

neighbourhood, it is straightforward to check that T( , ) displays T GΩ( )Ω NT∂ ⊆ . We
verify that T( , ) even displays T GΓ( )Γ NT∂ ⊆ . On the one hand, by Lemma 2.12
every critical vertex set X TΓ NT∈ ∂ is contained in TNT as a chain, and hence appears
precisely once as a node of T by the definition of the expansion. On the other hand,
every node of infinite degree of T stems from such a critical vertex set. Together we
obtain that T( , ) displays TΓ NT∂ . The tree‐decomposition T( ′, ) is tame because
T( , ) is, cf. Lemma 3.20. From here, it is straightforward to show that T( ′, )
displays TΓ NT∂ as well.

(iii) and (iv) are straightforward.
(v) follows from (ii) and Lemma 2.11.
(vi) It is straightforward to check by induction on the rank that the rank is preserved

under taking contraction minors with finite branch sets. Similarly, one can show
that two infinite trees have the same rank if one is obtained from the other by
adding new leaves to some of its nodes of infinite degree. Now we deduce (vi) as
follows. For every node t TNT∈ let us write St for the finite star with centre t and
leaves the critical vertex sets X TΓ NT∈ ∂ with t X t∈ ⊆ ⌈ ⌉. The decomposition tree
T of the expansion ofTNT is obtained from an IT TNT ⊆ with finite branch sets (the
nontrivial branch sets are precisely the vertex sets of the stars St for the nodes
t TNT∈ of infinite degree) by adding leaves to nodes of infinite degree (each leaf is
a component C X( )tC∈ ⌈ ⌉ avoiding TNT for some X St∈ and gets joined to
X IT TNT∈ ⊆ ). Therefore, the ranks of T and TNT coincide. The decomposition
tree T′ is obtained from T by adding at most one new leaf to each node of T , and
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new leaves are only added to finite‐degree nodes of T . An induction on the rank
shows that the rank is preserved under this operation, and so the ranks of T′ and
T coincide as well. □

Carmesin [5] showed that every connected graph G has a tree‐decomposition with finite
separators that displays Ψ for Ψ the set of undominated ends of G, cf. Theorem 2.17. He then
asked for a characterisation of those pairs of a graphG and a subset GΨ Ω( )⊆ for whichG has
such a tree‐decomposition displaying Ψ. In the same spirit, our findings motivate the following
problem:

Problem 3.22. Characterise, for all connected graphs G, the subsets GΨ Γ( )⊆ for
which G admits a rooted tame tree‐decomposition displaying Ψ.

4 | STARS

4.1 | Normal trees

In this section we prove a duality theorem for stars in terms of normal trees.

Theorem 6. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a star attached to U ;
(ii) there is a locally finite normal tree T G⊆ that contains U and all whose rays are

undominated in G.

Moreover, the normal treeT in (ii) can be chosen such that it containsU cofinally and every
component of G T− has finite neighbourhood.

Proof of Theorem 6 without the ‘moreover’ part. First, we show that at most one of (i) and
(ii) holds. Assume for a contradiction that both hold. LetT G⊆ be a normal tree as in (ii)
and let U U′ ⊆ form the attachment set of some star attached to U . By Lemma 2.3 the
locally finite treeT contains a comb attached toU′. That comb's spine, then, is dominated
in G by the centre of the star, a contradiction.

It remains to show that at least one of (i) and (ii) holds; we show ¬ (i)→ (ii). We have
thatU is countable, since otherwise the star–comb lemma yields a star attached toU . By
Corollary 3.3 we find a normal tree T G⊆ that contains U cofinally. Clearly, T must be
locally finite sinceG contains no star attached toU . For the same reason, every ray ofT is
undominated in G. □

The remaining ‘moreover’ part is a consequence of [1, Theorem 1], which is why its
proof is placed in the second paper of our series, cf. [1, Section 2]. To see immediately that
a locally finite normal tree T as in (ii) is more specific than a comb when U is infinite,
apply Lemma 2.3 to T .
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4.2 | Tree‐decompositions

For combs we have provided a duality theorem in terms of normal trees, and that theorem then gave
rise to another duality theorem in terms of tree‐decompositions. Since we have shown a duality
theorem for stars in terms of normal trees in Section 4.1, a natural question to ask is whether this
theorem gives rise to a duality theorem for stars in terms of tree‐decompositions, just like for combs.
It turns out that stars have a duality theorem in terms of tree‐decompositions. But this theorem
cannot be proved by imitating the proof of the respective theorem for combs, and so we will have to
come up with a whole new strategy. Our theorem reads as follows:

Theorem 7. Let G be any connected graph and letU V G( )⊆ be any vertex set. Then the
following assertions are complementary:

(i) G contains a star attached to U ;
(ii) G has a locally finite tree‐decomposition with finite and pairwise disjoint separators

such that each part contains at most finitely many vertices of U .

Moreover, the tree‐decomposition in (ii) can be chosen with connected separators and such
that it displays UΓ∂ which consists only of ends.

We remark that (ii) is equivalent to the assertion that ‘G has a ray‐decomposition with finite
and pairwise disjoint separators such that each part contains at most finitely many vertices of
U ’ since the distance classes of locally finite trees are finite.

To prove the theorem, we start by showing that (i) and (ii) exclude each other:

Lemma 4.1. In Theorem 7 the graph G cannot satisfy both (i) and (ii).

Proof. Let T( , ) be a tree‐decomposition as in (ii) of Theorem 7. Assume for a
contradiction that G contains a star S attached to U . As the separators of T( , ) are
pairwise disjoint, the centre c of S is contained in at most two parts of T( , ) . Let T T′ ⊆

be the finite subtree induced by the nodes of these parts plus their neighbours in T . As
the parts at the nodes of T′ altogether contain at most finitely many vertices fromU , the
star S must send infinitely many paths to vertices in parts at T T− ′. But the centre c is
separated from the parts at T T− ′ by the finite union of the finite separators associated
with the edges of T leaving T′, a contradiction. □

Now, to prove Theorem 7 it remains to show ¬ (i)→ (ii). This time, however, it is harder to
see how the normal tree from Theorem 6 can be employed to yield a tree‐decomposition. That
is why we do not take the detour via normal trees and instead construct the tree‐decomposition
directly. Still, this requires some effort.

First of all, assuming the absence of a star as in (i), we need a strategy to construct a tree‐
decomposition as in (ii). Fortunately, we do not have to start from scratch. In the proof of [11,
Theorem 2.2], Diestel and Kühn proved the following as a technical key result: If ω is an un-
dominated end of G, then there exists a sequence X( )n n ∈ of nonempty finite vertex sets X V G( )n ⊆

such that, for all n ∈ , the component C X ω( , )n contains X C X ω( , )n n+1 +1∪ . Now if UΩ∂ is a
singleton ω{ }, then ω must be undominated as (i) fails, and we consider such a sequence X( )n n ∈ .
By making all the Xn+1 connected in C X ω( , )n first, and then moving to a suitable subsequence,
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we obtain a ray‐decomposition of G that meets the requirements of (ii). Our strategy is to gen-
eralise this fundamental observation using that UΩ∂ is compact in our situation:

Lemma 4.2. If G contains no star attached to U , then UΩ∂ is nonempty, compact and
contains only undominated ends.

Proof. By the pigeonhole principle, for every X ∈ only finitely many components of
G X− may meet U . Thus UΩ∂ is nonempty and compact by Lemma 2.8. □

Our next lemma generalises the fact that a vertex can be strictly separated from every end
which it does not dominate.

Lemma 4.3. Suppose that X is a finite set of vertices in a (possibly disconnected) graphG
such that G X− is connected, and that GΨ Ω( )⊆ is a nonempty and compact subspace
consisting only of undominated ends. Then there is a finite‐order separation of G that
strictly separates X from Ψ and whose separator is connected.

Proof. No end in Ψ is dominated and X is finite, so for every end ω Ψ∈ we find a finite
vertex set Y ω V G( ) ( )⊆ with Y ω C Y ω ω( ) ( ( ), )∪ disjoint from X . Since the components
C Y ω ω( ( ), ) induce a covering of Ψ by open sets, the compactness of Ψ yields finitely
many ends ω ω, …, Ψn1 ∈ such that every end in Ψ lives in at least one of the components
C Y ω ω( ( ), )i i . Let the vertex set Y be obtained from the finite union of the finite setsY ω( )i
by adding some finitely many vertices from the connected subgraph G X− so as to
ensure thatG Y[ ] is connected. Note that Y avoids X , and writeD for the collection of the
components of G Y− in which ends of Ψ live. We claim that Y( , )D strictly separates X
from Ψ. For this, let ω be any end in Ψ. Pick an index k for which ω lives in the
component C Y ω ω C( ( ), ) =:k k . Then, by the choice of Y ω( )k , there is no X–C path in
G Y ω− ( )k . By Y ω Y( )k ⊆ and C Y ω C( , ) ⊆ then there certainly is no X–C Y ω( , ) path
in G Y− . Therefore, Y( , )D strictly separates X from Ψ. □

Proposition 4.4. Let G be any connected graph and suppose that Ψ Ω⊆ is a nonempty
and compact subspace that consists only of undominated ends. Then there exists a locally
finite Sℵ0

‐tree T α( , ) with connected pairwise disjoint separators that displays Ψ.

Proof. We inductively construct a sequence T α(( , ))n n n ∈ of rooted Sℵ0
‐trees with root

r T T0 1∈ ⊆ ⊆⋯ and α α0 1⊆ ⊆⋯ , as follows.
To define T α( , )0 0 , let T0 consist of one edge rt and put α r t v V( , ) ({ }, )0 ≔ for an

arbitrary vertex v of G. Now, to obtain T α( , )n n+1 +1 from T α( , )n n , we do the following for
every edge tℓ ofTn at a leaf rℓ ≠ . Consider the separation α t X( , ) = ( , )Cℓ withC C, …, n1

the finitely many components in C in which ends of Ψ live (these are finitely many as Ψ
is compact). For each component Ci apply Lemma 4.3 inG X C[ ]i∪ to X and CΨ Ω i∩ ∂ to
obtain a finite‐order separation A B( , )i i of G X C[ ]i∪ that strictly separates X from

CΨ Ω i∩ ∂ in G X C[ ]i∪ and has a connected separator A Bi i∩ . Then A B( ′, ′) with
A A V C′ ( )i i≔ ∪ ⧹ and B B′ i≔ is a finite‐order separation of G that strictly separates X
from CΨ iΩ∩ ∂ inG and has a connected separator A B A B′ ′ = i i∩ ∩ . We add eachCi as a
new node toTn, join it precisely to the leaf ℓ and let α C A B( , ) ( ′, ′)n i+1 ℓ ≔ . This completes
the description of our construction.
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We claim that the pair T α( , ) given by T Tn n≔ ⋃ and α αn n≔ ⋃ is as required. Our
construction ensures that T is locally finite and that the separators of T α( , ) are
connected and pairwise disjoint. Furthermore, our construction ensures that every end in
Ψ corresponds to an end ofT . It remains to show that T α( , ) displays Ψ. By Lemma 2.16 it
suffices to show that, for every end of T , there is an end in Ψ corresponding to it. And
indeed, every ray inT avoiding the root is, literally, a descending sequence C C1 2⊇ ⊇⋯

of components for which some end of the compact Ψ lives in all Cn by the finite
intersection property of the collection C n{Ψ }nΩ ∩ ∂ ∣ ∈ . □

Proof of Theorem 7. By Lemma 4.1 at most one of (i) and (ii) can hold. To establish that
at least one of them holds, we show ¬ (i)→ (ii). Suppose thatG contains no star attached
toU . By Lemma 4.2 we know that the subspace U ΩΩ∂ ⊆ consisting of the ends lying in
the closure of U actually contains only undominated ones, and is both nonempty and
compact. Proposition 4.4 then yields a locally finite Sℵ0‐tree T α( , ) with connected
pairwise disjoint separators that displays UΩ∂ . Let T( , ) be the tree‐decomposition
corresponding to T α( , ). AsG contains no star attached toU , there is no critical vertex set
in the closure ofU , and hence T( , ) even displays UΓ∂ . It remains to show that each part
of T( , ) contains at most finitely many vertices fromU . Suppose for a contradiction that
some part Vt contains some infinitely many vertices fromU , and writeU′ for that subset
ofU . As (i) fails, applying Lemma 4.2 inG toU′ yields an end in U′Ω∂ . But then this end
lies in Ψ but does not correspond to an end of T , a contradiction. □
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